
Hybrid MBlur: Using Ray Tracing to Solve the Partial Occlusion
Artifacts in Real-Time Rendering of Motion Blur Effect

Tan Yu Wei
National University of Singapore

yuwei@u.nus.edu

Cui Xiaohan
National University of Singapore

cuixiaohan@u.nus.edu

Anand Bhojan
National University of Singapore

banand@comp.nus.edu.sg

Figure 1: From left to right: original scene, adapted post-process [McGuire et al. 2012] (295 fps), UE4 post-process, hybrid (205

fps) and ray-traced MBlur on The Modern Living Room (CC BY) with a GeForce RTX 2080 Ti

ABSTRACT

For a foreground object in motion, details of its background which
would otherwise be hidden are uncovered through its inner blur.
This paper presents a novel hybrid motion blur rendering technique
combining post-process image filtering and hardware-accelerated
ray tracing. In each frame, we advance rays recursively into the
scene to retrieve background information for inner blur regions and
apply a post-process filtering pass on the ray-traced background and
rasterized colour before compositing them together. Our approach
achieves more accurate partial occlusion semi-transparencies for
moving objects while maintaining interactive frame rates.

CCS CONCEPTS

•Computingmethodologies→Rendering;Ray tracing; •Ap-
plied computing→ Computer games.

KEYWORDS

real-time, motion blur, ray tracing, post-processing, hybrid render-
ing, games

ACM Reference Format:

Tan Yu Wei, Cui Xiaohan, and Anand Bhojan. 2020. Hybrid MBlur: Using
Ray Tracing to Solve the Partial Occlusion Artifacts in Real-Time Rendering
of Motion Blur Effect. In Special Interest Group on Computer Graphics and
Interactive Techniques Conference Posters (SIGGRAPH ’20 Posters), August 17,
2020. ACM, New York, NY, USA, 2 pages. https://doi.org/10.1145/3388770.
3407436

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
SIGGRAPH ’20 Posters, August 17, 2020, Virtual Event, USA
© 2020 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-7973-1/20/08.
https://doi.org/10.1145/3388770.3407436

1 INTRODUCTION

Blurred regions by nature uncover information of hidden back-
ground areas which are otherwise excluded from the render, as
an effect of partial occlusion. Moving objects blur outwards and
inwards at their silhouette, causing the region surrounding their
silhouette to appear semi-transparent [Jimenez 2014]. Outer blur
represents an object’s blur into its background, while inner blur
refers to the blur produced within the silhouette of the object itself.

One key to Motion Blur (MBlur) rendering is hence the recovery
of background colour in inner blur regions which is inaccurate with
screen space approaches. Post-process techniques likeMcGuire et al.
[2012] approximate the background of the inner blur with neigh-
bouring pixels when the background colour of the target pixel
cannot be retrieved from raster information. This approach not
only produces a mere approximation of the true background geom-
etry of inner blur regions, but also leads to inaccuracies between
real and approximated backgrounds for sharp and blurred regions
respectively. Our technique addresses these issues by obtaining the
exact colour of occluded background with ray tracing for a more
accurate MBlur.

2 DESIGN

We first obtain per-pixel information such as camera space depth,
world space surface normal vector, screen space mesh ID and ve-
locity as well as rasterized colour under deferred shading. The
same depth and colour information for background geometry are
retrieved by our novel ray reveal pass within a ray mask for pixels
in the inner blur of moving foreground objects. A tile-dilate pass is
then applied to these 2 sets of buffers to determine the sampling
range of our gathering filter in the subsequent post-process pass
which is adapted from McGuire et al. [2012]. Both the ray-revealed
result and rasterized output are then blurred by the post-process
pass, and lastly composited together to produce our final image.

ar
X

iv
:2

21
0.

05
36

4v
1 

 [
cs

.G
R

] 
 1

1 
O

ct
 2

02
2

https://www.blendswap.com/blends/view/75692
https://creativecommons.org/licenses/by/3.0/
https://doi.org/10.1145/3388770.3407436
https://doi.org/10.1145/3388770.3407436
https://doi.org/10.1145/3388770.3407436


SIGGRAPH ’20 Posters, August 17, 2020, Virtual Event, USA Tan et al.

2.1 Post-Process

We gather samples from a heuristic range of nearby pixels and
compute the amount of contribution of each sample [McGuire et al.
2012] to produce a motion-blurred effect separately for rasterized
as well as ray-revealed information.

For the sampling range, McGuire et al. centers the sampling area
at the pixel itself, creating a 2-directional blur effect towards both
sides of the geometry edge as shown in Figure 2. Although this
produces more symmetric blur for thin objects and the specular
highlight of curved surfaces, it introduces complexity in smoothen-
ing the transition between the inner and outer blur. Our approach
refrains from this problem by letting the target pixel be at the
end of the sampling area. In this way, inner and outer blur can be
considered separately without much change to the pipeline.

Figure 2: Range of samples for each pixel

For inner blur, McGuire et al. uses colour information of nearby
samples based on the reasoning that approximate information,
though inaccurate, is more desirable than the absence of any in-
formation whatsoever. However, this creates an inconsistency of
background information at the silhouette of moving foreground
objects.

2.2 Ray Mask

We obtain true background information by shooting rays within a
ray mask, where only inner blur regions corresponding to geometry
edges are marked. For every pixel with a nonzero speed, we first
translate it in the direction of its velocity for one magnitude of its
estimated displacement within the exposure time and compare the
change in depth value and mesh ID. For a pixel to be in the inner
blur region of a foreground object, it would have to be shallower
than its displaced position by a certain amount, and also correspond
to a different mesh ID as part of a separate object. Pixels that do
not satisfy these conditions are hence filtered out.

The remaining pixels are passed into a Sobel convolution kernel
which detects edges based on the differences in surface normal and
depth with surrounding pixels. The result is then evaluated against
a high edge threshold to effectively eliminate non-edges from the
edge mask. Lastly, a range check pass is applied, where each pixel
with a nonzero speed samples along its estimated displacement.
If any sample encountered is marked in the edge mask, the pixel
passes into the final ray mask.

2.3 Ray Reveal

We adapt recursive ray tracing and shoot rays within inner blur
regions, iteratively advancing them deeper into the scene until
a different object is found. When the recursion terminates, the
background originally blocked at the current view is revealed using
information from the final hit point. Although the accuracy of our
motion-blurred background will increase when subsequent deeper
layers are revealedwith rays, for efficiency, we limit the ray reveal to
one layer and apply post-process (i.e. approximate using neighbour
information) to achieve our motion-blurred background.

At the pixel level, a ray is dispatched for each pixel within the
ray mask and automatically advanced for recursion after the first
hit. The advancing of a ray is performed by shooting a new ray
along the same direction with its starting point at the latest hit.
Currently, luminance is used as an indicator for identifying different
objects. Hence, our approach terminates the recursive advancing
process when the newest hit point reads a luminance different from
the original hit, or the maximum recursion level is met. However,
we hope to switch to using GeometryIndex in DirectX Raytracing
Tier 1.1, which will enable the ray tracing shader to distinguish
geometries. This will be more suitable than luminance in scenes
with multiple overlapping objects of the same luminance value.

3 DISCUSSION

We evaluate our method against the state-of-the-art post-process
MBlur from UE4, which adopts a similar approach to McGuire et al..
UE4 also generates MBlur by comparing the velocity of each pixel
to the aggregate pixel velocity in its neighbourhood.

As seen in Figure 1, post-process MBlur incorrectly reconstructs
the background by reusing neighbouring information available in
the rasterized image. Background colour is hardly visible within the
inner blur of the foreground vase for McGuire et al. as compared to
UE4. However, it is clear that the background for UE4 is mirrored
from that outside the inner blur as seen from the additional cush-
ion edge annotated in yellow. For hybrid MBlur, we can observe
the accurate cushion edge marked in green that corresponds well
to ground truth distributed ray tracing. Here, we manage to sam-
ple what is lost from depth testing in the rasterization pass while
maintaining interactive frame rates.

In future, we hope to better support nonlinear motion within
the exposure time by extending our technique with curve sampling.
We are also exploring the restriction of velocity computation to a
pre-defined scene depth if geometry movement is localized.

ACKNOWLEDGMENTS

This work is supported by the Singapore Ministry of Education Aca-
demic Research grant T1 251RES1812, “Dynamic Hybrid Real-time
Rendering with Hardware Accelerated Ray-tracing and Rasteriza-
tion for Interactive Applications”.

REFERENCES

Jorge Jimenez. 2014. Advances in Real-Time Rendering in Games, Part I: Next Gen-
eration Post Processing in Call of Duty: Advanced Warfare. http://advances.
realtimerendering.com/s2014/#_NEXT_GENERATION_POST

Morgan McGuire, Padraic Hennessy, Michael Bukowski, and Brian Osman. 2012. A Re-
construction Filter for Plausible Motion Blur. In Proceedings of the ACM SIGGRAPH
Symposium on Interactive 3D Graphics and Games (Costa Mesa, California) (I3D ’12).
ACM, New York, NY, USA, 135–142. https://doi.org/10.1145/2159616.2159639

http://advances.realtimerendering.com/s2014/#_NEXT_GENERATION_POST
http://advances.realtimerendering.com/s2014/#_NEXT_GENERATION_POST
https://doi.org/10.1145/2159616.2159639

	Abstract
	1 Introduction
	2 Design
	2.1 Post-Process
	2.2 Ray Mask
	2.3 Ray Reveal

	3 Discussion
	Acknowledgments
	References

