
Network architecture in the age of programmability

Anirudh Sivaraman*, Thomas Mason*, Aurojit Panda*, Ravi Netravali+, Sai Anirudh Kondaveeti*
*New York University, +University of California at Los Angeles

anirudh@cs.nyu.edu, tem373@nyu.edu, apanda@cs.nyu.edu, ravi@cs.ucla.edu, sak797@nyu.edu

This article is an editorial note submitted to CCR. It has NOT been peer reviewed.
The authors take full responsibility for this article’s technical content. Comments can be posted through CCR Online.

ABSTRACT
Motivated by the rapid emergence of programmable switches, pro-
grammable network interface cards, and software packet process-
ing, this paper asks: given a network task (e.g., virtualization or
measurement) in a programmable network, should we implement it
at the network’s end hosts (the edge) or its switches (the core)? To
answer this question, we analyze a range of common network tasks
spanning virtualization, deep packet inspection, measurement, ap-
plication acceleration, and resource management. We conclude that,
while the edge is better or even required for certain network tasks
(e.g., virtualization, deep packet inspection, and access control),
implementing other tasks (e.g., measurement, congestion control,
and scheduling) in the network’s core has significant benefits—
especially as we raise the bar for the performance we demand from
our networks.

More generally, we extract two primary properties that govern
where a network task should be implemented: (1) time scales, or how
quickly a task needs to respond to changes, and (2) data locality, or
the placement of tasks close to the data that they must access. For
instance, we find that the core is preferable when implementing
tasks that need to run at short time scales, e.g., detecting fleeting
and infrequent microbursts or rapid convergence to fair shares
in congestion control. Similarly, we observe that tasks should be
placed close to the state that they need to access, e.g., at the edge
for deep packet inspection that requires private keys, and in the
core for congestion control and measurement that needs to access
queue depth information at switches.

CCS CONCEPTS
• Networks → Programmable networks;

KEYWORDS
Network architecture, programmable networks

1 INTRODUCTION
To keep pace with an ever-changing set of requirements, network
infrastructure has rapidly become programmable across the board:
from switches to network interface cards (NICs) to middleboxes.
For instance, many switch ASIC manufacturers have developed and
commercialized high-speed programmable switch ASICs [1–3, 5, 6,
8, 14]. There has also been a recent move towards programmable
NICs [7, 9, 13, 30]. Lastly, for some time now, there has been a rise
in software packet processing for implementing network functions
such as deep packet inspection and firewalls [31, 51, 56].

Programmable networks can potentially benefit chip manufac-
turers, equipment vendors, and network operators. For a chip man-
ufacturer such as Broadcom or Mellanox, programmable switch and
NIC ASICs simplify ASIC design and save hardware design costs.
They do so by promoting design reuse and amortizing hardware
design cost: a small set of repeatable and programmable hardware
primitives can replace a much larger number of individually de-
signed features. Additionally, the same programmable ASIC can be
customized to different deployment scenarios. For an equipment
vendor such as Arista or Dell, programmability can be used to both
rapidly fix bugs in shipping switches and to add new features in
firmware without having to ask the chip manufacturer for new
hardware. These engineering benefits alone (design reuse, rapid
bug fixes, and the ability to reuse a single programmable ASIC)
make programmable networks compelling.

At the same time, while it is clear that programmability is useful
to both chipmanufacturers and equipment vendors, it is still unclear
how programmable networks will affect network operators, e.g.,
Google, AT&T, or Microsoft. Recent academic and industrial work
has demonstrated several possibilities enabled by programmable
NICs [18, 26, 41, 43, 52] and programmable switches [19, 35, 36, 50,
54]. However, we still do not have the answer to a basic question: if
the entire network is programmable and a network operator is given a
network task such as network virtualization or measurement, should
the task run at the end hosts (the edge) or the switches (the core)?

In this paper, we address this question qualitatively by compar-
ing two architectures for implementing network and application
tasks: (1) when both the edge (end hosts, NICs, virtual switches,
and middleboxes) and the core (switches, and routers) of a network
are programmable and (2) when only the edge is programmable. We
analyze the effectiveness of each architecture by considering sev-
eral example tasks: network measurement, resource management
(flow scheduling, congestion control, load balancing, and active
queue management (AQM)), network virtualization, network se-
curity, deep packet inspection, and application acceleration (§2). If
a network task can be implemented at the edge without substan-
tial drawbacks (e.g., inaccurate measurements, large processing
overheads), we prefer the edge. This is due to the edge’s relative
ease of programming and abundance of computation and storage
resources.

Our key findings are:
(1) Tasks that access state resident on the edge must run on the

edge out of necessity. One example is deep packet inspection

ACM SIGCOMM Computer Communication Review Volume 50 Issue 1, January 2020

38

http://crossmark.crossref.org/dialog/?doi=10.1145%2F3390251.3390257&domain=pdf&date_stamp=2020-03-23


(DPI) for spam filtering or worm detection. Here, if the pay-
load is encrypted, the key to decrypt it is typically available
only at the edge.

(2) Similarly, tasks that access state stored in the core are more
efficiently implemented in the core. For example, measuring
the loss rate or queuing delay of a particular switch is more
effective when done directly on that switch, as compared to
inaccurate end-host approaches like network tomography
that incur overheads from pooling together many indirect
end-to-end measurements from across the network. Simi-
larly, congestion-control algorithms like DCTCP [16] and
XCP [39] illustrate the benefit of direct and accurate conges-
tion feedback from switches (which can directly access queue
size information) relative to inferring congestion from end-
to-end measurements of packet losses or round-trip times.

(3) Tasks that require large amounts of memory or computing
per packet (e.g., network virtualization [27, 29, 42]) can be
more easily implemented on the edge than the core. This
is because, relative to the core, the edge has more mem-
ory resources (DRAM vs. SRAM) and its packet processing
requirements are less demanding.

(4) Tasks that must run at very short timescales (e.g., mea-
surement of datacenter microbursts, rapid convergence to
a flow’s fair rate allocation, and rapid load balancing in re-
sponse to link/switch failures) need a programmable core. By
contrast, tasks that run over longer timescales (e.g., asymp-
totic TCP fairness guarantees, eventual detection of switch
hardware bugs, and long-term averages of queuing latency)
can be implemented using the edge alone. We believe that
understanding and improving network performance at short
timescales will be increasingly important as we move be-
yond improving average-case performance of a network to
improving performance at high percentiles.

(5) Offloading application tasks into the network [35, 36] has
benefits—but only in specific settings. While a few instances
of niche applications at a small scale can benefit from such
offloading, limited switch memory soon prevents multiple
applications from offloading tasks into the switch simultane-
ously.

Reflecting on the findings above, we observe that the placement
of a network task is influenced by two factors: (1) the state it needs
(e.g., DPI at the edge and measurement at the core) and (2) the
timescale at which it runs (e.g., switch bug detection at the edge
andmicroburst detection at the core). These two guidelines can help
network operators decide the right location for a network task in a
network with programmable switches. We hope our initial findings
prompt further research into defining a more comprehensive set of
guidelines and a precise taxonomy for determining where network
tasks should ideally be implemented in a programmable network.
Source code for the simulations used to generate this paper’s figures
is available at https://github.com/tem373/Network_Tomography_
Project.

2 NETWORK TASKS: EDGE VS. CORE
2.1 Terminology and problem setup
For the purpose of this paper, the edge of the network refers to both
the first-hop network devices that applications use to connect to
the network (e.g., access routers, network interface cards, virtual
switches, and cellular base stations) and the devices at the boundary
between two autonomous systems (e.g., middleboxes and border
routers). Everything else (e.g., leaf, spine, and aggregation switches
and core routers), we consider part of the core. Our definition is
borrowed from CSFQ [60] and Fabric [24]. By this definition, a
packet can traverse multiple edges and cores on the path from its
source to its destination. Because of the widespread prevalence of
virtual switches that run on end-host hypervisors, we include the
end hosts themselves (e.g., laptops, servers, mobile phones, etc.) as
part of the edge.

An equivalent way to distinguish the edge and the core is based
on differences in implementation owing to the difference in for-
warding rates. For any autonomous system, the number of edge
devices is typically much more than the number of core devices; so,
the throughput required for each edge device is relatively modest
compared to a core device. Hence, an edge device is predominantly
implemented using general-purpose software for flexibility—with
a small amount of additional hardware for improved speed, either
through programmable NICs [7, 9] or bump-in-the-wire FPGAs [30].
A core device is predominantly implemented using special-purpose
ASICs optimized for forwarding speed—with a small amount of
programmability to accommodate new requirements [1–3].

We also assume that the edge and the core are under the control
of a single administrative entity, e.g., (1) a datacenter network oper-
ator that controls both the servers (edge) and switches (core) within
the datacenter or (2) an Internet Service Provider that controls both
the border routers and middleboxes (edge) and core routers (core)
within a particular autonomous system. This paper only consid-
ers the technical problem of choosing between the edge and core
within a single administrative entity. Although equally important,
it does not consider the economic problem of compatibility between
different administrative entities.

We compare two network architectures: (1) an edge+core archi-
tecture in which all edges and cores can be programmed and (2)
an edge-only architecture in which only the edges of the network
are programmable, with the cores being fixed and responsible only
for best-effort packet forwarding. For the edge+core architecture,
we assume core programmability similar to recent hardware de-
signs for programmable switches [21, 58, 59]. This programmability
permits limited transformations of packet headers (but not pay-
loads) [21], manipulation of a limited amount of state during packet
processing [58], and programmable scheduling on a limited number
of active flows [59].

This is optimistic because programmable switches vary in their
capabilities and not all current programmable switches support all
of these capabilities. We adopted this approach because the hard-
ware architectures and instruction sets of programmable switches
are in flux and will evolve to meet the needs of network operators.
For the edge, we assume relatively abundant availability of main
memory in DRAM and the ability for software packet processing

ACM SIGCOMM Computer Communication Review Volume 50 Issue 1, January 2020

39

https://github.com/tem373/Network_Tomography_Project
https://github.com/tem373/Network_Tomography_Project


(possibly augmented with some hardware such as programmable
NICs or FPGAs) to keep up with edge-device line rates.

We carry out our analysis by picking a set of commonly seen
network tasks, drawn from network measurement, resource man-
agement, network virtualization, deep packet inspection, and appli-
cation acceleration. We then compare the two architectures above
in terms of whether they can implement each task effectively. If
programming the edge allows us to implement a task satisfactorily,
we prefer this because of the ease of programming the edge—even
if an implementation in the core might be slightly more efficient. In
other words, for each task, our goal is to understand whether the
task really requires a programmable core (and hence the edge+core
architecture) in order to be implemented effectively or whether an
edge-only architecture suffices.

For simplicity, we focus on implementing a task exclusively at
either the edge or the core, without allowing for the possibility of
splitting the same task across the edge and the core. While this
simplifies our analysis, it does not meaningfully change our conclu-
sions. Some tasks may be complex enough to warrant splitting the
task across both the edge and the core. In such cases, we could break
up these tasks into sub tasks and then decide whether each sub task
should run exclusively on the edge or the core. Our analysis is still
applicable to the constituent sub tasks.

2.2 Measurement
We start with the problem of network measurement using an edge-
only architecture vs. an edge+core architecture. We proceed grad-
ually, starting with measurement tasks that can be readily imple-
mented using an edge-only architecture. We then discuss measure-
ment tasks where much can be gained from implementing them in
the core.

As an example of a measurement task that can be implemented
using an edge-only architecture, consider the problem of detecting
switch-silent packet drops tackled by Pingmesh [33] and Ever-
flow [64]. These are switch packet drops that leave no trace on the
switch, i.e., the loss counter on the switch doesn’t log them. They
typically arise due to hardware or firmware bugs, e.g., a corrupted
TCAM entry in an IP lookup table might cause a black hole. These
drops are long-lived, lasting until the faulty switch is rebooted or
replaced. Setting up a mesh of infrequent server-to-server probes
(e.g., Pingmesh issues at most one probe every 10 seconds between
any server pair) suffices to localize the faulty switch, assuming that
detection times on the order of minutes are acceptable.

While edge-only solutions like Pingmesh work for timescales
on the order of a few minutes, they are insufficient for shorter
timescales. The shorter the timescale of measurement, the stronger
the case for implementing measurement within the network’s core.
For instance, consider the problem of measuring the packet loss
rate or the queuing delay distribution of a switch deep inside the
network. For distributions and loss rates that do not change over
an extended period of time, this problem can be solved using the
edge-only approach of network tomography, which analyzes end-
to-end measurements of losses [22] or delays [53] to indirectly infer
link-level loss rates or delay distributions.

However, tomography has three drawbacks relative to direct in-
network measurement at programmable switches. First, it requires

additional multicast or unicast probes to continuously transit the
queues being measured; if switches treat these probes differently
from data packets, the results from tomography could be mislead-
ing. Second, the link capacity consumed by these probes is directly
proportional to the measurement frequency. Third, the number
of samples required to estimate quantities to a certain accuracy
is higher using tomography relative to in-network measurement
because of the indirect nature of inference in tomography. This
implies that tomography cannot effectively estimate rapidly chang-
ing loss rates or delay distributions because the loss rate or delay
distribution may have changed before sufficient number of samples
have been collected and analyzed.

We illustrate the third drawback using a simulation on a binary
tree network topology of depth 5.We compare loss tomography [22]
against in-network loss estimation (i.e., dividing the number of lost
packets by the total number of packets on each link) for a range
of sample sizes measured in packets. We assume Bernoulli losses
with probabilities 1% and 30%. While 30% is high when averaged
over a long time period, losses in many datacenters tend to occur
in microbursts [63]. A microburst is a very short period of time (10–
100 microseconds) with a surge in link utilization and hence queue
size and packet drops. Microbursts are characterized by large loss
rates over short intervals separated by large periods with very low
loss rates. Thus, such temporarily high loss rates are conceivable as
we reduce the timescale of measurements and attempt to measure
the loss rate within a microburst.

Figure 1 shows the error rates of both tomography and in-
network loss estimation when the number of samples is varied.
Each data point is an average of 100 trials. The error rates of both
approaches increases when the number of samples is decreased,
but the in-network approach has lower errors, especially when
the loss rate is high (30%). When the loss rate is low (1%), the er-
rors of both schemes are comparable. However, as the number of
samples reduces, tomography has to discard several trials because
there are not enough packet drops in these trials to meaningfully
run inference; this manifests itself as a larger confidence interval.
The benefits of in-network estimation relative to tomography are
more pronounced when the losses are drawn from a bursty loss
process [4] instead of a Bernoulli process. In summary, tomography
is well-suited to measuring non-bursty and low loss rates over a
long time interval, but not bursts of high loss rates over a short
time interval, i.e., microbursts.

Measurements at short timescales are increasingly important
as our goal shifts from average performance (e.g., throughput) to
tail performance (e.g., tail flow completion time [62]). For instance,
microbursts temporarily increase queuing delay and cause packet
drops, both of which hurt tail flow completion time. Similarly, mea-
surements of queue depths at short timescales help us determine if
load balancing at short timescales is effective. For instance, if the
queue on one leaf-to-spine link is much longer than that on another
leaf-to-spine link even for a small duration of time, it means that
load balancing isn’t very effective, which results in increased tail
flow completion time.

We note that programming measurement tasks on a switch is
limited by on-chip memory. Hence, storing fine-grained measure-
ments (e.g., at the level of 5-tuples) can be challenging. Approaches
like Marple [49] that split the measurement task between scarce

ACM SIGCOMM Computer Communication Review Volume 50 Issue 1, January 2020

40



 0
 10
 20
 30
 40
 50
 60
 70
 80

 100 200 300 400 500 600 700 800 900 1000
 0

 20

 40

 60

 80

 100

E
rr

o
r 

Pe
rc

e
n
ta

g
e

Fa
ile

d
 T

ri
a
ls

Packets

Tomo. Failures
Tomo. Error (%)
In-Net Error (%)

(a) 1% loss rate (Bernoulli process)

 0

 5

 10

 15

 20

 25

 30

 100 200 300 400 500 600 700 800 900 1000
 0

 20

 40

 60

 80

 100

E
rr

o
r 

Pe
rc

e
n
ta

g
e

Fa
ile

d
 T

ri
a
ls

Packets

Tomo. Failures
Tomo. Error (%)
In-Net Error (%)

(b) 30% loss rate (Bernoulli process)

Figure 1: In-network loss measurement has lower errors than tomography.

on-chip switch SRAM and abundant off-chip DRAM address this
problem; however, only specific classes of measurement operations
can be implemented in this split fashion. In general, the operator
should be aware of whether the switch memory can accommo-
date the working set of flows being measured. In environments
like datacenters, this working set is small and can fit into on-chip
memory [20]. In others, such as a core router [12], this may not be
possible and approaches like Marple might be necessary.

2.3 Resource management
We now consider the problem of resource management: allocating
the capacity of a network’s resources (e.g., link capacity or buffer
space) to competing entities. We use the term resource management
to unify different network tasks that ultimately have the same end
goal of dividing up a scarce resource: congestion control, packet
scheduling, data-plane load balancing, and buffer management
algorithms.

Resource management can benefit considerably from an
edge+core architecture. For instance, DCTCP [16] provides substan-
tially reduced queuing latency relative to TCP New Reno (an edge-
only approach) by using explicit congestion notification (ECN) sup-
port in switches to signal congestion to end hosts much before pack-
ets start getting dropped. pFabric [17] makes use of fine-grained
priority scheduling in switches to provide lower flow completion
times relative to DCTCP. NUMFabric [48] and PERC [37] provide
much faster convergence of flows to their fair rate allocations by
leveraging programmable switches. Several other resource manage-
ment algorithms that need switch support are also enabled by an
edge+core architecture (e.g., DeTail [62], XCP [39], and RCP [61]).

Similar to measurement inside the core of the network, resource
management algorithms that exploit core programmability will be-
come increasingly relevant as we demand more from our networks,
by pushing networks to have higher utilization and by optimizing
for tail statistics (e.g., tail flow completion time) instead of average-
case performance.

Resource management algorithms with in-network components
perform better relative to their edge-only counterparts because they

are able to take advantage of explicit feedback on the extent of con-
gestion in the network rather than indirectly inferring congestion
from end-to-end measurements. For instance, XCP and RCP both
use multi-bit signals to signal congestion from the core to the end
hosts. Similarly, DCTCP uses a single-bit ECN mark. By contrast,
algorithms in an edge-only architecture have to implicitly infer
congestion at a particular switch by using the loss of a packet [34],
changes in end-to-end round-trip time [47], or changes in received
rate [23].

Implementing resource management algorithms on switches
also faces some challenges. Algorithms that do not maintain per-
flow state (e.g., XCP) are considerably easier to implement because
of their less demanding memory requirements. However, some of
these algorithms require floating point operations (e.g., XCP), which
are not yet supported in their most general form on programmable
switches. Algorithms that do require per-flow state on switches
(e.g., WFQ [28]) are constrained by the limited number of active
flows supported by programmable schedulers [59]. Approaches
that approximate floating point operations on switches [54] or
approximate programmable scheduling using a small number of
fixed queues [55] hold considerable promise until the instruction
sets of these switches become more powerful.

2.4 Deep packet inspection
Deep packet inspection like spam filtering and worm detection
needs to access the payloads of packets. Such tasks need to run
at the edge for two reasons. First, the payload may be encrypted
and only an end host might possess the key to decrypt it. Second,
extracting and processing the payload is a much more demanding
operation than packet header processing, especially at an aggregate
forwarding rate of a few Tbit/s. Hence, programmable switches
typically don’t support payload inspection or modification [21].1

1Approaches based on homomorphic encryption suffer from low throughput (less
than 200 Mbit/s currently [57]). This throughput suffices for some middleboxes at the
edge (e.g., intrusion detection), but it is far too slow for the core.

ACM SIGCOMM Computer Communication Review Volume 50 Issue 1, January 2020

41



2.5 Network security
We now consider defending against attacks on network resources
of an end host’s networking stack. One example is the Slowloris
attack. Here, an attacker opens several TCP connections to a victim
and transfers little to no data on each connection. In the process,
the attacker exhausts the victim’s limit on the number of concur-
rent connections. The TCP SYN flood attack similarly exhausts
the victim’s limit on the number of half-open TCP connections.
In the examples above, the definition of an attack is application-
dependent: many web sites legitimately require a browser to open
several concurrent connections that each transfer a small amount
of data. As a consequence, the defenses are also typically deployed
at the end hosts themselves (e.g., SYN cookies [11]). In summary,
when the resource being attacked is a resource within the end-host’s
networking stack, the defense is best left to the end-host/edge.

2.6 Network virtualization
Network virtualization [27, 29, 42] is the ability to provide inde-
pendent tenants in a multi-tenant datacenter the illusion that their
VMs are running on their own dedicated network, similar to an on-
premise network. Network virtualization, as NVP [42], VFP [29],
and Andromeda [27] show, can be implemented using a virtual
switch such as Open vSwitch running on the hypervisor of each
server. This virtual switch enforces per-tenant policies using a logi-
cal packet-forwarding pipeline and carries out all required packet
transformations in the virtual switch. Finally, the packet is for-
warded to its destination hypervisor using tunnels that have been
setup between every pair of hypervisors. The core of the network
is thus restricted to IP forwarding, while all of the network vir-
tualization logic itself resides on the edge’s virtual switches. As
Andromeda [27] observes, this approach is preferable to implement-
ing virtualization in the core because the availability of relatively
abundant CPU memory on the edge allows it to easily scale to a
large number of virtual networks.

2.7 Application acceleration
A few recent projects [35, 36] offload application tasks onto Barefoot
Networks’ programmable Tofino switching chip. These projects
demonstrate that significant performance benefits can be realized by
moving application tasks onto a programmable switching chip. For
concreteness, we discuss two projects that have mature implementa-
tions with conclusive performance benefits: NetCache [36] (a load-
balancing cache implemented on a single switch) and NetChain [35]
(a fault-tolerant lock service implemented on a set of switches). De-
spite their clear performance benefits, NetCache and NetChain both
have a few shortcomings, which makes the role of a programmable
core in general-purpose application acceleration unclear. We dis-
cuss these shortcomings below.

First, both NetCache and NetChain are restricted to niche func-
tionality. NetCache [36] provides a cache with around a 50% hit
rate. This hit rate is sufficient for balancing load on backend servers,
but not as a general-purpose cache, which typically supports hit
rates around 90%. The lower hit rate is a result of limitations on
the amount of switch memory. NetChain [35] implements a fault-
tolerant key-value store on switches. The number of entries in this
key-value store is limited by on-chip switch memory. The size of

the values in the key-value store is limited to a few hundred bytes
due to limitations on how much data the switch can process every
clock cycle. As a result, NetChain is good for applications that store
a small number of keys with a small value size (e.g., a lock service),
but its general applicability is unclear.

Second, in a setting where different applications share the pro-
grammable memory of a switch, this memory will become a scarce
resource. This problem becomes even worse under two conditions:
(1) increasing single-switch port counts that allow more servers
(and thus applications) to reside under the same switch and (2) as
we go up the layers from leaf to spine to aggregation in a datacenter
network. Unlike network tasks (e.g., resource management) that
are broadly useful to several applications, application tasks are by
definition only useful to specific applications. Consuming switch
memory for application tasks, at the cost of reduced memory for
network tasks is the wrong architectural choice. There are settings
that might permit this (e.g., when the routing tables are small), but
again the general applicability is unclear.

Third, at this point, NetCache [36] is limited in scale to a single
rack. NetChain [35] is limited to a few racks. In both cases, it is
currently unclear how the systems can scale to larger sizes span-
ning an entire datacenter given the limited processing and storage
resources on a switch.

As an aside, NetCache and NetChain show that a switching
ASIC can be a hardware accelerator for niche domains (high com-
munication and low computation needs [35]) beyond networking—
reminiscent of the early days of GPGPU computing. However, if this
is the intent, to maximize performance, the switching ASIC should
ideally be integrated with the server CPU on the same motherboard.
If that happens, we would then classify the switching ASIC as a
hardware accelerator that is part of the edge, much the same way
as an FPGA, GPU, or Tensor Processing Unit [38] that is closely
integrated with a server machine.

3 ALTERNATIVE ARCHITECTURES
The edge-only and edge+core architectures are two points on a
spectrum of architectures. Here, we briefly consider some alterna-
tives to the edge-only and edge+core architectures, showing how
they don’t change our basic conclusions from the previous section.

3.1 Universal architectures
There are hybrid architectures that combine edge-only programma-
bility with a smarter, but fixed, core. These architectures augment
the best-effort packet forwarding capability of the network’s core
with a small set of fixed, universal data-plane features to provide
flexibility using just edge or control-plane programmability. Two
examples are (1) universal packet scheduling (UPS) [46], a universal
scheduler to emulate other schedulers, and (2) UnivMon [45], a
universal sketch for several measurement questions.

This hybrid approach would be highly desirable if there was a
small set of universal features that provided sufficient expressive
power using edge programmability alone, justifying the hardening
of these universal features in switch silicon. This would provide a
preferable alternative to designing programmable switches. How-
ever, current results on such hybrid architectures (UPS and Uni-
vMon) suggest that they do not yet provide sufficient expressive

ACM SIGCOMM Computer Communication Review Volume 50 Issue 1, January 2020

42



power. Furthermore, they only apply to specific domains such as
packet scheduling and measurement.

Even within the space of scheduling and measurement for which
UPS and UnivMon are designed respectively, UPS and UnivMon
fall short. The universality of UPS has only been demonstrated in
theory under two very strong conditions: (1) the UPS scheduler
needs upfront access to the entire trace of scheduled packets of the
scheduler it is trying to emulate and (2) there can be at most two
bottleneck queues in the network. In practice, the space of schedul-
ing algorithms that UPS can emulate is further limited relative to
what the theory predicts. For instance, UPS cannot emulate traffic
shaping and hierarchical schedulers. These limitations are a direct
consequence of UPS assuming a non-programmable core and do
not reflect a limitation of the UPS algorithm itself. In the case of
UnivMon, the use of sketches limits UnivMon to count/volume-
based statistics alone. For instance, UnivMon cannot be used to
maintain an exponentially weighted moving average or count the
number of packets in a TCP flow that were received out-of-order.

It is possible that a universal switch mechanism will be dis-
covered, obviating the need for switch programmability. For now,
however, such a “silver bullet” feature set covering a broad vari-
ety of network tasks remains elusive. Further, the list of demands
on switches is on the upswing (e.g., new tunneling formats [10]
or new measurement support [40]). When demands—and hence
switch features—are in flux, programmability tackles change head
on and provides a higher degree of future proofness than universal
mechanisms.

3.2 Other architectures
DumbNet [44] is a network architecture that employs simple state-
less switches and moves management complexity to end hosts. End
hosts use source routing to route packets by providing a list of tags
in each packet that directly identify output ports at each switch
without the need for any lookups. A minimal switch simplifies man-
agement, but it gives up significant performance and monitoring
benefits, as we have shown earlier (§2).

Some network architectures [25, 32] advocate the use of pro-
grammable SmartNICs to provide a programmable network.2 We
view the rise of SmartNICs [7, 9, 30] as complementary and benefi-
cial to our view of leveraging programmability in both the edge and
the core. Within our terminology, SmartNICs are part of the edge
and provide a way to scale up edge packet processing as we move
to NIC speeds of 100 and 400 Gbit/s, while still providing flexibility.
However, SmartNICs alone are insufficient for all network tasks:
as §2 shows, there are benefits to having a programmable core in
addition to a programmable edge.

4 GUIDELINES FOR PLACING TASKS
We now take a step back from our specific examples in §2 and at-
tempt to extract guidelines that govern where (edge vs. core) a net-
work task should be placed. The first guideline is that of timescales.
When the timescale of the network task is long (e.g., eventual de-
tection of a switch hardware bug [33], long-term fairness across

2Both papers also include some discussion about offloading functionality to pro-
grammable switches. However, the discussion in both papers largely focuses on
SmartNICs.

flows [34], and long-term measurements of steady-state delay dis-
tributions or loss rates [22, 53]), an edge-only architecture suffices.
When the timescales are short (e.g., fine-grained load balancing [15],
rapid convergence of a flow to its fair rate [37], and detection of
fleeting microbursts [63]), an edge+core architecture has significant
benefits.

The second guideline is that of locality: functionality should be
implemented closest to the state that it needs. We see this in the
case of deep packet inspection tasks running at the edge and in the
case of congestion control and measurement tasks running at the
core. In each example, the task is implemented at the location where
the state required for the task is actually available (i.e., decryption
keys at the edge and queue depth information in the core).

5 CONCLUSION AND OUTLOOK
At the beginning, we sought to answer the question: if the network
is fully programmable, given a network task, where should it be
implemented? By analyzing several common network tasks, we
arrived at two guidelines that govern where a network task should
be implemented: the time scale at which the task runs and what
data the task needs to read and/or write.

We hope this paper is just the beginning of a broader conver-
sation around developing a taxonomy of network tasks based on
where in a programmable network (edge vs. core) they should be
implemented. Ideally, we would have a theory of network task
placement that, given an unambiguous specification of a network
task, would accurately tell us where the network task should be
implemented. We are far from such a theory, but our qualitative
analysis suggests that there might be general task properties (like
time scales and locality)—which transcend specific example tasks—
that govern where in the network a task should be implemented.

Developing such a theory is an interesting area of future work
that has both intellectual and practical value. Intellectually, such a
theory might allow us to precisely understand both the inherent na-
ture of network tasks and innate differences between different tasks.
Practically, such a theory might allow a compiler to automatically
translate from a specification of the network task to an implemen-
tation at the appropriate network location predicted by the theory.
We hope this paper and its results initiate a more quantitative and
formal investigation into a theory of network architecture (i.e.,
what task should run where) for programmable networks.

REFERENCES
[1] Barefoot: The World’s Fastest and Most Programmable

Networks. https://barefootnetworks.com/resources/
worlds-fastest-most-programmable-networks/.

[2] Broadcom Ships Jericho2: Driving the Merchant Silicon Revolution in Carrier Net-
works. https://people.ucsc.edu/~warner/Bufs/CSG-DNX-Switching-J2%20Feb%
2016%202018.pdf.

[3] Broadcom Trident 3 - Programmable, Varied And Volume. http://packetpushers.
net/broadcom-trident3-programmable-varied-volume/.

[4] Burst error - Wikipedia. https://en.wikipedia.org/wiki/Burst_error.
[5] Cisco live! June 25–29 2017, Las Vegas, NV. http://clnv.s3.amazonaws.com/2017/

usa/pdf/BRKARC-3467.pdf.
[6] Intel FlexPipe. http://www.intel.com/content/dam/www/public/us/en/

documents/product-briefs/ethernet-switch-fm6000-series-brief.pdf.
[7] Mellanox BlueField SmartNIC 25Gb/s Dual Port Ethernet Network Adapter.

http://www.mellanox.com/related-docs/prod_adapter_cards/PB_BlueField_
Smart_NIC.pdf.

[8] Mellanox Spectrum-2 Ethernet Switch. https://people.ucsc.edu/~warner/Bufs/
PB_Spectrum-2.pdf.

ACM SIGCOMM Computer Communication Review Volume 50 Issue 1, January 2020

43

https://barefootnetworks.com/resources/worlds-fastest-most-programmable-networks/
https://barefootnetworks.com/resources/worlds-fastest-most-programmable-networks/
https://people.ucsc.edu/~warner/Bufs/CSG-DNX-Switching-J2%20Feb%2016%202018.pdf
https://people.ucsc.edu/~warner/Bufs/CSG-DNX-Switching-J2%20Feb%2016%202018.pdf
http://packetpushers.net/broadcom-trident3-programmable-varied-volume/
http://packetpushers.net/broadcom-trident3-programmable-varied-volume/
https://en.wikipedia.org/wiki/Burst_error
http://clnv.s3.amazonaws.com/2017/usa/pdf/BRKARC-3467.pdf
http://clnv.s3.amazonaws.com/2017/usa/pdf/BRKARC-3467.pdf
http://www.intel.com/content/dam/www/public/us/en/documents/product-briefs/ethernet-switch-fm6000-series-brief.pdf
http://www.intel.com/content/dam/www/public/us/en/documents/product-briefs/ethernet-switch-fm6000-series-brief.pdf
http://www.mellanox.com/related-docs/prod_adapter_cards/PB_BlueField_Smart_NIC.pdf
http://www.mellanox.com/related-docs/prod_adapter_cards/PB_BlueField_Smart_NIC.pdf
https://people.ucsc.edu/~warner/Bufs/PB_Spectrum-2.pdf
https://people.ucsc.edu/~warner/Bufs/PB_Spectrum-2.pdf


[9] Netronome showcases next-gen intelligent server adapter deliver-
ing 20x ovs performance at open networking summit 2015. https:
//netronome.com/netronome-showcases-next-gen-intelligent-server-adapter\
-delivering-20x-ovs-performance-at-open-networking\-summit-2015/.

[10] Network Virtualization using Generic Routing Encapsulation. https:
//msdn.microsoft.com/en-us/library/windows/hardware/dn144775%28v=vs.
85%29.aspx.

[11] SYN cookies. https://en.wikipedia.org/wiki/SYN_cookies.
[12] The CAIDA UCSD Anonymized Internet Traces 2016 - April. http://www.caida.

org/data/passive/passive_2016_dataset.xml.
[13] Xilinx smart network interface card. https://www.xilinx.com/applications/

data-center/smart-network-interface-card.html.
[14] XPliant™ Ethernet Switch Product Family. http://www.cavium.com/

XPliant-Ethernet-Switch-Product-Family.html.
[15] M. Alizadeh, T. Edsall, S. Dharmapurikar, R. Vaidyanathan, K. Chu, A. Fingerhut,

V. T. Lam, F. Matus, R. Pan, N. Yadav, and G. Varghese. CONGA: Distributed
Congestion-aware Load Balancing for Datacenters. In SIGCOMM, 2014.

[16] M. Alizadeh, A. Greenberg, D. A. Maltz, J. Padhye, P. Patel, B. Prabhakar, S. Sen-
gupta, and M. Sridharan. Data Center TCP (DCTCP). In SIGCOMM, 2010.

[17] M. Alizadeh, S. Yang,M. Sharif, S. Katti, N.McKeown, B. Prabhakar, and S. Shenker.
pFabric: Minimal Near-Optimal Datacenter Transport. In SIGCOMM, 2013.

[18] M. T. Arashloo, M. Ghobadi, J. Rexford, and D. Walker. HotCocoa: Hardware
Congestion Control Abstractions. In HotNets, 2017.

[19] Arpit Gupta and Rob Harrison and Marco Canini and Nick Feamster and Jen-
nifer Rexford and Walter Willinger. Sonata: Query-Driven Streaming Network
Telemetry . In SIGCOMM, 2018.

[20] T. Benson, A. Akella, and D. A. Maltz. Network Traffic Characteristics of Data
Centers in the Wild. ACM International Measurement Conference, Nov. 2010.

[21] P. Bosshart, G. Gibb, H.-S. Kim, G. Varghese, N. McKeown, M. Izzard, F. Mujica,
and M. Horowitz. Forwarding Metamorphosis: Fast Programmable Match-action
Processing in Hardware for SDN. In SIGCOMM, 2013.

[22] R. Caceres, N. G. Duffield, J. Horowitz, and D. F. Towsley. Multicast-based infer-
ence of network-internal loss characteristics. IEEE Transactions on Information
Theory, Nov 1999.

[23] N. Cardwell, Y. Cheng, C. S. Gunn, S. H. Yeganeh, and V. Jacobson. BBR:
Congestion-Based Congestion Control. Queue, Oct. 2016.

[24] M. Casado, T. Koponen, S. Shenker, and A. Tootoonchian. Fabric: A Retrospective
on Evolving SDN. In HotSDN, 2012.

[25] A. Caulfied, P. Costa, and M. Ghobadi. Beyond SmartNICs: Towards a Fully
Programmable Cloud. In HPSR, 2018.

[26] A. M. Caulfield, E. S. Chung, A. Putnam, H. Angepat, J. Fowers, M. Haselman,
S. Heil, M. Humphrey, P. Kaur, J. Y. Kim, D. Lo, T. Massengill, K. Ovtcharov,
M. Papamichael, L. Woods, S. Lanka, D. Chiou, and D. Burger. A cloud-scale ac-
celeration architecture. In Proceedings of the 49th Annual IEEE/ACM International
Symposium on Microarchitecture. IEEE Computer Society, October 2016.

[27] M. Dalton et al. Andromeda: Performance, Isolation, and Velocity at Scale in
Cloud Network Virtualization. In NSDI, 2018.

[28] A. Demers, S. Keshav, and S. Shenker. Analysis and simulation of a fair queueing
algorithm. In SIGCOMM, 1989.

[29] D. Firestone. VFP: A Virtual Switch Platform for Host SDN in the Public Cloud.
In NSDI, 2017.

[30] D. Firestone et al. Azure Accelerated Networking: SmartNICs in the Public Cloud.
In NSDI, 2018.

[31] A. Gember-Jacobson, R. Viswanathan, C. Prakash, R. Grandl, J. Khalid, S. Das,
and A. Akella. OpenNF: Enabling Innovation in Network Function Control. In
SIGCOMM, 2014.

[32] Y. Geng, S. Liu, F. Wang, Z. Yin, B. Prabhakar, and M. Rosenblum. Self-
programming networks: Architecture and algorithms. In Allerton, 2017.

[33] C. Guo, L. Yuan, D. Xiang, Y. Dang, R. Huang, D. Maltz, Z. Liu, V. Wang, B. Pang,
H. Chen, Z.-W. Lin, and V. Kurien. Pingmesh: A Large-Scale System for Data
Center Network Latency Measurement and Analysis. In SIGCOMM, 2015.

[34] V. Jacobson and M. J. Karels. Congestion Avoidance and Control. In SIGCOMM
1988, 1988.

[35] X. Jin, X. Li, H. Zhang, N. Foster, J. Lee, R. Soulé, C. Kim, and I. Stoica. NetChain:
Scale-Free Sub-RTT Coordination. In NSDI, 2018.

[36] X. Jin, X. Li, H. Zhang, R. Soulé, J. Lee, N. Foster, C. Kim, and I. Stoica. NetCache:
Balancing Key-Value Stores with Fast In-Network Caching. In SOSP, 2017.

[37] L. Jose, L. Yan, M. Alizadeh, G. Varghese, N. McKeown, and S. Katti. High Speed
Networks Need Proactive Congestion Control. In HotNets, 2015.

[38] N. P. Jouppi, C. Young, N. Patil, D. Patterson, G. Agrawal, R. Bajwa, S. Bates,
S. Bhatia, N. Boden, A. Borchers, et al. In-datacenter performance analysis of a
tensor processing unit. arXiv preprint arXiv:1704.04760, 2017.

[39] D. Katabi, M. Handley, and C. Rohrs. Congestion Control for High Bandwidth-
Delay Product Networks. In SIGCOMM, 2002.

[40] C. Kim, A. Sivaraman, N. Katta, A. Bas, A. Dixit, and L. J. Wobker. In-band
network telemetry via programmable dataplanes. In ACM SIGCOMM Industrial
Demo Session, 2015.

[41] D. Kim, A. Memaripour, A. Badam, Y. Zhu, H. H. Liu, J. Padhye, S. Raindel,
S. Swanson, V. Sekar, and S. Seshan. Hyperloop: Group-based NIC-offloading
to Accelerate Replicated Transactions in Multi-tenant Storage Systems. In SIG-
COMM, 2018.

[42] T. Koponen, K. Amidon, P. Balland, M. Casado, A. Chanda, B. Fulton, I. Ganichev,
J. Gross, P. Ingram, E. Jackson, A. Lambeth, R. Lenglet, S.-H. Li, A. Padmanabhan,
J. Pettit, B. Pfaff, R. Ramanathan, S. Shenker, A. Shieh, J. Stribling, P. Thakkar,
D. Wendlandt, A. Yip, and R. Zhang. Network Virtualization in Multi-tenant
Datacenters. In NSDI, 2014.

[43] B. Li, K. Tan, L. Luo, R. Luo, Y. Peng, N. Xu, Y. Xiong, and P. Cheng. ClickNP:
Highly Flexible and High-performance Network Processing with Reconfigurable
Hardware. In SIGCOMM, 2016.

[44] Y. Li, D. Wei, X. Chen, Z. Song, R. Wu, Y. Li, X. Jin, and W. Xu. DumbNet: A
Smart Data Center Network Fabric with Dumb Switches. In EuroSys, 2018.

[45] Z. Liu, A. Manousis, G. Vorsanger, V. Sekar, and V. Braverman. One Sketch to Rule
Them All: Rethinking Network Flow Monitoring with UnivMon. In SIGCOMM,
2016.

[46] R. Mittal, R. Agarwal, S. Ratnasamy, and S. Shenker. Universal Packet Scheduling.
In NSDI, 2016.

[47] R. Mittal, V. T. Lam, N. Dukkipati, E. Blem, H. Wassel, M. Ghobadi, A. Vahdat,
Y. Wang, D. Wetherall, and D. Zats. TIMELY: RTT-based Congestion Control for
the Datacenter. In SIGCOMM, 2015.

[48] K. Nagaraj, D. Bharadia, H. Mao, S. Chinchali, M. Alizadeh, and S. Katti. NUM-
Fabric: Fast and Flexible Bandwidth Allocation in Datacenters. In SIGCOMM,
2016.

[49] S. Narayana, A. Sivaraman, V. Nathan, P. Goyal, V. Arun, M. Alizadeh, V. Jeyaku-
mar, and C. Kim. Language-Directed Hardware Design for Network Performance
Monitoring. In SIGCOMM, 2017.

[50] Nofel Yaseen and John Sonchack and Vincent Liu. Synchronized Network Snap-
shots. In SIGCOMM, 2018.

[51] A. Panda, S. Han, K. Jang, M. Walls, S. Ratnasamy, and S. Shenker. NetBricks:
Taking the V out of NFV. In OSDI, 2016.

[52] P. M. Phothilimthana, M. Liu, A. Kaufmann, S. Peter, R. Bodik, and T. Anderson.
Floem: A Programming System for NIC-Accelerated Network Applications. In
OSDI, 2018.

[53] F. L. Presti, N. G. Duffield, J. Horowitz, and D. Towsley. Multicast-based Inference
of Network-internal Delay Distributions. IEEE/ACM Transactions on Networking,
Dec. 2002.

[54] N. K. Sharma, A. Kaufmann, T. Anderson, A. Krishnamurthy, J. Nelson, and
S. Peter. Evaluating the Power of Flexible Packet Processing for Network Resource
Allocation. In NSDI, 2017.

[55] N. K. Sharma, M. Liu, K. Atreya, and A. Krishnamurthy. Approximating Fair
Queueing on Reconfigurable Switches. In NSDI, 2018.

[56] J. Sherry, S. Hasan, C. Scott, A. Krishnamurthy, S. Ratnasamy, and V. Sekar.
Making Middleboxes Someone else’s Problem: Network Processing As a Cloud
Service. In SIGCOMM, 2012.

[57] J. Sherry, C. Lan, R. A. Popa, and S. Ratnasamy. BlindBox: Deep Packet Inspection
over Encrypted Traffic. In SIGCOMM, 2015.

[58] A. Sivaraman, A. Cheung, M. Budiu, C. Kim, M. Alizadeh, H. Balakrishnan,
G. Varghese, N. McKeown, and S. Licking. Packet Transactions: High-Level
Programming for Line-Rate Switches. In SIGCOMM, 2016.

[59] A. Sivaraman, S. Subramanian, M. Alizadeh, S. Chole, S.-T. Chuang, A. Agrawal,
H. Balakrishnan, T. Edsall, S. Katti, and N. McKeown. Programmable Packet
Scheduling at Line Rate. In SIGCOMM, 2016.

[60] I. Stoica, S. Shenker, and H. Zhang. Core-stateless Fair Queueing: A Scalable Ar-
chitecture to Approximate Fair Bandwidth Allocations in High-speed Networks.
IEEE/ACM Transactions on Networking, 2003.

[61] C. Tai, J. Zhu, and N. Dukkipati. Making Large Scale Deployment of RCP Practical
for Real Networks. In INFOCOM, 2008.

[62] D. Zats, T. Das, P. Mohan, D. Borthakur, and R. Katz. DeTail: Reducing the Flow
Completion Time Tail in Datacenter Networks. In SIGCOMM, 2012.

[63] Q. Zhang, V. Liu, H. Zeng, and A. Krishnamurthy. High-resolution Measurement
of Data Center Microbursts. In IMC, 2017.

[64] Y. Zhu, N. Kang, J. Cao, A. Greenberg, G. Lu, R. Mahajan, D. Maltz, L. Yuan,
M. Zhang, B. Y. Zhao, and H. Zheng. Packet-Level Telemetry in Large Datacenter
Networks. In SIGCOMM, 2015.

ACM SIGCOMM Computer Communication Review Volume 50 Issue 1, January 2020

44

https://netronome.com/netronome-showcases-next-gen-intelligent-server-adapter\-delivering-20x-ovs-performance-at-open-networking\-summit-2015/
https://netronome.com/netronome-showcases-next-gen-intelligent-server-adapter\-delivering-20x-ovs-performance-at-open-networking\-summit-2015/
https://netronome.com/netronome-showcases-next-gen-intelligent-server-adapter\-delivering-20x-ovs-performance-at-open-networking\-summit-2015/
https://msdn.microsoft.com/en-us/library/windows/hardware/dn144775%28v=vs.85%29.aspx
https://msdn.microsoft.com/en-us/library/windows/hardware/dn144775%28v=vs.85%29.aspx
https://msdn.microsoft.com/en-us/library/windows/hardware/dn144775%28v=vs.85%29.aspx
https://en.wikipedia.org/wiki/SYN_cookies
http://www.caida.org/data/passive/passive_2016_dataset.xml
http://www.caida.org/data/passive/passive_2016_dataset.xml
https://www.xilinx.com/applications/data-center/smart-network-interface-card.html
https://www.xilinx.com/applications/data-center/smart-network-interface-card.html
http://www.cavium.com/XPliant-Ethernet-Switch-Product-Family.html
http://www.cavium.com/XPliant-Ethernet-Switch-Product-Family.html

	Abstract
	1 Introduction
	2 Network Tasks: Edge vs. Core
	2.1 Terminology and problem setup
	2.2 Measurement
	2.3 Resource management
	2.4 Deep packet inspection
	2.5 Network security
	2.6 Network virtualization
	2.7 Application acceleration

	3 Alternative Architectures
	3.1 Universal architectures
	3.2 Other architectures

	4 Guidelines for placing tasks
	5 Conclusion and Outlook
	References

