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Abstract

The Pandora’s Box Problem, originally formalized by Weitzman in 1979, models selection from a set
of options each with stochastic parameters, when evaluation (i.e. sampling) is costly. This includes, for
example, the problem of hiring a skilled worker, where only one hire can be made, but the evaluation of
each candidate is an expensive procedure.

Weitzman showed that the Pandora’s Box Problem admits a simple and elegant solution which con-
siders the options in decreasing order of the value it which opening has exactly zero marginal revenue.
We study for the first time this problem when the order in which the boxes are opened is constrained,
which forces the threshold values to account for both the depth of search, as opening a box gives access
to more boxes, and breadth, as there are many directions to explore in. Despite these difficulties, we
show that greedy optimal strategies exist and can be efficiently computed for tree-like order constraints.

We also prove that finding approximately optimal adaptive search strategies is NP-hard when certain
matroid constraints are used to further restrict the set of boxes which may be opened, or when the order
constraints are given as reachability constraints on a DAG. We complement the above result by giving
approximate adaptive search strategies based on a connection between optimal adaptive strategies and
non-adaptive strategies with bounded adaptivity gap for a carefully relaxed version of the problem.

1 Introduction

Stochastic search is an important problem in many fields of application, and has seen theoretical study.
Modelling evaluation as costly captures the commonly observed trade-off between exploration and exploita-
tion, and is also a natural assumption in many settings. Furthermore, it is common to only select one of the
many evaluated alternatives, such as when searching for a skilled employee, or choosing a house. These ideas
were formalized as the Pandora’s Box Problem by Weitzman, in 1979 [26]. In this setting, we are presented
with various alternatives modeled by a set of boxes B “ tb1, . . . , bnu, where box bi costs ci to open, and
has random payoff Xi, whose distribution is known. A strategy π is a rule which determines adaptively
whether to terminate the search, and if not, which box to open next. The goal is to choose a strategy π

which maximizes, in expectation, the following objective:

maxiPSpπq Xi ´
ř

iPSpπq ci,

where Spπq is the set of boxes opened by strategy π. Only one reward can be kept in the end, but we must
pay for all opened boxes.
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Despite the broad range of search strategies available, Weitzman showed that the solution to this problem
boils down to a simple but subtle strategy. Each box is assigned a reservation value ζi satisfying the equation
E rmaxt0, pXi ´ ζiqu ´ cis “ 0. This is precisely the value that the player would need to have collected, in
order to be indifferent between proceeding or not, and is used as a proxy for the value of the box. The
optimal strategy is to greedily open the boxes in descending order of reservation value, and to stop when
there is no box left or when the maximum reward seen in the past is greater than the reservation value of
the next box. Note that the order of exploration is not adaptive, but the stopping time is.

In this paper, we enrich the classical Pandora’s Box Problem by adding restrictions on the order in which
boxes can be accessed. To motivate this, consider the task faced by a funding agency or a research and
development department. There may be different high-level directions to explore, with differing endpoints.
Is it better to follow a longer line of research with a higher probability of achieving moderately interesting
results, or take a riskier but shorter path which could contain a miraculous discovery at the end? In both
cases, the final goal as well as the way to reach it will greatly affect the costs and payoffs generated.

With these extra constraints, the search for the optimal strategy becomes much more complex. We seek
to determine the order in which to assess the options and when to stop searching, given prior knowledge of
the values, the structure of the constraints and the realizations of the observed rewards. Weitzman’s classical
greedy strategy [26] does not apply: opening an expensive box with little reward may be needed in order to
access more valuable and inexpensive boxes.

As a motivating case for this line of work, we show that when the order constraints are tree-like — that
is when the boxes are nodes of a tree, and can only be opened after their parents are — then optimal search
procedures may be found. This also applies for forests. Furthermore, we investigate the relation between
such order constraints and other models of the Pandora’s Box Problem which have been studied in the past,
such as in [22]. We formalize these results in the following section.

1.1 Overview of Results and Methods

In this paper we focus on the Pandora’s Box Problem with constraints on the order of exploration. In what
follows, polynomial time means polynomial in the number of boxes and the size of the support of the random
variables. This implicitly suggests that the random variables are discrete and have support size polynomial
in the number of boxes. This assumption is not restrictive: we extend the techniques of Guo et al. [10] to
prove that a polynomial number of samples is enough to get an ǫ additive approximate of the solution for the
Pandora’s Box Problem with order constraints. Moreover, these bounds are tight for the Tree-Constrained
Pandora’s Box Problem. To approximate the performance of optimal policies within an additive ǫ ą 0,
with probability 1´ δ, for n boxes with rewards and costs supported in [0,1], it suffices to learn each reward
distribution from Õpn3{ǫ3q samples. For the special case of tree constraints, it suffices to take Õp n

ǫ2
q samples.

We have hidden polyplogp n
ǫδ

qq terms. See Appendix A for details.
These ideas allow us to proceed with the analysis while assuming without loss of generality that the

random variables have support polypnq. We further note that this result suggests the methods in this paper
are robust to imprecise knowledge of the distribution of the rewards on the boxes.

1.1.1 The Tree-Constrained Pandora’s Box Problem.

We first consider the Tree case, where we present an optimal strategy with a nice structure analogous to
Weitzman’s.

Theorem 1. When order constraints are given by a rooted tree over the boxes, there exists an optimal-in-
expectation strategy of the following form: first, label each box with a “threshold”, an order-aware analog of
Weitzman’s reservation value. Then:

• From the boxes that can be opened next, choose the one with the largest threshold.

• Terminate if the max observed value exceeds this threshold, otherwise open the box and repeat.

Furthermore, the optimal thresholds can be computed in polynomial time.
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Notice that such threshold strategies are simple and intuitive, and enforce the desirable property that
the order of the exploration is fixed up to tie-breaking. Furthermore, that an optimal strategy has this
form is surprising, as this need not hold for general constraints, as discussed below. The definition of these
thresholds has to address the following additional complications:

(i) Depth: The value of a box is not only given by its reward and cost, but also from the possibilities its
opening makes accessible. This effect propagates level after level: even the deepest of the leaves can
influence the decision to open the root.

(ii) Breadth: A key feature is the order in which the boxes are opened. It is difficult to model and optimize
the interplay between different explored branches of a tree, as distant directions of exploration must
be compared at every time step.

To overcome these difficulties, the first step is to generalize the reservation values used by Weitzman to the
setting where the boxes are constrained to be opened in a fixed order rb1, b2, . . . , bns. These values must
take into account the future as well as the present. Our solution consists in defining the threshold value of
the generic box i according to a random stopping time τ˚py, iq, which indicates the last box that will be
opened playing optimally given that the player has already found reward y and is in front of box i. We call
this threshold value zi. It relates to the original definition as follows:

E
“

pXi ´ ζiq` ´ ci
‰

“ 0 ÐÑ E

„

´

max
τ˚pzi,iq
j“i Xj ´ zi

¯

`
´

řτ˚pzi,iq
j“i cj



“ 0,

where paq` :“ maxta, 0u. From these stopping times and threshold values we can infer that certain runs of
boxes are essentially treated as one big box (which we refer to as a macrobox ). If the algorithm decides to
enter it, the exploration will either finish inside this macrobox or a decision will be made to enter the next
one after having exhausted it. Moreover, these threshold values can be computed in polynomial time by a
dynamic programming procedure.

For a single line, this reasoning may seem straightforward, but this property still holds when the con-
straints consist of a union of disjoint parallel lines. A näıve dynamic program would not be effective, as the
state space is exponential in the number of lines. However, the threshold strategy which uses the reservation
values computed for each line independently is still optimal: the algorithm will always enter the best avail-
able macrobox and either terminate search inside of it, or move on to another one, possibly from a different
line. Surprisingly, the same approach works for trees and forests. Proceeding from leaves to the root it is
possible to linearize the trees and use the definition of reservation value to induce a threshold strategy which
is indeed optimal.

1.1.2 Impossibility and Hardness Results.

Unfortunately, these results do not extend to slightly more general constraint structures. We show below that
it is NP-hard to approximate an optimal solution to the problem with some types of matroid constraints
or more general order constraints. Remark that the standard notion of approximation — i.e. finding a
solution whose performance is at least a multiplicative factor of the optimal solution in expectation — is not
meaningful in this setting: a hard example (e.g. the hardness proof of Section 5) can be modified by adding
a large-cost-no-payoff dummy box at the root of the tree. For the right cost, optimal strategies would have
positive revenue, but approximately optimal strategies would have negative revenue.

We define below a modified notion of approximately optimal solution, which avoids these concerns. Note
that similar metrics have been used before, in works such as [8, 12, 23].

Definition 1 (Approximately Optimal Solutions). In this paper, we consider a notion which approximates
only the reward term while paying similar costs. Formally, we seek a strategy π̂ such that for any other rule
π,

E

”

maxiPSpπ̂q Xi ´
ř

iPSpπ̂q ci

ı

ě C ¨ E
“

maxiPSpπq Xi

‰

´ E

”

ř

iPSpπq ci

ı

for some universal constant factor C P p0, 1s, where Spπq is the (random) set opened by strategy π.
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Theorem 2. Consider the Pandora’s Box Problem with order constraints when either (i) a matroid constraint
is added to the tree constraint or (ii) the tree constraint is generalized to a DAG. In either case, it is NP-hard
to find a 0.9997-approximately optimal solution, and furthermore, the optimal solution need not have a fixed
order of exploration.

This approximation hardness is shown in the sense of Definition 1, but extends to the classical notion,
since it is stronger. We finally remark that proving hardness of approximation for stochastic problems needs
to address the effects of the randomness on the objective and the search trajectory, and as such is challenging.
Moreover, the structure of the maxS Xi ´

ř

S ci objective makes optimal random solutions difficult to “hide”,
in a standard combinatorial sense.

1.1.3 Approximation Results.

The hardness result above, along with recent work on modified versions of the Pandora’s Box Problem [2, 7,
16, 21, 22], motivates the study of approximation algorithms for the more general case of order constraints.
Of the above citations, the ones closest to our setting are [21, 22], where the author reduces the Pandora’s
Box Problem in the presence of downwards-closed constraints to adaptive maximization of non-negative
submodular functions. The key concept in their work is the adaptivity gap, i.e. the ratio between the best
adaptive solution and the best non-adaptive one for this new problem. We similarly show the following.

Theorem 3. Consider the Pandora’s Box Problem with constraints modeled by some prefix closed family —
a generalization of order constraints, defined in Section 2, then for every adaptive strategy π, there exists a
non-adaptive strategy, i.e. a feasible set S, such that the following holds1:

E rmaxiPS Xi ´
ř

iPS cis ě 1

2
E

“

maxiPSpπq Xi

‰

´ E

”

ř

iPSpπq ci

ı

(1)

This result effectively reduces the problem of approximating adaptive strategies to the problem of selecting
optimal non-adaptive sets. It should be noted, however, that in full generality of matroid constraints or
precedence constraints, this could be intractable. We therefore follow an alternative approach. We show
that there exists an adaptive strategy whose performance is better than that of every non-adaptive set,
simultaneously.

Theorem 4. For any tree-constraint, and any further downwards-closed constraint on the set of boxes that
can be opened, there exists an adaptive strategy π̂ such that for any fixed set S, π̂ performs better in expectation
than non-adaptively opening S. Note that π̂ does not depend on S. Furthermore, when the downwards-closed
constraints are given by generalized knapsack constraints, or any “sufficiently oblivious” matroid constraint
(as defined in Section 4), the strategy π̂ can be computed efficiently.

1.2 Related Work

As discussed above, the starting point for this theory is the 1979 Weitzman’s paper [26],which was at the time
a generalization of preceding results in special cases, namely Kadane [13], Kadane et al. [14]. In the following
years it was highlighted the similarity with the multi-armed bandits problem, which uses the notion of Gittins
index as a similar cutoff value (e.g. Frostig and Weiss [9], Weber et al. [24]). Indeed the reservation value
of the classical Pandora’s Box Problem is a version of Gittins index, Dumitriu et al. [6]. Weiss [25], and in
particular Keller and Oldale [15], deal with a similar problem, the branching bandit process. The branching
process resembles the Tree-Constrained Pandora’s Box Problem, though in that model, the process does
not terminate, and the revenue is measured as an infinite-horizon discounted sum of payoffs, even if some
finite horizon results are showed. The main difference with our works is that we focus on maximizing the
largest reward minus the exploration costs, an objective function they cannot capture with their techniques,
moreover their solution is defined with an implicit formula that becomes rapidly cumbersome as a function

1 To further justify the benchmark of Definition 1, we show in Appendix B that approximation in the traditional sense with
a non-adaptive set is impossible, as there exist examples where this classical adaptivity gap is arbitrarily large.
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of the height of the tree. Interestingly enough they prove the optimality of a threshold strategy which is, in
spirit, quite similar to ours.

Kleinberg et al. [17], borrowing from the language of finance, introduce the covered call value of a box,
which is the minimum of the reservation value, and its true (random) value. They show that the expected
performance of any search strategy is at most the expected covered call value of the last kept box. This
inequality is tight for any method which immediately terminates search when the value of an opened box is
greater than its reservation value. This novel point of view on Pandora’s Box Problem started a new interest
in the problem. Olszewski and Weber [18] investigate the existence of moving threshold strategies to address
more general objective functions in the Pandora’s setting, while Doval [5] and Beyhaghi and Kleinberg [2]
analyze a setting in which a box can be chosen without paying its cost while retaining its expected reward.
We highlight that these techniques do not extend to order-constrained settings.

Singla [21, 22] exploits the notion of surrogate box, an analog of the covered call value, to reduce the
Pandora’s Box Problem in the presence of downwards-closed constraints to adaptive maximization of non-
negative submodular functions, and bound the adaptivity gap of this problem, i.e. the ratio between the
best adaptive solution and the best oblivious one as in Gupta et al. [11] and later Bradac et al. [3]. Re-
cently Kleinberg and Kleinberg [16] and Esfandiari et al. [7] studied a connection between the Pandora’s
Box Problem and another well known optimal stopping problem, termed the Prophet Inequalities.

2 Model and Preliminaries

In this section, we formally present our model, and give preliminaries. Recall, as the player, we adaptively
open a constraint-satisfying set of boxes, paying for each one opened, and learn the (random) value of each
box only after paying the cost of opening. The final payoff received is the largest value observed. This is
formalized below.

The Pandora’s Box Problem with order constraints. We are given a set of boxes B “ tb1, . . . , bnu,
where bi costs ci to open, and has random payoff Xi, whose distribution is known. The tXiu

n
i“1

are inde-
pendent and need not be identically distributed.

A strategy π is a rule which determines, at any integer time t ě 0, whether to terminate the search and,
if not, which box to open next. The strategy may depend on the time t, the values observed in the past,
the structure of the problem and some extra randomness. We use equivalently the terms strategy, rule and
policy.

Let Stpπq denotes the (random) set of boxes that have been opened before time t (included) by strategy
π, and let τπ be the stopping time given by the same strategy. We use the shortcut Spπq to denote Sτπpπq,
the final set of opened boxes following strategy π. Given constraint-set F Ď 2B, π is said to be F -feasible if
Stpπq P F with probability 1, for all t. Our goal is to choose a policy π˚ which maximizes, in expectation,
the following objective:

E

”

maxiPSpπ˚q Xi ´
ř

iPSpπ˚q ci

ı

Such strategies are called optimal.

Threshold Strategies. A rule π is said to be a threshold strategy if it pre-computes a collection of
threshold values, and greedily opens the boxes following these values, stopping when the amount earned is
greater than the threshold of all remaining legal moves. Formally, the strategy is defined by a threshold
function z : B Ñ R and works as in Algorithm 1 below.

Observe that, given some consistent tie-breaking rule, the order of exploration is fixed, as the next box to
consider only depends on the reservation values. We remark that any threshold function is defined a priori,
i.e. it does not depend on the observed rewards, but only on the costs, the random distributions, and F .
The following facts follow by definition:

Claim 1. Let π be a threshold strategy, where ties in the thresholds are solved arbitrarily but consistently.
Then the following hold true:
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ALGORITHM 1: Threshold strategy

Data: Distributions of the random rewards, box costs and a threshold function z : B Ñ R

S0 Ð H, y Ð 0, t Ð 0
while y ă maxtzpbq|b P BzSt and tbu Y St P Fu do

Let b̂ P argmaxtzpbq|b P BzSt and tbu Y St P Fu, tie-breaking arbitrarily

Open box b̂, observe reward X̂ and pay cost ĉ
St`1 Ð St Y tb̂u, y Ð maxty, X̂u, t Ð t ` 1

end

1. Fixed order: Following π, P pbi is opened before bjq ą 0 ùñ P pbj is opened before biq “ 0, for all
i ‰ j.

2. Efficiency: If the threshold function z is efficiently computable, then so is π.

Order Constraints In this paper, we focus on order constraints, where some boxes are required to be
opened after others. Such constraints can be represented by a rooted tree T called precedence tree, whose
nodes are the boxes. A box may only be opened if its parent has already been explored. Without loss of
generality we can assume that T is connected, i.e. it is actually a tree, and that there is a unique node
r P B, which is the starting box — if not, it suffices to add a dummy root box with no cost and no reward.
Formally, then, given the precedence tree T , the feasible sets FT are:

FT :“ tS Ď B | @u P Sztru, parentpuq P Su

Prefix closed Constraints Order constraints may be seen as a special case of the more general prefix-
closed constraints, which simply assert that for any legal sequence of moves, any truncation of this sequence
is also legal. Formally, given a set of boxes B and a set C of possible orders of exploration, we say that C

is prefix closed if for every C P C , every prefix of C is also in C . Note that the order constraints defined
above are a special case of this. Furthermore, intersecting any combination of order and downwards closed
constraints results in some prefix closed family.

Distributional Assumptions As discussed in the beginning of Section 1.1, it is not restrictive to assume
that the random variables tXiui“1,...,n are discrete, and are supported on s ă 8 values. When we say an
algorithm runs in polynomial time, we mean polynomial in s and n.

Preliminaries Before proceeding with the details of the analysis, we would like to note that the Pandora’s
Box Problem with order constraints admits a näıve, albeit exponential-time solution: it suffices to solve a
dynamic program whose states are all pairs pS, yq where S Ď B is a set of boxes, and y P R is the max value
observed.

The literature on Markov Decision Processes (e.g. [20]) allows us to fix basic properties of optimal
strategies: there exists an optimal strategy π˚ which is a Markovian policy mapping states to actions, i.e.
the optimal next box to open is deterministic function of the state pS, yq.

Notation In the following we use interchangeably maxpa, bq or a _ b to denote the largest between two
reals a and b. For the smallest we use minpa, bq or a ^ b. As a further simplification paq` :“ maxta, 0u. We
use the following simple equality repeatedly: a _ b ´ b “ pa ´ bq`.
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3 Optimal Search on Tree Constraints

In this section, we present and analyze an optimal-in-expectation search procedure for the Tree-Constrained
Pandora’s Box Problem. The classical result of Weitzman [26] shows that the unconstrained problem may
be solved by a simple threshold strategy as discussed above. Formally,

Definition 2 (Reservation Value and Pandora’s Rule). Given a box b with cost c ą 0 and nonnegative
random reward X, we define the reservation value ζ of b as the smallest solution to c “ E

“

pX ´ ζq`

‰

. It can
be shown that if X has finite mean, then the reservation value is well defined. The threshold strategy using
the reservation values as thresholds is termed Pandora’s Rule.

The power of this strategy is that the reservation value depends only on the single box, allowing us to
consider each box separately, leaving the problem dramatically more tractable. In Sections 3.1 and 3.2, we
present a solution to the Pandora’s Box Problem with order constraints given by one directed line, and a
collection of disjoint, directed lines, respectively. In Section 3.3, we show that, in fact, solving the problem
for generalized, rooted tree constraints follows immediately as a corollary, and as such, the heart of the
technical contribution lies in Section 3.2.

3.1 Pandora’s Box Problem on a single Line

We introduce here the simplest order constraint, given by an ordered path. This constraint may seem
trivial at first, since the order of exploration is fixed, and it suffices to determine the stopping time, but it
illustrates the main difficulty of order constraints: the intrinsic value of a box is not given only by its cost
and its random reward, but also by the other boxes that are made available after its opening. Consider, for
example, the line consisting of one box with cost but no reward, followed by another with reward but no
cost. In this sense, a näıve threshold strategy in the sense of Weitzman’s result does not immediately suffice.

As mentioned, solving the problem on the single line is not of great consequence. However, the concepts
introduced in its solution are very informative for the following, so we present them separately for clarity of
exposition.

Let L “ rb1, b2, b3, ..., bns be the ordered set of boxes, where for all i, bi costs ci to open, and gives random
reward Xi, as usual. As an additional constraint we have that the boxes must be opened in order of their
indices: box bi can be opened only if it is the root or box bi´1 has already been opened. After having opened
the first i boxes and collected some reward, it is a simple exercise of Dynamic Programming to determine
whether to open the pi ` 1q-th box and proceed optimally, or to terminate. The DP had Opnsq states for n
boxes with reward supported on s values.

However, the goal of this section is to illustrate structural properties which we will use in the general
tree setting. It is clear that the set of possible strategies in this simple setting coincides with the set of
all (random) stopping times τ , with respect to the filtration given by X1, X2, . . . , Xn. For any x P R`, τ
and i “ 0, 1, . . . , n, n ` 1 we denote px, iq as the state in which box bi is the next accessible box and x is
the largest reward uncovered so far, and τpx, iq as the (random) stopping time conditioned on being in that
state, i.e. conditioned on the events τ ě i ´ 1 and maxi´1

j“1
Xj “ x.

Before, and in what follows, we assume sum and the max operations over empty sets to have value 0.
We can define the expected future reward following τ , starting in state px, iq, as:

φτ px, iq :“ E

”

max
!

x, max
τpx,iq
j“i Xj

)

´
řτpx,iq

j“i cj

ı

,

where, by convention, we set φτ px, iq to be 0 when τ is ill-defined, i.e. the event τpx, iq is conditioning on
occurs with probability 0. In addition to that we define Φpx, iq “ maxτ φ

τ px, iq.
The objective is to choose a τ˚ which maximizes φτ p0, 0q, corresponding to Φp0, 0q. By the remarks in

the Preliminaries, we restrict ourselves to stopping times which are deterministic functions of the Xi’s, i.e.
the decision to stop depends deterministically only on the structure of the problem and the realizations of
the rewards experienced so far.
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Remark 1. It is natural to ask whether a fully-deterministic, i.e. non adaptive, stopping time is a valid
strategy. It turns out that such an approach may be arbitrarily worse than an adaptive stopping time. We
provide an example in Appendix B, which resembles ones found in [21], and the extended version of [22].

The notion of conditional stopping time defined above allows us to give the following definition, which is
analogous to Definition 2:

Definition 3. Let L “ rb1, b2 . . . , bns be a line of n boxes, then for every i “ 1, . . . , n we can define the
generalized reservation value of box bi, denoted zi, as the smallest solution to

E

„

´

max
τ˚pzi,iq
j“i Xj ´ zi

¯

`
´

řτ˚pzi,iq
j“i cj



“ 0 (2)

where τ˚px, kq is an optimal random stopping time given that the largest reward sampled in the past has been
x and the player has just opened box bk´1, or nothing if k “ 1.

Whereas the ζ value in Definition 2 was effectively the value collected in the past for which we were
indifferent between opening a box or not, the zi value in this definition is the past collected value for which
we are indifference between proceeding (optimally) along the line of boxes or not. The following claim ensures
that this is well-defined and its proof can be found in Appendix C.

Claim 2. Definition 3 is well posed, in that the smallest solution of p2q exists and does not depend on the
choice of τ˚. Also, if zi ą 0, some optimal stopping time τ˚pzi, iq does not stop at i ´ 1. Finally, zi is the
value for which we are indifferent between stopping and proceeding optimally.

We highlight here that, as zi is defined, the optimal strategy τ˚pzi, iq is ambiguous: we are indifferent
between stopping (τ˚ “ i´ 1), and proceeding (τ˚pzi, iq “ τ˚pzi _Xi, i` 1q). By convention we will always
refer to the latter. A brief calculation confirms that this new definition contains as a special case the classical
reservation value, viewing single boxes as length-1 lines. We will henceforth omit the term “generalized” in
reference to reservation values, when clear from context. We call the threshold strategy associated to these
reservation values Generalized Pandora’s Rule.

Theorem 5. The Generalized Pandora’s Rule for the Line is optimal and can be computed in polynomial
time and space.

Proof. It follows by definition, and by Claim 2, that it is in our interest to proceed if the largest value seen is
less than zi, and to stop, if the largest value seen is greater. Thus, any deviation from this threshold strategy
is sub-optimal. Furthermore, Φpx, iq may be computed by a simple dynamic program solved in decreasing
order of i. The reservation price of box i is the smallest point in the column for i where Φpx, iq “ x.

We can define the procedure computeThresholdpb,Lq as outputting the exact reservation price of b if
it were added as a prefix to L. This can be done in polynomial space and time by simply referring to the
dynamic programming table for Φ and following Definition 3. This simple function plays a crucial role in
the design of the final algorithm for the Tree constrained case.

We conclude this section by giving some properties of the reservation values:

Claim 3. Given a line L “ rb1, . . . , bns the following statements hold true for every i “ 1, . . . , n:

1. zi can only increase if something is added at the end of the line L;

2. For every i let dpiq be the mintt ě i|zt`1 ă zi or t = nu, then zi depends only on the prefix rbi, . . . , bdpiqs.
If dpiq “ i, then zi depends only on bi, i.e. zi “ ζi.

3. If zi ă zj for all j ą i, then the optimal stopping time τ˚pzi, iq given by the Generalized Pandora’s
Rule does not depend on zi. In particular τ˚pzi, iq “ τ˚py, iq for all y P r0, zis.

Proof. The first property derives from the fact that zi is a fixed point of Φp¨, iq, and hence if something is
added at the end of the line the expected revenue can only increase. For the other two claims, it is sufficient
to observe that if an optimal play starts with some y, then τ˚py, iq ă j for all j ą i such that the reservation
value zj ă y.
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3.2 Pandora’s Box Problem on a Union of Lines

We wish to generalize to a union of disjoint lines. Observe that this setting contains both the classical
Pandora’s Box Problem, and the single-line-constrained case as sub-problems. In essence, it captures both
the breadth of exploration from the unconstrained setting, and the dependence on depth of the intrinsic
value of a box of the single line case.

Formally, we have k paths L1, . . .Lk, where path Li consists of boxes bi1, . . . , b
i
ni

which can only be
opened in increasing order of subscript. Box bij costs c

i
j to open, (generalized) reservation value zij , and gives

random reward X i
j , following a known distribution. The reservation values are defined as in the previous

section, taking only the line that the box belongs to as context, i.e. for any box bij in Li, the value zij is

computed as if only Li existed. Furthermore, by Claim 3, zij depends only on rbij, . . . , b
i
dipjqs Ď Li, where

dipjq is the equivalent of dpjq for line i. Since one must consider the interactions between the different lines,
the dimension of the näıve dynamic program is exponential in the number of paths, so we need to be more
clever. Surprisingly, we prove that the optimal strategy is still a threshold strategy, and the zij ’s are exactly
the correct thresholds. The rest of this section is a proof of this fact. The main effort in the proof is indeed
to find a way to decouple the first box of a line from the rest of that line.

Theorem 6. The Generalized Pandora’s Rule is optimal for the Pandora’s Box Problem on Union of Lines
and can be implemented in polynomial time and space.

Proof. As the reservation values are identical to the previous subsection, algorithmic results follow immedi-
ately. It remains to show optimality, which we will do by induction on the number of boxes yet to open.

If there is only one box remaining, then this is a special case of the unconstrained Pandora’s Box Problem
and we know that it is optimal to follow the Generalized Pandora’s Rule since it coincides with the Pandora’s
Rule. For the induction step, without loss of generality, we may re-label the sequences such that the first
box in every line is labelled 1, and z1

1
ě z2

1
ě ¨ ¨ ¨ ě zk

1
. There are three actions to consider: (1) stopping,

(2) opening b11 first, and (3) opening bi1 first for some i such that z11 ą zi1. We remark that the decision will
depend on both the boxes to open and the largest value seen in the past, denoted y.

We begin by showing that stopping is optimal if and only if y ě z11 . If y ă z11 , we know that even the
suboptimal strategy of opening box b1

1
and playing only on L1 ignoring other lines is better than stopping.

If y ě z1
1
and we open bi

1
for any i, then by induction, the optimal strategy is to go on exploring Li without

the possibility of changing line; as the z
j
1
’s are too small. This again contradicts the k “ 1 case.

Suppose, then, that y ă z1
1
, and that we decide to open bi

1
, for i ą 1.

Case I: z11 ě ¨ ¨ ¨ ě zi1 ą y. By induction, after opening bi1, the optimal strategy is to continue the exploration
along Li until the reservation value zij becomes less than z1

1
(or the reward exceeds the next reservation value),

then to go along L1. Let P be the prefix of L1 with reservation values greater than z1
1
. By Claim 3, we note

that z11 depends only on P . Let Q be the prefix of Li including bi1, and extended to contain all reservation
values greater than z1

1
, and let Q1 be the prefix of LizQ containing all z values greater than zi

1
. Again,

Claim 3 implies zi1 depends only on QYQ1. Define zQ to be the reservation value of box bi1 considering only
prefix Q. By Claim 3, zQ ď zi

1
. For simplicity, denote also zP “ z1

1
and the optimal stopping times in the

two prefixes P and Q as τP and τQ. The heart of the proof is that we can treat the two prefixes P and Q

as single macro-boxes, with random costs and random rewards. Let zS be then the largest between zQ and
all the reservation values of the boxes accessible after having exhausted P and Q.

Consider the following (suboptimal) executions of the algorithm:
– Strategy A begins by exploring P , and if at the end of the exploration the largest reward is greater than
zS , then stops, otherwise explores Q as if no reward was found while exploring P .
– Strategy B begins by exploring Q, then plays optimally, that is it explores P .

Notice that B is the optimal execution of the algorithm, by induction, under the assumption that the
first box opened is bi

1
. This allows for a more compact representation: for any initial value w, we can define
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the following random variables:

XPpwq :“
τPpwq
max
ℓ“1

XP
ℓ , cPpwq :“

τPpwq
ÿ

ℓ“1

cPℓ , XQpwq :“
τQpwq
max
ℓ“1

XQ
ℓ , cQpwq :“

τQpwq
ÿ

ℓ“1

cQℓ ,

where the superscripts P and Q for the rewards and the costs simply specify to which prefix the boxes belong
to. With this notation the expected revenue following strategy A is:

E
“

´cPpyq ` XPpyqIXP pyqězS ` IXP pyqăzSp´cQpyq ` IXQpyqězSXQpyqq
‰

`

`E
“

IXP pyqăzSIXQpyqăzSΦSpXQpyq _ XPpyq _ yq
‰

,

where ΦSp¨q here is the optimal expected revenue after exhausting both P and Q.
For strategy B, it is convenient to note that the prefix P is opened only if in prefix Q no reward is greater

than zP . This means that the stopping times τP pyq and τPpy _ XQpyqq are the same in this case. Hence,
XPpyq “ XPpXQ _ yq and cPpyq “ cPpXQ _ yq. This is the main step: for both the strategies, if both the
prefixes are activated, then the stopping time of the second one is independent to the realizations in the
previous prefix. Now the reward due to B is

E
“

´cQpyq ` XQpyqIXQpyqězP ` IXQpyqăzP IXP pyqězSpXQpyq _ XPpyqq
‰

`

` E
“

´cPpyqIXQpyqăzP ` IXP pyqăzSIXQpyqăzSΦSpXQpyq _ XPpyq _ yq
‰

.

If we observe the two expected revenues, we note that the last term is equal in both. Since we intend to
compare the two revenues, this term may be ignored. Moreover, the dependence of all the stopping times
is only on y, so we can omit it in the future. The remainder of this proof is similar in spirit to [26]. For
simplicity of notation, we introduce the following shorthand:

πP :“ IXPązP , λP :“ IzPąXPązS , πQ :“ IXQązP , λQ :“ IzPąXQązS .

A few observations: πPλP “ πQλQ “ 0, i.e. the events are mutually exclusive, and πP `λP is the event
that strategy A will stop after having explored P (by definition of strategy A). With this notation, and
ignoring the common term, we have:

A “ E r´cP ` pλP ` πP qXP ` p1 ´ πP ´ λP qp´cQq ` p1 ´ πP ´ λPqpλQ ` πQqXQs ,

B “ E r´cQ ` XQπQ ` λQp´cP ` πPXP ` λP pXP _ XQq ` XQp1 ´ πP ´ λPqqs `

`E rp1 ´ πQ ´ λQqp´cP ` πPXP ` λPXPqs .

Computing the difference we get to:

A ´ B “ E rπQpπPXP ´ cPq ` pλP ` πPqpcQ ´ πQXQq ` pλQ ` πQqλPXP ´ λPλQpXP _ XQqs .

At this point we plug in the definition of reservation values using the independence of the two prefixes
(they are independent because the strategies are designed in such a way that the stopping times on different
prefixes are independent from the realization of the other one, given that they are both played):

E rcP s “ E rpXP ´ zPq`s “ E rpXP ´ zPqπP s

E rcQs ě E rpXQ ´ zQqπQ ` pXQ ´ zQqλQs pIXQězQ ě πQ ` λQq.

So we get:

A ´ B ě E rπQπP pzP ´ zQq ´ λPπQzQ ` λQpλP ` πP qpXQ ´ zQqs

` E rpπQ ` λQqλPXP ´ λPλQpXP _ XQqs

ě E rλPπQpXP ´ zQq ` λQπPpXQ ´ zQq ` λPλQpXP ` XQ ´ zQ ´ XQ _ XPqs ,
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where in the last inequality we used the fact that zP ě zQ. Recalling the definitions of the λ’s and π’s, the
only term that is not clearly positive is the rightmost term. But XP ` XQ ´ XP _ XQ “ XP ^ XQ, which
is greater than zQ, unless λPλQ “ 0. Thus, we conclude A ´ B ě 0, as desired.

Case II: If z11 ą y ě zi1, then consider the following modified instance: decrease the cost ci1 of box bi1
in such a way that the new zi

1
value now lies (strictly) between z1

1
and y. Let ∆ denote this change in cost.

For the sake of mathematical analysis, we will allow negative cost. Denote as φ1pAq, φpBq, and φ1pBq the
expected performances of Strategy A on the modified instance, Strategy B on the original instance, and
Strategy B on the modified instance, respectively. Define Strategy C as making the same decisions as
A would in the modified instance — as a function of the observed values — but while playing in the original
instance. Let φpCq be its expected performance.

Since B always opens bi
1
, we have that φ1pBq ´ φpBq “ ∆. However, A can choose to open bi

1
, depending

on the observed random variables, so φ1pAq ´ φpCq is an expectation over 0 and ∆. Thus, φ1pAq ´ φpCq ď
φ1pBq ´φpBq. However, we have shown in Case I that φ1pAq ě φ1pBq, and so this implies that φpCq ě φpBq.
Since C is suboptimal, this implies that B is suboptimal, as desired.

3.3 Tree-Constrained Pandora’s Box Problem

In the last subsection we have solved the problem on multiple parallel lines. The main difficulty lied in the
interplay between the different lines in the optimal strategy. This was solved by proving that the lines can be
divided into macroboxes which behave like single boxes. The work of the previous section is in fact enough
to prove that the Generalized Pandora’s Rule is optimal even for trees.

We begin by extending the definition of reservation values beyond lines. One might naturally try to
extend stopping times to a more general exploration rule. Instead, we observe that if there is an optimal
threshold strategy on a subtree, then it is equivalent to view it as a line constraint, following the threshold
ordering. This highlights the power of the concept of macro-boxes: they are not only a feature of the analysis,
but enable us to decompose a tree into a line.

This requires the introduction of the function MergepL1,L2q which takes as input two lines along with
the information on the reservation values of their boxes, and outputs the line obtained by their merging
according to decreasing reservation values, maintaining the relative orders of boxes in the same line. With
this in mind, the algorithm is presented formally in Algorithm 2.

Having defined the Generalized Reservation prices for the tree case, we show the following:

Theorem 7. The Generalized Pandora’s Rule is optimal for the Tree-Constrained Pandora’s Box Problem
and can be computed in polynomial time and space.

Proof. We will again do this by induction on the number of un-opened boxes. If there is only one box,
everything follows as before. If we are in a state where there are multiple available subtrees to continue
along, let T1, . . . , Tk be these subtrees, and b1, . . . , bk be their respective roots. By induction, after opening
any root box bi, there is an ordering ăi induced on the remaining boxes in all subtrees, for the optimal
strategy to explore. Observe that restricted to any subtree Tj , the nodes of Tj are ordered the same in all
ăi orderings, including ăj. Thus, we may define Lj as the line that represents this common ordering of the
nodes of Tj; it is clear by induction that the multi-tree problem on T1, . . . , Tk is no more profitable than
the multi-lines problem on L1, . . . , Lk. Furthermore, the reservation value for bj at the head of Tj is the
same as the reservation value for entering Lj , again by induction. Thus, this theorem is a corollary of the
previous.

Remark 2. It is clear from the previous proof that the Generalized Pandora’s Rule can be easily applied to
Forest-Constrained instances. As we have already mentioned, it is sufficient to add a dummy root with no cost
and no reward pointing to the roots of the actual trees in the forest to recover an equivalent Tree-Constrained
Pandora’s Box Problem.
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ALGORITHM 2: Pandora’s Rule for Tree
Data: Distributions of the random rewards, box costs and tree constraint T .
Initialize queue leaves;
for i Ð 1 to n do

if box bi is a leaf then
initialize line Li “ rbis and enqueue bi in leaves

end

end

while leaves is not the empty queue do
dequeue box bℓ from leaves;
Initialize an empty line L

for bj in childrenpbℓq do

L Ð MergepL,Ljq; /* Taking reservation values into account */

end

zℓ Ð computeThresholdpbℓ,Lq and Lℓ Ð rbjs ` L

if ℓ ‰ 1 and z has been computed for all the children of parentpbℓq then
enqueue parentpbℓq in leaves

end

end

return the generalized reservation values zj , and the linearized tree L1

4 Adaptivity Gaps and Approximation Beyond Tree Constraints

In the previous section, we sought to design exactly optimal policies, and required exactly comparing the
performance of alternative strategies. As we will see in Section 5, we can not hope to do so for more
general constraints, as the problem becomes NP-hard to approximate. For this reason, we seek instead
to find approximately optimal solutions. We present in this section approximation algorithms for some
cases of the Pandora’s Box Problem with order constraints. Following recent literature on stochastic probing
[3, 11, 21, 22], we will go through an adaptivity gap route, arguing that for any adaptive strategy, there exists a
non-adaptive strategy — i.e. pre-computing a fixed set and opening it obliviously — which approximates its
performance. Therefore, the optimal non-adaptive strategy is a good approximation of the optimal adaptive
strategy.

However, as our setting is very broad, and captures many of the complexities of stochastic submodular
optimization, it is not likely that an optimal non-adaptive set will be easy to find. Instead, following an
approach similar to [1], we give a single adaptive strategy which performs, in expectation, better than any
fixed set, and yields therefore a good approximation for the optimal adaptive strategy. We begin with the
adaptivity gaps. Recall the statement of Theorem 3:

Theorem 3. Consider the Pandora’s Box Problem with constraints modeled by some prefix closed family —
a generalization of order constraints, defined in Section 2, then for every adaptive strategy π, there exists a
non-adaptive strategy, i.e. a feasible set S, such that the following holds:

E rmaxiPS Xi ´
ř

iPS cis ě 1

2
E

“

maxiPSpπq Xi

‰

´ E

”

ř

iPSpπq ci

ı

(1)

The proof of this theorem closely follows [3], but it is short, and so we include it here for completeness.
As Bradac et al. [3] gives the proof in a more general setting, this proof should in theory extend to other
objective functions beyond the max-of-all-entries objective that we have been using.

Proof. The proof is a relatively simple, but clever, idea introduced in the adaptivity gap upper-bound of [3].
The idea is to show that if we choose a set at random, according to the distribution induced by Spπ˚q from
the randomness on the rewards, then this set will perform well in expectation over both the random set,
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and the random rewards. It follows that there must exist some set which performs at least as well as this in
expectation.

Formally, we wish to show that if we randomly sample the value of each box twice, choose optimal boxes
adaptively for one of the samples, but measure revenue using the other samples, we lose only a factor 2 in
the expectation of the maxiPS Xi term. As for the

ř

iPS ci term, we are opening the same set, so they cost
the same. Note that this considers only feasible sets S, by definition.

To this end, let X1, . . . , Xn be the random payoff values of the boxes, and let Z1, . . . , Zn be respectively
identically distributed copies of the Xi’s, sampled independently. Fix an optimal adaptive strategy π, and
let πpS, yq P rns denote the choice of the next box to open after having opened S, and observing largest value
y. Let Spπ,X |S, yq be the (random) final set that π opens when it chooses to terminate, if it starts with set
S and total y. We denote

µZpS, y, y1q :“ E
“

p´y1 ` maxtZi : i P Spπ,X |S, yq, i R Suq`

‰

the expected future gain when playing according to the Xi values starting in state pS, yq, but measuring
revenue with the Zi’s from state pS, y1q. Note that µXpH, 0, 0q is the expected revenue of playing according
to the adaptive strategy, and µZpH, 0, 0q is the expected revenue of randomly picking a set according to the
Zi’s.

We wish to show µXpS, y, y1q ď 2µZpS, y, y1q, by induction on the set S, as it ranges over all subsets, in
decreasing order of cardinality. Note that if pS, yq is such that the policy π will choose to terminate, then
both values are y ´ y1. Otherwise, fix S, y, and y1, and let p :“ πpS, yq. We have

µXpS, y, y1q “ E
“

pXp ´ y1q` ` µpS ` p, y _ Xp, y1 _ Xpq
‰

ď E
“

ppXp _ Zpq ´ y1q` ` µpS ` p, y _ Xp, y1 _ pXp _ Zpqq
‰

ď E
“

pXp ´ y1q` ` pZp ´ y1q` ` µpS ` p, y _ Xp, y1 _ pXp _ Zpqq
‰

“ E
“

2pZp ´ y1q` ` µpS ` p, y _ Xp, y1 _ pXp _ Zpqq
‰

Where the first inequality asserts that earning more up front an only help, and the last equality holds by
linearity of expectation and the identical distributions of X and Z. Furthermore,

µZpS, y, y1q “ E
“

pZp ´ y1q` ` µZpS ` p, y _ Xp, y1 _ Zpq
‰

ě E
“

pZp ´ y1q` ` µZpS ` p, y _ Xp, y1 _ pXp _ Zpqq
‰

Since µpS, y, y1q is non-increasing in y1. By linearity of expectation, and by induction on S, we get µZpH, 0, 0q ě
1

2
µXpH, 0, 0q, as desired.

With this result in hand, it remains to show that we can develop an adaptive strategy which performs
at least as well as every non-adaptive strategy, in expectation. We will take advantage of the fact that we
are working in a tree-constraint, and label the boxes with a pre-order of the nodes of the tree. We will
denote the index of box b as ib. Recall that, by the properties of a pre-order, we have that for all b, if b has k
descendants in the tree, then the descendants of b are exactly those boxes indexed by ib`1, ib `2, . . . , ib`k.
This allows us to keep track of which boxes can legally be opened if we choose to not open b, since we may
simply jump ahead in the pre-order.

We wish to use this fact to design a simple dynamic program computing the best adaptive strategy among
all which only consider boxes following the pre-order. The pre-order allows us to use an index in the order
to store the tree-constraint information on S, but it remains to efficiently encode information regarding the
matroid constraint. To this end, we define here a characterization of all constraints with “oblivious feasibility
oracles”:

Definition 4. A constraint on the feasible sets S of boxes to open is said to have an oblivious feasibility
oracle if it is characterized by a set function DpSq with the following properties:

1. tDpSq : S Ď rnsu is supported on polynomial in n values,
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2. For any S and u R S, DpS ` uq is efficiently computable knowing only DpSq and u, and

3. For any S, it can be efficiently determined whether S is feasible knowing only DpSq.

To illustrate this notion, we take as an example a generalized knapsack constraint, where every box b is
assigned a vector wb P Z

d
`, and we have a capacity vector m P Z

d
`. Here d is a constant. A set S is feasible if

ř

bPS wb ĺ m, taken componentwise. The function DpSq is simply
ř

bPS wb, and we require that the entries
of m be polynomial in n.

Note that this generalized knapsack constraint includes, as a special case, knapsack constraints, cardi-
nality constraints, and even partition matroids with Op1q partitions.

We will define the function Ψpi, y,Dq recursively below, which denotes the expected revenue if we start
at position i in the sequence, having already collected y, with feasibility oracle value D. As a base case,
Ψ “ 0 when DpSq “ D implies S is not feasible, and Ψ “ y when i “ n ` 1. Otherwise, let nextpiq denote
the first position after i in the pre-order on the tree such that nextpiq is not a descendent of i. Then

Ψpi, y,DpSqq :“ max

$

’

&

’

%

y

Ψpnextpiq, y,DpSqq

´ci ` E rpXi ´ yq`s ` E rΨpi ` 1, y _ Xi, DpS ` iqqs

Since the Xi’s take only polynomially many values, then this function can be computed in polynomial time,
by definition of D. We can also simultaneously compute the associated adaptive policy π as in Algorithm 3
below. Let Y be the set of all possible values attained by all the Xi’s, and D be all possible values attained
by DpSq. The θ function returned by the algorithm determines the policy: if we are in state pS, yq, and the
max index of an element in S is i, then πpS, yq :“ θpi, yq.

ALGORITHM 3: Approximately Optimal Adaptive Strategy

Data: Pre-ordering b1, . . . , bn, Oblivious feasibility oracle D, box costs, and random payoffs.
for i Ð n ` 1 to 1 do

for y P Y , D P D do

if D is infeasible then Ψpi, y,Dq Ð 0;
else if i “ n ` 1 then θpn, yq Ð Terminate and Ψpn ` 1, y,Dq Ð y;
else

open Ð ´ci ` E rpXi ´ yq`s ` E rΨpi ` 1, y _ Xi, DpS ` iqqs
skip Ð Ψpnextpiq, y,Dq
Ψpi, y,Dq Ð maxty,open, skipu
if maxty,open, skipu “ y then θpi ´ 1, yq Ð Terminate;
if maxty,open, skipu “ open then θpi ´ 1, yq Ð i;
if maxty,open, skipu “ skip then θpi ´ 1, yq Ð θpnextpiq, yq;

end

end

end

Claim 4. The strategy returned by Algorithm 3 is at least as good as any non-adaptive strategy.

Proof. This can be seen by induction on the i variable of the dynamic program. Let S´j :“ SXtn´j, . . . , nu.
We wish to show that Ψpn ´ j, y,DpSzS´jqq ě E

“

maxiPS´j
Xi ´ cpS´jq

‰

for all y, by induction on j. Note
that for j “ 0, both values are equal to the revenue of set S. For j ą 0, regardless of whether n ´ j ` 1 P S,
Ψ takes the max over including it and not including it, and by induction, the following Φ term performs
better than S´pj´1q in expectation.

Combining Claim 4 with Theorem 3 gives us the following result:
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Theorem 8. For the Tree-Constrained Pandora’s Box Problem augmented with oblivious-feasibility-oracle
matroid constraints, we can efficiently compute a policy π̂ such that for any π,

E

”

maxiPSpπ̂q Xi ´
ř

iPSpπ̂q ci

ı

ě 1

2
E

“

maxiPSpπq Xi

‰

´ E

”

ř

iPSpπq ci

ı

5 Impossibility and Hardness Results

In this Section, we show the impossibility results outlined in Section 2. We first show that, when the
precedence graph is not a tree, then there may not exist an optimal strategy which has a threshold structure.
We then show the approximation hardness of solving the Pandora’s Box Problem with both general order
constraints and F “ FT X IM where T is a tree and M is a matroid.

The Pandora’s Box Problem with order constraints where constraints are given by a DAG G , requires
that a box only be opened once one at least one of its in-neighbours in G is open.

5.1 Suboptimality of Threshold Strategies

Theorem 9. The Pandora’s Box Problem with order constraints need not admit an optimal threshold strat-
egy, when the constraint graph is not a tree. Moreover the same holds for constraints FT X IM, where T is
a tree and M a matroid.

Proof. Consider graph (a) in Figure 1 with the following parameters:

XA “

#

2.5 w.p. 1

2

0 w.p. 1

2

, XB “ 2, XC “

#

3 w.p. 1

2

0 w.p. 1

2

, XD “

#

6 w.p. 1

2

0 w.p. 1

2

,

cA “ 0, cB “ 1, cC “ 1 ´ ε
2
, cD “ 0.

For ε P r 5
4
, 2s it can be shown that it is optimal to start the exploration of the graph from A, then,

depending on the realization of XA it is optimal to open B (and then D) or to open C (then D and then
possibly B). If we now consider an instance of the Pandora’s Box Problem with order constraints on FT XIM

where IM is all subsets of cardinality 4, and T is given by (b) in Figure 1, with boxes A,B and C and two
copies E and F of D, then we inherit the results from (a).

(a)
A

CB

D

(b)
A

CB

E F

Figure 1: The order of optimal adaptive exploration is not fixed

5.2 Hardness of Approximation

As previously mentioned, we wish to show that it is NP-hard to approximate an optimal strategy for general
order constraints and F “ FT X IM where T is a tree and IM are the independent sets of a matroid M.
Formally, we prove it is NP-hard to design a policy with approximately optimal rewards, for some constant.
Approximation is taken in the sense of the previous section.

Theorem 10. It is NP-hard to approximate within 0.9997 the optimal strategy to the Pandora’s Box Problem
with DAG constraints. It is sufficient for the DAG to have depth 2 and fan-in 3.
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We will be reducing from the problem of finding a minimum vertex cover on cubic graphs, which is known
to be hard to approximate. We argue here that, since the constraint graph G has depth 2 and fan-in 3, this
also implies hardness for tree-and-matroid constraints, FT X I.

Corollary 1. It is NP-hard to find the optimal strategy to the Pandora’s Box Problem with order constraints
with constraint F “ FG X IM where M can be any matroid on B even if G is restricted to be a tree. It
suffices for M to be a partition matroid.

Proof. The constraint graph G from Theorem 10 consists of sources and sinks, such that every sink had
exactly 3 sources as its parents. Replace each sink with 3 identical copies (including costs and rewards), assign
one to each parent, and restrict that at most one copy of each is opened. This is exactly a partition matroid
constraint, and the resulting graph is a forest of depth-2 trees, and is equivalent in terms of exploration costs
and rewards to the constraint graph G.

Finally, the proof of the Theorem is given below.

Proof of Theorem 10. It is known that it is NP-hard to approximate the minimum vertex cover of a cubic
graph within a factor of « 1.0012 “: 1 ` ǫ0 [4, 19]. Let G “ pV,Eq be a hard-to-approximate instance, and
let n :“ |V |, and m :“ |E|. Let α be such that the optimal vertex cover has size αm. Observe, since G is
cubic, that m :“ 3

2
n, and α ě 1

3
. Furthermore, any greedy independent set must have at least 1

3`1
n nodes,

which implies that its complement is a vertex cover of size at most 3

4
n “ 1

2
m. Thus, α P r 1

3
, 1

2
s.

We construct, now, the constraint graph D. The nodes of D will be labelled by V Y E, where the V

nodes will be the sources of the DAG, each having cost 1 and reward 0, and the E nodes will be the sinks
of the DAG, each having cost 0 and reward βm with probability c

m
and 0 otherwise, for constants β, c ą 0

which we will choose later. There is an edge connecting any vertex-box v to each edge-box e such that e

in incident to v. Since G is cubic, this implies that D has depth 2 and fan-in 3, as required in the theorem
statement.

Any optimal strategy must take the following form: (1) Fix an ordering on the boxes labelled by V , (2)
Pay to open the next vertex-box in the order, then reveal the ď 3 unopened edge-boxes which it reveals. (3)
Repeat until the reward has been collected. Suppose that the i-th vertex-box we pay for allows us to open
0 ď ni ď 3 new edge-boxes, and Ni :“

ři´1

j“1
nj. Then the expected max reward will be βm ¨ p1´ p1´ c

m
qmq,

and the expected cost will be

E r# V boxes openeds “
n

ÿ

i“1

P popening ě i boxesq “
n

ÿ

i“1

p1 ´ c
m

qNi

Observe, without loss of generality, ni´1 ě ni for all i, as swapping the pi´ 1q-st and i-th boxes will only
increase Ni and leave Ni`1 and onwards unchanged, reducing the expected cost. Thus, in any fixed order,
after this swapping, there must exist numbers k3, k2, and k1, such that

n1 “ n2 “ ¨ ¨ ¨ “ nk3
“ 3, nk3`1 “ nk3`2 “ ¨ ¨ ¨ “ nk3`k2

“ 2, nk3`k2`1 “ 0 ¨ ¨ ¨ “ nk3`k2`k1
“ 1

Note that 3k3 ` 2k2 ` k1 “ m, and that the vertex cover has size k3 ` k2 ` k1. Setting r “ p1´ c
m

q, we have
that the expected cost becomes

k3
ÿ

i“1

r3i `
k2
ÿ

i“1

r3k3`2i `
k1
ÿ

i“1

r3k3`2k2`i “ r3

1´r3

`

1 ´ r3k3

˘

` r2

1´r2

`

r3k3 ´ r3k3`2k2

˘

` r
1´r

`

r3k3`2k2 ´ rm
˘

In the remainder of the proof, we will bound the values of k3, k2, and k1, for optimal and sub-optimal
vertex covers, and show that the difference in expected cost is at least a constant factor of the expected
reward. Since it is NP-hard to approximate the vertex cover, this will imply that is it NP-hard to approximate
the optimal strategy for the Pandora’s Box Problem on D.

Let S˚ be an optimal vertex cover of size αm, and let S1 be any vertex cover of size ě p1 ` ǫ0qαm. Let
k˚
3
, k˚

2
, and k˚

1
, be as above for the set S˚, and k1

3
, k1

2
, and k1

1
be similarly for S1. We wish to lower-bound
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the cost of opening S˚, and upper-bound the cost of opening S1, by bounding the possible values of the k˚’s
and k1’s obtained by sub- and super-optimal orderings, respectively. Note that we can trade off k3 ` k1 for
2k2 to increase the expected cost, and vice versa. Since α ď 1

2
, then for S˚, it will suffice to assume k˚

1
“ 0,

and increase k˚
3
as α approaches 1

3
. For S1, it will suffice to assume k1

2
“ 0. With the constraints on the k˚’s

and the k1’s, this gives

#

k˚
3

“ p1 ´ 2αqm

k˚
2

“ p3α ´ 1qm

#

k1
3 “ 1

2
p1 ´ p1 ` ǫ0qαqm

k1
1

“ 1

2
p3p1 ` ǫ0qα ´ 1qm

Furthermore, in the expected cost expression above, we get

E rcostpS˚qs ď r3

1´r3

´

1 ´ r3k
˚

3

¯

` r2

1´r2

´

r3k
˚

3 ´ rm
¯

“ r3

1´r3
´ r2

1´r2
prmq ` r3k

˚

3

”

r2

1´r2
´ r3

1´r3

ı

(3)

E
“

costpS1q
‰

ě r3

1´r3

´

1 ´ r3k
1

3

¯

` r
1´r

´

r3k
1

3 ´ rm
¯

“ r3

1´r3
´ r

1´r
prmq ` r3k

1

3

”

r
1´r

´ r3

1´r3

ı

(4)

Combining (3) and (4), the difference ∆ :“ E rcostpS1q ´ costpS˚qs is at least

∆ ě ´rm
”

r
1´r

´ r2

1´r2

ı

´ r3

1´r3

´

r3k
1

3 ´ r3k
˚

3

¯

` r
1´r

r3k
1

3 ´ r2

1´r2
r3k

˚

3

“
´

r3k
1

3 ´ r3k
˚

3

¯ ”

r2

1´r2
´ r3

1´r3

ı

`
”

r
1´r2

ı ´

r3k
1

3 ´ rm
¯

Recalling the values of k˚
3
and k1

3
above, expanding r “ 1 ´ c

m
, and first taking MacLaurin series around

“ c
m
”“ 0 for the terms in square brackets, then Taylor series for the terms in round brackets, we have

∆ ě pm
6c

` Op1qq
´

p1 ´ c
m

q3k
1

3 ´ p1 ´ c
m

q3k3˚
¯

` pm
2c

` Op1qq
´

p1 ´ c
m

q3k
1

3 ´ p1 ´ c
m

qm
¯

“ m
6c

´

e´3cp1´α´ǫ0αq{2 ´ e´3cp1´2αq
¯

` m
2c

´

e´3cp1´α´ǫ0αq{2 ´ e´c
¯

` Op1q

“ m
6c

´

4e´3cp1´α´ǫ0αq{2 ´ 3e´c ´ e´3cp1´2αq
¯

` Op1q (5)

Setting c “ p2ǫ0q{p3αq, and for convenience, denoting A :“ 1{α, we have

∆ ě m
4Aǫ0

´

4e´ǫ0pA´1´ǫ0q ´ 3e´c ´ e´3cp1´2αq
¯

` Op1q (6)

Recalling that A P r2, 3s. For ǫ0 “ 0.0012 as in [4, 19], it can be shown that the function is non-increasing
in A on its domain, and plugging A “ 3, we numerically have2 ∆ ě 0.000399 ¨ m.

It remains to determine the ratio of the difference in expected cost to the expected reward. Recall that
we have set the reward to be βm with probability c

m
, and 0 otherwise. Since it costs 1 to open a box, and

we wish to ensure that even when there is a single edge-box remaining, it is in our interest to open the box,
we must set β “ 1

c
. Recall, then, that the expected reward will be

βm ¨ p1 ´ p1 ´ c
m

qmq “ m ¨ 1

c
p1 ´ e´c ` Op 1

m
qq “ m ` Op1q

Thus, an approximation for the Pandora’s Box Problem which additively approximates the cost within a
1.00039 factor of the revenue implies an approximation algorithm for vertex cover on cubic graphs within
a factor of ă 1.0012, which is not possible unless P “ NP . This concludes the proof with a multiplicative
constant of 1 ´ 0.00039 ă 0.9997 in the sense of Definition 1.

2 More generally, taking the second derivative in ǫ0 suffices to show that the right hand side is strictly convex in ǫ0, since
A P r2, 3s, and its derivative is 0 when ǫ0 “ 0. This ensures the constant is a positive function of ǫ0.
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6 Conclusion and Further Directions

We have shown that solving the Pandora’s Box Problem with order constraints admits an efficiently com-
putable optimal solution, for tree-like order constraints. We further showed that unless P=NP, there is no
PTAS when the constraints are slightly generalized, and complement this result by showing an approximation
algorithm for oblivious matroid constraints on top of tree-like precedence constraints. This latter result was
shown by upper-bounding the adaptivity gap, and giving methods for beating optimal non-adaptive strate-
gies. It is clear then that extending this problem to more general constraints, or even more general objective
functions, can be done by giving more general approximation algorithms for the non-adaptive problem.
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A Learning Pandora

In this section we apply the techniques in [10] to prove that a polynomial number of samples from the
random variables tXiu

n
i“1

is enough to solve with a good approximation the Pandora’s Box Problem with
order constraints generalizing to any prefix-closed constraint. Furthermore we prove that, for the Tree-
Constrained Pandora’s Box Problem, a linear number of samples is enough and it is tight.

The learning procedure to achieve this goal is indeed quite simple: For a fixed ǫ ą 0, we take an Opǫq-grid
of the interval r0, 1s, and for sufficiently many samples, learn the empirical distribution on these grid points.
We then compute the optimal search policy using this empirical distribution. That this is an ǫ-approximation
is a straightforward application of standard techniques, and a proof is given in Appendix C2 of [10]. Formally,

• For each box b, let Xǫ
b be the random variable obtained by rounding down the reward Xb to the nearest

multiple of c ¨ ǫ;

• Given N i.i.d. samples of Xǫ
b , let X̂b be the random variable distributed according to the empirical

distribution;

• Output the strategy π̂ which is optimal with respect to the X̂b’s.

We will show that for constants ǫ, δ ą 0, and a sufficiently large N depending on ǫ and δ, π̂ will be an
additive ǫ-approximation of the optimal policy with probability 1 ´ δ.

General Constraints. We recall that we have assumed rewards and costs are bounded in r0, 1s. It is an
immediate corollary of Theorem 1 and 7 in [10] that, for the Pandora’s Box Problem with any constraints,
it suffices to have

N ě C1 ¨ n3

ǫ3
logp n

ǫδ
q

for some universal constant C1 ą 0.

Tree Constraints. We extend the techniques of [10] to show that linearly many samples are sufficient
for tree constraints. The n3 term in the previous bound comes from the fact that, when rewards and costs
are bounded in r0, 1s, the total performance of a strategy must lie in r´n, 1s, requiring the ǫ value to be
normalized by n. They use more specialized concentration bounds to get around this issue, which we extend
to our setting.

The goal is to show that, for an optimal algorithm, the performance over time forms a submartingale.
Equivalently, one should only open a box if, in expectation, the revenue is increasing. This is not true at
face value, as it is often necessary to open bad boxes to allow us to move onto better boxes. We will use
the notion of macro-boxes which were used in the proof of Theorem 6, where we showed the generalized
Pandora’s Rule was optimal for the Tree-Constrained Pandora’s Box Problem.

Definition 5 (Macro-Boxes). Let LT “ pb1, b2, . . . , bnq denote the optimal order of exploration given by the
Generalized Pandora’s Rule on T , and assume zi is the generalized reservation value for box bi in this order.
Construct a sequence of indices as follows: j1 “ 1, and for all i ě 1, ji`1 is the first index j ą ji such that
zj ď zji . Then we say that the i-th macro box is given by the collection of boxes tbji , bji`1, . . . , bji`1´1u.

Claim 5. Let j1, . . . be as in Definition 5, Let Sipπ
˚q denote the (random) set obtained by following the

optimal policy π˚ only until index ji, and define the random variable

Mi :“ maxℓPSipπ˚q Xℓ ´
ř

ℓPSipπ˚q cℓ.

Then the Mi’s form a submartingale.

Proof. We must show that for all i ě 1,

E rMi`1|Mi, . . . , M1s ě Mi.
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By Claim 3, and by the definition of the ji’s, we have that zji , . . . , zji`1´1 remain unchanged if we truncate
the sequence LT to end at bji`1´1. But in this case, Mi`1 is simply the performance of π˚ on the whole set.
By definition of reservation values, we then have that E rMi`1|Mis ě Mi.

Another necessary condition for the result in [10] is the strong monotonicity of the problem.

Definition 6 (First-Order Stochastic Dominance). Random vector X
1 stochastically dominates X if, for

every component i, and every x P R, we have P pX 1
i ě xq ě P pXi ě xq.

Definition 7 (Strong Monotonicity). A problem is strong monotone if for any random variable X, and any
random variable X

1 which dominates X, Letting π˚ be the optimal policy for the distribution on X, we have
that the performance of π˚ over X

1 is at most the performance over X.

The following is a direct corollary of Appendix C3 in [10], when viewed over the macro-boxes, as we have
a fixed order of exploration, and reservation prices.

Claim 6. The Tree-Constrained Pandora’s Box Problem is strongly monotone.

These two previous claims imply that Lemma 25 in [10] apply. Thus, for the Tree-Constrained Pandora’s
Box Problem, it suffices to take

N ě C2 ¨ n
ǫ2

log2p1

ǫ
q logpn

ǫ
q logp n

ǫδ
q

for some universal constant C2.

Lower Bounds. This latter result is tight up to poly logp n
ǫδ

q terms: [10] show that it takes at least Ωp n
ǫ2

q
samples to get the desired degree of accuracy.

B The Adaptivity Gap of the Pandora’s Box Problem is unbounded

In this section we present a counterexample showing that the adaptivity gap for the Pandora’s Box Problem
is unbounded. This is inspired by an example found in [21].

Let p ą 0, and consider n identical boxes with cost c “ 1 ´ p{2, and reward 1

p2 with probability p2,
0 otherwise. Since c ă 1, the adaptive optimal strategy is to open boxes until you get the reward, which
guarantees reward 1

p2 and costs c
p2 in expectation, for a total expected revenue of 1

p2 p1 ´ cq “ 1

2p

We now consider the non-adaptive strategy which opens k boxes. It earns 1

p2 with probability 1´p1´p2qk

and 0 otherwise, and pays ck. Note that p1 ´ p2qk is convex in k, and so 1

p2 p1 ´ p1 ´ p2qkq is concave, and

thus has non-increasing derivatives. At k “ 1

p
, we have

d

dk

”

´ck ` 1

p2 p1 ´ p1 ´ p2qkq
ı

“ ´c ´ p1 ´ p2qk ¨
lnp1 ´ p2q

p2

ď ´c `
´p´p2q ` p4

p2
¨ p1 ´ p2qk if p2 ď 1

2
(7)

ď ´c ` p1 ` p{8qp1 ´ p2qk if p ď 1

2

ď ´c ` p1 ` p{8qe´p

ď ´p1 ´ p{2q ` p1 ` p{8qp1 ´ 0.632pq (8)

ď p1

2
´ 0.632 ` 0.125qp “ ´0.007p ă 0

Where (7) holds because lnp1 ` xq ě x ´ x2 for x P r´ 1

2
, 0s: at x “ 0, lnp1 ` xq “ x ´ x2 “ 0, and

d

dx
lnp1 ` xq “ 1

1`x
ď d

dx
x ´ x2 “ 1 ´ 2x over the domain, by convexity of the former. (8) holds since
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e´p ď 1 ´ p1 ´ 1{eqp for p P r0, 1s, again by convexity. Hence, the derivative is negative, and we conclude
the optimum is attained on 1 ď k ă 1{p. However, p1 ´ p2qk ě 1 ´ kp2, so

´ck ` 1

p2 p1 ´ p1 ´ p2qkq ď ´ck ` 1

p2 kp
2 “ p1 ´ cqk

Since 1 ´ c “ p{2, and k ď 1{p, this upper-bounds the total revenue by 1

2
.

Recalling that the adaptive strategy earned on average 1{2p, then the ratio of the two revenues is 1

p
.

Taking p Ñ 0, this suggests that the adaptivity gap can be arbitrarily large.

We remark that this counterexample works also for the single line constrained case as the boxes are all
equal and the order is irrelevant.

C Proof of Claim 2

Recall, we have denoted the expected future reward following τ , given that the player has just opened box
bi´1 and the largest reward that has been sampled in the past has been x, as:

φτ px, iq :“ E

”

max
!

x, max
τpx,iq
j“i Xj

)

´
řτpx,iq

j“i cj

ı

,

and denoted Φpx, iq “ maxτ φ
τ px, iq “ φτ˚px,iqpx, iq, for all 0 ď i ď n. Observe that Φ is a non decreasing

function in its first argument.

For the first part of the Claim we are going to prove that @i “ 1, . . . , n the functions

Hipxq “ E

»

–

ˆ

τ˚px,iq
max
j“i

Xj ´ x

˙

`

´

τ˚px,iq
ÿ

j“i

cj

fi

fl “ Φpx, iq ´ x, (9)

admit at least one zero each in r0,8q and that the each solution set admits a minimum. In order to do so
it is sufficient to show that the Hi are continuous and monotone non increasing: it is then straightforward
to conclude, since Hip0q “ Φp0, iq ě 0 and limxÑ8 Hipxq “ 0.
For any two numbers b ě a ě 0 and i we have that

Hipbq ´ Hipaq “ Φpb, iq ´ Φpa, iq ` a ´ b ď E

„

τ˚pb,iq
max
j“i

Xj _ b ´
τ˚pb,iq
max
j“i

Xj _ a



´ b ` a ď 0, (10)

where in the first inequality we used the fact that the stopping time τ˚pb, iq is sub-optimal for φτ pa, iq. In
particular (10) means that Φp¨, iq is 1-Lipschitz and hence continuous. So we can claim the continuity of all
the Hip¨q as compositions of continuous functions.

We also argue that from (9) it is clear that the Hi (and hence the solutions zi) do not depend on the
particular stopping time used in the definition (which may not be unique), but only on the optimal values
Φpx, iq, which are unique.

Let’s now focus on the second part, we want to prove that for every i there exists a τ˚pzi, iq which is
different from i ´ 1, as long as zi ą 0. We recall that we are only considering stopping times that depends
deterministically on the realizations, hence the event τpx, iq opens or not box bi has either probability 1 or
0. Let’s fix any i for which zi ą 0 and let τ i be the best strategy between all those that open box bi, we
want to prove by contradiction that

δ “ Φpzi, iq ´ φτ ipzi, iq “ 0
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So let’s assume δ ą 0. First we note that for every ε ą 0 such that zi ´ ε ą 0 we must have τ˚pzi ´ ε, iq ě i,
because otherwise zi would not be minimal in the solution set of Hip¨q “ 0.

Moreover it holds that φτ˚pzi´ε,iqpzi, iq ď φτipzi, iq by definition of τ i. Using the Lipschitz property of Φp¨, iq

and φτ˚pzi´ε,iqp¨, iq, we hence get the following contradiction:

0 ă δ ď Φpzi, iq ´ φτ˚pzi´ε,iqpzi, iq ˘ Φpzi ´ ε, iq ď 2ε Ñ 0 for ε Ñ 0.
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