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ABSTRACT
This paper presents a Web service that supports the automatic gen-
eration of video summaries for user-submitted videos. The devel-
oped Web application decomposes the video into segments, evalu-
ates the fitness of each segment to be included in the video summary
and selects appropriate segments until a pre-defined time budget
is filled. The integrated deep-learning-based video analysis and
summarization technologies exhibit state-of-the-art performance
and, by exploiting the processing capabilities of modern GPUs,
offer faster than real-time processing. Configurations for generat-
ing video summaries that fulfill the specifications for posting on
the most common video sharing platforms and social networks
are available in the user interface of this application, enabling the
one-click generation of distribution-channel-specific summaries.

CCS CONCEPTS
• Information systems→ Summarization;Multimedia infor-
mation systems; • Human-centered computing → User inter-
face design; • Computing methodologies→Machine learning.
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1 INTRODUCTION
Journalists, broadcasters, as well as simple users regularly create
video content to be published in established (e.g., TV) and emerg-
ing (e.g., Twitter, Facebook, YouTube, Instagram) channels. Whilst
content produced for TV (e.g., an episode of a TV show) or for an
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amateur’s own use (e.g., vacation footage) can be quite lengthy, this
is not optimal for content distribution on social media. We live in
an era where social media users’ demands dictate the production
of short and attractive audio-visual content that attracts the users’
attention and can be ingested quickly; studies show that audience
engagement drops significantly during the playback of long videos
[37]. Therefore, for sharing on social platforms, video creators often
need a trimmed-down version of their original full-length video.
Also, different social platforms impose different restrictions on the
duration and format of the video that they accept, e.g., on TikTok
up to 60-second videos can be shared, whereas on Instagram stories
the upper limit is 15 seconds. This makes the generation of tailored
versions of video content for publication in multiple platforms a
tedious task.

In this paper, we introduce a Web service that harnesses the
power of artificial intelligence to automatically generate video sum-
maries. It takes as input a video and produces a video summary
that encapsulates the flow of the story and the essential parts of the
full-length video, adapting the length and format of the produced
summary for publication on social media platforms, thus easing
the creation of engaging video stories for on-line audiences.

2 RELATEDWORK
Several approaches have been proposed for addressing the task of
video summarization over the last couple of decades. For a long
time, the relevant research area was dominated by methods that
select the key segments of the video based on the extraction and
processing of low-level visual features from the video frames. These
methods include: algorithms that assess the visual similarity over
sequences of frames (e.g., [8, 39]); clustering-based techniques that
group frames according to their visual similarity (e.g., [5, 14]); and
approaches for visual attention modeling that imitate the human at-
tention mechanism in order to spot the most important parts of the
video for generating the summary (e.g., [7, 21]). Early supervised
machine learning methods aimed to capture the underlying frame
selection criterion from summaries created by humans to produce
video summaries that meet human expectations (e.g., [15]); exploit
auxiliary information, such as the video title or metadata, to extract
the semantically-related parts of the video (e.g., [27]); and directly
optimize multiple objectives for video summarization, such as repre-
sentativeness, importance, and actionness (e.g., [9]). More recently,
a number of deep learning video summarization approaches were
introduced, with the majority of them being trained in a supervised
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manner, i.e., using ground-truth summaries. The learning efficiency
of Convolutional Neural Networks (CNN) was exploited to extract
the semantics of the video content and use this information for
supervised video summarization [12, 26]. Other supervised tech-
niques utilize advanced variations of Recurrent Neural Networks
and perform video summarization by capturing the temporal de-
pendency over the frame sequence [13, 20]. The latter together with
some very recently proposed unsupervised learning methods that
rely on Generative Adversarial Networks (GAN) for assessing the
representativeness of the video summary, shape the current state
of the art in general-purpose video summarization [1, 2, 38, 40]. For
an extensive analysis of related video summarization works, the
interested reader is referred to [1].

Regarding free web-based summarization tools, there are quite
a few text summarization technologies [23, 24, 28, 32, 33] but none
for video summarization, to the best of our knowledge. Of course,
there exists a plethora of scientific papers; some of them provide
source code that can be used for video summarization (e.g., [1, 2,
11, 25, 30, 41]). However, this requires that a user is well-informed
on machine learning and proficient in computer programming, in
order to use such code. Motivated by the lack of web-based video
summarization tools, we built a freely accessible Web application
that enables users to submit locally-stored or on-line available
videos and automatically generate shorter versions of the submitted
full-length video.

3 PROPOSED VIDEO SUMMARIZATION
SERVICE AND USER INTERFACE
IMPLEMENTATION

We designed a framework which consists of: a) a REST service
that hosts the developed technologies for video summarization
(backend) and b) an interactive user interface (UI) that allows the
user to exploit the functionality of our Web service. In particular
through the UI of this tool, the user is able to: a) submit a video
for analysis (either available on-line or locally stored in the user’s
device), b) select the specifications of the generated summary from
a list of predefined configurations that were properly adjusted for
the most common social media and video sharing platforms, and
c) get the created summary in a way that enables both immediate
on-line inspection through the UI of our tool and the downloading
of the video file in the user’s device.

3.1 Description of backend
We employ a variation of the summarization method of [1] (which
in turn is an extension of [2]). Combining the effectiveness of atten-
tion mechanisms in spotting the most important parts of the video
with the learning efficiency of GANs for unsupervised training,
this method ([1]) achieves state-of-the-art results. The algorithm
works by calculating an importance score for each frame of the orig-
inal full-length video. Given a video segmentation, fragment-level
scores are calculated by averaging the scores of each fragment’s
frames. The summary is created by selecting the fragments that
maximize its total importance score, under the constraint that the
summary length does not exceed 15% of video duration, by solving
the Knapsack problem [29].

We introduced two necessary modifications to [1]. First, instead
of using the Knapsack algorithm for the selection of key segments,
we are performing this selection through a shot-ranking method.
In this way, we are able to combine the shot ranking according to
the computed importance scores of [1] with different rankings that
can be based on additional domain-based rules, a future perspec-
tive which we are interested in further investigating. Examples of
such domain-based rules include the exclusion of video segments
with, e.g., “talking heads” shots for video summaries generated
by journalists, or the exclusion of shots that exhibit motion blur
due to intense camera shaking. Second, instead of imposing a fixed
limit regarding the duration of the generated video summary, we
enable the selection of the target duration - a particularly important
feature, since a different video summary of particular length has
to be generated for each individual distribution channel where the
video will be shared through.

The applied process for video analysis and summarization starts
by segmenting the video into shots. A shot is an elementary struc-
tural unit of the video, that is composed of a set of consecutive
frames captured by a single camera without interruption [3]. For
the video shot segmentation we trained a 3D CNN with a similar
architecture to [16] using the BBC Planet Earth dataset [4], which
contains ground truth annotations for training a shot segmenta-
tion method. Each detected shot is ranked according to a value
denoting its suitability to be part of the video summary, calcu-
lated as the mean of the estimated importance scores of the shot’s
frames (using the method of [1]), thus producing a ranked list of
shots. The shot with the highest rank is selected as a candidate
to be included in the summary and is removed from the ranked
list. Then, two empirically-set thresholds, min_segment_duration
and max_segment_duration are utilized, with the intent to impose
bounds on the duration of the selected part from each shot, i.e.,
to avoid the inclusion of very short or very long segments in the
summary. Specifically, if the selected shot’s duration is greater than
min_segment_duration and lower than max_segment_duration then
the whole shot is included in the summary. If this duration is greater
than max_segment_duration then we select a part of the shot (of
max_segment_duration seconds) for which its frames exhibit the
maximum sum of importance scores. If this duration is lower than
min_segment_duration then the shot is discarded. The procedure is
repeated until the video summary has a duration that is very close
to the target duration, and results in an array containing the start
and end time of each selected segment. The array is sorted based on
the time of appearance of each segment in the original video and is
subsequently fed to a separate module that is responsible for de-
coding the original video, finding the respective selected segments,
transforming them to fit the target aspect ratio and rendering them
to a final summary video file.

The above-described processing pipeline is deployed as a REST
service that: a) retrieves a video file, b) analyzes the video using
the method of [1] to estimate frame-level importance scores, c)
performs temporal segmentation of the video to shots, d) ranks the
shots and selects a part from each of the top-ranked shots until the
summary’s specified time-budget is filled based on the determined
thresholds and the selection process described above, e) transforms
the video frames to the target aspect ratio, and f) renders the video
summary. The REST service works through a 3-step process. The
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Figure 1: The landing page of the frontend.

first step relates to an HTTP POST call that enables the submission
of a video for analysis and the initiation of a relevant session in the
REST service. The second step is associated to an HTTP GET call
that queries the status of the initialized session and the progress of
the analysis. Finally, the third step is performed by another HTTP
GET call that enables the retrieval of the results of a successfully
completed session.

3.2 Description of user interface
We have designed an interactive user interface (see Fig. 1) which
allows the user to submit videos and generate summaries that are
tailored for a user-specified social media channel. Video submission
is performed on a one-by-one basis (i.e., no video collection analysis
is supported) and, for demonstration purposes, the submitted videos
are allowed to be up to 10 minutes long and 200MB in file size. In
particular, to submit a video for summarization the user can either
provide its URL or upload a local copy of it from his/her device.
The supported on-line video sources include YouTube, Facebook,
Twitter, Instagram, Vimeo, DailyMotion, LiveLeak and Dropbox.
The service can handle videos in mp4, webm, avi, mov, wmv, ogv,
mpg, flv, and mkv formats. After submitting a video, the user can
monitor the progress of the summarization, and is also able to sub-
mit additional requests while the previous ones are being analyzed
as shown in Fig. 2. The submitted video and the summarization
results are cached in a server for 24 hours, and after this time period,
the local copy or the video URL, the summarization results and
the user’s e-mail address (if provided) are automatically deleted
from the server. When the analysis is completed, and after an au-
tomatic refresh of the user interface, the generated summary is
presented to the user through the user interface presented in Fig. 3.
Optionally, if the user provided an e-mail address she/he may close
the Web browser and be notified by e-mail when the summary

Figure 2: The summarization progress bars of the frontend.

Figure 3: The results page of the frontend.

result is ready. The results page is an interactive webpage with two
video players (for viewing the original and summarized videos)
implemented using the HTML5 video tag. The players support all
standard functionalities such as play/pause the video and toggle the
video in full screen mode. Furthermore, the user is able to download
the produced summary. The developed Web service for video sum-
marization is fully compatible with Mozilla Firefox (>41.0), Chrome
(>45.0), Opera (>32.0), Microsoft Edge (>77.0.200.1), and IE (>11.0).

Aiming to help the user and relieve him/her from deciding the
appropriate target duration and aspect ratio of the produced video
summary, we have created a list of configurations for the most
common social media and video sharing platforms. The user can
select one using the respective option buttons found in the service’s
landing page (see Fig. 1). This action configures the service to
produce a video summary that fully meets the prerequisites of the
target platform, based on information gathered from [6, 10, 18, 19,
22, 34–36]. The specifications for five widely used social media and
video sharing platforms are shown in Table 1, while an example of
applying two different presets on the same input video is shown
in Fig. 4. These parameters aim to maximize user engagement and

1This depends on the user account type; and additional limitations based on file size
apply.
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(a)

(b)

(c)

Figure 4: Key-frames of shots for the: (a) original video with 19 shots and 205 seconds total length, (b) video summary for
Facebook feed (16:9 aspect ratio) with 13 shots and 118 seconds total length, (c) video summary for Facebook story (9:16 aspect
ratio) with 3 shots and 19 seconds total length.

Video sharing
platform

Optimal
summary length
(seconds)

Video length
hard limit
(seconds)

Aspect
Ratio

Twitter 30 140 2:1
Facebook
(feed) 120 120 16:9

Facebook
(stories) 20 20 9:16

Instagram
(feed) 30 30 4:5

Instagram
(stories) 15 15 9:16

YouTube 120 900 /
unlimited1 original

TikTok 15 60 9:16
Table 1: Configuration settings for each social media plat-
form. The developed service generates summaries that con-
form with the optimal summary length and aspect ratio
listed above.

experience. Nevertheless, it is important to stress that these are best
practices and they are subject to change based on various trends.

3.3 Description of frontend-backend
communication

The frontend and backend components of our Web service are
deployed as independent modules. Once a video is submitted to the
frontend, a call to the backend service is initiated, which includes
the specifications of the video summary to be generated. In turn,
the backend instantiates a processing session, returns a unique
session ID for reference to the frontend and inserts the session in
the processing queue. The frontend periodically queries about the
status of the backend session process. The response of the backend
contains information about the position of the queried session in
the queue or the progress, so that the user interface can provide
the corresponding visual feedback to the user. Once the backend
session is completed its status is set accordingly. The frontend can
then retrieve the video summary as well as the original full length
using another call, display the two videos side-by-side in the results
interface and notify the user via email that the processing has been
completed (if the user had opted to use this feature by submitting
his/her email along with the original video).

4 DEPLOYMENT AND EXPERIMENTS
The original method of [1] that our work is based on, was evaluated
on the SumMe [17] and TVSum [31] video summarization standard
benchmark datasets. The findings show that the utilized method
performs consistently well in both datasets, and is the most com-
petitive one among the literature approaches. Details about that
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evaluation and an extensive analysis of the results can be found
in [1].

The backend service of the demo is deployed on a PCwith an Intel
i7-4770K at 3.50 GHz, 32GB of RAM and a NVIDIA GeForce GTX
1660 graphics card. By exploiting the multi-thread and multi-core
processing capabilities of the available CPU and GPU, the analysis
is faster than real-time video processing, taking approximately
45% of the original video’s playback time; though of course delays
may be noticed if multiple analysis requests are submitted to the
service, since these requests are processed on a one-by-one basis.
Our Web service for video summarization can be accessed and
tested at multimedia2.iti.gr/videosummarization/service/start.html.

As part of this work-in-progress, we ran experiments on publicly-
available videos from social media platforms (e.g., to summarize a
YouTube video for use in a Facebook story), beyond the experiments
on benchmark datasets reported in [1]. These experiments verified
that the Web service runs smoothly for videos of various formats,
and visual inspection of the produced summaries showed that they
are consistent with the summaries that a human would manually
generate. Two such example summaries are shown in Fig. 4.

5 CONCLUSIONS AND NEXT STEPS
This paper presented the developed Web service for automatic gen-
eration of video summaries. Details about the use and functionalities
of the service were given with the help of indicative snapshots of
the implemented user interfaces. The integrated method for video
summarization and the employed technologies for building the
service were presented, and information about the performance of
the developed service was given.

As next steps, the developed Web service will be tested with
real users (primarily broadcasters and content archives staff as
well as the general public) in the context of the ReTV project2 (an
EU Horizon 2020 research and innovation action), and based on
a detailed analysis of these testing results will be further refined,
extended and improved. In terms of development, future steps
include giving the option to the user to employ editor-based rules
(such as those briefly discussed in Section 3.1) and the integration of
additional functionalities, such as generating multiple summaries
for an input video and automatically posting the selected ones on
the target platforms.
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