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Critical real-time systems require strict resource provisioning in terms of memory and timing. The constant need for higher performance
in these systems has led industry to recently include GPUs. However, GPU software ecosystems are by their nature closed source,
forcing system engineers to consider them as black boxes, complicating resource provisioning. In this work we reverse engineer
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are internally managed. We present our methodology which is incorporated in GMAI (GPU Memory Allocation Inspector), a tool
which allows system engineers to accurately determine the exact amount of resources required by their critical systems, avoiding
underprovisioning. We first apply our methodology on a wide range of GPU hardware from different vendors showing its generality in
obtaining the properties of the GPU memory allocators. Next, we demonstrate the benefits of such knowledge in resource provisioning
of two case studies from the automotive domain, where the actual memory consumption is up to 5.6x more than the memory requested

by the application.
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1 INTRODUCTION

In the domain of critical real-time systems we find a wide spectrum of computer systems. On the one end of the
spectrum we have safety critical systems, ranging from transportation to medical and control systems. Since human
lives are at stake, such systems usually have hard real-time requirements, which means that their correct behaviour is
dictated not only by correct functionality but also by their timely execution with respect to predefined deadlines. On
the other end we find business and mission critical systems which although do not impose a threat to human safety,
their correct and timely execution is essential to fulfil their mission, typically to provide valuable services to science,
society and economy. Examples of such systems are banking and commerce services, communications and scientific
space missions, which have somewhat less strict timing requirements, but they are still important for their operation
and justification of their high cost.

Despite that these systems are very diverse and have very different particular requirements, all of them have a

common property: they require high availability. The key to achieve high availability is the careful resource provisioning
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of the system, in order to guarantee that each of the tasks of the system has enough resources to be efficiently executed,
without at the same time exceeding a limit that can jeopardise the entire system or impact the other tasks.

In particular, one of the most extreme cases of resource provisioning is found in avionics [14], whose operating
system standard, namely ARINC653 [2] enforces strict memory and time budgets for each task. This requires that the
system engineer needs to figure out the exact memory usage of each task and ensure that the total memory usage
does not exceed the size of the system memory. Similarly in timing, the worst case execution time of each task has
to be determined, and ensure that it is smaller than its deadline and that the overall system has enough capacity to
accommodate the execution of all tasks. Automotive operating systems, AUTOSAR-compliant [3], follow a similar
approach in resource allocation, as well as the operating systems in other critical domains like the Integrity RTOS
which is used in industrial control systems [9].

In less critical systems built on general purpose operating systems like Unix-based ones, although the operating
systems do not impose these limitations for each task, system engineers still perform the same type of analysis. For
example, although these operating systems do allow the use of more memory than the one physically present in the
system, based on virtual memory and disk-backed memory (a feature known as paging or swap) and/or compression, the
performance of the system is severely affected when this feature is used, compromising its timing behaviour and under
heavy memory pressure even the stability of the system is jeopardised. Therefore, the accurate resource provisioning
allows to prevent such scenarios, guaranteeing that the total capacity of the system is not exceeded.

A recent trend in the critical domains is the introduction of GPUs, in order to satisfy the performance demand of
advanced features. Probably the most well known case is in automotive, where automakers are working on autonomous
driving prototype vehicles [16] powered by GPUs mainly for cognitive tasks and artificial intelligence. The medical
domain and finance are also employing GPUs [28] mainly for image processing and high-computational capacity, as
well as the space domain [7]. Other critical domains are expected to follow as well, especially whenever there is a need
for inference based on artificial intelligence (AI) or high compute performance.

The GPU market lead vendor NVIDIA has performed significant investments in the automotive and industrial
automation sector by designing embedded GPU systems meeting the temperature and reliability needs of these markets,
such as the NVIDIA PX2 and its development board Jetson TX2, the NVIDIA Xavier and its latest addition NVIDIA Jetson
Nano. Other vendors such as Imagination Technologies have also automotive compliant products like the PowerVR
Series6XT GX6650 GPU incorporated in the Renesas R-CAR H3 platform or the latest product lines PowerVR Series8
and Series9, as well as ARM which recently announced its collaboration with Samsung to produce the GPU platform
Exynos Auto V9 which will be used in Audi’s cars, based on its Mali-G76 GPU.

Despite the important performance benefits provided by GPUs, they are notoriously known about their closed source
nature. In particular, NVIDIA GPUs are programmed in CUDA, a proprietary programming language developed by
NVIDIA. The GPU execution model in its rudimentary form follows an accelerator approach, in which the programmer
has to explicitly allocate GPU memory and manage transfers between the CPU and the GPU, as well submitting code to
be executed in the GPU, known as kernel. Although this explicit resource allocation provides the delusion of full control
over the resource management, the actual resource consumption both in memory and timing is larger, hidden behind
closed source layers. The reason is that the actual resource management takes place within the CUDA runtime and
GPU driver, which are closed source. The GPU products from other vendors are programmed in OpenCL, which despite
its name is not more open. OpenCL has a similar programming model to CUDA, which is also implemented in a closed

source runtime and GPU driver provided by each vendor.
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As a consequence, an accurate resource provisioning of GPU applications is complicated, leading either to under-
estimation or overestimation of resource provisioning. Although this problem is not yet very evident in the existing
under-utilised prototype systems, based on Unix-like operating systems e.g. Linux, it will soon be a roadblock as these
systems will require the consolidation of more software functionalities in the same platform. Even more importantly,
the problem will be more pronounced when these systems will be moved to operating systems for critical systems with
strict and explicit resource provisioning per task like AUTOSAR and ARINC653.

In this work, we expose for the first time the internal resource allocation mechanism of a GPU system. This way,
we allow the accurate resource provisioning for a GPU-based critical system. First we review the different types
of memory allocation in a GPU system and we start by demonstrating the basis of our methodology with a small
motivational example. Next we present some essential background on memory allocators and we describe in detail
our methodology to discover the properties of the memory allocator used in a GPU-based system. Subsequently we
present the implementation of GMAIL GPU Memory Allocator Inspector, a tool which allows to extract automatically
the properties of the memory allocator of any GPU and allows to analyse the memory consumption of GPU applications
written in both CUDA and OpenCL. Finally, we present our findings for a wide range of GPUs from different vendors and
we use the information obtain from GMAI about the internals of the memory allocator to demonstrate the benefits of
accurate resource provisioning with two case studies for a critical system, showing that the actual memory consumption

is significantly higher than the one requested by the software.

2 MEMORY ALLOCATION IN GPUS
2.1 Memory Allocation in CUDA

Before we enter into the GPU memory allocation internals, it is essential to review the programmer’s view of memory
management in order to better understand its internal behaviour. As already mentioned, in the CUDA programming
model, the programmer is in charge of explicitly managing memory for both the CPU and the GPU side, including
allocation, deallocation and transfers between the CPU and the GPU.!

Regular CPU memory ie. allocated using malloc or mmap is by default paged, which means that the operating system
can swap it out to the disk if needed, typically due to memory oversubscription. On the other hand, GPU memory,
allocated with cudaMalloc is always non-paged, that is, it is always present in the memory. Copies between CPU and
GPU memory are performed by DMA (Direct Memory Access) operations. However, as DMA transfers are asynchronous
with respect to the CPU execution, they can operate only when the pages are guaranteed to be resident in the memory.
Since this is not always the case for paged memory, the transfers need to pass from a staging area of non-paged memory.
In other words, in a CPU to GPU transfer, memory needs to be copied first to this intermediate buffer using the CPU and
therefore synchronously, before the DMA can kick in to perform the asynchronous transfer to the device. This results
in additional memory, which can be shared among applications, and additional timing overhead in GPU transfers.

In order to avoid these overheads, the programmer can allocate non-paged CPU memory, also known as pinned
memory or paged-locked using cudaMallocHost. However, this type of memory in the system is limited and its allocation
is more expensive since it requires a user space to kernel space switch. This allows the use of fully asynchronous

transfers using cudaMemcpyAsync.

!CUDA also provides a feature called Unified Memory, which takes this responsibility away. Despite the increase in productivity, the performance of this
feature heavily depends on the application’s memory access patterns and it adds even more black-box behaviour to the memory management and its
timing, which makes it less suitable for critical systems. For this reason, we do not discuss this feature in the rest of this paper.
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Last, there is the option to allocate another type of pinned memory in the CPU side, which is also memory mapped
to the GPU, using cudaHostAlloc and specifying the flag cudaHostAllocMapped. This means that no explicit copies
are required between the CPU and GPU, which gives the name zero-copy. Depending on the type of the GPU, this is
implemented in a different way. In a discrete GPU, ie. GPUs with their own physical DRAM memory, the copies are
performed in a fined-grained manner using the DMA engines to transfer the data over the PCle link. On the other
hand, in embedded (integrated GPUs) which share the same main memory with the CPU, the GPU directly accesses
the same memory as the CPU. Of course in both cases it is up to the programmer to ensure the consistency of the
shared memory between CPU and GPU. This functionality is supported by a feature known as UVA (Unified Virtual
Addressing), which allows both the CPU and the GPU to operate using the same virtual address. It is worth to note that
UVA is not the same with Unified Memory, which as we explained is not appropriate for critical systems and therefore

is not considered in this study. On the contrary, Unified Memory is implemented using the UVA feature.

2.2 Memory Allocation in OpenCL

OpenCL follows a similar programming model with CUDA, however it is a lower level language than CUDA. This
means that the same functionality is implemented with more API calls which offer finer grained control, at the expense
of programming complexity.

In OpenCL, memory allocations are handled via memory objects, using the c1_mem type. Generic memory allocations
are known as buffer objects and are created using the c1CreateBuffer function. This function receives a flags parameter
which controls how the memory will be accessed by the device. By default, the memory allocated by this function
belongs to the device, and the value of flags is CL_MEM_READ_WRITE, which indicates that the device can read and write
in this region of memory. However, it also can be configured to be read-only using the CL_MEM_READ_ONLY flag or
write-only using the CL_MEM_WRITE_ONLY flag.

The flags parameter can also be used to specify which kind of memory will be allocated. The CL_MEM_USE_HOST_PTR
flag indicates that OpenCL should use the memory referenced by a host pointer passed to the function instead of
allocating a new memory region. This means that the user is responsible of allocating this region of host memory before
calling the c1CreateBuffer function. According to the standard, OpenCL implementations can cache the contents of
the host memory region in device memory.

The CL_MEM_ALLOC_HOST_PTR flag indicates OpenCL to create the allocation using host accessible memory. Usually
this is the flag used to allocate pinned memory in OpenCL implementations. The CL_MEM_ALLOC_HOST_PTR flag can
be used with the CL_MEM_COPY_HOST_PTR flag to initialize the contents of the new allocated memory with the values
stored in a buffer referenced by a host pointer passed to the function. To read or write data to a buffer created using
the CL_MEM_ALLOC_HOST_PTR flag, the user should use the c1EnqueueMapBuffer function to map the memory region,
operate on the buffer and then use the c1EnqueueUnmapMemObject function to unmap the memory region.

The zero-copy behaviour is not explicitly defined in the OpenCL standard. It is important to take into account
that the OpenCL standard is just a set of abstract definitions, and each vendor is responsible for their implementa-
tion. For example, in the Intel implementation of OpenCL, the buffers created using the CL_MEM_ALLOC_HOST_PTR
and CL_MEM_USE_HOST_PTR flags are by default zero-copy buffers [13], however, this may not be the case with the

implementation of other vendors.
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Fig. 1. Execution times for GPU related calls shown in Listing 1 with same size, using zero-copy allocations.
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Fig. 2. Execution times for GPU related calls shown in Listing 1 with different size, using zero-copy allocations.

3 MOTIVATIONAL EXAMPLE

Now that we have a clear idea about the different memory allocation options in both CUDA and OpenCL, we can see
a motivational example which explains the need for understanding the internals of GPU memory allocations. In our

example we use CUDA since it is more concise.

Allocate X bytes;
Launch kernel;
Allocate Y bytes;

Launch kernel;

Listing 1. Motivational Example

We execute the code shown in Listing 1 on a Jetson TX2 platform, which is an embedded NVIDIA platform with
an integrated GPU and we measure the execution time of the 4 GPU-related calls shown in the listing using nvprof,
NVIDIA’s profiler.

In Figure 1 we see the results of running the example with two allocations of the same size (1024 bytes). We notice
that the first allocation takes considerable time, while the second one is shorter and the same happens on the first and
second kernel launches.

However, when we allocate two chunks of memory with different sizes (1024 and 4096 bytes), we notice that always
the first allocation and the first kernel launch for a given memory size take similar time (Figure 2). We notice the same
trend for all the 3 different types of allocation introduced in the previous section (paged, pinned and zero-copy).

This observation indicates that the underlying memory allocator implemented in the closed source GPU runtime/-
driver manages each of the memory allocations of different sizes in a separate way. The question that is raised is
following: can we determine the internals of this memory allocator, so that we can know the exact system memory allocated
and predict which of the GPU related calls are expected to take longer? In the following sections we will introduce our
methodology to discover the memory allocator internals in both CUDA and OpenCL devices. However, as a first step
we need to examine common characteristics of memory allocators proposed in the literature for CPUs, since we suspect

that the implemented memory allocator is very probable to follow a known design instead of a novel one.
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4 BACKGROUND ON MEMORY ALLOCATORS

A memory allocator provides memory to a program when requested and takes it back when the program frees it. It also
keeps track of the regions of memory that have been assigned and the regions that are free to assign, using an auxiliary
data structure. The main goal of an allocator is to do these tasks in the least possible amount of time, while at the same
time minimising memory waste [24].

Initially the memory allocator reserves a contiguous chunk of memory which is used as pool, to satisfy dynamic
memory requests. When the pool is full, the allocator expands by reserving a new pool. Depending on whether the
allocator is implemented in the operating system or at user space, the memory for its pool is reclaimed by using a
predefined range of addresses or a preallocated memory region in the former case, or using the break or mmap system
calls in the latter. Custom memory allocators can also use the standard C library calls such malloc.

A common challenge for a memory allocator is that programs may free the allocated memory in any order, creating
holes between used blocks. Note that for efficient representation, block sizes are usually powers of two and they have a
minimum granularity. The proliferation of small holes leads to the creation of unusable blocks of memory, a problem
known as fragmentation.

Fragmentation leads to memory waste, incrementing the amount of memory used by the allocator. External fragmen-
tation occurs when the available free blocks are too small for the requested size or when the allocator is unable to split
bigger blocks to satisfy smaller requests. Internal fragmentation occurs when a block larger than needed is assigned,
leaving wasted memory inside the block. To avoid fragmentation, techniques like splitting free blocks (to satisfy smaller
requests) and coalescing free blocks (to create larger blocks) are used in conjunction with an allocation policy.

As stated in [10, 18, 24] there are different policies and mechanisms used by memory allocators to manage memory
efficiently:

Sequential fits: memory allocators in this category are based in a single linear list to manage the free blocks of
memory. A best fit allocator searches the smallest free block in the list large enough to satisfy a request. A first fit
allocator searches from the beginning of the list and uses the first free block large enough to satisfy the request. A next
fit allocator begins the search from the last used position. A worst fit allocator looks for the largest free block in the list.

Segregated free lists: such memory allocators use an array of free lists, having one list for each block size. When a
program requests memory, the allocator uses the list with the smallest block size large enough to satisfy the request.
The fit of the allocations is not always perfect because the available block sizes are limited, which causes some internal
fragmentation. Some segregated free lists allocators use size classes to put together a range of sizes in the same list.

Buddy systems: these allocators allocate memory in fixed block sizes which are split in two parts (or coalesced
together) repeatedly to obtain blocks of the requested size. A free block can only be merged with it’s buddy, so coalescing
usually is fast.

Indexed fits: some memory allocators, instead of searching sequentially in a free list, use a more complex indexing
data structure like a tree or a hash table to keep track of unallocated blocks. The use of this type of indexed structures
leads to faster searches and allocations.

Bitmapped fits: these allocators use a bitmap to keep a record of the used areas of the heap. A bitmap is a vector
of one-bit flags where each bit represents a word in the heap. The search in a bitmap is slower than in an indexed

structure, however, the memory consumption is lower because it does not need to store the size of the blocks.



GMAI: A GPU Memory Allocation Inspection Tool for Understanding and Exploiting the Internals of GPU Resource
Allocation in Critical Systems 7

5 REVERSE ENGINEERING GPU MEMORY ALLOCATORS
5.1 Reverse Engineering CUDA Memory Allocators

After reviewing the properties of existing memory allocators, we can design a methodology in order to discover the
internals of the GPU memory allocators. Note that we are interested in the key parameters of the memory allocator
which affect its memory consumption and timing behaviour, but we are not after obtaining every single detail about
its design ie. whether its free list is implemented using a list, tree or a bitmap, since such a task may not be entirely
possible to achieve or at least not with a reasonable amount of effort. Furthermore and most importantly it does not
affect resource provisioning in the same degree to the other parameters.

Without loss of generality, in this subsection we focus on the same architecture we used for the motivational example.
In fact, as we show in Section 7, the same methodology is applicable to all NVIDIA GPUs we tried, ranging from old to
bleeding edge GPU models. Moreover, since our methodology does not depend on CUDA, it can also be applied on
non-NVIDIA GPUs programmed in OpenCL, as we are going to see in the next subsection.

Starting from the zero-copy allocation scenario, we want to identify the basic design of the memory allocator which
is used in order to allocate pinned memory in the CUDA runtime and driver. The fact that the allocation for different
sizes results in significantly longer execution times for the first allocation, means that the allocator follows a segregated
free list design. Therefore, the next step is to identify its size classes as well as the pool size of each free list. In order to
achieve our goal, we design carefully crafted memory allocation experiments and observe their behaviour in order to
extract the information we are after. In Section 6 we present a tool that fully automates our methodology and can be

executed in any system featuring a GPU to extract its memory allocator properties.

Algorithm 1: Pool size extraction

Output: pool_size
1 Allocate 1 byte of pinned memory
2 Capture mmap system call
3 Extract len argument from mmap system call
4 pool_size « len
5 Free memory allocated

Pool Size: In order to identify the pool size of each list, we first create an experiment in which we allocate the
minimum amount of memory as shown in Algorithm 1. Since pinned memory has to be requested from the operating
system, a user space to kernel space transition based on a system call is required. We monitor the system calls of the
executing process using the strace utility, which intercepts the system calls as well as their parameters.

We notice that the memory allocation call generates a mmap system call, whose second argument corresponds to the
size of the memory pool for the list. In our platform, this size is 2MB.

As a validation, running strace on the example of Listing 1 reveals a mmap only on the first allocation of each size,
both with the same size of 2MB, which explains their longer execution time.

Allocation Granularity: Once we know the memory pool size, we need to identify the minimum memory size
which corresponds in a single entry within the free list. We achieve this by applying Algorithm 2. The idea is simple:
we try to repeatedly allocate the minimum size, until the free list is expanded, by using a new memory pool, which is
indicated by a mmap call in the strace. In our platform, this happens after 4096 allocations, which means that each

allocation reserved a 512 bytes entry within the free list.
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Algorithm 2: Granularity calculation

Input: pool_size

Output: granularity
1 Allocate 1 byte of pinned memory
2 allocations « 1
3 while a new mmap is not generated do
4 Allocate 1 byte of pinned memory
5 allocations « allocations + 1
6 end while
7 granularity < pool_size/allocations
8 Free memory allocated

Algorithm 3: Size classes extraction

Input: granularity
Output: size classes information

1 inferior_size < granularity

2 superior_size < granularity

3 size_class < 0

4 while not all classes extracted do

5 Allocate inferior_size bytes of pinned memory

6 size_class « size_class + 1

7 while a new mmap is not generated do

8 superior_size «— superior_size + granularity

9 Allocate superior_size bytes of pinned memory
10 Free last allocation
11 end while
12 Save size_class, inferior_size and superior_size — granularity
13 inferior_size < superior_size
14 Free memory allocated
15 end while

Size Classes: Knowing the size of each free list and the allocation granularity, we can focus on detecting how
many free lists are kept by the allocator, each corresponding to a different size class. In Algorithm 3 we start creating
allocations of increasing sizes, by using the granularity as an increment factor. If a new pool is not created (no new
mmap) we free the allocation and try the next size. This way we prevent the case that the existing pool used for the
current size class is expanded and therefore generating a false positive mmap.

In this experiment, we also validate that the pool size and granularity obtained for the first size class using Algorithms 1
and 2 respectively, hold also for each of the other free lists corresponding to the rest of the size classes. However,
this validation is not shown in Algorithm 3 for clarity. This is achieved by using the same algorithms, but instead
of allocating 1 byte, we allocate minimum size corresponding to the examined size class. We confirm that in all our
experiments, these values are consistent among all the size classes for the examined systems described in the Results

Section.
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Algorithm 4: Best fit ascending test

Input: inferior_size, superior_size
Output: Determines if the policy used is best fit

1 for size = superior_size to inferior_size do
2 ‘ Allocate size bytes of pinned memory
3 end for
4 foreach other_allocation do
5 Store size of other_allocation
6 Free other_allocation
7 end foreach
8 for size = min_stored_size to max_stored_size do
9 ‘ Allocate size bytes of pinned memory
10 end for
11 Check if all new allocations were assigned using best fit policy

=
N

Free memory allocated

Allocation Policy: Having obtained all the parameters of the memory allocator, it only remains to identify the
policy used in a free list. For this reason, we created validation tests for each type of the four main policies: first fit, best
fit, next fit and worst fit. Algorithm 4 shows one these tests checking for the best fit policy. We first create a number of
allocations with a decreasing size corresponding to the entire range of allowed sizes for a given size class, so that all
allocations are held in the same free list (lines 1-3). Since at this point the free list is empty, each allocation takes the
next available free block, resulting in consecutive allocations in the list.

Next, we start freeing every other allocation, creating free blocks of decreasing size and keeping track of their size
(lines 4-7). In the final step, we start allocating the same size of blocks that were released in the previous step, but in the
reverse order (lines 8-10). That is, each new allocation best fits in the last block of the free list. If the allocator follows a
best fit policy, it will result in allocating the same positions as the ones that were freed in the previous step. Otherwise,
eg. if the allocator follows a first fit policy, then the allocations would be suboptimal, resulting in an expansion of the
original pool.

In order to perform the validation, we use multiple measures. First we use strace to validate that there is no
expansion of the pool during lines 8-10. Moreover, we keep track of the addresses returned by each and make sure that
the new allocations correspond to their best locations, which were their old locations.

Note that the presented example is only one of the variations of the policy validation tests, which are not shown
here due to the lack of space and because they are quite similar. In particular, we have versions which perform the
allocations in reverse order, or applying the last step (lines 8-10) in random order, in order to check whether the policy
instead of best fit follows a LIFO (Last-In First-Out, stack-like) policy. Another variation of this test uses allocations of
the same size, in order to identify what is the allocation policy in the presence of multiple equal size blocks.

Coalescing: In this experiment we perform a series of allocations with arbitrary sizes which however can be rounded
up to the same size in a given size class. Next, we create two neighbouring free blocks in the middle of the free list. In
the following, we allocate a single block with size equal to the addition of the free blocks and we check whether the

allocator merges the blocks or creates a new allocation in the free list.
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Splitting: This experiment is similar to the previous one, with the difference that only one block is freed in the free
list. Then a smaller size block is allocated, to check whether the allocator splits the free block, or the new allocation
takes place elsewhere in the free list.

Expansion Policy: For this experiment we perform allocations for a given size class, until the pool is expanded one
or multiple times. Then we check whether the pool is expanded when it is full - after allocating exactly the same size of
allocations with the pool size - or earlier, when an occupancy threshold in the list is exceeded.

Pool Usage: For this experiment we create multiple pools for a given size class. Then we free a block from the first
pool, and perform a new allocation. This way we can check whether the allocation policy is applied across all the pools
of the same size, or whether an alternative policy is applied eg. only to the last allocated pool.

Shrinking: Finally, we check whether the memory allocated for expanded memory pools is returned to the system.
This is similar to the previous experiment. We perform allocations of the same size class until the memory pool is
expanded several times and then we free all the allocations of a given memory pool. We validate whether the memory
pool is returned to the system by observing a munmap after its last block is freed. Moreover we check whether only a
certain memory pool is returned eg. only the last allocated or any of them.

Timing: The methodogy we presented so far corresponded to the case of pinned memory and in particular with
zero-copy. In this case, in addition to the mmap during memory allocation calls, we obtain also ioctl system calls during
the kernel launches. These system calls are used in order to communicate with device drivers. We observe that in the
first kernel execution after a new pool created for a new size class, the kernel invocation has an extra ioctl call. We
attribute the longer execution time of these kernels in this additional ioctl, which we speculate that is responsible for
performing the memory mapping of the host pinned memory to the GPU’s MMU (Memory Management Unit).

Paged-memory Allocator: The previously presented methodology is also appropriate without any modifications
for the conventional pinned memory allocation, in which there is an one-to-one correspondence of CPU and GPU
allocated memory. However, for the memory allocator used for the paged-memory allocations we need a slightly
different way to observe its internals.

In particular, the paged-memory allocations do not require a user-to-kernel switch and therefore its parameters
cannot be obtained using strace. However, we assume that the same allocator design used for pinned memory for
CUDA is also used for managed memory within CUDA, in order to reduce development and verification costs. As
we comment in the Results Section, this assumption is fully validated. Since strace is not applicable in this case, the
observation of the memory allocator’s behaviour is applied by instrumenting the code with gdb in order to obtain
the API call parameters and the returned pointers to the allocated blocks. Also, the timing behaviour is observed as
previously, using NVIDIA’s profiler. With these modifications, the previously presented algorithms are also used to

obtain the key properties of the paged-memory allocator, too.

5.2 Reverse Engineering OpenCL Memory Allocators

As we have already mentioned, the OpenCL follows as similar programming model with CUDA. In this subsection, we
adapt the algorithms presented in the previous subsection to the memory allocation calls supported by OpenCL.

A significant difference between OpenCL and CUDA is that each vendor has its own implementation of OpenCL,
which can result in different memory allocators for each vendor. For illustration purposes we have selected a Mali-T860
GPU as OpenCL reference platform. Using this GPU we have applied our reverse engineering methodology trying to

extract the same information we extracted from NVIDIA GPUs.



GMAI: A GPU Memory Allocation Inspection Tool for Understanding and Exploiting the Internals of GPU Resource
Allocation in Critical Systems 11

Pool Size: The same way we did with CUDA, we create an experiment in which we allocate the minimum amount
of memory as shown in Algorithm 1, intercepting the generated system calls with the strace utility. In this case, the
memory allocation also generates a mmap system call, whose second argument corresponds to the size of the memory
pool for the list. In our OpenCL reference platform, this size is 256KB.

Allocation Granularity: To identify the minimum memory size which corresponds in a single entry within a pool,
we also apply Algorithm 2. We create a memory pool and then repeatedly allocate 1 byte of memory until a new mmap is
generated, which indicates that a new pool has been created. In our OpenCL reference platform, this happens after 4096
allocations. Having a pool size of 256KB, this means that each allocation reserved 64 bytes within the first memory pool.

Size Classes: Having the pool size and the allocation granularity within each pool, we focus on detecting whether
the allocator uses size classes. In Algorithm 5 we start creating an allocation with the minimum size. Then, we create
allocations of increasing sizes, by using the granularity as an increment factor, until we reach the pool size. If a new
pool is not created (no new mmap is generated) it means that all possible sizes within a memory pool are compatible, so

size classes are not used.

Algorithm 5: Use of size classes

Input: pool_size, granularity
Output: size_classes_used

1 inferior_size < granularity
2 superior_size <— granularity
3 size_classes_used «— false
4 Allocate inferior_size bytes of pinned memory
5 while superior_size < pool_size do
6 superior_size < superior_size + granularity
7 Allocate superior_size bytes of pinned memory
8 if a new mmap is generated then
9 size_classes_used « true
10 Free last allocation
11 break
12 end if
13 Free last allocation

14 end while
15 Free first allocation

Allocation Policy: To determine the allocation policy used by the allocator we created validation tests for each
type of the four main allocation policies, in a similar way we did with CUDA. First we create a simple test doing several
allocations of different sizes and releasing some of them in specific positions. After creating the free spaces, we create a
new allocation and check which space is used. This way we deduce the allocation policy used.

To validate the deduced policy we use some tests similar to the one shown in Algorithm 4 or its random variant. The
main difference between the CUDA implementation and the OpenCL implementation of these tests is that with CUDA
we need to check different size classes.

Coalescing: For this experiment we perform a series of allocations with the same size of the internal granularity of

a pool. Next, we free two neighbouring allocations to create a continuous free space in the middle of the pool. Then, we
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perform a new allocation with size equal to the double of the granularity to check whether the allocator merges the
free blocks or creates a new allocation in the pool.

Splitting: This experiment is similar to the previous one, with the difference that only one block is freed in the pool.
Then a smaller size block is allocated, to check whether the allocator splits the free block or the new allocation takes
place elsewhere in the pool.

Expansion Policy: For this experiment we perform several allocations with the same size of the granularity until a
new pool is created. Then we check whether the new pool is created when the previous one is full or when an occupancy
threshold in the pool is exceeded.

Pool Usage: To determine how the pools are used when there are several pools created, we perform a series of
allocations until we have two full pools and a third one with free space. Next, we create a big free space in the first pool
and a smaller one in the second pool. Then, we try to make an allocation with the size of the smaller free space to check
if the allocator uses the lastly created pool or if it uses the best space available in the previous pools.

Shrinking: Finally, we check how the memory allocated for the pools is returned to the system. In a similar way we
did with CUDA, we perform several allocations to create several pools of memory. Then, we free all the allocations and
corresponding to a pool and check when is generated the corresponding munmap system call. This way we determine if
the pools are returned to the system immediately after freeing its last block or if they are returned at the end of the

program.

6 GMAIL: GPU MEMORY ALLOCATOR INSPECTOR

Based on the methodology defined in Section 5, we implemented GMAI (GPU Memory Allocator Inspector), which is a
tool that can be executed in any system featuring a GPU and extract its memory allocator properties. The GPU Memory
Allocator Inspector consists of two parts: the first part is a set of scripts on which we implement the experiments we
defined in Section 5 to extract the properties of a GPU memory allocator. The second part is a preload library which can
be used to determine the real GPU memory consumption of GPU-based applications. Figure 3 shows the GPU Memory

Allocator Inspector workflow. The source code of the GPU Memory Allocator Inspector is available at [5].
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Fig. 3. GPU Memory Allocator Inspector (GMAI) workflow



GMAI: A GPU Memory Allocation Inspection Tool for Understanding and Exploiting the Internals of GPU Resource
Allocation in Critical Systems 13

GMAI can be used in two ways. In the first one we use reverse engineering techniques to extract the memory
allocator properties of a target GPU. With this information we generate a configuration file which can be used to
visualise the extracted properties. This information could later be used by an engineer to manually analyse the GPU
memory consumption of GPU-based applications. However, the second way of using this tool consists on a preload
library which can be used to automatically compute the real GPU memory consumption of a target application based
on the memory allocator properties stored in the configuration file.

For the implementation of GMAI we have used different debugging techniques. For the initial analysis of the system
calls generated by a GPU application we have used the strace utility. This way we know what are the functions and
parameters we have to look at to get the information we are after for. Using this information, we have used gdb to
execute our experiments and extract the values we needed in each of them. Having a functional set of gdb commands to
extract the information for all the experiments, we have automated the debugging process using the gdbinit file. This
way we automatically generate the configuration file by executing the necessary gdb commands over our experiments.

For intercepting the GPU memory allocation calls of a GPU application, we have used the preloading technique,
which is a feature of 1d, the dynamic linker in UNIX-like systems. With preloading we can override arbitrary function
calls in a program, by using the environment variable LD_PRELOAD to specify a library with our own implementations
of the functions we are interested in. With this technique we implemented our own versions of the GPU functions used
to allocate memory which we mentioned in Section 2 for both CUDA and OpenCL. In our function versions we keep
track of their parameters before calling the actual functions. This way we can intercept those functions from a GPU
running application and use their parameters by combining them with the properties of the GPU memory allocator

stored in the configuration file to compute the application’s real GPU memory consumption.

7 RESULTS
7.1 Obtained Properties of CUDA Allocators for Various GPU Models

In this subsection, we provide the results we have obtained using our methodology on a wide range of NVIDIA GPUs,

ranging from very old products with capability 1.1 to the latest NVIDIA’s embedded SoC Nano, as shown in Table 1.

Table 1. Tested GPU Platforms

Device Name Comp. Runtime/ Kernel GPU
Capabil.  Driver  Version Type
GeForce 9300M GS 1.1 6.5 3.19.0 Discrete
Quadro FX 3700 1.1 6.5 3.12.9  Discrete
GeForce GTX 960M 5.0 10.0 4.15.0  Discrete
GeForce GTX 1050 Ti 6.1 9.2 4.15.0  Discrete
GeForce GTX 1080 Ti 6.1 9.2 4.15.0  Discrete
Tegra X1 (Nano) 5.3 10.0 49.140 Integrated
Tegra X2 (TX2) 6.2 9.0 4.4.38 Integrated
Xavier 7.2 10.0 49.108 Integrated

As explained in the previous Section, we have implemented our methodology in the GMAI tool which automates
completely the process. Once GMAI is executed, in a few seconds a report is generated with the information about the

memory allocator. In the Listing 2 we can see the generated report about the NVIDIA TX 2 platform, which we used in
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the discussion of the previous Sections. In Listing 3 we can see the generated report about the NVIDIA GeForce GTX
1080Ti, which we use as discrete GPU reference platform.

In both GPUs, we observe that the pool size is 2MB and the minimum allocation granularity is 512 bytes. The allocator
is using 6 size classes, with the last one ranging up to the pool size. Larger allocations are always rounded up to the
next 4KB multiple, which is the system’s page size. The allocator is implementing a Segregated Lists Allocator with
best fit policy. In the event of expansion, the allocator is keeping a stack of pools. Deallocations can happen to any of
the pools, however new allocations are only allocated in the last created pool. Finally, the allocator frees the memory
used by any pool when all its blocks are freed.

Regardless of the version of the driver or the hardware, we obtained exactly the same results with the NVIDIA GPUs
GTX 1050 Ti and Xavier. For the GPUs GeForce GTX 960M and TX1 Nano we also obtained identical results but with
the pool size being 1MB. For the older NVIDIA GPUs, Quadro FX 3700 and GeForce 9300M GS we obtained a pool size
of 1MB but 256 bytes granularity.

Our results indicate that the same properties are followed by both the memory allocator for paged and pinned memory,
including zero-copy. However, our system call and timing analysis for understanding the sources of variability in the
execution time of GPU related calls has revealed that in the newer devices which support UVA (the ones with compute
capability more than 2), only the zero-copy scenario is supported, regardless of whether the flag cudaHostAllocMapped

is used.

Device name: NVIDIA Tegra X2 Device name: GeForce GTX 1080 Ti

Compute capability: 6.2 Compute capability: 6.1

CUDA runtime version: 9.0 CUDA runtime version: 9.2

CUDA driver version: 9.0 CUDA driver version: 9.2

Pool size: 2097152 bytes Pool size: 2097152 bytes

Granularity: 512 bytes Granularity: 512 bytes

Size classes Size classes

1: 1 to 2 blocks of 512b [1 to 1024b ] 1: 1 to 2 blocks of 512b [1 to 1024b ]
2: 3 to 8 blocks of 512b [1025 to 4096b 1 2: 3 to 8 blocks of 512b [1025 to 4096b 1
3: 9 to 32 blocks of 512b [4097 to 16384b ] 3: 9 to 32 blocks of 512b [4097 to 16384b ]
4: 33 to 128 blocks of 512b [16385 to 65536b ] 4: 33 to 128 Dblocks of 512b [16385 to 65536b ]
5: 129 to 512 blocks of 512b [65537 to 262144b ] 5: 129 to 512 blocks of 512b [65537 to 262144b ]
6: 513 to 3583 blocks of 512b [262145 to 1834496b] 6: 513 to 3583 blocks of 512b [262145 to 1834496b]
Larger allocations: mmap size next 4KB multiple Larger allocations: mmap size next 4KB multiple
Allocator policy: Best fit Allocator policy: Best fit

Coalescing support: Yes Coalescing support: Yes

Splitting support: Yes Splitting support: Yes

Expansion policy: When full Expansion policy: When full

Pool usage: Last created Pool usage: Last created

Shrinking support: Yes. Any pool deleted Shrinking support: Yes. Any pool deleted

Listing 2. NVIDIA TX2 memory allocator report

Listing 3. GeForce GTX 1080 Ti memory allocator report
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7.2 Obtained Properties of OpenCL Allocators

In this subsection, we provide results we have obtained applying our methodology to some OpenCL compatible GPUs,
which are shown in Table 2. Our main reference platforms for this subsection are the ARM Mali GPUs since they are
the first non-NVIDIA GPUs we analyse. We include two OpenCL compatible NVIDIA GPUs for comparison purposes.

As we did with CUDA, we also automated our methodology to extract the information about the memory allocators of
OpenCL GPUs by incorporating it in the GMAI tool. Listing 4 and Listing 5 show the generated report about Mali-T860
and Mali-G72 GPUs respectively.

Table 2. Tested OpenCL GPU Platforms

Device Name Vendor  Architecture OpenCL  Kernel GPU
Version  Version Type
Mali-T860 ARM Midgard 1.2 4.4.154 Integrated
Mali-G72 ARM Bifrost 2.0 49.78  Integrated
GeForce GTX 1050 Ti NVIDIA Pascal 1.2 4.15.0  Discrete
GeForce GTX 1080 Ti NVIDIA Pascal 1.2 4.15.0  Discrete
Device name: Mali—-T860 Device name: Mali-G72

OpenCL driver version: 1.2 OpenCL driver version: 2.0

Pool size: 262144 bytes Pool size:

64 bytes

262144 bytes

Granularity : Granularity: 128 bytes

Not used

Large allocations:

Not used Size classes:

Large allocations:

Size classes:

mmap size next 4KB multiple mmap size next 4KB multiple

Allocator policy: Best fit Allocator policy: Best fit
Coalescing support: Yes Coalescing support: Yes
Splitting support: Yes Splitting support: Yes

Expansion policy: When full
Best available
Pools deleted at the end

Pool usage:

Shrinking support: No.

Expansion policy: When full

Pool usage: Best available

Shrinking support: No. Pools deleted at the end

Listing 4. Mali-T860 OpenCL memory allocator report

Listing 5. Mali-G72 OpenCL memory allocator report

We observe that the only difference between these ARM GPUs is the granularity of the memory allocator, which
is 64 bytes in the Mali-T860 GPU and 128 bytes in the Mali-G72 GPU. The pool size is 256KB in both GPUs and the
allocator does not use size classes. This is a significant difference between the NVIDIA memory allocators we examined
in the previous subsection. We speculate that this decision is related to the smaller size of memory available in these
platforms (4GB) and therefore the memory allocator this way wastes less memory due to internal fragmentation.

Allocations larger than the pool size are rounded to the next 4KB multiple, which is the page size. The allocator
implements a best fit policy and supports coalescing and splitting of free blocks. The allocator expands creating new
pools when there is no enough space on previous pools. When there are multiple pools with free space, the allocator

applies the best fit policy across the pools. However, even when the pools are created consecutively in memory, the
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allocator does not use a free region shared by two pools to satisfy the space required by a new allocation. Another
difference we observed compared to the NVIDIA allocators, is that in NVIDIA GPUs only the last created pool is used
for new allocations, even when there is free space in other pools. Finally, we found out that the OpenCL allocator on
ARM GPUs does not free the memory used by a pool when all its blocks are freed, unlike the CUDA allocators. Instead,
the memory is released at the end of the program. However, we observed that those regions of memory are reused for
the creation of new pools.

We also tested GMAI on two OpenCL compatible NVIDIA GPUs (1050 and 1080) which we analysed in the previous
subsection. Repeating these experiments with OpenCL we got the same results shown in Listing 3. This means that
the NVIDIA OpenCL implementation internally uses the same memory allocator used by CUDA. When doing these
tests we also observed that in Mali GPUs the memory is reserved when we create the corresponding c1_mem object.

However, in the NVIDIA implementation, the memory pools are created until we map a region of a c1_mem object.

7.3 Exploiting the Knowledge of GPU Allocators in Automotive Case Studies’ Resource Provisioning

The ultimate purpose of exposing the internals of the GPU allocators, is this knowledge to be leveraged to compute
precisely the amount of memory used by critical applications. As explained in the introduction, this will be essential
when GPUs will be incorporated in avionics and automotive RTOSes. Moreover, in current general purpose operating
systems it allows to make sure that the system can safely accommodate the memory and timing requirements of the
application, without the use of unpredictable swap memory.

In order to demonstrate these benefits, we apply our knowledge on two automotive case studies used in modern
vehicles’ environment perception: a model-based generated safety-critical automotive task, implementing a sobel filter
for edge detection and a pedestrian detection task [21]. The former, edge detection, is very common in both ADAS
(Advanced Driving Assistance Systems) and autonomous driving for numerous tasks such as lane departure [17],
sign [22] and car detection [27]. Pedestrian detection is also used for ADAS, eg. automated breaking as well as for
autonomous driving.

As we described in Section 6 when we execute GMAI on a given platform, it generates a configuration file with the
properties of the memory allocator. At runtime, we execute the GPU program with the GMAI preloading library which
exposes the GPU memory allocation API calls. This way GMAI intercepts all memory requests and their sizes and based
on the configuration file, it provides details about the actual memory consumption of the allocator, which we present in

the results of the two case studies next.

7.3.1 Edge Detection. Table 3 shows the dynamically allocated memory, explicitly allocated in the program. We notice
that the input is a 3-component (RGB) image 640x480 and a 3x3 filter kernel, while the output is a single component
640x480 image, containing the detected edges. Without knowing the internals of the GPU memory allocator, when
the task is executed on a platform with zero-copy pinned memory a system engineer might provision 1228809 bytes
memory consumption.

Edge detection allocations with CUDA

Table 4 shows the actual memory used by the memory allocator when the edge detection algorithm is executed on
an NVIDIA TX2 platform with zero-copy allocations. We notice that we have allocations from two different size classes.
This means that two memory pools are created, with 2MB each. Each of these creations will increase the execution time
of two memory allocation calls, the first ones corresponding to these class sizes, as well as the execution time of the

first kernel invocation following these allocations.
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Table 3. GPU memory allocations in Edge Detection Task

Variable Type Size
Input Image (640x480)  int8 RGB 921600 bytes
Filter Kernel (3x3) int8 9 bytes
Output Image (640x480) int8 307200 bytes
Total: 1228809 bytes

Table 4. GPU Memory allocator usage in Edge Detection (NVIDIA TX2)

Variable Size Size Occupied Occupied
Class 512b Blocks Size
Input Image 6 921600 bytes 1800 921600 bytes
Filter Kernel 1 9 bytes 1 512 bytes
Output Image 6 307200 bytes 600 307200 bytes
Total: 1229312 bytes

Therefore, the total memory consumption to be provisioned is 4MB for this platform and configuration, which is 3.4x
more than it was expected, due to internal fragmentation. The memory allocator however is only using a fraction of
those. In the first free list, the 3x3 kernel is occupying a single block of 512 bytes instead of 9 bytes due to the minimum
block granularity, while in the other free list 1228800 bytes are occupied compared to the 2MB of the pool, resulting in
58% free list occupancy.

On the other hand, in an NVIDIA Nano platform, each memory pool occupies IMB. However, the two images exceed
the memory pool size for size class 6, requiring the memory pool to expand. Therefore the allocator uses 3MB for its
pools, which is 2.6x larger that the memory explicitly allocated by the application. In older NVIDIA GPUs like the
GeForce 9300M GS, the figures are almost identical, with the difference of the block size of 256, which slightly changes
the occupied size in the pool for the filter kernel.

If the application is configured to use pinned memory but not zero-copy, the above numbers are correct, too. The only
difference is that in this case both CPU and GPU memory is used, which doubles the aggregate memory consumption.

Finally, if the application is configured to use paged memory, the memory consumption is also doubled because both
CPU and GPU memory are used?. The difference in this case is that a pinned buffer provided by the operating system
is also used for performing the transfers. However, this buffer is shared among different applications and as such it
does not need to be taken into account when computing the total memory consumption of the system, when multiple
critical tasks are consolidated in the same platform.

Edge detection allocations with OpenCL

Table 5 shows the memory used by the OpenCL memory allocator in an ARM Mali-T860 GPU. In this platform, the
memory is allocated in pools of 256KB with a granularity of 64 bytes. However, when an allocation is larger than 256KB

the pool size is the next multiple of 4KB. This means that for the input image the allocator will create a pool of 925696

2 In fact the CPU paged memory consumption in that case is closer to the explicitly allocated memory using malloc, since the GNU memory allocator [8]
only uses 8 byte aligned blocks in 32-bit platforms and 16 byte aligned blocks in 64 bit ones and it does not use segregated lists. Moreover, the memory
pool in CPU is lazily allocated, which means that the OS only reserves the pages of the heap which have been accessed. However, considering equal CPU
and GPU memory consumption simplifies the CPU side memory analysis and provides a safe upper bound for a safety critical system in which lazy
allocation is not used.
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Table 5. GPU Memory allocator usage in Edge Detection (ARM Mali-T860)

Variable Size Occupied Occupied
64b Blocks Size
Input Image 921600 bytes 14400 921600 bytes
Filter Kernel 9 bytes 1 64 bytes
Output Image 307200 bytes 4800 307200 bytes
Total: 1228864 bytes

bytes, using 921600 bytes and leaving 4096 bytes free. For the filter, we only need a block of 64 bytes which can be
allocated in the free space of the previously created pool. For the output image the allocator will create a pool of 311296
bytes, which is the next 4KB multiple. The total memory consumption to be provisioned is 1236992 bytes, which is 8183
bytes more than the memory explicitly allocated by the application. However, it only represents a 0.67% of increment.
Using a Mali-G72 GPU the only difference is that for the filter the allocator will reserve a block of 128 bytes, since
this is the granularity in this platform. However, the results will be the same because in this case the filter can also be

allocated in the free space of the pool created for the input image.

7.3.2  Pedestrian Detection. This application is significantly more complex than the previous task and it is obtained
from the open source implementation of the benchmark described in [21]. In addition to the input and output images,
this task uses a complex dynamically allocated cascade classifier structure. This structure consists of numerous smaller
dynamically allocated structures with sizes ranging from 32 bytes to 84 bytes arranged in arrays, requiring a total of
7534 dynamic memory allocations as shown in Table 6. The order in which the memory for these structures is allocated

is shown in Listing 6.

N_MAX_STAGES = 30;
N_MAX_CLASSIFIERS = 250;
Allocate sizeof(Struct_A) = 32 bytes;
Allocate sizeof (Struct_B) 480 bytes;
for i = 1 to N_MAX_STAGES do
Allocate sizeof(Struct_C) = 8000 bytes;
for j = 1 to N_MAX_CLASSIFIERS do
Allocate sizeof(Struct_D) = 84 bytes;

end for
end for
Allocate 307200 bytes for input_image;
Allocate 307200 bytes for output_image;

Listing 6. Pseudocode of memory allocations in the pedestrian detection case study [21]

In a zero-copy scenario, the CPU and the GPU can use the same memory, therefore the complex structure can be
used as is in the GPU, gaining in programmability.

Table 6 summarises the different GPU allocations of the application. Without knowing the internals of the GPU
allocator, a system engineer would provision 1484912 bytes, out of which 870512 correspond to the structure of the

classifier.
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Table 6. GPU memory allocations in Pedestrian Detection

Variable Allocs. Individual Size Total Size

Input Image (640x480) 1 307200 bytes 307200 bytes
Output Image (640x480) 1 307200 bytes 307200 bytes
Classifier

Struct A 1 32 bytes 32 bytes
Struct B (30x16 array) 1 480 bytes 480 bytes
Struct C (250%32 array) 30 8000 bytes 240000 bytes
Struct D 7500 84 bytes 630000 bytes
Total: 7534 1484912 bytes

Table 7. GPU Memory allocator usage in Pedestrian Detection Task (TX2)

Variable Size Individual Occupied  Individual Occupied Allocations Total Occupied
Class Size 512b Blocks Size Size

Input Image 6 307200 bytes 600 307200 bytes 1 307200 bytes
Output Image 6 307200 bytes 600 307200 bytes 1 307200 bytes
Classifier
Struct A 1 32 bytes 1 512 bytes 1 512 bytes
Struct B 1 480 bytes 1 512 bytes 1 512 bytes
Struct C 3 8000 bytes 16 8192 bytes 30 245760 bytes
Struct D 1 84 bytes 1 512 bytes 7500 3840000 bytes
Total: 7534 4701184 bytes

Pedestrian detection allocations with CUDA

Table 7 shows the actual memory consumption within the memory allocator when the pedestrian detection algorithm
is executed on an NVIDIA TX2 platform. Again we notice that the allocations are rounded up to 512 byte multiples,
since this is the minimum allocation granularity in the allocator, which penalises small allocations. In this task there
are 3 size classes used.

In platforms like the NVIDIA TX2 where the memory pool is 2MB, a single pool is enough for class sizes 3 and 6.
However, for the class 1 the total size exceeds 2MB, which requires the free list to expand to accommodate the total
of 3841024 bytes required for this size class. Therefore the allocator uses 8MB in total, which is 5.6X more than the
initially provisioned one.

For platforms like Nano with 1MB pool size, again the class sizes 3 and 6 can use a single pool, while the class 1
requires 4 pools. Therefore, the total consumption of the allocator is 6MB, 4.2x bigger than the memory explicitly
requested by the application.

In the case of paged-memory or pinned memory without zero copy, the complex classifier structure cannot be used,
since the pointers it contains are not valid across the different CPU and GPU address spaces. For this reason, the authors
of [21] have used a single allocation for the entire structure, which is partitioned accordingly. This is similar to a custom
GPU memory allocator, allowing a more predictable behaviour. In that case, a single 870512 bytes allocation is requested,
which can fit in a single pool of either 2MB or 1MB depending on the device. Inside this pool, it will occupy 1701 blocks
of 512 bytes, occupying 870912 bytes in the free list.
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Table 8. GPU Memory allocator usage in Pedestrian Detection Task (Mali-T860)

Variable Individual Occupied  Individual Occupied Allocations Total Occupied
Size 64b Blocks Size Size

Input Image 307200 bytes 4800 307200 bytes 1 307200 bytes
Output Image 307200 bytes 4800 307200 bytes 1 307200 bytes
Classifier
Struct A 32 bytes 1 64 bytes 1 64 bytes
Struct B 480 bytes 8 512 bytes 1 512 bytes
Struct C 8000 bytes 125 8000 bytes 30 240000 bytes
Struct D 84 bytes 2 128 bytes 7500 960000 bytes
Total: 7534 1814976 bytes

Since only a single size class is actually used in this case (class 6), the total space used inside the free list will be
1485312, so the total memory consumption of the allocator is the 2MB of the free list (same amount divided in 2 free
lists for devices with pool size of 1MB, like the Nano), which is 1.4X more than the initially provisioned one. Moreover,
as in the previous task, since the application under this scenario requires both CPU and GPU memory, this amount is
doubled.

Pedestrian detection allocations with OpenCL

Table 8 shows the memory used by the OpenCL memory allocator in an ARM Mali-T860 GPU. As we show in
Listing 4, this allocator does not use size classes, which means that the order in which the allocations are made will
dictate the order in which the memory pools will be created and used. Listing 6 shows the order in which the allocations
are made. As mentioned earlier, this allocator creates pools of 256KB with a granularity of 64 bytes. For Struct A, the
allocator will create a new pool of 256KB and will use only a block of 64 bytes. For Struct B the allocator will use
512 bytes of the previously created pool, leaving 261568 bytes free. On each iteration of the outer loop the allocator
will allocate 8000 bytes for Struct C and 32000 bytes for Struct D. The free space in the first pool will be enough for
the allocations of the first 6 iterations. To allocate the 960000 bytes required by the other 24 iterations, the allocator
will create 4 extra pools of 256KB. Finally, for each image, the allocator will create a pool of 311296 bytes. The total
memory consumption to be provisioned is 1933312 bytes, which is 1.3X larger than the memory explicitly allocated by
the application. Using a Mali-G72 GPU, which has a granularity of 128 bytes, the difference is that the allocator will
reserve 128 bytes for Struct A and 8064 bytes for each allocation of Struct C. However, even with these differences, 5
pools of 256KB are enough to allocate all the structures. For this reason, the memory consumption will be the same.

We notice that in both case studies, the amount of extra memory allocated due to the internal fragmentation in
the ARM OpenCL memory allocators is lower than the one NVIDIA platforms when it is compared to the amount of
memory requested by the programmer. This difference comes from the fact that the ARM implementations do not use
size classes in their memory allocators, for this reason we speculate that this has been a design choice due to the limited

amount of memory present in these devices.

8 RELATED WORK

In this Section we present some previous works in the literature similar to our work. We can categorise these works in

articles related to resource allocation and reverse engineering techniques in GPUs and CPU memory allocators.
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GPU Memory Allocators. Multi-core memory allocators like the one proposed by Berger et al. [4], has been shown
not to scale well with many-core architectures like GPUs. For this reason, some authors have approached the GPU
resource management topic by creating custom memory allocators suited for many-core architectures:

Huang et al. [11, 12] proposed XMalloc, a memory allocator based in two techniques: allocation coalescing (aggregation
of memory allocation requests from SIMD-parallel threads to be handled by the CUDA allocator) and buffering of freed
blocks for faster reuse using parallel queues. Results on a NVIDIA G480 GPU showed that XMalloc magnified the CUDA
allocator throughput by a factor of 48.

Steinberger et al. [20] showed that traditional memory allocation strategies used by CPUs are not suited for the use
on GPUs and proposed ScatterAlloc. This allocator reduces collisions by scattering memory requests using hashing.
Experimental results showed that ScatterAlloc was about 100 times faster than the CUDA allocator and up to 10 times
faster than XMalloc.

Widmer et al. [23] proposed FDGMalloc, which makes use of the SIMD parallelism present in GPUs to significantly
speed-up the allocation of dynamic memory. The authors compared their implementation with the CUDA allocator and
with ScatterAlloc, achieving a speed-up of several orders of magnitude.

A common characteristic in all these works is that they focus their analysis in comparing the performance of their
allocators with the performance of the CUDA allocator, without trying to understand its internal structure or the way it
works as we do in this paper. Moreover, these works obtain their memory through the CUDA memory allocator, so they
are still susceptible to the timing effects of its usage.

Reverse Engineering Works on GPUs. The black box nature of the GPUs has lead to the creation of some research
works oriented to the use of reverse engineering techniques to get information about their internal characteristics.

Wong et al. [25] developed a microbenchmark suite to measure various undisclosed characteristics of the processing
elements and memory hierarchies of a NVIDIA GTX280 GPU. Their results validated some of the hardware characteristics
publicly available and revealed some other undocumented hardware structures used for control flow and caching.
Following a similar approach, Mei et al. [15] exposed previously unknown characteristics about the memory hierarchy
of Fermi, Kepler and Maxwell NVIDIA GPUs.

Amert et al. [1] applied black-box experimentation to a NVIDIA TX 2 GPU. Based on results, they defined a set of
rules describing the behaviour of the NVIDIA TX2 scheduler. The same group later extended their work on software
and disclosed a set of non-obvious pitfalls to avoid when using CUDA-enabled GPUs for safety-critical systems [26].

All these works are based in applying reverse engineering techniques to hardware or software of GPUs, however,
none of them is oriented to get information about the memory allocation system and leverage it, which is the focus of
our study.

Reverse Engineering Memory Allocators. Eventhough memory allocation is an extensively researched area, the
only work to our knowledge related to reverse engineering memory allocators is the MemBrush tool, proposed by Chen
et al. [6]. The purpose of MemBrush is to detect the API functions of custom memory allocators in stripped binaries.
MemBrush has been used to improve other reverse engineering tools like Howard [19], which is used to extract data
structures from C binaries without having any symbol tables.

To the best of our knowledge, our paper is the first work oriented to extract information (real memory usage,
size classes and allocation policy) about a closed source GPU memory allocator and to analyze the benefits of this

information for critical systems.
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9 CONCLUSIONS

In this paper we presented a methodology and an automated tool to extract information about the internals of the GPU
memory allocators. We applied our method in a wide range of GPUs from different vendors, supporting both CUDA and
OpenCL. We identified that there is only a slight difference between different CUDA GPUs, in the amount of memory
used internally as a pool and the granularity, in particular in older GPUs. On the other hand, we found out that OpenCL
memory allocators do not use different size classes, but they serve all their memory allocations from a single size class.

We have presented GMAI (GPU Memory Allocation Inspector) which allows the extraction the memory allocator
properties in an automatic way and based on this information it enables the computation of the actual memory
consumption of GPU applications.

We have applied GMALI in two safety critical automotive case studies, showing how a system engineer can be
benefited by this information, in order to provision the correct amount of memory. In particular we have shown that
the actual memory consumption of the memory allocator can be up to an order of magnitude higher than the amount

requested by the application, by running our tests in several GPUs from various vendors.
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