
1

Formal Verification of Spacecraft Control Programs

GEORGY LUKYANOV, Newcastle University, United Kingdom

ANDREY MOKHOV, Newcastle University, United Kingdom

JAKOB LECHNER, RUAG Space GmbH, Austria

Verification of correctness of control programs is an essential task in the development of space electronics; it

is difficult and typically outweighs design and programming tasks in terms of development hours. This paper

presents a verification approach designed to help spacecraft engineers reduce the effort required for formal

verification of low-level control programs executed on custom hardware.

The verification approach is demonstrated on an industrial case study. We present REDFIN, a processing

core used in space missions, and its formal semantics expressed using the proposed metalanguage for state

transformers, followed by examples of verification of simple control programs.

CCS Concepts: • Software and its engineering → Formal software verification; • Computer systems
organization→ Embedded software.

Additional Key Words and Phrases: formal verification, instruction set architecture, functional programming,

domain-specific languages.

ACM Reference Format:
Georgy Lukyanov, Andrey Mokhov, and Jakob Lechner. 2020. Formal Verification of Spacecraft Control

Programs. ACM Trans. Embedd. Comput. Syst. 1, 1, Article 1 (January 2020), 18 pages. https://doi.org/10.1145/

3391900

1 INTRODUCTION
Software bugs play a major role in the history of spacecraft accidents [13]. Some of the known

mission-ending bugs, e.g. due to software updates, would have been difficult to prevent, but integer

overflows [3] and incorrect unit conversion [16] should have been eradicated long ago. This paper

combines known formal verification and programming languages techniques and presents a formal

verification approach for simple control tasks, such as satellite power management, which are

executed on a real processing core used in space missions.

Fig. 1 shows an overview of our approach. The bottom part corresponds to conventional code

generation and test, where REDFIN
1
assembly language is executed by simulating the effect of

each instruction on the state of the processor and memory. The corresponding state transformer
is typically implicit and intertwined with the rest of the simulation infrastructure. The main idea

of our approach is to represent the state transformer explicitly so that it can be symbolically

manipulated and used not only for simulation but also for formal verification. The latter is achieved

1
REDFIN stands for ‘REDuced instruction set for Fixed-point & INteger arithmetic’. This instruction set and the corresponding

processing core were developed by RUAG Space Austria GmbH for space missions (see §2).

Authors’ addresses: Georgy Lukyanov, Newcastle University, United Kingdom, g.lukyanov2@ncl.ac.uk; Andrey Mokhov,

Newcastle University, United Kingdom, andrey.mokhov@ncl.ac.uk; Jakob Lechner, RUAG Space GmbH, Austria, jakob.

lechner@gmx.net.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee

provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the

full citation on the first page. Copyrights for components of this work owned by others than the author(s) must be honored.

Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires

prior specific permission and/or a fee. Request permissions from permissions@acm.org.

© 2020 Copyright held by the owner/author(s). Publication rights licensed to ACM.

1539-9087/2020/1-ART1 $15.00

https://doi.org/10.1145/3391900

ACM Trans. Embedd. Comput. Syst., Vol. 1, No. 1, Article 1. Publication date: January 2020.

https://doi.org/10.1145/3391900
https://doi.org/10.1145/3391900
https://doi.org/10.1145/3391900

1:2 Georgy Lukyanov, Andrey Mokhov, and Jakob Lechner

Fig. 1. Overview of the presented verification approach.

by compiling state transformers to SMT formulas and using an SMT solver, e.g. Z3 [6], to verify

that certain correctness properties hold, for example, that integer overflow cannot occur regardless

of input parameters and that the program always terminates within stated time.

By using Haskell as the host language we can readily implement compilers from higher-level

typed languages to untyped assembly, eradicating incorrect number and unit conversion bugs.

As shown at the top of Fig. 1, engineers can write high-level control programs for the REDFIN

architecture directly in a small subset of Haskell. These high-level programs can be used for type-

safe code generation and as executable specifications of intended functionality for the purposes of

program synthesis and equivalence checking.

We first introduce the REDFIN processing core (§2), then present our verification approach

(§3-§5), and conclude by a discussion (§6) and a review of related work (§7).

This paper is an extended version of an earlier conference paper [15]. The key changes compared

to the earlier version are: (i) §3 has been expanded to describe the branching mode of symbolic

simulation within the presented verification framework; (ii) an entirely new section §5 addresses

verification of programs with unbounded loops on an example of a stepper motor control program;

(iii) the discussion section has also been updated.

2 THE REDFIN ARCHITECTURE OVERVIEW
Many spacecraft subsystems rely on integrated circuits to perform control tasks or simple data

processing. Typically, these integrated circuits are realised with Field Programmable Gate Arrays

(FPGAs) benefiting from their flexibility and low cost. Modern space-qualified FPGAs that can

withstand radiation in Earth orbit or deep space have a limited amount of programmable resources,

and it is often not feasible to implement a fully-fledged processor system in such an FPGA next to

the mission-specific circuitry. The REDFIN instruction set was developed to address this issue and

meet the following goals: (i) simple instruction set with a small hardware footprint, (ii) reduced

complexity to support formal verification of programs, and (iii) deterministic real-time behaviour.

ACM Trans. Embedd. Comput. Syst., Vol. 1, No. 1, Article 1. Publication date: January 2020.

Formal Verification of Spacecraft Control Programs 1:3

2.1 REDFIN Instruction Set and Microarchitecture
REDFIN instructions have a fixed width of 16 bits. The instruction set is based on a register-memory

architecture, i.e. instructions can fetch their operands from registers as well as directly from the

memory. This architecture favours a small register set, which minimises the hardware footprint

of the processing core. Furthermore, the number of instructions in a program is typically smaller

in comparison to traditional load/store architectures where all operands have to be transferred to

registers before any operations can be performed. There are 47 instructions of the following types:

• Load/store instructions for moving data between registers and memory, and loading of

immediate values.

• Integer and fixed-point arithmetic operations.

• Bitwise logical and shift operations.

• Control flow instructions and comparison operations.

• Bus access instructions for read & write operations on an AMBA AHB bus (not covered in

this paper).

The REDFIN processing core fetches instruction and data words from a small and fast on-chip

SRAM. This only allows for execution of simple programs, however, it also eliminates the need

to implement caches and thus removes a source of non-determinism of conventional processors.

High performance is not one of the main goals, hence the core is not pipelined and does not need

to resolve data/control hazards or perform any form of speculative execution. These properties

greatly simplify worst-case execution time analysis.

2.2 Requirements for Formal Verification
Verification of functional correctness of REDFIN programs, as defined by a requirement specification,

clearly is an essential task for the development of space electronics. There are also important

non-functional requirements, such as worst-case execution time and energy consumption, which

rely on the implementation guarantees provided by the processing core.

To reduce verification complexity, the REDFIN core only allows to execute a single subroutine

whose execution is triggered by a higher-level controller in the system. The implementation

guarantees that concurrent bus accesses to the processor registers or memory do not affect the

subroutine execution time. Furthermore, the processor does not implement interrupt handling.

All these measures are taken to provide real-time subroutine execution guarantees and make the

verification of non-functional properties feasible.

Despite these restrictions the REDFIN core has already proven its effectiveness for simple control

tasks and arithmetic computations as part of an antenna pointing unit for satellites. Nevertheless,

verification can be difficult and time-consuming, even for small and simple programs. Verification

activities, following engineering standards for space electronics, typically outweigh programming

and design tasks by a factor of two in terms of development hours. Usually verification is performed

via program execution on an instruction set simulator or a hardware model of the processor.

Manually deriving test cases from the specification is cumbersome and error-prone and simulation

times can become prohibitively long with a large number of tests that are often needed to reach

the desired functional and code coverage. Formal verification methods can prove that a program

satisfies certain properties for all possible test cases and are therefore immensely valuable for

completing the verification with superior efficiency and quality.

3 MODELLING REDFIN IN HASKELL
In this section we formally define the REDFIN microarchitecture and express the semantics of the

instruction set as an explicit and symbolic state transformer.

ACM Trans. Embedd. Comput. Syst., Vol. 1, No. 1, Article 1. Publication date: January 2020.

1:4 Georgy Lukyanov, Andrey Mokhov, and Jakob Lechner

data State = State
{ registers :: RegisterBank
, memory :: Memory
, instructionCounter :: InstructionAddress
, instructionRegister :: InstructionCode
, program :: Program
, flags :: Flags
, clock :: Clock }

type Register = SymbolicValue Word2
type Value = SymbolicValue Int64
type RegisterBank = SymbolicArray Word2 Int64
type MemoryAddress = SymbolicValue Word8
type Memory = SymbolicArray Word8 Int64

type InstructionAddress = SymbolicValue Word8
type InstructionCode = SymbolicValue Word16
type Program = SymbolicArray Word8 Word16

data Flag = Condition | Overflow | Halt ...
type Flags = SymbolicArray Flag Bool
type Clock = SymbolicValue Word64

Fig. 2. Basic types for modelling REDFIN.

3.1 The REDFIN Microarchitecture State
The main idea of our approach is to use an explicit state transformer semantics of the REDFIN

microarchitecture. The State of the entire processing core is a product of states of every component,

see Fig. 2. We define SymbolicValue and SymbolicArray on top of the SBV library [9] that we use

as a frontend for SMT translation and verification.

There are 4 registers (addressed by Word2) and 256 memory cells (addressed by Word8) that store
64-bit values (Int64). The register bank and memory are represented by symbolic arrays that can be

accessed via SBV’s functions readArray and writeArray. REDFIN uses 16-bit InstructionCodes,
whose 6 leading bits contain the opcode, and the remaining 10 bits hold instruction arguments.

The Program maps 8-bit instruction addresses to instruction codes.

The microarchitecture status Flags support conditional branching, track integer overflow, and

terminate the program (we omit a few other flags for brevity). The Clock is a 64-bit counter incre-

mented on each clock cycle. Status flags and the clock are used for diagnostics, formal verification,

and worst-case execution time analysis.

3.2 Instruction and Program Semantics
We can now define the formal semantics of REDFIN instructions and programs as a state transformer
T : S → S , i.e. a function that maps states to states. We distinguish instructions and programs by

using Haskell’s list notation, e.g. Tnop is the semantics of the instruction nop ∈ I , whereas T[nop]
is the semantics of the single-instruction program [nop] ∈ P . 2

2
REDFIN does not have a dedicated nop instruction, but it can be expressed as a jump to the next instruction, i.e. jmpi 0.

ACM Trans. Embedd. Comput. Syst., Vol. 1, No. 1, Article 1. Publication date: January 2020.

Formal Verification of Spacecraft Control Programs 1:5

Definition (program semantics): The semantics of a program p ∈ P is inductively defined as

follows:

The semantics of the empty program [] ∈ P coincides with the semantics of the instruction nop
and is the identity state transformer: T[] = Tnop = id.
The semantics of a single-instruction program [i] ∈ P is a composition of (i) fetching the

instruction from the program memory Tfetch, (ii) incrementing the instruction counter Tinc, and (iii)

the state transformer of the instruction itselfTi; or, using the order of state components from Fig. 2:

Tfetch = (r ,m, ic, ir ,p, f , c) 7→ (r ,m, ic,p[ic],p, f , c + 1)
Tinc = (r ,m, ic, ir ,p, f , c) 7→ (r ,m, ic + 1, ir ,p, f , c)
T[i] = Ti ◦Tinc ◦Tfetch

The semantics of a composite program i:p ∈ P , where the operator : prepends an instruction i ∈ I
to a program p ∈ P , is defined as Ti:p = Tp ◦T[i].

We represent state transformers in Haskell using the state monad, a classic approach to emulating

mutable state in a purely functional programming language [20]. We call our state monad Redfin
and define it as follows

3
:

data Redfin a = Redfin { transform :: State -> (a, State) }

A computation of type Redfin a yields a value of type a and possibly alters the State of the REDFIN
microarchitecture. The type Redfin () describes a computation that does not produce any value

as part of the state transformation; such computations directly correspond to state transformers.

For example, here is the state transformer Tinc:

incrementInstructionCounter :: Redfin ()
incrementInstructionCounter = Redfin $ \current -> ((), next)
where
next = current { instructionCounter = instructionCounter current + 1 }

In words, the state transformer looks up the value of the instructionCounter in the current
state and replaces it in the next state with the incremented value. We can compose such primitive

computations into more complex state transformers using Haskell’s do-notation:

readInstructionRegister :: Redfin InstructionCode
readInstructionRegister = Redfin $ \s -> (instructionRegister s, s)

executeInstruction :: Redfin ()
executeInstruction = do

fetchInstruction
incrementInstructionCounter
instructionCode <- readInstructionRegister
decodeAndExecute instructionCode

Here readInstructionRegister reads the instruction code from the current state without mod-
ifying it, and is subsequently used in executeInstruction, which defines the semantics of the

REDFIN execution cycle. We omit definitions of fetchInstruction and decodeAndExecute for
brevity. The latter is a case analysis of 47 opcodes that returns the matching instruction. We discuss

several instructions below.

3
A generic version of this monad is available in the standard module Control.Monad.State.

ACM Trans. Embedd. Comput. Syst., Vol. 1, No. 1, Article 1. Publication date: January 2020.

1:6 Georgy Lukyanov, Andrey Mokhov, and Jakob Lechner

3.2.1 Halting the Processor. The instruction halt sets the flag Halt, which stops the execution of

the current subroutine until a new one is started by a higher-level system controller that resets Halt.

halt :: Redfin ()
halt = writeFlag Halt true

The auxiliary function writeFlag modifies the flag:

writeFlag :: Flag -> SymbolicValue Bool -> Redfin ()
writeFlag flag value = Redfin $ \s -> ((), s’)
where
s’ = s { flags = writeArray (flags s) (flagId flag) value }

In the rest of the paper we will use auxiliary functions readRegister, writeRegister, readState,
etc.; they are simple state transformers defined similarly to writeFlag.

3.2.2 Arithmetics. The instruction abs is more involved: it reads a register and writes back the

absolute value of its contents. The semantics accounts for the potential integer overflow that leads

to the negative resulting value when the input is −263 (REDFIN uses the common two’s complement

signed number representation). The overflow is flagged by setting Overflow. We use SBV’s symbolic

if-then-else operation ite to merge two symbolic values — in this case two possible next states, one

of which is a state with the Overflow flag set:

abs :: Register -> Redfin ()
abs reg = do

state <- readState
result <- fmap Prelude.abs (readRegister reg)
let (_, state’) = transform (writeFlag Overflow true) state
writeState $ ite (result .< 0) state’ state
writeRegister reg result

3.2.3 Conditional Branching. As an example of a control flow instruction consider jmpi_ct, which
tests the Condition flag, and adds the provided offset to the instruction counter if the flag is set.

jmpi_ct :: SymbolicValue Int8 -> Redfin ()
jmpi_ct offset = do

ic <- readInstructionCounter
condition <- readFlag Condition
let ic’ = ite condition (ic + offset) ic
writeInstructionCounter ic’

We use our Haskell encoding of the state transformer as a metalanguage: we operate the REDFIN
core as a puppet master, using external meta-notions of addition, comparison and let-binding. From

the processor’s point of view, we have infinite memory and act instantly, which gives us unlimited

modelling power. For example, we can simulate the processor environment in an external tool and

feed its result to writeRegister as if it was obtained in one clock cycle.

3.3 Symbolic simulation
Having defined the semantics of REDFIN programs, we can perform symbolic processor simulation.

There are many flavours of symbolic execution [2] and there is no single answer to the question

of which one is the best. The choice of the symbolic execution technique depends heavily on the

verification scenarios. The verification framework for REDFIN is designed to deal with two main

classes of programs: (i) arithmetic calculations that are statically provable to be terminating and (ii)

control programs with unbounded loops whose termination depend on dynamic input data. We

ACM Trans. Embedd. Comput. Syst., Vol. 1, No. 1, Article 1. Publication date: January 2020.

Formal Verification of Spacecraft Control Programs 1:7

approach verification of the former using symbolic execution with merging that allows for whole-

program verification by translating the program and the verification condition into a single SMT

formula. However, unconditional merging does not work for non-terminating programs. To verify

those, we use an alternative approach to symbolic execution, which constructs tree-shaped traces

withmultiple execution paths that can be analysed and verified separately. The presented framework

thus works in two modes — merging and branching — see examples in §4 and §5, respectively.

3.3.1 Merging Mode. The function simulate takes a number of simulation steps N and an initial

symbolic State as input, and runs executeInstruction defined above N times. In each state
we merge two possible futures: (i) if the Halt flag is set, we stop the simulation and remain in the

current state, since in this case the processor must remain idle; (ii) otherwise we continue the

simulation from the future state.

simulate :: Int -> State -> State
simulate steps state =

let halted = readArray (flags state) (flagId Halt)
in if steps <= 0

then state
else let future = snd (transform executeInstruction state)

in ite halted state (simulate (steps-1) future)

The function ite performs symbolic merging of two possible next states, depending on whether

the program has halted. As we have seen, the semantics of individual instructions, as captured

by executeInstruction, also uses ite to merge possible next states when encountering choices,

thereby resulting in a linear simulation path.

3.3.2 Branching Mode. In the branching mode, on the contrary, we do not perform any merging

at all and generate a tree of simulation paths where every node contains a program state with an

associated path condition — a symbolic Boolean expression that encodes the choices taken along

the path leading to the node.

To implement the branching semantics, we modify the Redfin monad by adding support for

non-determinism and tracking of path conditions. While we omit the details, below we show how

the types of the main simulation functions, executeInstruction and simulate, need to change.

The former becomes a non-deterministic function that can return multiple next states:

executeInstruction :: (State, SymbolicValue Bool) -> [(State, SymbolicValue Bool)]

For example, it will return two states in the case of the conditional jump instruction jmpi_ct instead
of merging them with ite. The path condition (of type SymbolicValue Bool) will be conjoined
with the jump condition for the first returned state, and with its negation for the second.

The type of simulate becomes more involved too. Since the semantics of individual instructions

now produces multiple next states, the symbolic execution trace naturally grows into a tree:

data Tree a = Node a [Tree a]

simulate :: Int -> (State, SymbolicValue Bool) -> Tree (State, SymbolicValue Bool)

The simulation starts form an initial state with a path condition representing the precondition of

the program, which can be instantiated with true if no precondition is imposed. Proceeding further,

more successor states can stem from every state, until either the halt instruction is encountered

or the maximum number of simulation steps is reached.

Symbolic simulation is very powerful. It allows us to formally verify properties of REDFIN

programs by fixing some parts of the state to constant values (e.g., the program), and then making

assertions on the symbolic part of the resulting state, as demonstrated in sections §4 and §5.

ACM Trans. Embedd. Comput. Syst., Vol. 1, No. 1, Article 1. Publication date: January 2020.

1:8 Georgy Lukyanov, Andrey Mokhov, and Jakob Lechner

4 FORMAL VERIFICATION
This section presents a formal verification framework developed on top of the REDFIN semantic

core (§3). The verification workflow comprises the following steps:

• Develop programs in low-level REDFIN assembly, and in a high-level typed language embed-

ded in Haskell.

• Test REDFIN programs on concrete input values.

• Define functional correctness and worst case execution time properties in the SBV language.

• Verify the properties or obtain counterexamples.

Consider the following simple spacecraft control task.

Let t1 and t2 be two different time points (measured in ms), and p1 and p2 be two power

values (measured in mW). Calculate the estimate of the total energy consumption during

this period using linear approximation, rounding down to the nearest integer:

energyEstimate(t1, t2,p1,p2) =
⌊
|t1 − t2 | ∗ (p1 + p2)

2

⌋
.

This task looks too simple, but in fact it has a few pitfalls that, if left unattended, may lead to

the failure of the space mission. Examples of subtle bugs in seemingly simple programs leading

to a catastrophe include 64-bit to 16-bit number conversion overflow causing the destruction of

Ariane 5 rocket [3] and the loss of NASA’s Mars orbiter due to incorrect unit conversion [16]. Let

us develop and verify a REDFIN program for this task.

We can write programs in the untyped REDFIN assembly, or in a typed higher-level expression

language. The former allows engineers to hand-craft highly optimised programs under tight

resource constraints, while the latter brings type-safety and faster prototyping. We start with the

high-level approach and define an expression that can be used both as a Haskell function and a

high-level REDFIN expression:

energyEstimate :: Integral a => a -> a -> a -> a -> a
energyEstimate t1 t2 p1 p2 = abs (t1 - t2) * (p1 + p2) `div` 2

Thanks to polymorphism, we can treat energyEstimate both as a numeric function, and as an

abstract syntax tree that can be compiled into a REDFIN assembly Script. Due to the lack of space

we omit the implementation of Script, but one can think of it as a restricted version of the Redfin
state transformer, which we use to write programs that can manipulate the processor state only
by executing instructions, e.g. the only way to set the Overflow flag is to execute an arithmetic

instruction that might cause an overflow.

energyEstimateHighLevel :: Script
energyEstimateHighLevel = do
let t1 = read (IntegerVariable 0)

t2 = read (IntegerVariable 1)
p1 = read (IntegerVariable 2)
p2 = read (IntegerVariable 3)
temp = Temporary 4
stack = Stack 5

compile r0 stack temp (energyEstimate t1 t2 p1 p2)
halt

ACM Trans. Embedd. Comput. Syst., Vol. 1, No. 1, Article 1. Publication date: January 2020.

Formal Verification of Spacecraft Control Programs 1:9

Here the type IntegerVariable is used to statically distinguish between integer and fixed-point

numbers, Temporary to mark temporary words, so they cannot be mixed with inputs and outputs,

and Stack to denote the location of the stack pointer. The let block declares six adjacent memory

addresses: four input values {t1, t2,p1,p2}, a temporary word, and a stack pointer. We compile the

high-level expression energyEstimate into the assembly language by translating it to a sequence

of REDFIN instructions. The first argument of the compile function holds the register r0 which
contains the estimated energy value after the program execution.

We can run symbolic simulation for 100 steps, initialising the program and data memory of the

processor using the function simulate defined above and a helper function boot.

main = do
let dataMemory = [10, 5, 3, 5, 0, 100]

finalState = simulate 100 $ boot energyEstimateHighLevel dataMemory
printMemoryDump 0 5 (memory finalState)
putStrLn $ "R0: " ++ show (readArray (registers finalState) r0)

As the simulation result we get a finalState. We inspect it by printing relevant components: the

values of the first six memory cells, and the result of the computation located in the register r0.
Note that the stack pointer (cell 5) holds 100, as in the initial state, which means the stack is empty.

Memory dump: [10, 5, 3, 5, 5, 100]
R0: 20

Simulating programs with specific inputs is useful for diagnostics and test, but SMT solvers allow

us to verify the correctness for all valid input combinations. To demonstrate this, let us discover a

problem in our energy estimation program. Consider the following correctness property.

Assuming that values p1 and p2 are non-negative integers, the energy estimation subroutine

must always return a non-negative integer value.

To check that the program meets this requirement, we translate energyEstimateHighLevel
into an SMT formula, and formulate the corresponding theorem:

theorem = do
t1 <- forall "t1" -- Initialise symbolic variables
t2 <- forall "t2"
p1 <- forall "p1"
p2 <- forall "p2" -- And then add constraints:
constrain $ p1 .>= 0 &&& p2 .>= 0
-- Initialise the data memory with symbolic variables:
let dataMemory = [t1, t2, p1, p2, 0, 100]

finalState = simulate 100 $ boot energyEstimateHighLevel dataMemory
result = readArray (registers finalState) r0
halted = readArray (flags finalState) (flagId Halt)

return $ halted &&& result .>= 0 &&& result .== energyEstimate t1 t2 p1 p2

We extract the computed result and the value of the flag Halt from the finalState, and then

assert that the processor has halted, and that the result is non-negative and is equal to that

ACM Trans. Embedd. Comput. Syst., Vol. 1, No. 1, Article 1. Publication date: January 2020.

1:10 Georgy Lukyanov, Andrey Mokhov, and Jakob Lechner

computed by the high-level Haskell expression energyEstimate. The resulting SMT formula can

be checked by Z3 in 3.0s
4
:

> proveWith z3 theorem
Falsifiable. Counter-example:

t1 = 5190405167614263295 :: Int64
t2 = 0 :: Int64
p1 = 149927859193384455 :: Int64
p2 = 157447350457463356 :: Int64

Z3 has found a counterexample demonstrating that the program does not satisfy the above property.

Indeed, the expression evaluates to a negative value on the provided inputs due to an integer
overflow. We therefore refine the property:

According to the spacecraft power system specification, p1 and p2 are non-negative integers
not exceeding 1W. The time is measured from the mission start, hence t1 and t2 are non-
negative and do not exceed the time span of the mission, which is 30 years. Under these

assumptions, the energy estimation subroutine must return a non-negative integer value.

We need to modify time and power constraints accordingly:

constrain $ p1 .<= toMilliWatts (1 :: Watt)
&&& t1 .<= toMilliSeconds (30 :: Year)
&&& t1 .>= 0 &&& t2 .>= 0 &&& ... -- etc.

Rerunning Z3 produces the desired QED outcome in 4.8s.

The refinement has rendered the integer overflow impossible; in particular, abs can never be

called with −263 within the mission parameters. Such guarantee fundamentally requires solving an

SMT problem, even if it is done at the type level, e.g. using refinement types [19].
The statically typed high-level expression language is very convenient for writing REDFIN

programs, however, an experienced engineer can often find a way to improve the resulting code. In

some resource-constrained situations, a fully hand-crafted assembly code may be required. As an

example, consider the following low-level program:

energyEstimateLowLevel :: Script
energyEstimateLowLevel = do

let { t1 = 0; t2 = 1; p1 = 2; p2 = 3 }
ld r0 t1
sub r0 t2
abs r0
ld r1 p1
add r1 p2
st r1 p2
mul r0 p2
sra_i r0 1
halt

4
We use a laptop with 2.90GHz Intel Core i5-4300U processor, 8GB RAM (3MB cache), and the SMT solver Z3 v4.5.1 (64-bit).

ACM Trans. Embedd. Comput. Syst., Vol. 1, No. 1, Article 1. Publication date: January 2020.

Formal Verification of Spacecraft Control Programs 1:11

This program computes the energy estimate using only 9 instructions, whereas a direct unopti-

mised translation of the energyEstimate expression into assembly uses 79 instructions, most of

them for stack manipulation.

To support the development of hand-crafted code, we use Z3 to check the equivalence of REDFIN
programs by verifying that they produce the same output on all valid inputs. This allows an engineer

to optimise a high-level prototype and have a guarantee that no bugs were introduced in the process.

equivalence = do
t1 <- forall "t1"
t2 <- forall "t2"
p1 <- forall "p1"
p2 <- forall "p2"
constrain $ p1 .>= 0 &&& p2 .>= 0

&&& t1 .>= 0 &&& t2 .>= 0
&&& p1 .<= toMilliWatts (1 :: Watt)
&&& p2 .<= toMilliWatts (1 :: Watt)
&&& t1 .<= toMilliSeconds (30 :: Year)
&&& t2 .<= toMilliSeconds (30 :: Year)

let memory = [t1, t2, p1, p2, 0, 100]
llState = simulate 100 $ boot energyEstimateLowLevel memory
hlState = simulate 100 $ boot energyEstimateHighLevel memory
llResult = readArray (registers llState) r0
hlResult = readArray (registers hlState) r0

return $ llResult .== hlResult

The equivalence check succeeds and takes 11.5s.

Every call of the executeInstruction function advances the clock field of the State (see Fig. 2)
by the appropriate number of cycles, precisely matching the hardware implementation. This allows

us to perform best/worst-case execution timing analysis using the optimisation facilities of SBV and

Z3. As an example, let us determine the minimum and maximum number of clock cycles required

for executing energyEstimateLowLevel. To make this example more interesting, we modified the

semantics of the instruction abs and added 1 extra clock cycle in case of a negative argument.

timingAnalysis = optimize Independent $ do
... -- Initialise and run symbolic simulation
minimize "Best case" (clock finalState)
maximize "Worst case" (clock finalState)

The total delay of the program depends only on the sign of t1−t2, thus the best and worst cases differ
only by one clock cycle. The worst case is achieved when the difference is negative (t1 − t2 = −2),
as shown below. Z3 finishes in 0.5s.

Objective "Best case":
Optimal model:

t1 = 549755813888
t2 = 17179869184
p1 = 0
p2 = 0
Best case = 12

Objective "Worst case":
Optimal model:

t1 = 65535
t2 = 65537
p1 = 0
p2 = 0
Worst case = 13

ACM Trans. Embedd. Comput. Syst., Vol. 1, No. 1, Article 1. Publication date: January 2020.

1:12 Georgy Lukyanov, Andrey Mokhov, and Jakob Lechner

5 SYMBOLIC EXECUTION IN PRESENCE OF UNBOUNDED LOOPS
Many programs targeting REDFIN share the distinctive feature of the energy estimation program

considered in section §4, i.e. the existence of an upper bound on execution time, since their termination

does not depend on input data. However, other programs may have a loop which is guarded by a

termination condition that involves computation considering the input parameters of the program,

thus making the loop unbounded.
Presence of unbounded loops makes program verification by symbolic execution considerably

harder [2, p. 50:20], since the number of program execution paths becomes infinite. In this section

we consider an example of a control program that drives a stepper motor and verify one of its

essential safety properties by formulating it as a loop invariant and ensuring that the invariant

holds for every possible state of the loop.

5.1 Stepper Motor Control Program
Stepper motors are often deployed as parts of antenna and solar panel pointing units in space

satellites. We consider a program for controlling a motor with one degree of freedom. The control

Algorithm 1 takes three input parameters:

• dist — the distance to move the motor

• vmax — the maximal permitted velocity

• amax — the maximal permitted acceleration

and computes a series of displacement and velocity values that will be used to move the motor.

Since the algorithm is designed for controlling a stepper motor, the calculations happen in discrete
time, i.e. every iteration of thewhile loop corresponds to a time interval; thus the deceleration (i.e.

braking) distance is computed as

sdecel = amax ·
decel_steps · (decel_steps + 1)

2

,

where decel_steps = v
amax

is the number of decelerating iterations needed for a full stop.

The conditional statement in line 9 decides whether to accelerate, to keep the velocity, or to

decelerate; see Fig. 4 for example plots of velocity and distance travelled against time. The spike at

the bottom-right of the velocity plot illustrates the edge case covered by the conditional statement

on line 18: if the velocity is zero, but the target distance has not yet been reached, the motor must

be moved further.

To deploy the Algorithm 1 to REDFIN, it has been manually implemented in REDFIN assembly.

The resulting assembly program comprises 85 lines of code and closely mirrors the high-level

pseudocode. Fig. 5 shows a fragment of the program’s symbolic execution tree that corresponds to

the decision whether to accelerate, keep the velocity, or decelerate the motor.

The decision is performed by computing the resulting total distance travelled from start to stop,

based on the action taken in the current time step. First, the total distance is computed if the motor

were to accelerate for one more time step and then decelerate in the subsequent time steps. If

the computed total distance is less than or equal to dist , the decision to accelerate is committed.

Otherwise, the algorithm checks whether the targeted distance can be met by maintaining the

current velocity for one more time step. If even that would cause an overshoot, the decision for

immediately commencing deceleration is taken. Fig. 4 illustrates this decision process by plotting

the velocity and distance over time for a specific simulation run.

ACM Trans. Embedd. Comput. Syst., Vol. 1, No. 1, Article 1. Publication date: January 2020.

Formal Verification of Spacecraft Control Programs 1:13

Algorithm 1Motor Control Algorithm.

Input: dist , vmax , amax
1: s ← 0

2: v ← 0

3: while true do
4: decel_steps ← v/amax ◃ Compute deceleration distance

5: sdecel ← amax · decel_steps · (decel_steps + 1)/2 ◃ based on the current velocity

6: if decel_steps · amax , v then
7: sdecel ← sdecel +v

8: vnext =min(vmax ,dist ,v + amax)
9: if s + sdecel +vnext ≤ dist then
10: v ← vnext ◃ Accelerate
11: else if s + sdecel +v ≤ dist then
12: v ← v ◃ Keep velocity

13: else ◃ Decelerate
14: if v > decel_steps · amax then
15: v ← decel_steps · amax
16: else
17: v ← v − amax

18: if v = 0 then
19: if s , dist then ◃ Accelerate again to reach target

20: v ←min(dist − s,amax)
21: else
22: break ◃ Terminate execution

23: s ← s +v

5.2 Loop Invariant Verification
In order to ensure that the motor will not introduce disturbances and will not lead the whole unit

out of its normal mode of operation, the velocity and acceleration of the motor must be kept within

safe limits. This verification condition is motivated by the correctness requirements of the whole

space satellite unit.

More formally, the verification condition means that at any iteration t of the loop the values of

the expressions vt , velocity, and ���v
t
next −v

t ���, acceleration, must never exceed the parameters vmax

and amax , respectively. This property is the loop invariant for the motor control program which

ensures that velocity and acceleration always stay within their safe bounds. We formalise it as the

following predicate that universally quantifies over the program’s inputs and the loop’s state:

∀ vmax amax t v
t vtnext , v

t ≤ vmax ∧
���v

t
next −v

t ��� ≤ amax

Fig. 3. Motor control loop invariant.

ACM Trans. Embedd. Comput. Syst., Vol. 1, No. 1, Article 1. Publication date: January 2020.

1:14 Georgy Lukyanov, Andrey Mokhov, and Jakob Lechner

Fig. 4. Velocity (v) and distance travelled (s) plotted against time (t)

We will verify the loop invariant by using the verification framework in the branching mode §3.

While symbolic execution with merging, which is implemented by the framework’s merging mode,

allows for intuitive formulation of properties for whole-program verification and is very useful

for verifying finite programs, as we have reported in the section §4, in the presence of branches

guarded by symbolic values, it suffers from symbolic non-termination; thus, for verifying the loop
invariant, we rely on the branching mode of symbolic execution.

We take the following generic approach:

• Obtain the binary tree-shaped trace by symbolic execution in branching mode.

• Split the trace into linear paths, thus enumerating all possible execution scenarios.

• For every path perform the analysis:

– extract the relevant parts of the state from the last node in the path, i.e. symbolic expressions

stored representing s , v and vnext ;
– extract the terminal path condition ϕ from the last node in the path;

– construct a symbolic expression representing the verification conditionψ (Fig. 3);

– verify the property in the given path by checking the following formula for satisfiability:

ϕ ∧ ¬ψ , i.e. the path condition conjoined with negated verification condition.

• The property holds if and only if for every path the solver returns Unsat, i.e. there are no

assignments of the variables which satisfy the negation of the property to check, considering

the terminal path condition.

As illustrated by Fig. 5, every conditional jump instruction produces two branches in the symbolic

execution tree: the one where the current path condition is conjoined with the jump’s guard and

the one where it is conjoined with the guard’s negation. However, if the resulting conjunction is

unsatisfiable, the corresponding branch need not to be explored and can be safely pruned. Thus the

symbolic execution engine needs to call an SMT solver every time a conditional jump is encountered

to check if the path conditions of the branches are satisfiable.

Checking satisfiability of path conditions is essential for mitigating the path explosion problem.

Precondition, when available, is assigned as the initial path condition and thus will become a

ACM Trans. Embedd. Comput. Syst., Vol. 1, No. 1, Article 1. Publication date: January 2020.

Formal Verification of Spacecraft Control Programs 1:15

s + s_decel + v_next > dist

ld r0 s
add r0 s_decel
add r0 v
cmpgt r0 dist

Check distance,
assuming velocity is keptr0 ← s + s_decel + v

s + s_decel + v_next ≤ dist

s + s_decel + v ≤ dist s + s_decel + v > dist

ld r0 s
add r0 s_decel
add r0 v_next
cmpgt r0 dist

Check distance,
assuming further acceleration

r0 ← s + s_decel + v_next

...

Accelerate

ld r1 v_next

...

r1 ← v_next

Keep velocity

ld r1 v

...

r1 ← v
Decelerate
Omitted for
brevity,
see Algorithm 1

...
Reference

Description

Assembly
Pseudocode
Basic block Path condition update

positive
negative

Fig. 5. Symbolic execution tree of a code fragment with conditional branching.

subterm of every formula submitted to the solver. By identifying strong preconditions, we can

drastically reduce the number of satisfiable paths in the symbolic execution tree of a program that

is being verified, thereby significantly shortening verification times.

With the branch pruning optimisation in place and the parameters restricted to dist ∈ [1, 200],
vmax ∈ [1, 30] and amax ∈ [1, 30], the verification of the loop invariant takes around 40 minutes.

6 DISCUSSION
As the previous section §4 demonstrates, the presented approach provides a unified specification,

testing, and formal verification framework. It allows the REDFIN engineering team to co-develop

REDFIN software and hardware, by extending and modifying the default instruction semantics. By

using Haskell as a metalanguage, one can implement higher-level languages on top of the REDFIN

assembly, such as our simple statically-typed language for arithmetic expressions.

Static typing, polymorphism, do-notation, and availability of a mature symbolic manipulation

library (SBV) were the key factors for choosing Haskell for this project. We also have a prototype

ACM Trans. Embedd. Comput. Syst., Vol. 1, No. 1, Article 1. Publication date: January 2020.

1:16 Georgy Lukyanov, Andrey Mokhov, and Jakob Lechner

implementation in the dependently-typed language Idris [4] that allows us to verify more sophisti-

cated properties at the type level, however at the time of writing there is no equivalent of the SBV

library in Idris, which is a significant practical disadvantage.

The Script monad was engineered to provide familiar assembly mnemonics and directives (e.g.

labels), which allows engineers to start using the framework for developing REDFIN programs

even without prior Haskell experience, hopefully increasing the uptake of the framework.

Thanks to symbolic simulation, we can uniformly handle both concrete and symbolic values,

reusing the same code base and infrastructure for testing and formal verification. Testing yields

trivial SMT problems that can be solved in sub-second time. Formal verification is more expensive:

in our experiments, realistic programs (e.g. for controlling a stepper motor in antenna and solar

panel positioning units, with a loop and 85 instructions) required 40 minutes, but one can easily

construct tiny programs that will grind any SMT solver to a halt: for example, analysis of a single

multiplication instruction can take half an hour if it is required to factor 64-bit numbers — try

to factor 4611686585363088391 with an SMT solver! In such cases, conservatively proving some

of the correctness properties at the type level can significantly increase the productivity. As a

microbenchmark, we verified the correctness of an array summation program, reporting the number

of SMT clauses and Z3 runtime for low-level (LL) and high-level (HL) programs:

Benchmark Array Clauses Clauses Time Time

size LL HL LL HL

Overflow: 9 286 260 1.482s 0.443s

values not 12 492 453 3.604s 1.365s

constrained 15 740 688 49.969s 7.362s

18 1030 965 76.757s 88.458s

No overflow: 9 318 292 0.467s 0.119s

all values 12 549 510 0.739s 0.682s

in [1, 1000] 15 828 776 1.839s 6.408s

18 1155 1090 9.944s 72.880s

Equivalence 9 258 261 0.039s 0.097s

to the sum 12 495 459 0.053s 0.647s

function 15 708 702 0.311s 7.322s

18 1005 990 2.633s 71.896s

Table 1. Verification performance for an array summation program

The example of a stepper motor control program considered in section §5 proved challenging to

verify. We have been able to ensure that a loop invariant representing an important safety property

of the program holds, but had to restrict the input parameter space; we are working towards

addressing the performance restrictions of the framework in order to be able to verify functional

correctness of the motor control program, which involves exploring much larger path space than

the loop invariant verification condition.

7 RELATEDWORK
There is a vast body of literature available on the topic of formal verification, including verification

of hardware processing cores and low-level software programs. Our work builds in a substantial

way on a few known ideas that we will review in this section. We thank the formal verification

and programming languages communities and hope that the formal semantics of the REDFIN

processing core will provide a new interesting benchmark for future studies.

ACM Trans. Embedd. Comput. Syst., Vol. 1, No. 1, Article 1. Publication date: January 2020.

Formal Verification of Spacecraft Control Programs 1:17

We model the REDFIN microarchitecture using a monadic state transformer metalanguage – an

idea with a long history. Fox and Myreen [10] formalise the Arm v7 instruction set architecture

in HOL4 and give a careful account to bit-accurate proofs of the instruction decoder correctness.

Later, Kennedy et al. [12] formalised a subset of the x86 architecture in Coq, using monads for

instruction execution semantics, and do-notation for assembly language embedding. Degenbaev [7]

formally specified the complete x86 instruction set – a truly monumental effort! – using a custom

domain-specific language that can be translated to a formal proof system. Arm’s Architecture

Specification Language (ASL) has been developed for the same purpose to formalise the Arm

v8 instruction set [18]. The SAIL language [1] has been designed as a generic language for ISA

specification and was used to specify the semantics of ARMv8-A, RISC-V, and CHERI-MIPS. Our

specification approach is similar to these three works, but we operate on a much smaller scale of

the REDFIN core and focus on verifying whole programs.

Our metalanguage is embedded in Haskell and does not have a rigorous formalisation, i.e. we

cannot prove the correctness of the REDFIN semantics itself, which is a common concern, e.g.

see Reid [17]. Moreover, our verification workflow mainly relies on automated theorem proving,

rather than on interactive one. This is motivated by the cost of precise proof assistant formalisations

in terms of human resources: automated techniques are more CPU-intensive, but cause less “human-

scaling issues” [18]. Our goal was to create a framework that could be seamlessly integrated into

an existing spacecraft engineering workflow, therefore it needed to have as much proof automation

as possible. The automation is achieved by means of symbolic program execution. Currie et al.

[5] applied symbolic execution with uninterpreted functions to prove equivalence of low-level

assembly programs. The framework we present allows not only proving the equivalence of low-level

programs, but also their compliance with higher-level specifications written in a subset of Haskell.

Finally, we would like to acknowledge the projects and talks that provided an initial inspiration

for this work: the ‘Monads to Machine Code’ compiler by Diehl [8], RISC-V semantics by MIT [14],

the assembly monad by Wall [21], and SMT-based program analysis by Jelvis [11].

ACKNOWLEDGEMENTS
We would like to thank Vitaly Bragilevsky, Georgi Lyubenov, Neil Mitchell, Charles Morisset,

Artem Pelenitsyn, Danil Sokolov, as well as the three Haskell Symposium reviewers for their helpful

feedback on an earlier version of this paper.

REFERENCES
[1] Alasdair Armstrong, Thomas Bauereiss, Brian Campbell, Alastair Reid, Kathryn E. Gray, Robert M. Norton, Prashanth

Mundkur, Mark Wassell, Jon French, Christopher Pulte, Shaked Flur, Ian Stark, Neel Krishnaswami, and Peter Sewell.

2019. ISA Semantics for ARMv8-a, RISC-v, and CHERI-MIPS. Proc. ACM Program. Lang. 3, POPL, Article 71 (Jan. 2019),
31 pages. https://doi.org/10.1145/3290384

[2] Roberto Baldoni, Emilio Coppa, Daniele Cono D’Elia, Camil Demetrescu, and Irene Finocchi. 2018. A Survey of

Symbolic Execution Techniques. ACM Comput. Surv. 51, 3, Article 50 (2018).
[3] Mordechai Ben-Ari. 2001. The Bug That Destroyed a Rocket. SIGCSE Bull. 33, 2 (June 2001), 58–59.
[4] Edwin Brady. 2013. Idris, a general-purpose dependently typed programming language: Design and implementation.

Journal of Functional Programming 23 (9 2013), 552–593. Issue 05.

[5] David Currie, Xiushan Feng, Masahiro Fujita, Alan J. Hu, Mark Kwan, and Sreeranga Rajan. 2006. Embedded Software

Verification Using Symbolic Execution and Uninterpreted Functions. International Journal of Parallel Programming 34,

1 (2006), 61–91.

[6] Leonardo De Moura and Nikolaj Bjørner. 2008. Z3: An efficient SMT solver. Tools and Algorithms for the Construction
and Analysis of Systems (2008), 337–340.

[7] Ulan Degenbaev. 2012. Formal specification of the x86 instruction set architecture. Ph.D. Dissertation. Saarland University.
[8] Stephen Diehl. 2017. Monads to Machine Code. https://web.archive.org/web/20171207020256/http://www.stephendiehl.

com/posts/monads_machine_code.html.

[9] Levent Erkok. 2019. SBV: SMT Based Verification in Haskell. http://leventerkok.github.io/sbv/

ACM Trans. Embedd. Comput. Syst., Vol. 1, No. 1, Article 1. Publication date: January 2020.

https://doi.org/10.1145/3290384
https://web.archive.org/web/20171207020256/http://www.stephendiehl.com/posts/monads_machine_code.html
https://web.archive.org/web/20171207020256/http://www.stephendiehl.com/posts/monads_machine_code.html
http://leventerkok.github.io/sbv/

1:18 Georgy Lukyanov, Andrey Mokhov, and Jakob Lechner

[10] Anthony Fox and Magnus O Myreen. 2010. A trustworthy monadic formalization of the ARMv7 instruction set

architecture. In International Conference on Interactive Theorem Proving. Springer, 243–258.
[11] Tikhon Jelvis. 2016. Analyzing Programs with Z3 (video recording of Compose Conference talk).

http://jelv.is/talks/compose-2016.

[12] Andrew Kennedy, Nick Benton, Jonas B Jensen, and Pierre-Evariste Dagand. 2013. Coq: the world’s best macro

assembler?. In Proceedings of the 15th Symposium on Principles and Practice of Declarative Programming. ACM, 13–24.

[13] Nancy G. Leveson. 2004. Role of Software in Spacecraft Accidents. Journal of Spacecraft and Rockets 41, 4 (2004),
564–575.

[14] MIT. 2017. A formal specification of the RISC-V ISA written in Haskell. https://github.com/mit-plv/riscv-semantics.

[15] Andrey Mokhov, Georgy Lukyanov, and Jakob Lechner. 2019. Formal Verification of Spacecraft Control Programs

(Experience Report). In Proceedings of the 12th ACM SIGPLAN International Symposium on Haskell (Haskell 2019). ACM,

New York, NY, USA, 139–145. https://doi.org/10.1145/3331545.3342593

[16] NASA. 1999. Mars Climate Orbiter Mishap Investigation Board Phase I Report. Technical Report.
[17] Alastair Reid. 2017. Who Guards the Guards? Formal Validation of the Arm V8-m Architecture Specification. Proc.

ACM Program. Lang. 1, OOPSLA (2017), 88:1–88:24.

[18] Alastair Reid, Rick Chen, Anastasios Deligiannis, David Gilday, David Hoyes, Will Keen, Ashan Pathirane, Owen

Shepherd, Peter Vrabel, and Ali Zaidi. 2016. End-to-end verification of processors with ISA-Formal. In International
Conference on Computer Aided Verification. Springer, 42–58.

[19] Niki Vazou, Eric L Seidel, Ranjit Jhala, Dimitrios Vytiniotis, and Simon Peyton-Jones. 2014. Refinement types for

Haskell. In ACM SIGPLAN Notices, Vol. 49. ACM, 269–282.

[20] Philip Wadler. 1990. Comprehending monads. In Proceedings of the 1990 ACM conference on LISP and functional
programming. ACM, 61–78.

[21] Lewis Wall. 2017. An ASM Monad. http://wall.org/~lewis/2013/10/15/asm-monad.html.

ACM Trans. Embedd. Comput. Syst., Vol. 1, No. 1, Article 1. Publication date: January 2020.

https://github.com/mit-plv/riscv-semantics
https://doi.org/10.1145/3331545.3342593
http://wall.org/~lewis/2013/10/15/asm-monad.html

	Abstract
	1 Introduction
	2 The REDFIN Architecture Overview
	2.1 REDFIN Instruction Set and Microarchitecture
	2.2 Requirements for Formal Verification

	3 Modelling REDFIN in Haskell
	3.1 The REDFIN Microarchitecture State
	3.2 Instruction and Program Semantics
	3.3 Symbolic simulation

	4 Formal Verification
	5 Symbolic Execution in Presence of Unbounded Loops
	5.1 Stepper Motor Control Program
	5.2 Loop Invariant Verification

	6 Discussion
	7 Related Work
	References

