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Oblivious resampling oracles and parallel algorithms for the

Lopsided Lovász Local Lemma

David G. Harris∗

Abstract

The Lovász Local Lemma (LLL) shows that, for a collection of “bad” events B in a proba-
bility space which are not too likely and not too interdependent, there is a positive probability
that no events in B occur. Moser & Tardos (2010) gave sequential and parallel algorithms
which transformed most applications of the variable-assignment LLL into efficient algorithms.
A framework of Harvey & Vondrák (2015) based on “resampling oracles” extended this to se-
quential algorithms for other probability spaces satisfying a generalization of the LLL known as
the Lopsided Lovász Local Lemma (LLLL).

We describe a new structural property which holds for most known resampling oracles, which
we call “obliviousness.” Essentially, it means that the interaction between two bad-events B,B′

depends only on the randomness used to resample B, and not the precise state within B itself.
This property has two major consequences. First, combined with a framework of Kolmogorov

(2016), it leads to a unified parallel LLLL algorithm, which is faster than previous, problem-
specific algorithms of Harris (2016) for the variable-assignment LLLL and of Harris & Srinivasan
(2014) for permutations. This gives the first RNC algorithms for rainbow perfect matchings and
rainbow hamiltonian cycles of Kn.

Second, this property allows us to build LLLL probability spaces from simpler “atomic”
events. This gives the first resampling oracle for rainbow perfect matchings on the complete

s-uniform hypergraph K
(s)
n , and the first commutative resampling oracle for hamiltonian cycles

of Kn.

This is an extended version of a paper which appeared in the ACM-SIAM Symposium on
Discrete Algorithms (SODA) 2019.

1 The Lovász Local Lemma and its algorithms

The Lovász Local Lemma (LLL) is a fundamental probabilistic tool which shows that for a prob-
ability space Ω with a finite set B of m “bad” events, then as long as the bad-events are not too
interdependent (in a certain technical sense) and are not too likely, there is a positive probability
no events in B occur. The simplest form of the LLL, known as the symmetric LLL, can be stated
as follows: if every bad-event B has PrΩ(B) ≤ p and is dependent with at most d others, where
epd < 1, then there is a positive probability that none of the bad-events occur.

Most combinatorial applications of the LLL use a relatively simple probability space, which
we call the variable-assignment LLL. This setting has n independent variables X1, . . . ,Xn, and
each bad-event B is a boolean function of a subset of these variables denoted var(B). Bad-events
B,B′ are dependent (written B ∼ B′) iff var(B) ∩ var(B′) 6= ∅. Moser & Tardos [35] introduced a
remarkably simple algorithm for this setting, which we refer to as the MT algorithm:

∗Department of Computer Science, University of Maryland, College Park, MD 20742. Email:
davidgharris29@gmail.com

1

http://arxiv.org/abs/1702.02547v12


Algorithm 1 The MT algorithm

1: Draw each variable independently from the distribution Ω
2: while there is a true bad-event on X do

3: Choose a true bad-event B arbitrarily
4: Resample var(B) according to the distribution Ω

Moser & Tardos [35] showed that this algorithm terminates quickly whenever the symmetric
LLL criterion (or a more general asymmetric LLL criterion) is satisfied. Later work [36, 28, 18]
showed that it terminates under more general criteria. See Appendix A for background on the LLL
and MT algorithm.

Note that the MT algorithm requires a subroutine to find a bad-event B which is true on the
current configuration X (if any). We refer to this as a Bad-Event Checker (BEC). The simplest
implemention of this is to loop over all bad-events and test them one by one, which would have a
run-time on the order of m. The run-time of the MT algorithm can often be polynomial in n and
independent of m if a more-efficient BEC is used [17, 21].

1.1 The Lopsided Lovász Local Lemma

In [10], Erdős & Spencer noted that positive correlation among bad-events (again, in a certain
technical sense) is as good as independence for the LLL. This generalization has been referred to
as the Lopsided Lovász Local Lemma (LLLL). We say B,B′ are lopsidependent and write B ∼ B′

if B,B′ are neither independent nor positively correlated in this sense. (Formal definitions are
provided later in Section 2.)

Although the variable-assignment LLL covers the vast majority of applications in combinatorics,
the LLLL is also used occasionally. For example, the original application of the LLLL used a
probability space on permutations to construct Latin transversals for certain types of arrays [10].
Other applications include hamiltonian cycles on Kn [4], perfect matchings of Kn [32], perfect

matchings of the complete s-uniform hypergraph K
(s)
n [30], and spanning trees of Kn [30].

The variable-assignment setting provides one of the simplest forms of the LLLL. Here, as before,
there are independent variables X1, . . . ,Xn. Instead of allowing arbitrary boolean functions of the
variables, each bad-event should be a monomial function, i.e. of the form

B ≡ Xi1 = j1 ∧ · · · ∧Xik = jk

For the LLL, we would have B ∼ B′ if the bad-events B and B′ share some common variable,
i.e. it = i′t′ . For the LLLL, the (lopsi)dependency relation is more restricted: we have B ∼ B′ if B
and B′ disagree on some common variable, i.e. it = i′t′ and jt 6= j′t′ .

Moser & Tardos showed that their algorithm applies to the variable-assignment LLLL setting.
In [22], Harris & Srinivasan developed an algorithm similar to the MT algorithm for the probability
space of random permutations, which includes the Latin transversal application of [10]. Extending
these problem-specific algorithms, Harvey & Vondrák [25] developed a general framework based on
a “resampling oracle” R for the probability space. We will define this formally in Section 2, but,
intuitively this is a randomized algorithm which, given some state u with some bad-event B true
on u, attempts to “rerandomize” the configuration in a “local” way to fix B. This is similar to the
way that the MT algorithm resamples the variables involved in B. Given this resampling oracle,
the following Algorithm 2 can be used to find a configuration avoiding the bad-events:
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Algorithm 2 A general resampling algorithm

1: Draw the state u from the distribution Ω
2: while some bad-event B is true on u do

3: Select, according to some specified rule, some B true on u
4: Update u← RB(u)

These results have led to constructive counterparts to combinatorial results involving spanning
trees and matchings of Kn (both discussed in [25]) and hamiltonian cycles of Kn (subsequently
developed in [24]). A further line of research has extended Algorithm 2, and variants, to other
spaces which do not directly correspond to the LLLL [1, 2, 3, 23].

We note that the choice of which bad-event to select in line (3) of Algorithm 2 is much more
constrained than for the MT algorithm. Only a limited number of possibilities work in general,
such as selecting B with smallest index, whereas the MT algorithm allows nearly complete freedom.
In [29], Kolmogorov showed that a number of resampling oracles (including variable-assignment,
permutations, and perfect matchings of Kn) satisfy an additional property known as commuta-
tivity. In such cases, Algorithm 2 also allows an arbitrary choice of which bad-event to select.
Kolmogorov [29] and Iliopoulos [27] further showed that this property has powerful algorithmic
consequences, including parallel algorithms, efficient BEC’s, and bounds on the output distribution
at the termination of Algorithm 2.

1.2 Parallel algorithms

Moser & Tardos also presented a simple parallel version of their resampling algorithm. This parallel
algorithm requires a slightly stronger criterion, which we refer to as ǫ-slack ; for instance, the
symmetric LLL requires ep(1 + ǫ)d ≤ 1; if this satisfied, then it terminates after O( logmǫ ) rounds

with high probability.1 On a EREW PRAM, it has overall runtime O( log
3 m
ǫ ). We summarize the

algorithm as follows:

Algorithm 3 The parallel MT algorithm

1: Draw each variable independently from the distribution Ω
2: while there is a true bad-event on X do

3: Select a maximal independent set (MIS) I of true bad-events
4: Resample, in parallel,

⋃

B∈I var(B)

Haeupler & Harris [16] showed that the parallel MT algorithm could be implemented in time

O( log
3 n
ǫ ) (avoiding dependence on m) and gave an alternative parallel algorithm in time O( log

2 m
ǫ ).

The parallel MT algorithm can also usually be implemented even for more general LLL criteria,
including the asymmetric LLL and Shearer’s LLL criterion [28].

(In some computational models, multiple processors can write to a memory cell simultaneously
and the runtimes can often reduced by logarithmic factors. For simplicity, we will be conservative
and use only the EREW PRAM model throughout this paper. We say that an algorithm is in
RNCk if it runs in Õ(logk n) time and poly(n) processors whp on an EREW PRAM.)

The parallel MT algorithm leads in a straightforward way to distributed graph algorithms in

O( log
2 m
ǫ ) communication rounds. There has been extensive research into obtaining faster dis-

tributed and parallel LLL algorithms; some of these algorithms require significantly stronger (but

1We say that an event occurs with high probability (abbreviated whp), if it has probability at least 1− n
−Ω(1).
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still local) conditions on the dependency d and probability p of the bad-events [8, 11, 13]. Brandt
et al. [7] showed that generic distributed LLL algorithms require Ω(log log n) rounds.

Frustratingly, although the sequential MT algorithm works for the variable-assignment LLLL
just as it does for the variable-assignment LLL, this is not true of the parallel MT algorithm. There
have been only a handful of parallel algorithms for the LLLL, such as the variable-assignment LLLL
algorithm of Harris [18] and the permutation LLL algorithm of Harris & Srinivasan [22].

In [29] Kolmogorov proposed a general framework for constructing parallel LLLL algorithms
via resampling oracles, which can be summarized as follows:

Algorithm 4 Kolmogorov’s framework for parallel resampling algorithms

1: Draw the state u from the distribution Ω
2: while there is a true bad-event on u do

3: Set V to be the set of currently-true bad-events
4: while V 6= ∅ do
5: Select, arbitrarily, some bad-event B ∈ V
6: Update u← RB(u)
7: Remove from V all bad-events B′ such that either (i) B′ is no longer true; or (ii) B′ ∼ B

Each iteration of the loop of lines (3) — (7) is called a round. Kolmogorov showed that, when
the resampling oracle R is commutative, then Algorithm 4 terminates whp after O(log n) rounds.
We emphasize this is a sequential algorithm, which is in fact a version of Algorithm 2.

If a single round can be simulated in polylogarithmic time, then this yields an RNC algorithm.
In almost every setting where a parallel LLLL algorithm is known (including all the ones in this
paper), the resampling oracle is commutative and the parallel algorithm is an implementation of
Kolmogorov’s framework.

This makes partial progress to a general parallel LLLL algorithm; however, there remain two
significant hurdles. The most straightforward of these is a parallel implementation of R. This is
trivial for the variable-assignment LLL: if bad-events B,B′ are both selected for resampling, then
var(B) and var(B′) must be disjoint and the resamplings can be executed simultaneously. For other
probability spaces, it is not clear how to resample without “locking” the state.

The second and much more fundamental hurdle is that the LLLL resampling process is inher-
ently sequential in a way that the LLL is not. For the LLLL (but not the LLL) it is possible that
two bad-events B,B′ are currently true, and B 6∼ B′, and resampling B makes B′ false. We say in
this case that B fixes B′. Because of this possibility, B and B′ cannot be resampled simultaneously;
one must select (arbitrarily) one of the two bad-events to resample first, and then only resample
the second one if it still remains true. One critical challenge for LLLL algorithms is to simulate in
parallel the process of resampling the bad-events in sequence.

The parallel LLLL algorithms of Harris [18] and Harris & Srinivasan [22] overcome these hurdles
to a limited extent. However they still suffer from a number of shortcomings. Although they run
in polylogarithmic time, the exponent is quite high (and is not computed explicitly). They also
require additional structure, such as having bad-events which involve a polylogarithmic number
of variables. Finally, and perhaps most seriously, these algorithms are highly tailored to a single
probability space. They are reminiscent of the situation for LLL algorithms before the framework
of Harvey & Vondrák [25]: specialized algorithms with ad-hoc analysis.
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1.3 Our contribution and overview

We identify a new property of resampling oracles that we refer to as obliviousness. To summarize,
suppose we have two bad-events B,B′ with B 6∼ B′, and a state u ∈ B ∩ B′. The obliviousness
property states that whether B fixes B′ depends solely on the randomness used to resample B, and
not on the state u itself. This framework is developed in Section 2. We find it remarkable that so
many LLLL probability spaces, even the non-commutative ones, have oblivious resampling oracles:
this includes variable-assignment, permutations, perfect matchings of Kn, perfect matchings of the

hypergraph K
(s)
n , hamiltonian cycles of Kn, and spanning trees of Kn.

A unified parallel algorithm. Obliviousness allows us to sidestep the second major hurdle to
a parallel LLLL algorithm. It reduces the possibility of B fixing B′ to a pairwise phenomenon: we
only need to know the resampling action chosen for B, not the present state (which may be changing
during other resampling actions). The space of sequential resamplings can thus be represented in
a simple graph structure, allowing us to efficiently find a valid sequence.

To implement this sequence in parallel, we encode R as a monoid action. Specifically, RB can
be interpreted as a randomly-chosen monoid element rB acting on the current state u. In this
way, resampling multiple bad-events B1, . . . , Bs can be interpreted algebraically as the product
rBs . . . rB1u. This is easily parallelized by the associativity of monoidal multiplication.

We summarize our generic parallel LLLL algorithm as follows:

Theorem 1.1 (Informal). Suppose that epd(1 + ǫ) ≤ 1 holds for any LLLL probability space with

an appropriate parallelizable resampling oracle. Then there is a parallel algorithm in time O( log
4 n
ǫ )

to find a state avoiding B.

We summarize some notable applications of this algorithm.

1. Suppose we have a k-SAT instance on n variables and m clauses, in which each variable

appears in at most L ≤ 2k+1(1−1/k)k

(k−1)(1+ǫ) −
2
k clauses. There is an RNC4 algorithm to find a

satisfying assignment.

2. For an integer c ≥ 2, suppose that H is a k-uniform hypergraph H where each vertex appears

in at most L = ck(1−1/k)k−1

k(c−1)(1+ǫ) edges. There is an randomized algorithm in O( log
3 n
ǫ ) rounds for

the LOCAL distributed computing model to find a proper vertex c-coloring of H.

3. Suppose that A is an n×n matrix whose entries are labeled by colors and each color appears
in at most ∆ entries. For ∆ ≤ 0.105n, there is an RNC4 algorithm to find a Latin transversal

of A. For ∆ ≤ n
(

(s−1)!
2e(1+ǫ)s

)1/(s−1)
there is an RNC4 algorithm to find a transversal of A where

color appears at most s times.

4. Suppose that we have an edge-coloring of Kn where each color appears on at most ∆ edges.
If ∆ ≤ 0.105n and n is even, there is a RNC4 algorithm to find a rainbow perfect matching.
If ∆ ≤ 0.026n, there is an RNC4 algorithm to find a rainbow hamiltonian cycle.

Versions of the first two results with slightly worse parameters can be derived from the variable-
assignment LLL and parallel MT algorithm. Previous slower RNC algorithms are known for the
third result. We are not aware of any RNC algorithms comparable with the fourth result; this
answers open problems posed by Kolmogorov [29] and Harvey & Liaw [24].

A new resampling framework. Beyond its direct algorithmic impact, obliviousness can
simplify a number of resampling oracle constructions. Most LLLL probability spaces come from a
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set of relatively simple “atomic events.” For example, in the space of uniform permutations, these
are events of the form π(x) = y. A bad-event B is then taken to be a conjunction of atomic events.

It is intuitively clear that the resampling oracle for the atomic events in some sense “generates”
the resampling oracle for B. A formal description of this has been elusive. To illustrate the difficulty,
consider a bad-event B = A1 ∩ A2 and a configuration u ∈ B, where A1, A2 are atomic events.
We would like to resample B by resampling A1 and then resampling A2. In order to obtain the
correct probability distribution, we must condition on A2 remaining true after resampling A1. For
a general resampling oracle, this conditioning step might distort the probability distribution of u in
an unmanageable way. But for an oblivious resampling oracle, we are guaranteed that conditioning
on A2 remaining true retains an independent, uniform distribution for u itself.

We derive a simple list of axioms required for an oblivious resampling oracle for the atomic
events only ; these automatically lead to a resampling oracle for B. Beyond the fact that this
gives new algorithmic results, this greatly simplifies many proofs and constructions for existing
resampling oracles. We highlight a few results:

1. We get a commutative resampling oracle, and parallel algorithms, for the space of hamiltonian
cycles of Kn.

2. We get a resampling oracle for the space of perfect matchings of the complete hypergraph

K
(s)
n . This leads to efficient (sequential) algorithms corresponding to non-constructive results

on rainbow hypergraph matchings shown by Lu, Mohr, & Székély [30].

1.4 Outline

In Section 2, we formally define the LLLL in terms of resampling oracles. We provide a new
framework which is more algebraic compared to the probabilistic formulation originally developed
in [25]. We define the properties needed for resampling oracles, including commutativity and
the new property of obliviousness. We also discuss the method for generating LLLL-compatible
probability spaces from atomic events.

In Section 3, we describe a new graph algorithm needed for our parallel LLLL algorithm. This
computes a structure which is similar to a lexicographically-first MIS (LFMIS), but generalized to
directed graphs. This plays a similar role to the MIS in the parallel MT algorithm, but respects
the sequential ordering of the bad-events. We show that, for a random vertex order, this LFMIS
can be computed efficiently in O(log2 n) rounds by a simple greedy parallel algorithm adapted from
Blelloch, Fineman & Shun [6] for undirected graphs. This is a pure graph theory problem which
does not directly involve the LLLL, and may be of independent interest.

In Section 4, we describe our generic LLLL algorithm in terms of a resampling oracle from the
framework of Section 2.

In Section 5, we analyze the variable-assignment LLLL. We show how the simple resampling ora-
cle (which is just to resample variables from the original distribution) fits into the formal framework
of Section 2. We provide a few example applications, to k-SAT and hypergraph coloring.

In Section 6, we describe a few other more “exotic” LLLL spaces, including random permuta-
tions, hamiltonian cycles, and perfect matchings. We discuss a few applications, including to strong
coloring and a number of Latin transversal problems.

1.5 Notation

Throughout, we let [n] denote the set {1, . . . , n}. For a probability space Ω over a ground set U , we
say that u ≈ Ω if u is a random variable drawn according to distribution Ω. We define Ω[u] to be
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the probability mass of u, and we define Support(Ω) to be the set of values u ∈ U with Ω[u] > 0.
For any V ⊆ U we define Ω[V ] = Pru≈Ω(u ∈ V ) =

∑

v∈V Ω[v]. We also define Ω|V to be the
conditional distribution on V , i.e. (Ω|V )[v] = Ω[v]/Ω[V ] for v ∈ V .

For two random variables X,Y , we say X ≈ Y if X,Y follow the same distribution. For any
set X, we define Unif(X) to be the uniform distribution on X.

For s ≥ 2, we let K
(s)
n denote the complete s-uniform hypergraph on vertex set [n]. For s = 2

(the complete graph), we also write Kn = K
(2)
n . We say that M is a perfect matching of K

(s)
n if

it is a partition of [n] into exactly n/s classes of size s. Whenever we refer to the set of perfect

matchings of K
(s)
n , we will assume implicitly that s divides n.

We define Sn to be the symmetric group on n letters, viewed concretely as the set of bijections
on ground set [n]. We write (a b) for the transposition swapping a and b. We also write σ1σ2 for
the functional composition σ1 ◦ σ2, that is, the function sending x to σ1(σ2(x)).

For subsets A,B of an algebraic structure G, we let AB denote the product set AB = {ab | a ∈
A, b ∈ B}. Similarly, for b ∈ G,A ⊆ G we write bA = {ba | a ∈ A} and Ab = {ab | a ∈ A}.

For a directed graph G = (V,E) and a vertex v ∈ V , we define the out-neighborhood Nout(v) =
{w | (v,w) ∈ E} and the out-degree of v is the cardinality of this set. Similarly we define the
in-neighborhood N in(v) = {w | (w, v) ∈ E}, and the in-degree of v is the cardinality of this set.

2 The LLLL and resampling oracles

In this section, we will formally define the LLLL and how to construct a resampling oracle for it,
in the sense of Harvey & Vondrák [25]. We note that Erdős & Spencer [10] describes an alternate,
probabilistic interpretation of the LLLL, which is slightly more general. Since this is technical to
describe and we will never use this interpretation, we will not discuss this here.

Constructions based on the LLLL typically have two phases. First, we choose a large collection
of highly-structured “generic” bad-events in a probability space, equipped with an appropriate
lopsidependency relation and a resampling oracle. For example, in the variable-assignment LLLL
setting, the underlying probability space is a cartesian product space with n independent variables
and the generic bad-events are the monomial functions of the form Xi1 = j1 ∧ · · · ∧ Xik = jk for
arbitrary values k, (i1, j1), . . . , (ik, jk). For the permutation setting, the underlying probability space
is the uniform distribution on Sn and the generic bad-events have the form π(x1) = y1∧· · ·∧π(xk) =
yk for arbitrary values k, (x1, y1), . . . , (xk, yk).

It is impossible to avoid all the generic bad-events. The second phase of the LLLL is to select
some problem-specific, more-or-less “random”, subset of the generic bad-events. For example, if
we wish to satisfy a given k-SAT formula, then for each clause Xi1 = j1 ∨ · · · ∨Xik = jk, we would
have in B the bad-event Xi1 = 1− j1 ∧ · · · ∧Xik = 1− jk, which is one of the generic bad-events.

In order to show that the LLLL applies, and that Algorithm 2 converges to an assignment
avoiding B, we must show two things: first, that the resampling oracle works properly on the
generic set of bad-events containing B. Second, that the specific chosen subset B has its probabilities
and dependencies sufficiently small; for example, each bad-event B ∈ B has PrΩ(B) ≤ p and is
lopsidependent with at most other d bad-events of B such that epd < 1.

These two phases are almost completely distinct. The first is highly algebraic, while the second
is more combinatorial. In this section, we will only discuss the first phase of constructing the
generic set of bad-events to be compatible with the LLLL. The second phase, for which we use only
standard techniques, is discussed in Appendix A.
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2.1 Framework for resampling oracles

Consider a probability space Ω over a ground set U , along with a collection B of events in that space.
There is also a binary symmetric relation ∼ provided for B, which we refer to as the dependency
relation.2 We will define the properties needed for a resampling oracle R for this space, in the sense
of Algorithm 2, along with the new property “obliviousness” which we will need for our algorithms.
We will later construct a number of such resampling oracles.

We will define R by specifying a monoid R which acts on U . We refer to the R-act on U as
the resampling action, and we write it as ru for r ∈ R,u ∈ U . We also define, for each B ∈ B, a
probability distribution ΓB over R and we define RB = Support(ΓB) ⊆ R. The intent is to define
the resampling oracle RB as RB(u) = ru where r ≈ ΓB. Note that it is very important for us to
separate the role of the randomness used in RB .

Before we define our new obliviousness property, let us reiterate the conditions of Harvey &
Vondrák [25] and Kolmogorov [29], in terms of our notation.3

(C1) (Probability regeneration) For any B ∈ B and any fixed v ∈ U , we have

Pr
(u,r)≈(Ω|B)×ΓB

(ru = v) = Ω[v]

(C2) (Locality) If B 6∼ B′, and u ∈ B −B′, then for all r ∈ RB we have ru /∈ B′.

(C3) (Commutativity) Let B1 6∼ B2. For any states u ∈ B1 ∩B2 and u′ ∈ U , there is an injective
mapping from states w ∈ B2 ∩ R1u with u′ ∈ R2w, to states w′ ∈ B1 ∩ R2u with u′ ∈ R1w

′,
such that

Pr
r1≈ΓB1

(r1u = w) Pr
r2≈ΓB2

(r2w = u′) = Pr
r2≈ΓB2

(r2u = w′) Pr
r1≈ΓB1

(r1w
′ = u′)

Observation 2.1. If Properties (C1) and (C2) are satisfied, then the randomized function RB

defined by choosing r ≈ ΓB and outputting RB(u) = ru, gives a resampling oracle in the sense of
Harvey & Vondrák [25]. If (C3) is also satisfied, then the resampling oracle RB is commutative in
the sense of Kolmogorov [29].

We define a resampling-space to be an ensemble of such objects B, R, U,Ω,∼ satisfying (C1)
and (C2). We sometimes refer to the overall ensemble also just as B. We define the neighborhood
of B ∈ B by N(B) = {A ∈ B : A ∼ B} and we also define N(B) = N(B) ∪ {B}.

Observe that if C, R, U,Ω,∼ is a resampling-space and B ⊆ C, then B, R, U,Ω,∼ is also a
resampling-space (where ∼ is the restriction to B). Furthermore, if (C3) holds for C then it holds
for B as well. We emphasize that these properties alone do not imply that that Algorithm 2 will
converge when using the resampling oracle R. Our usual strategy is to show that some generic set
C is a resampling-space with desired properties, and then take B to be an arbitrary subset of C.
We then show that one of the LLLL convergence criteria, such as Shearer’s criterion, is satisfied on
B. See Appendix A for further details and definitions.

Bearing this in mind, we can summarize the main result of [25] as follows:

Theorem 2.2 ([25]). If B is a resampling-space which satisfies Shearer’s criterion, then Algorithm 2
terminates in expected polynomial time.

2More properly, this should be referred to as a “lopsidependency” relation. The distinction between dependency
and lopsidependency is not important for us so we use the simpler terminology.

3Kolmogorov [29] refers to property (C3) here as “strong commutativity.” We will never use the weaker commu-
tativity properties defined by Kolmogorov, so we just refer to this as commutativity for convenience.
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We are now ready to introduce the new structural property:

(C4) (Obliviousness) For all pairs B,B′ in B with B 6∼ B′, and all r ∈ RB, one of the following
two conditions holds:

(a) For all u ∈ B ∩B′ we have ru ∈ B′

(b) For all u ∈ B ∩B′ we have ru /∈ B′

We refer to this as obliviousness since whether ru is in B does not depend upon the state u.
In light of (C4), let us define set RB;B′ = {r ∈ RB | ru ∈ B′}. We also define the conditional
probability distribution ΓB;B′ = ΓB |RB;B′ , and for any set E ⊆ B we define RB;E =

⋂

B′∈E RB;B′

and ΓB;E = ΓB |RB;E .
The definition of commutativity as it appears in (C3) is cumbersome to work with and lacks

good compositional properties. To make it easier to show (C3), we use an additional property of
resampling oracles identified by Achlioptas & Iliopoulos [1], which we refer to as injectivity.4 We
state one variant of this property as follows:

(C5) (Injectivity) For all u ∈ U and B ∈ B, there is exactly one w ∈ B with u ∈ RBw.

Our main motivation for this property is that it greatly simplifies condition (C3), allowing us
to use an alternate condition (C3’) instead:

(C3’) For all pairs B1, B2 and all u ∈ B1 ∩B2 we have RB2RB1;B2u = RB1RB2;B1u.

We summarize this in the following result:

Proposition 2.3. If properties (C3’), (C4), (C5) hold, then property (C3) holds.

Proof. We begin with a preliminary calculation: consider any B ∈ B, w ∈ B,u ∈ RBw. By (C1)
we have Prr≈ΓB ,w′≈Ω|B(rw

′ = u) = Ω[u]. By (C5), we have rw′ = u only if w′ = w, and so
Prr≈ΓB ,w′≈Ω|B(rw

′ = u) = Prr≈ΓB ,w′≈Ω|B(rw
′ = u ∧ w = w′) = Ω[w]/Ω[B] × Prr≈ΓB

(rw = u).
Combining these equations, we get the following formula:

Pr
r≈ΓB

(rw = u) = Ω[u]Ω[B]/Ω[w]. (1)

Let us now show (C3). Fix B1, B2, u, u
′. By (C5), at most one state w has w ∈ RB1u, u

′ ∈ RB2w.
If there is no such w, then there is nothing to show. Otherwise, by (C3’) there must exist w′ with
u′ ∈ RB1w

′, w′ ∈ RB2u. We map w to this w′. Since there is only one possible value w, the mapping
is trivially injective. We need to show that this pair w,w′ satisfies

Pr
r1≈ΓB1

(r1u = w) Pr
r2≈ΓB2

(r2w = u′) = Pr
r2≈ΓB2

(r2u = w′) Pr
r1≈ΓB1

(r1w
′ = u′)

By Eq. (1), we have

Pr
r1≈ΓB1

(r1u = w) Pr
r2≈ΓB2

(r2w = u′) =
Ω[u′]Ω[B1]

Ω[w]
×

Ω[w]Ω[B2]

Ω[u]
=

Ω[u′]Ω[B1]Ω[B2]

Ω[u]

A symmetric argument shows that Prr2≈ΓB2
(r2u = w′) Prr1≈ΓB1

(r1w
′ = u′) is also equal to this

quantity.

4In [1], this property is referred to as atomicity. We use the alternate terminology injectivity to avoid confusion
with our discussion of atomic bad-events.
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2.2 Atomically-generated probability spaces

Most known resampling-spaces have a nicer form: the bad-events B are conjunctions of a limited
class of “atomic” events. For example, for the variable-assignment LLLL, an atomic event is Xi = j;
for the space of uniform permutations, an atomic event is π(x) = y. The obliviousness property
allows us to formalize this: we can define a resampling oracle and a simple list of axioms for the
atomic events alone, and then we automatically get a resampling oracle for conjunctions of atomic
events. This vastly simplifies the constructions for a number of diverse LLLL spaces.

Let A, R, U,Ω,∼ be an oblivious resampling-space. We say that a set E ⊆ A is stable if A 6∼ A′

for all distinct pairs A,A′ ∈ E, and we define 〈E〉 =
⋂

A∈E A. For A1, . . . , Ak ∈ A, we also write
〈A1, . . . , Ak〉 as shorthand for A1 ∩ · · · ∩Ak = 〈{A1, . . . , Ak}〉.

Let us define A to be the set of conjunctions of events of A,

A =
{

〈E〉 | E a stable subset of A
}

We will use the same ground set U and monoid R for A. The new dependency relation ∼ for A is
defined by setting 〈E〉 ∼ 〈E′〉 if there exist A ∈ E,A′ ∈ E′ with A ∼ A′.

The key to the construction is to extend the distributions ΓA for the atomic events to a
probability distribution ΓC for an event C = 〈E〉 in A. To do so, we select some arbitrary
fixed ordering as E = {A1, . . . , Ak}, and we then define ΓC to be the distribution over prod-
ucts r = rkrk−1 · · · r2r1, wherein r1, . . . , rk are independent random variables and ri is drawn from
distribution ΓAi;{Ai+1,...,Ak}. (For k = 0, r is the identity element of R.)

Theorem 2.4. If A is an oblivious resampling-space, then so is A. If, in addition, A satisfies
(C5) and (C3’), then so does A; in particular, A is commutative.

The proof of Theorem 2.4 is technical, so we defer it to Appendix C. In later sections, we use
it for a number of new and simpler constructions of resampling-spaces. Notably, these include

hamiltonian cycles of Kn and perfect matchings of K
(s)
n . Our construction for hamiltonian cycles

of Kn is commutative, in contrast to a previous resampling oracle construction of Harvey & Liaw

[24]. No resampling oracle of any kind was known for perfect matchings of K
(s)
n for any s > 2.

2.3 Efficient resampling oracles

Our framework for resampling oracles, in which R is derived from a monoid R, may seem overly
restrictive. In fact, it is without loss of generality: for an arbitrary resampling oracle in the sense of
Harvey & Vondrák [25], we could simply take R to be the full transformation monoid. This would
be useless computationally, because writing down an element of R would require exponential time.

In order to get an efficient parallel algorithm we must be able to efficiently compute on R.
We summarize the requirements in terms of four properties (D0)—(D3); the runtime bounds are
chosen so that the resampling action does not become the computational bottleneck for the overall
algorithm described later. Here the parameter n measures the input length to the algorithm.

(D0) We can sample from Ω in O(log4 n) time and poly(n) processors.

(D1) For any B ∈ B, we can sample from ΓB in O(log3 n) time and poly(n) processors.

(D2) For r ∈ R and u ∈ U , we can compute ru in O(log3 n) time and poly(n) processors.

(D3) For r, r′ ∈ R, we can compute rr′ in O(log2 n) time and poly(n) processors.
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For atomically-generated probability spaces, these properties can themselves be simplified:

Proposition 2.5. Suppose that B ⊆ A, such that every bad-event B ∈ B is given by B = 〈E〉 for
some stable set E ⊆ A with |E| ≤ poly(n). Suppose that A satisfies property (D3) as well as the
the following property (D1’):

(D1’) For any A ∈ A and stable set E ⊆ A with A 6∼ E and |E| ≤ poly(n), we can sample from
ΓA;E in O(log3 n) time and poly(n) processors.

Then B satisfies property (D1).

Proof. Let B = 〈E〉 for some stable set E = {A1, . . . , Ak} with k ≤ poly(n). To draw r ≈ ΓC , we
first use (D1’) to sample independent variables r1, . . . , rk wherein each ri drawn from ΓAi;{Ai+1,...,Ak}.

We then use (D3) to compute r = rk · · · r1 in O(log k × log2 n) = O(log3 n) time.

We say that a resampling space is amenable if it satisfies the following computational conditions:

• It satisfies properties (C3)–(C4).

• The monoid R satisfies properties (D0)–(D3).

• It has has a BEC running in O(log3 n) time and poly(n) processors.

We will later describe a parallel algorithm for such spaces. Note that, even without these
properties, the resampling-space may still be be useful for a sequential algorithm or a combinatorial
existence proof. Also, note that the third condition is satisfied if m ≤ poly(n) and we can efficiently
check each bad-event in O(log3 n) time.

2.4 Cartesian products

Another useful method for constructing resampling-spaces comes from a cartesian product construc-
tion. Consider resampling-spaces Ci, Ri, Ui,Ωi,∼i for i = 1, . . . , s. We define a new resampling-
space C = C1 × · · · × Cs as follows. The underlying space is U = U1 × · · · × Us and Ω is the
corresponding product distribution. The monoid R is the cartesian product R1 × · · · × Rs, with
the natural monoid act on U . The events in C are those of the form C1 × · · · × Cs, where Ci ∈ Ci.
For such an event C, we define ΓC to be the probability distribution on tuples (r1, . . . , rs), wherein
r1, . . . , rs are independent, and ri is drawn from ΓCi in resampling-space Ci. The relation ∼ on C
is defined by (C1, . . . , Cs) ∼ (C ′

1, . . . , C
′
s) if there is an index i ∈ {1, . . . , s} where Ci ∼i C

′
i.

The following is immediate from the definitions:

Observation 2.6. If C1, . . . , Cs are oblivious resampling-spaces, then so is C.
If in addition C1, . . . , Cs are commutative, then so is C.
If in addition s ≤ poly(n) and C1, . . . , Cs satisfy properties (D0)–(D3), then so does C.

As an example, the permutation LLL as defined in [22] allows selection of s permutations
π1, . . . , πs, wherein each πi is drawn independently and uniformly from some Sni , and a bad-event
has the form πi1(x1) = y1 ∧ · · · ∧ πik(xk) = yk. This can be modeled as the cartesian product of
the uniform distributions on Sn1 , . . . , Sns . Therefore, the resampling action defined by the uniform
distribution on Sn immediately gives a corresponding resampling action for the permutation LLL.
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3 LFMIS for directed graphs

Before we describe the parallel LLLL algorithm, we need an important graph-theoretic subroutine:
the LFMIS for directed graphs. This plays a similar role for our LLLL algorithm as the MIS does
for the parallel MT algorithm. By itself, the LFMIS has little connection to the LLLL, and may
be of independent combinatorial and algorithmic interest.

For an undirected graph G, an independent set of G is a vertex set S where no two vertices
in S are adjacent in G. A maximal independent set (MIS) has the additional property that no
T ) S is an independent set of G. There is a trivial sequential algorithm to find an MIS of G by
adding vertices one-by-one to S. The MIS produced by this sequential algorithm is referred to as
the lexicographically first MIS (LFMIS).

With a slight abuse of terminology, we can extend the definition of LFMIS to a directed graph
G = (V,E). Formally, we define the LFMIS of G with respect to a permutation π : [n]→ V to be
the vertex set I produced by the following sequential process:

Algorithm 5 The sequential algorithm to find the LFMIS of directed graph G.

1: Initialize I = ∅ and A = V ⊲ A = alive vertices
2: for i = 1, . . . , n do

3: if π(i) ∈ A then Update I ← I ∪ {π(i)}, A ← A−Nout(π(i))

An undirected graph G can be viewed as a directed graph G′, where every edge (u, v) ∈ G
corresponds to two directed edges (u, v), (v, u) ∈ G′. The LFMIS (in the usual sense) of G is then
identical to the directed LFMIS of G′.

The LFMIS problem for undirected graphs is P-complete in general [9]. However, Blelloch,
Fineman, Shun [6] described a simple parallel greedy algorithm to find the LFMIS of an undirected
graph, when π is chosen uniformly at random. The algorithm can also be used for directed graphs.
We summarize it as follows, where we define P π(v) for a vertex v to be the set of vertices w with
π−1(w) < π−1(v).

Algorithm 6 The parallel greedy algorithm to find the LFMIS of directed graph G.

1: Initialize I = ∅ and A = V
2: while A 6= ∅ do
3: Let J be the set of nodes v ∈ A such that A ∩N in(v) ∩ P π(v) = ∅
4: Update I ← I ∪ J,A← A− J −

⋃

v∈J N
out(v)

This can be viewed as a parallel algorithm, where each iteration of identifying the residual source
nodes J and adding them to I, can be implemented in O(log n) time and O(m + n) processors.
Alternatively, it can be viewed as a distributed algorithm, where each iteration requires O(1)
distributed communication rounds on G. We get the following main result to analyze Algorithm 6.

Theorem 3.1. Algorithm 6 produces the LFMIS of G with respect to π. When π is chosen uniformly
at random, then Algorithm 6 terminates in O(log2 n) rounds whp. In particular, Algorithm 6 runs
in Õ(log3 n) time on an EREW PRAM whp.

The analysis is very similar to the proof given in [6], which showed that the (undirected) degrees
are rapidly reduced when G is an undirected graph. We defer the full proof of Theorem 3.1 to
Appendix D, which shows a slightly stronger result. Note that Fischer & Noever [12] later showed
that Algorithm 6 terminates in O(log n) rounds whp for undirected graphs. We conjecture that it
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should be possible to improve our analysis and show that Algorithm 6 runs in O(log n) rounds whp
on directed graphs as well.

4 A generic parallel resampling algorithm

We are now ready to describe our parallel algorithm for an amenable resampling-space. We recall
that throughout, the parameter n represents the description size of a configuration, such that a
state u is encoded in poly(n) bits. Correspondingly, our goal for an RNC algorithm is to achieve
polylog(n) runtime, poly(n) processors, and success probability 1− n−Ω(1).

Algorithm 7 The parallel LLLL algorithm

1: Draw u from the distribution Ω
2: while there are true bad-events do:
3: Let V denote the set of bad-events which are currently true
4: For each B ∈ V , independently draw a random variable rB ≈ ΓB

5: Construct the directed graph G, whose vertex set is V , and whose directed edge set is

E = {(B,B′) | B ∼ B′ or rB /∈ RB;B′}

6: Find the LFMIS I of G with respect to a random permutation π
7: Sort I = {Bi1 , Bi2 , . . . , Bis}, where π(Bi1) < π(Bi2) < · · · < π(Bis)
8: Update the state as u← rBis

rBis−1
· · · rBi1

u

Clearly, if Algorithm 7 terminates, then all the bad-events in B are false on u. For maximum
generality, we analyze Algorithm 7 in terms of two parameters W, ǫ from the Shearer LLLL criterion;
see Appendix A for a precise definition. Theorem A.2 gives a few simpler LLL criteria, including
the symmetric, asymmetric, and cluster-expansion criteria. For most applications, W ≤ poly(n)
and ǫ ≥ Ω(1). Our main result will be the following:

Theorem 4.1. Let B be an amenable resampling-space. If the Shearer criterion is satisfied with

parameters ǫ,W , then Algorithm 7 runs in O( log
4(n+Wǫ)

ǫ ) time and poly(n,W ) processors whp.

For most applications, we can use a simplified corollary:

Corollary 4.2. Let B be an amenable resampling-space which satisfies the symmetric LLL criterion

epd(1 + ǫ) < 1. Then Algorithm 7 runs in O( log
4(mn)
ǫ ) time and poly(m,n) processors whp.

Some probability spaces have convergence and distributional properties which go beyond the
generic bounds such as Shearer’s criterion [18, 19, 27]. Since Algorithm 7 can be viewed as a
simulation of the sequential algorithm, all such bounds apply equally to it. We will see some
examples in the next section with analysis of the variable-assignment LLLL.

We now turn to proving Theorem 4.1. We assume throughout that B is amenable. We refer to
each iteration of the main loop of Algorithm 7 (lines (3) – (8)) as a round. We use Vt, It, πt, etc to
denote the quantities corresponding to round t, and also define bt = |Vt|. We first observe that a
single round can be implemented efficiently.

Proposition 4.3. Each round of Algorithm 7 can be implemented using poly(bt, n) processors and
O(log3(btn)) time whp.
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Proof. Since B is amenable, we can determine the set Vt using our BEC in O(log3 n) time.
By (D1), we can draw the random variables rB in time O(log bt + log3 n). In light of (C4), we

can efficiently check if rB ∈ RB;B′ , by computing rBu and testing if rBu ∈ RB′ .
By Theorem 3.1, we can find I in time O(log3(btn)) and poly(bt, n) processors whp.
To implement step (7), we use use the associativity of monoid multiplication to compute the

product rBis
· · · rBi1

in ⌈log2 s⌉ rounds of pairwise multiplications. By (D3), each round takes

O(log2 n) time. Noting that s ≤ bt, this gives a total of O(log3(btn)) time and poly(bt, n) processors.
Once this product is computed, we can use (D2) to compute rBis

· · · rBi1
u.

Thus, our main task is to show that Algorithm 7 terminates after a small number of rounds.
We do so by coupling it to a sequential resampling algorithm, Algorithm 8.

Algorithm 8 A sequential resampling algorithm

1: Draw u from the distribution Ω
2: while there are true bad-events do for t = 1, 2, . . . :
3: Let Vt = set of bad-events true on u, and initialize A = Vt ⊲ A = alive events
4: For each B ∈ Vt, draw a random variable rB ≈ ΓB

5: Select a random ordering of Vt as Vt = {B1, . . . , Bk}.
6: for k = 1, . . . , |Vt| do
7: if Bk ∈ A then

8: Update u← rBk
u

9: for any B′ ∈ Vt with either (i) B′ is false on u or (ii) B′ ∼ Bk do A← A− {B′}

By the principle of deferred decisions, there is no difference in selecting the random variable
rB in a “preprocessed” way (as in line (4) of Algorithm 8), as opposed to in “online” way as in
Algorithm 2. Thus, line (8) of Algorithm 8 is equivalent to executing the resampling oracle RB(u)
and so Algorithm 8 can be viewed as a version of Kolmogorov’s algorithm (Algorithm 4).

For Algorithm 8, define πt to be the chosen ordering of Vt, i.e. the map sending i to Bi in Vt.
Also define I ′t to be the set of events resampled in round t, i.e. the events Bk such that Bk ∈ A
at iteration k of line (7). The following result shows the equivalence between Algorithm 8 and
Algorithm 7:

Proposition 4.4. If the random variables π, u, r are all fixed at the beginning of round t and I, I ′

are the LFMIS produced for Algorithms 7 and 8 respectively for round t, then I = I ′.

Proof. Let uj denote the state after iteration j of round t (and u0 is the state at the beginning of
round t). We have Vt enumerated as {B1, B2, . . . , Bk} where π(B1) < π(B2) < · · · < π(Bk), and
we write ri as shorthand for rBi .

With this notation, observe that Bj ∈ I iff there is no i < j with Bi ∈ I and either (a) Bi ∼ Bj

or (b) ri ∈ Ri −RBi;Bj . Similarly, Bj ∈ I ′ iff there is no i < j with Bi ∈ I ′ and either (a) Bi ∼ Bj

or (b) Bj is false on ui. For contradiction, say that j is minimal such that the membership of Bj

differs in I and I ′.
Suppose that Bj ∈ I ′ − I. Since Bj /∈ I, there must be some i < j with Bi ∈ I such that

Bi ∼ Bj or ri /∈ RBi;Bj . In the former case, by our induction hypothesis Bi ∈ I ′ and this would
contradict that Bj ∈ I ′. In the latter case, note that since Bj ∈ I ′, it must be that Bj is true on
ui and ui−1 and Bi is true on ui−1. Thus, ui−1 ∈ Bi ∩ Bj and ui = riui−1 ∈ Bj. So ri ∈ RBi;Bj , a
contradiction.

Next, suppose that Bj ∈ I − I ′. Since Bj /∈ I ′, there must be some i < j with Bi ∈ I ′ such
that Bi ∼ Bj or Bj is false on ui. Let i be minimal subject to these conditions. In the former case,
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by induction hypothesis Bi ∈ I; in the latter case, by minimality of i, it must be that Bj becomes
false after resampling Bi, and so Bi ∈ I. In either case, we have Bi ∈ I. So ui−1 ∈ Bi ∩ Bj and
ui = riui−1 /∈ Bj , implying that ri ∈ RBi − RBi;Bj . Thus G has an edge (Bi, Bj), contradicting
that Bj ∈ I.

They key property we need to analyze Algorithm 8 is the following:

Lemma 4.5. If B ∈ Vt for t ≥ 2, then N(B) ∩ I ′t−1 6= ∅.

Proof. In the execution of Algorithm 8, let Ti denote the total number of resamplings before round
i (so T1 = 0), and note that uTi is the state immediately at the beginning of round i.

By definition, B must be true on uTt . Either B is true at time Tt−1 or B ∼ B′ ∈ I ′t−1; otherwise,
by property (C4), B would remain false after all the resamplings in round t− 1.

If B ∼ B′ ∈ I ′t−1 or B ∈ I ′t−1 we are done. Otherwise, suppose B ∈ Vt−1 − I ′t−1. This can only
be the case if B was marked as dead in round t − 1. Suppose this occurs at time i, during the
resampling of some B′ ∈ I ′t−1. If B ∼ B′, we are done.

Otherwise, suppose that B is false on ui. Since B is true at the beginning of round t, by (C4)
there must be some B′′ resampled between times i and Tt with B′′ ∼ B, i.e. B′′ ∈ N(B)∩ I ′t−1.

Lemma 4.5 in combination with analysis of Kolmogorov [29] shows that Algorithm 7 terminates
in a small (polylogarithmic) number of rounds. There is also a “random-like” distribution of the
states during intermediate stages of the parallel LLLL algorithm. In all, we get the following bound:

Lemma 4.6. Whp, Algorithm 7 terminates after O( log(n+Wǫ)
ǫ ) rounds and

∑

t bt ≤ O(W poly(n)).

The proof of Lemma 4.6 requires significant background and a number of preliminary definitions,
so we defer it to Appendix A.

Now let s = O( log(n+Wǫ)
ǫ ) denote the total number of rounds in Algorithm 7. Proposition 4.3

shows that each round t uses O(log3(btn)) time and poly(bt, n) processors whp. Property (D0)
allows us to implement step (1) in O(log4 n) time. Thus the overall runtime of Algorithm 7 is at
most O(log4 n+s log3 n+

∑s
t=1 log

3(bt)). By concavity, we have
∑s

t=1 log
3 bt ≤ s log3(1+

∑s
t=1 bt/s).

By Lemma 4.6, we have
∑

t bt ≤ O(W poly(n)) whp. Thus, the time complexity here is as most
O(s log3(n+Wǫ)) and the processor count is at most poly(n,W ).

This shows Theorem 4.1. Corollary 4.2 follows directly, noting that W ≤ O(m).

5 The variable-assignment LLLL

The variable-assignment LLLL is one of the most important LLLL probability spaces. Let us set
notation and discuss how this fits into our resampling framework. We also discuss a few unique
properties of the variable-assignment LLLL as well as some applications.

To begin the construction, we first consider the simplest setting, where the probability space Ω
is defined by single variable X over a universe U . The generic bad-event set B has the tautological
event ⊤, as well as an event Bu ≡ X = u for each u ∈ U . We define ∼ by setting Bu ∼ Bu′ for
u 6= u′. (The event ⊤ is not dependent with any others.)

We form R using a construction called the find-last monoid. Formally, we define R = U ∪ {1},
where 1 is an identity element. The binary operation on R is defined as

u′u =

{

u′ if u′ 6= 1

u if u′ = 1
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Note that U ⊆ R, with ru ∈ U for u ∈ U , and so R naturally gives a left R-act on U .
For event ⊤, we define Γ⊤ to be the value 1 with probability one. For an event Bu, we define

ΓBu to be the distribution Ω. One can easily verify that the resulting resampling oracle RBu is
defined by RBu(x) = u′, where u′ is drawn from the distribution Ω, i.e. we resample the variable.
It is trivial to verify that this resampling-space satisfies (C3’), (C4), (C5), and (D0)–(D3).

We can get the full variable-assignment LLLL via the cartesian product construction. Namely,
the probability space is over U = Dn for some discrete set D, and each bad-event B has the
form (B1, . . . , Bn), wherein Bi is either ⊤ or an event Xi = ji. Equivalently, B can be written as
B ≡ Xi1 = j1∧· · ·∧Xik = jk. For such an event, we define ΓB as follows: For r = (r1, . . . , rn) ≈ ΓB ,
the entries r1, . . . , rn are all independent, wherein ri = 1 for Bi = ⊤ and ri ≈ Ωi otherwise. The
resulting oracle RB is to simply resample the variables Xi1 , . . . ,Xik . By Observation 2.6, this
resampling-space is again amenable.

This is a very notationally heavy way of describing a very simple probability space and a very
simple resampling action. However, it illustrates how our resampling framework gives a non-trivial
resampling-space (the full variable-assignment LLLL) by composing a few trivial building-blocks.

5.1 Alternate LLLL criterion

In [18], Harris described an alternative convergence criterion for the MT algorithm called orderabil-
ity. This is defined in terms of a function µ : B → [0,∞); the full formal definitions are technical
and are deferred to Appendix B. As our parallel algorithm for the variable-assignment LLLL can
be viewed as an implementation of the MT algorithm, the orderability criterion can also be used
to analyze Algorithm 7. This gives the following result:

Theorem 5.1. Let µ : B → [0,∞) satisfy the orderability variable-assignment criterion with ǫ-
slack, and let W =

∑

B∈B µ(B). If B has a BEC using O(log4 n) time and poly(n) processors, then

Algorithm 7 runs in O( log
4(n+Wǫ)

ǫ ) time and poly(n,W ) processors whp.

As a example application, we get the following result:

Proposition 5.2. Suppose we have a k-SAT instance in n variables, where each variable appears

in at most L = 2k+1(1−1/k)k

(k−1)(1+ǫ) −
2
k clauses. Then there is a parallel algorithm to find a satisfying

assignment in O( log
4 n
ǫ ) time using poly(n) processors whp.

Proof. As shown in [18, Theorem 4.1], the orderability criterion can be satisfied with slack ǫ satisfied
under these conditions using the weighting function µ(B) = 1+ǫ

(2−2/k)k
for all B ∈ B. Furthermore,

W ≤ m ≤ nk ≤ n2 and we can implement a BEC by checking every clause.

5.2 Distributed algorithms

The LOCAL model is a popular model for distributed graph algorithms. Here, in each round, a
node in a graph can perform arbitrary computations and has unlimited communication with its
neighbors. Distributed LLL algorithms can solve a number of graph problems in this setting, where
each vertex v has a set of associated bad-events Bv local to v, and bad-events in Bv and Bu are
dependent iff the distance from u to v is bounded by some (problem-specific) constant.

As a simple example, consider finding a proper vertex-coloring. For each vertex v, we have
some bad-events that v chooses the same color as a neighbor w. Observe now that Bv and Bu are
dependent iff there is some common vertex w, i.e. dist(v,w) ≤ 2. See [8] for a thorough discussion
of this model of computation and applications to a number of graph-coloring problems.

Our parallel algorithm can be easily transformed into a distributed LLLL algorithm:
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Proposition 5.3. Suppose that the orderability variable-assignment criterion is satisfied with pa-
rameters W, ǫ. Then there is a distributed LOCAL algorithm to find a variable assignment avoiding

B in O( log
3(Wn)
ǫ ) rounds whp. In particular, if epd(1+ ǫ) ≤ 1, then this runs in O( log

3(mn)
ǫ ) rounds.

Proof. All of the steps in a round t of Algorithm 7, except the computation of the LFMIS at
line (6) and the state update at line (8) can be implemented in O(1) communication rounds.
The state update can be done in O(log(btn)) rounds and the greedy LFMIS can be implemented
in O(log2(btn)) rounds whp; note that Algorithm 7 only creates an edge between B,B′ if B,B′

overlap on a variable and so we can simulate the directed graph created in line (5). As shown in
Appendix B we have bt ≤W poly(n) whp.

One application, which is an immediate consequence of LLLL analysis of [18], is to proper vertex
coloring of a hypergraph:

Proposition 5.4. Let H be a k-uniform hypergraph in which each vertex appears in at most L

edges. Then there is a randomized LOCAL algorithm in O( log
3 n
ǫ ) rounds to construct a non-

monochromatic c-coloring of H for L ≤ ck(1−1/k)k−1

k(c−1)(1+ǫ) .

6 Other resampling-spaces

We now discuss how our resampling framework applies to a few other resampling-spaces, with
some applications. The main space discussed here is the uniform distribution on Sn. Two others
are the uniform distribution on hamiltonian cycles of Kn, and the uniform distribution on perfect

matchings of the complete hypergraphK
(s)
n for s ≥ 2. The latter two involve very technical algebraic

arguments, so we defer the full proofs to Appendices E and F.

6.1 Uniform distribution on Sn

In this setting, we have U = Sn, and we use π instead of u to represent the system state. The
atomic sets have the form

A = {π ∈ Sn | π(x) = y}

for some (x, y) ∈ [n] × [n]; we write this as A = 〈(x, y)〉. We define ∼ on A by setting 〈(x, y)〉 ∼
〈(x′, y′)〉 if one of the following two conditions holds: (i) x = x′ and y 6= y′ or (ii) x 6= x′ and y = y′.
Equivalently, we have A ∼ A′ iff PrΩ(A ∩A′) = 0.

We define R to be the symmetric group Sn. For any A = 〈(x, y)〉, we define RA to be the set of
single-swap permutations of the form σ = (y z) for z ∈ [n], and ΓA is the uniform distribution on
RA. We define the resampling action as left-multiplication in the obvious way.

Proposition 6.1. Properties (D0), (D2) and (D3) hold.

Proof. The monoid operation and monoid act are both composition of permutations, which can
easily be done in O(log n) time. Property (D0) holds using any of the standard ways to generate
uniform random permutations.

Proposition 6.2. Properties (C5) and (C1) hold.

Proof. Consider A = 〈(x, y)〉 and π ∈ Sn. We claim that there is precisely one pair (z, τ) with
z ∈ [n], τ ∈ A such that π = (y z)τ . For, we have (y z)π ∈ A iff (y z)πx = y iff z = πx.
Furthermore, once z is determined, τ is also uniquely determined.

This shows (C5). Also, when z ≈ Unif[n] and τ ≈ Ω|A, it implies that (y z)τ = π with
probability precisely 1

n ×
1
|A| =

1
n! . Thus (y z)τ is uniformly distributed on Sn, showing (C1).
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Proposition 6.3. Property (C2) holds.

Proof. Consider A = 〈(x, y)〉 and A′ = 〈(x′, y′)〉 and π ∈ A−A′. Clearly A 6= A′ so x′ 6= x, y′ 6= y.
Suppose for contradiction that (y z)πx′ = y′. So πx′ = (y z)y′. If z 6= y′, then πx′ = y′, which
contradicts π /∈ A′. If z = y′, then πx′ = y, which is impossible as πx = y.

Proposition 6.4. Let A = 〈(x, y)〉 and A′ = 〈(x′, y′)〉 with A 6∼ A′. Let σ = (y z) ∈ RA and
π ∈ A ∩A′. Then:

1. If (x, y) = (x′, y′), then σπ ∈ A′ ⇔ z = y;

2. If (x, y) 6= (x′, y′), then σπ ∈ A′ ⇔ z 6= y′

Proof. In case (1), if z = y, then σπ = π, which is in A = A′ by hypothesis. If z 6= y, then
σπx = (y z)y = z 6= y, and so σπ 6∈ A.

In case (2), since A 6∼ A′ we have y 6= y′. If z 6= y′, then σπx′ = (y z)y′ = y′ and so σπ ∈ A′. If
z = y′, then σπx′ = (y y′)y′ = y 6= y′, and so σπ /∈ A′.

Proposition 6.5. Property (C4) holds.

Proof. Proposition 6.4 gives an explicit condition for when σπ ∈ A′ holds for A 6∼ A′, π ∈ A∩A′, σ ∈
RA. This condition depends solely on A,A′, σ and not on π itself; thus, for any fixed σ, it holds
for all such π or none of them.

Proposition 6.6. Property (C3’) holds.

Proof. Let A1 = 〈(x1, y1)〉 and A2 = 〈(x2, y2)〉 where A1 6∼ A2. We need to show for any fixed π
and indices z1 ∈ [n]− {y2}, z2 ∈ [n], there exist z′1 ∈ [n], z′2 ∈ [n]− {y1} such that

(y2 z2)(y1 z1)π = (y1 z′1)(y2 z′2)π

If A1 = A2 this is trivial. Also, if z1, z2 are distinct from each other and y1, y2, then we can
simply take z′1 = z1, z

′
2 = z2. Otherwise, there are a number of cases depending on which of the

terms z1, z2, y1, y2 are equal to each other.
Case I: z1 = z2z1 = z2z1 = z2. Let z = z1 = z2. If z = y1, then (y2 z2)(y1 z1) = (y2 y1)(y1 y1) = (y1 y2)(y2 y2),

and so setting z′1 = y2, z
′
2 = y2 works. Otherwise, if z 6= y1, then (y2 z2)(y1 z1) = (y1 y2 z) =

(y1 y2)(y2 z). So setting z′2 = z, z′1 = y2 works. Our hypothesis z 6= y1 ensures that z′2 6= y1.
Case II: z2 = y2z2 = y2z2 = y2. Then (y2 z2)(y1 z1) = (y1 z1) = (y1 z1)(y2 y2), so take z′1 = y1, z

′
2 = y2.

Case III: z2 = y1z2 = y1z2 = y1. We may assume that z2 /∈ {z1, y2}, as we have already covered these cases.
Then (y2 z2)(y1 z1) = (y1 z1 y2) = (y1 z1)(y2 z1), so taking z′2 = z′1 = z1 works. Note that z′2 6= y1,
as otherwise we would have z1 = z2.

Case IV: z1 = y1z1 = y1z1 = y1. Then (y2 z2)(y1 z1) = (y1 y1)(y2 z2), so take z′1 = y1, z
′
2 = y2. Note that we

cannot have z′2 = y1 as this would imply y1 = y2.

6.2 Applications

We illustrate with the classic applications of the permutation LLL to Latin transversals. Suppose
we have an n× n matrix A, whose entries come from some set of colors. An s-bounded transversal
of this matrix is a permutation π ∈ Sn, such that no color appears at least s times among the
entries A(i, π(i)). The case s = 2 is known as a Latin transversal, and in this case the permutation
is said to be rainbow in that no color is repeated among the entries of A(i, π(i)).
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Proposition 6.7. Suppose that each color appears at most ∆ times in A. Then, we can find a
Latin transversal π ∈ Sn in O(log4 n) time and poly(n) processors for ∆ ≤ 0.105n. We can find an

s-bounded transversal π ∈ Sn in O( log
4 n
ǫ ) time and poly(n) processors for ∆ ≤ n

(

(s−1)!
2e(1+ǫ)s

)1/(s−1)
.

Proof. We use the probability space of the uniform distribution over Sn. For the first result, observe
that the cluster-expansion LLL criterion is satisfied with slack of ǫ = Ω(1) and W ≤ poly(n).

For the second result, for each tuple t = {(i1, j1), . . . , (is, js)} with A(i1, j1) = · · · = A(is, js), we

have a separate bad-event Bt, that π(i1) = j1∧ · · ·∧π(is) = js. Each Bt has probability p ≤ (n−s)!
n! ,

and has at most d = 2sn
(∆−1
s−1

)

neighboring bad-events Bt′ . Thus, in order to satisfy the symmetric
LLL criterion with ǫ-slack, we need

e(1 + ǫ)
(n − s)!

n!
2sn

(

∆− 1

s− 1

)

≤ 1

To show this, we calculate:

e(1 + ǫ)
(n− s)!

n!
2s

(

∆− 1

s− 1

)

≤
2e(1 + ǫ)s∆ . . .∆

(s− 1)!n × n . . . n
=

2e(1 + ǫ)s∆s−1

(s − 1)!ns−1

So epd(1+ǫ) ≤ 1 holds under the stated hypothesis. One can easily construct a BEC in O(log n)
time: for each color class, simply enumerate all of the current entries of π with that color.

We note that the runtime in Proposition 6.7 does not depend on s. By contrast, the permutation
LLL algorithm of [22] would only give a parallel algorithm for constant s. There are two main
reasons it has poor scaling as a function of s: first, the number of bad-events could be ns, which is
super-polynomial for unbounded s; second, each bad-event spans s entries, whereas [22] only allows
bad-events to use polylogarithmic entries. We also note that a sequential algorithm of [22] based
on partial resampling can achieve better bounds for large s, but our parallelization strategy does
not extend to that case.

We next illustrate with some applications to finding rainbow subgraphs of Kn and K
(s)
n :

Proposition 6.8. Consider an edge-coloring of Kn where every color appears on at most ∆ edges.
If ∆ ≤ 0.105n and n is even, then we can find a rainbow perfect matching in O(log4 n) time and
poly(n) processors whp. If ∆ ≤ 0.026n, then we can find a rainbow hamiltonian cycle in O(log4 n)
time and poly(n) processors whp.

Proof. We encode these problems via the probability spaces of the uniform distribution of perfect
matchings of Kn and hamiltonian cycles of Kn, respectively. In Apppendices E and F we show
that the spaces both have amenable resampling oracles. It is shown in [29] and [24], respectively,
that that cluster-expansion LLL criterion is satisfied with slack ǫ = O(1) and W ≤ poly(n).

Proposition 6.9. Consider an edge-coloring of K
(s)
n where every color appears on at most ∆ edges.

If ∆ ≤
(n−s−1

s−1 )(1− 1
2s

)2s

2s−1 n, then there is a poly-time algorithm to find a rainbow perfect matching.

Proof. The probability space Ω is defined by selecting matching M uniformly at random. For each
pair of edges e, e′ of the same color, we have a bad-event B that e, e′ are both in M . This event
has probability

p =
(n/s)(n/s − 1)

(n
s

)(n−s
s

) .
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In Appendix F, we show that Ω has a resampling-space, albeit not a commutative one. To
apply the cluster-expansion criterion, we use a slightly denser dependency graph: two events B,B′

are dependent if the corresponding edges overlap. To enumerate the stable sets of neighbors of B
with respect to this dependency graph, for each of the 2s vertices j involved in B we may select
another edge fj ∋ j and another edge f ′

j of the same color as fj (a total of
(

n−1
s−1

)

× (∆−1) choices).
We set µ(B) = α for every bad-event for some parameter α ≥ 0. In order to satisfy the

cluster-expansion criterion, we will then need

α ≥
(n/s)(n/s − 1)

(n
s

)(n−r
s

) × (1 +
(n−1
s−1

)

(∆− 1)α)2s (2)

Simple calculus shows that when the hypotheses are satisfied, then Eq. (2) can be satisfied
for some α ≥ 0. Using the resampling oracle in Appendix F, we can implement Algorithm 2 in
polynomial time to produce a configuration avoiding B.

As another application, consider strong coloring : given a graph G with a partition of the vertices
into k blocks each of size b (i.e., V = V1 ⊔ · · · ⊔ Vk), we would like to find a proper b-coloring such
that every block has exactly b colors. In [26], Haxell showed that such a coloring exists when b ≥ c∆
and ∆ is sufficiently large, for some constant c ≤ 11/4; this is the best bound currently known.
Furthermore, the constant 11/4 cannot be improved to any number strictly less than 2. In [22], a
variety of LLL-based algorithms are given for constructing the colorings, with worse bounds on b
and with large (unspecified) runtimes. Our LLLL algorithms gives a crisp result, which is perhaps
the first parallel algorithm with reasonable bounds on both b and the run-time:

Proposition 6.10. Given a partition of G into blocks of size b ≥ (25627 + ǫ)∆, a coloring of G can

be found in O( log
4 n
ǫ ) time whp.

Proof. Consider the probability space of uniform distribution over permutations π1, . . . , πk, wherein
each πi is a permutation of the vertices in block Vi. For each edge e = (v, v′) with v ∈ Vi, v

′ ∈ Vi′ ,
and each value ℓ = 1, . . . , b, we have a bad-event πi(v) = ℓ ∧ πi′(v

′) = ℓ. Harris & Srinivasan [22]
show that this satisfies the LLLL cluster-expansion criterion with ǫ-slack when b ≥ (25627 + ǫ)∆.
Furthermore, the probability space is the cartesian product of k copies of the uniform distribution
on Sb. By Observation 2.6, this has an amenable resampling-space.

We note that, subsequent to the original version of this paper, a variety of works have appeared
with better bounds on the colors and the runtime for strong coloring [14, 15, 20]. Most recently,
[20] provides a deterministic sequential poly-time algorithm for b ≥ (3 + ǫ)∆ and a deterministic
parallel algorithm with O(log3 n) runtime for b ≥ (5 + ǫ)∆, for any constant ǫ > 0.

Finally, we consider a hypergraph packing problem of Lu & Székély [31].

Proposition 6.11. Let H1,H2 be two s-uniform hypergraphs on n vertices, where each Hi has mi

edges such that (d1 + 1)m2 + (d2 + 1)m1 <
(ns)

e(1+ǫ) .

There is an algorithm in poly(n) processors and Õ( log
4 n
ǫ ) time to find an injective map φ :

V (H2)→ V (H1) such that φ(H2) is edge-disjoint to H1. (That is, there are not edges f1 ∈ H1, f2 ∈
H2 with f1 = {φ(v) | v ∈ f2}.)

Proof. Let us briefly review a construction of [31]. We use the LLL to construct the permutation φ.
For each pair of edges f1 = {u1, . . . , us} ∈ E(H1), f2 = {v1, . . . , vs} ∈ E(H2), and each permutation
σ ∈ Ss, we form a bad-event that φ(v1) = uσ1 ∧ · · · ∧ φ(vr) = uσs. The stated hypothesis ensures
that these events satisfy the symmetric LLL criterion. Furthermore, there is a simple BEC here
which can be implemented in O(log n) time: for each f2, we sort φ(f2) and check if it in H1.
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Note that Harris & Srinivasan [22] only gives an RNC algorithm if the hypergraphs Hi have
rank polylog(n); this condition is not required for Proposition 6.11.
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A Background on the LLLL

Consider some resampling-space B with a lopsidependency relation ∼. The simplest criterion for
the LLL or the LLLL on B is the symmetric criterion epd ≤ 1, where p is the maximum probability
of any bad-event and d is the maximum dependency of any bad-event. A number of other criteria
such as the asymmetric criterion can also be stated in terms of the probabilities and dependency-
structure of the bad-events; the most general of these is Shearer’s criterion [37]. Parallel algorithms
usually need a slightly stronger criterion which we refer to as ǫ-slack : the vector of probabilities
(1 + ǫ) PrΩ(B) must satisfy Shearer’s criterion for ǫ > 0.

We will describe the Shearer criterion in terms of stable-set sequences, which is a more useful
tool for analyzing the MT algorithms. The connection between stable-set sequences and the original
form of Shearer’s criterion was developed by Kolipaka & Szegedy [28].

We say that a set J ⊆ B is stable if there are not distinct elements B,B′ ∈ J with B ∼ B′. For
a stable set J , we define N(J) =

⋃

B∈J N(B).
We define a stable-set sequence to be a sequence S = (S1, S2, . . . , Sℓ), where each Si is a non-

empty stable set of B and Si ⊆ N(Si+1) for i = 1, . . . , ℓ− 1. We say that S is singleton and rooted
at B if Sℓ = {B}. We define the depth of S to be ℓ, the size of S to be |S| =

∑ℓ
i=1 |Si| and the

weight of S to be w(S) =
∏ℓ

i=1

∏

B∈Si
PrΩ(B). We define S to be the set of all singleton stable-set

sequences.

Theorem A.1 ([28]). If Shearer’s criterion is satisfied with ǫ-slack, then
∑

S∈S(1+ǫ)|S|w(S) <∞.

In light of Theorem A.1, we define the key parameter W =
∑

S∈S(1 + ǫ)|S|w(S). This allow us
to state the most general bounds. However, Shearer’s criterion is difficult to work with in practice,
so a number of simpler LLL criteria are often used instead.

Theorem A.2. 1. (Asymmetric LLL criterion) Suppose that some function x : B → [0, 1] satisfies

∀B ∈ B Pr
Ω
(B)(1 + ǫ) ≤ x(B)

∏

A∈N(B)

(1− x(A))

Then Shearer’s criterion is satisfied with ǫ-slack and W ≤
∑

B∈B
x(B)

1−x(B) .

2. (Cluster-expansion criterion [5]) Suppose that some function µ : B → [0,∞) satisfies

∀B ∈ B µ(B) ≥ Pr
Ω
(B)(1 + ǫ)

∑

I⊆N(B)
I stable

∏

A∈I

µ(A)

Then Shearer’s criterion is satisfied with ǫ-slack and W ≤
∑

B∈B µ(B).
3. (Symmetric LLL criterion) Suppose that PrΩ(B) ≤ p and |N(B)| ≤ d for every B ∈ B, and

epd(1 + ǫ) ≤ 1. Then Shearer’s criterion is satisfied with ǫ-slack and W ≤ emp.
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For each bad-event B ∈ Vi during Algorithm 8, we define a corresponding sequence Ŝ(B, i) =
(S1, . . . , Si) by setting Si = {B} and then, for j = i− 1, . . . , 1, setting Sj = I ′j ∩N(Sj+1).

Proposition A.3. For B ∈ Vi, the sequence Ŝ(B, i) is a stable-set sequence of depth i rooted at B.

Proof. Clearly Ŝ(B, i) has depth i and Si = {B}, and also clearly Sj ⊆ N(Sj+1). Since I
′
j is stable,

so is each Sj. Finally, to show that Sj is non-empty, consider some A ∈ Sj+1; note that Lemma 4.5
ensures that there is some A′ ∈ N(A) ∩ I ′j−1; this A

′ will appear in Sj .

We say that a given depth-i stable-set sequence S rooted at B appears if Ŝ(B, i) = S. Iliopoulos
[27] showed a connection between appearing stable-sequences and probabilities of bad-events in
Algorithm 2 for a commutative resampling oracle. These bounds also apply to Algorithm 8 since
it is a version of Algorithm 2. We summarize the key result as follows:

Proposition A.4 ([27]). For a commutative resampling oracle, any stable-set sequence S appears
with probability at most w(S).

Using our bounds on stable-set sequences and arguments from [16], we now prove Lemma 4.6:

Proof of Lemma 4.6. Each B ∈ Vi corresponds to an appearing depth-i stable-set sequence Ŝ(B, i).
All such stable-set sequences are distinct: if i 6= i′, then the depths of Ŝ(B, i) and Ŝ(B, i′) are
distinct, while if B 6= B′ then the roots of Ŝ(B, i) and Ŝ(B′, i) are distinct.

Thus,
∑

i |Vi| is at most the number of appearing stable-set sequences. Proposition A.4 shows
that E[|Vi|] ≤

∑

S∈Sw(S) ≤W . So by Markov’s inequality,
∑

i |Vi| ≤ poly(n)W whp.
If Algorithm 8 runs for t rounds, then for each i = 1, . . . , t, there is at least one appearing

depth-i stable set sequence (namely Ŝ(B, i) for an arbitrary B ∈ Vi). Thus, a necessary condition
for Algorithm 8 to run for t rounds is that at least t/2 distinct singleton stable-set sequences of
size at least t/2 appear. By Proposition A.4, the expected number of such sequences is given by

∑

S∈S
|S|≥t/2

w(S) = (1 + ǫ)−t/2
∑

S∈S
|S|≥t/2

w(S)(1 + ǫ)t/2 ≤ (1 + ǫ)−t/2
∑

S∈S

w(S)(1 + ǫ)|S| = (1 + ǫ)−t/2W

By Markov’s inequality, the probability that the actual number exceeds t/2 is at most (1+ǫ)−t/2W
t/2 .

This is below n−Ω(1) for some t = Θ(log(n+Wǫ)/ǫ).

B Alternative variable-assignment LLLL criterion

We summarize here an alternate criterion of Harris for the variable-assignment LLLL [18].
Given a bad-event B of the variable-assignment LLLL and a set E ⊆ N(B), we say that E is

orderable to B if either E = {B}, or there is an ordering B ≡ Xi1 = j1 ∧ · · · ∧ Xik = jk and an
ordering E = {B1, . . . , Bk′} such that, for each ℓ = 1, . . . , k, the bad-event Bℓ demands Xiℓ 6= jℓ
and none of the events Bℓ′ for ℓ′ < ℓ do so. We also say that a map µ : B → [0,∞) satisfies the
orderability criterion with ǫ-slack for B if it satisfies

∀B ∈ B µ(B) ≥ (1 + ǫ) Pr
Ω
(B)

∑

E ⊆ N(B)
E orderable to B

∏

A∈E

µ(A)

The main result of [18] is the following:
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Theorem B.1. Suppose that the map µ satisfies the orderability criterion with ǫ-slack for B. Then
the expected number of resampling executed by the MT algorithm is at most

∑

B∈B µ(B).

To show this, [18] defined a type of witness tree, which differs slightly from the witness trees in
the original analysis of Moser & Tardos and from the stable-set sequences discussed in Appendix A.
Let us summarize very briefly. Suppose we have run the sequential MT algorithm up to some time
T , resampling bad-events B1, . . . , BT , and that some event A is currently true. To generate the
witness tree τ̂A,T , we start with a root node labeled A. For each ℓ = T, T − 1, . . . , 1, we try to add
a node to the tree with label Bℓ, placing it as a child of some node labeled C with C ∼ Bℓ. If there
are multiple eligible positions we place the node at greatest depth (breaking ties arbitrarily).

However, one additional condition is enforced: for any node v ∈ τ̂A,T with label C, the children
of v must have distinct labels C1, . . . , Cs such that {C1, . . . , Cs} is orderable to C. A node v is not
eligible to have a child node labeled B, if adding such node would violate this condition.

We say that a labeled tree τ appears if τ̂A,t = τ for any event A and time t. We define S′ to be
the set of all possible labeled trees that could appear. The key lemma of [18] is the following:

Lemma B.2. Any labeled tree τ appears with probability at most w(τ). Furthermore, we have
∑

τ∈S′

(1 + ǫ)|τ |w(τ) ≤W where we define W =
∑

B∈B µ(B).

Algorithm 7 can be viewed as a simulation of the sequential MT algorithm, so this same lemma
applies to it. By using arguments of [18] for a similar parallel resampling algorithm, we can see
that if a bad-event B is true after T total resamplings in the middle of round of t of Algorithm 8,
then witness tree τ̂B,T has depth t and is rooted at B. This allows us to show a result analogous
to Lemma 4.6 in terms of the orderability criterion, and thereby to show Theorem 5.1. Since the
proof is nearly identical to Lemma 4.6 and Theorem 4.1, we omit it here.

C Proof of Theorem 2.4

We suppose here we have a resampling-space A, R, U,Ω,∼ satisfying conditions (C1), (C2), (C4).
At later stages in the proof we may also assume it satisfies conditions (C3’) and (C5).

It will be convenient to work with ordered sequences from A. We say that H = (A1, . . . , Ak)
is a stable list if Ai 6∼ Aj for i 6= j. For a permutation π ∈ Sk, we define πH = (Aπ1, . . . , Aπk).
Likewise, we define RH to be the set of products hk · · · h1 wherein hi ∈ RAi;Ai+1,...,Ak

. Whenever
we discuss resampling an event C = 〈E〉 and we write E = {A1, . . . , Ak}, then we tacitly assume
that we have chosen to order the elements of E as A1, . . . , Ak, so that RC = RH for the stable list
H = (C1, . . . , Ck).

Proposition C.1. A satisfies (C1).

Proof. Consider C = 〈A1, . . . , Ak〉. Let r1, . . . , rk be independent variables, wherein ri is drawn
from ΓAi;Ai+1,...,Ak

. We need to show that when u ≈ Ω|C, then rk . . . r1u ≈ Ω.
For each i = 0, . . . , k let us define Qi = Ai+1∩· · ·∩Ak and ui = ri . . . r1u. Since each ri is chosen

from RAi;Qi+1, we see that ui ∈ Qi with probability one for all i. We will show that that ui ≈ Ω|Qi

by induction on i. The base case i = 0 is given to us by hypothesis (since C = A1 ∩ · · · ∩Ak), and
the case i = k is what we are trying to prove.

Consider a state ũ ≈ Ω|Ai and r̃ ≈ ΓAi . For any v ∈ U , property (C1) gives Pr(r̃ũ = v) = Ω[v].
If r̃ũ ∈ Qi+1, then we claim that ũ ∈ Qi+1; for, if ũ /∈ Aj for some j > i, then by property (C2)
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r̃ũ /∈ Aj as well. Similarly, if r̃ũ ∈ Qi+1, then r̃ ∈ RAi;Aj ; for if r̃ /∈ RAi;Aj , then by property (C4)
we would have r̃ũ /∈ Aj . Thus, for v ∈ Qi+1, we have

Ω[v] = Pr(r̃ũ = v) = Pr(r̃ũ = v ∧ ũ ∈ Qi+1 ∧ r̃ ∈ RAi;{Ai+1,...,Ak})

= Pr(r̃ũ = v | ũ ∈ Qi+1 ∧ r̃ ∈ RAi;{Ai+1,...,Ak}) Pr(ũ ∈ Qi+1) Pr(r̃ ∈ RAi;{Ai+1,...,Ak})

By induction hypothesis, ui and ũ | ũ ∈ Qi+1 both have the distribution Ω|Qi. Likewise,
ri and r̃ | r̃ ∈ RAi;Qi+1 both have the distribution ΓAi;Qi+1 . Furthermore, the variables ũ, r̃ are
independent and the variables ui, r are independent. This implies that

Pr(r̃ũ = v | ũ ∈ Qi+1 ∧ r̃ ∈ RAi;{Ai+1,...,Ak}) = Pr(riui = v)

So Ω[v] = Pr(riui = v) Pr(ũ ∈ Qi+1) Pr(r̃ ∈ RAi;{Ai+1,...,Ak}). This shows that Pr(riui = v) is
proportional to Ω[v] for any v ∈ Qi+1. Since riui ∈ Qi+1 with probability one, this implies that
ui+1 = riui ≈ Ω|Qi+1.

Proposition C.2. A satisfies (C2).

Proof. Consider C = 〈A1, . . . , Ak〉 and C ′ = 〈E′〉 with C 6∼ C ′, and let u ∈ C − C ′. Consider
r = rk . . . r1 ∈ RC . There must exist some A′ ∈ E′ such that u /∈ A′. We can show that that
ri . . . r1u /∈ A′ for all i, by an induction on i: the base case i = 0 holds since u /∈ A′, and the
induction step follows from property (C2) applied to event Ai and A′.

At i = k, this shows that ru = rk · · · r1u /∈ A′ ⊇ C.

Proposition C.3. Let C = 〈A1, . . . , Ak〉 and C ′ = 〈Ak+1, . . . , Aℓ〉 be events in A where C 6∼ C ′.
For any state u ∈ C ∩ C ′ and r ∈ RC , the following are equivalent:

1. ru ∈ C ′

2. There exist r1, . . . , rk such that r = rk · · · r1 and ri ∈ RAi;Ai+1,...,Ak,Ak+1,...,Aℓ
for all i = 1, . . . , k

Proof. For (2) ⇒ (1), a simple induction on i shows that ri · · · r1u ∈ C ′ for i = 0, . . . , k.
For (1) ⇒ (2), the definition of RC shows r = rk . . . r1 where each ri is in RAi;Ai+1,...,Ak

. If
ri ∈ RAi;E′ for i = 1, . . . , k we are done; otherwise, let i be minimal such that ri /∈ RAi;Aj for some
j > k′. So u′ = ri . . . r1u /∈ Aj. Since C 6∼ C ′, by repeated applications of (C2), we see also that
rk . . . r1u = rk . . . rj+1u

′ is also not in Aj and hence not in C ′.

Corollary C.4. A satisfies (C4).

Proof. For events C,C ′ with C 6∼ C ′, Proposition C.3 gives an explicit condition on r ∈ RC to
ensure that ru ∈ C ′ for u ∈ C ∩ C ′. This condition depends solely on r, and not u itself.

Proposition C.5. If A satisfies (C5), then A satisfies (C5).

Proof. Consider C = 〈E〉 for E = {A1, . . . , Ak}. For each i = 1, . . . , k we define Gi = RAi;Ai+1,...,Ak
.

For i = k + 1, . . . , 1, we claim that there exists exactly one state wi ∈ Ai ∩ · · · ∩ Ak such that
u ∈ Gk . . . Giwi. The base case i = k + 1 holds vacuously with wi = u, and the case i = 1 is what
we are trying to show.

For the induction step, we first show existence. By (C5), there exists wi ∈ Ai such that
wi+1 ∈ RAi;Ai+1wi. So wi+1 = hwi for some h ∈ RAi;Ai+1 . By induction hypothesis, we have
wi+1 ∈ Aj for j > i+ 1. Since Ai 6∼ Aj , it must be the case that wi ∈ Aj and r ∈ RAi;Aj for each
such j. Thus, h ∈ RAi;Ai+1,...,Ak

= Gi and wi ∈ Ai ∩ · · · ∩Ak.
Next, we show uniqueness. Suppose that wi+1 ∈ Giw

′ for some w′ ∈ Ai∩· · ·∩Ak. Since w
′ ∈ Ai

and Gi ⊆ RAi;Ai+1 , by (C5) this implies that w′ = wi.
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Proposition C.6. Suppose that A satisfies (C3’). Then for a stable list H = (A1, . . . , Ak), any
u ∈ U , and any π ∈ Sk, we have RHu = RπHu.

Proof. Since we can generate any permutation π by swapping adjacent elements, it suffices to show
this holds when π = (j j + 1) for some j < k.

Let r = hk · · · h1 ∈ RH wherein each hi ∈ RAi;Ai+1,...,Ak
. Define u′ = hj−1 . . . h1u. Note that

u′ ∈ Aj ∩ Aj+1. By (C3’) applied to events Aj , Aj+1, there exist h′j ∈ RAj , h
′
j+1 ∈ RAj+1;Aj with

h′jh
′
j+1u

′ = hj+1hju
′. Since hj+1hju

′ ∈ Aj+2∩· · ·∩Ak, it must be the case that h′j ∈ RAj+1;Aj+2,...,Ak

and h′j+1 ∈ RAj+1;Aj ,Aj+2,...,Ak
.

Now set r′ = hkhk−1 . . . hj+2h
′
jh

′
j+1hj−1 . . . h1. We thus have shown that r′ ∈ RπH . Further-

more, we have ru = hk . . . h1u = hk . . . hj+2h
′
jh

′
j+1hj−1 . . . h1u = r′u.

Proposition C.7. If A satisfies (C3’), then A satisfies (C3’)

Proof. Consider events C1 = 〈A1, . . . , Ak〉 and C2 = 〈Ak+1, . . . , Aℓ〉 and any u ∈ C1 ∩ C2. By
symmetry, it suffices to show that for any r1 ∈ RC1;C2 , r2 ∈ RC2 there are r′1 ∈ RC1 , r

′
2 ∈ RC2 with

r2r1u = r′1r
′
2u.

DefineH = (A1, . . . , Aℓ). By definition of RC2 , we have r2 = hℓ · · · hk+1 where hi ∈ RAi;Ai+1,...,Aℓ

for i = k + 1, . . . , ℓ. By Proposition C.3, we have r1 = hk · · · h1 where hi ∈ RAi;Ai+1,...,Ak,Ak+1,...,Aℓ

for i = 1, . . . , k. Thus, we see that r2r1 ∈ RH .
Now define H ′ = (Ak+1, . . . , Aℓ, A1, . . . , Ak) and note that H ′ is a rearrangement of the list

H. By Proposition C.6, this implies that there exists r′ ∈ RH′ such that r′u = r2r1u. We
can write r′ = h′k . . . h

′
1h

′
ℓ . . . h

′
k+1, wherein h′i ∈ RAi;A1,...,Ak,Ai+1,...,Aℓ

for i = k + 1, . . . , ℓ, and
h′i ∈ RAi;Ai+1,...,Ak

for i = 1, . . . , k. If we set r′1 = h′k . . . h
′
1 and r′2 = h′ℓ . . . h

′
k+1, then r′1 ∈ RC1 and

by Proposition C.3 we have r′2 ∈ RC2;C1 . We then have r2r1u = r′1r
′
2u as desired.

D Proof of Theorem 3.1

Consider a directed graph G = (V,E), with a permutation π : [n]→ V chosen uniformly at random.
Let Gπ denote the directed acyclic graph on vertex set V and edge-set {(u, v) | (u, v) ∈ E, π−1(u) <
π−1(v)}. Let Iπ denote the LFMIS of G with respect to π. For any integer j ∈ [n], define the
partial LFMIS Iπj = Iπ ∩ {π−1(1), . . . , π−1(j)}. For integers 0 ≤ i ≤ j ≤ n, define the residual

vertex set V π
(i,j] = {π

−1(i+1), . . . , π−1(j)}− Iπi −
⋃

v∈Iπi
Nout(v) and define Gπ

(i,j] to be the induced

subgraph Gπ[V π
(i,j]].

For the purpose of analysis, it will be useful to consider a slowed-down variant of Algorithm 6
called SLOW-GREEDY, as discussed in [6]. Given integers n0, n1, . . . , nk, it is defined as follows:

Algorithm 9 The SLOW-GREEDY algorithm

1: Initialize I = ∅ and A = V
2: for i = 1, . . . , k do

3: while A ∩ V(ni−1,ni] 6= ∅ do

4: Let J be the set of nodes v ∈ A ∩ V(ni−1,ni] such that A ∩N in(v) ∩ P π(v) = ∅.
5: Update I ← I ∪ J and A← A−

⋃

v∈J N
out(v)

We refer to the ith iteration of the loop in line (2) as epoch i. We make the following observations
for Algorithm 9; since the proofs are completely analogous to the undirected case, we refer to the
reader to [6] for full proof details.

25



Proposition D.1 ([6]). For any integers n0, n1, . . . , nk with 0 = n0 ≤ n1 ≤ n2 ≤ · · · ≤ nk = n, we
have the following:

1. SLOW-GREEDY computes the LFMIS of G with respect to π.

2. The number of rounds in Algorithm 6 on G and π is at most the total number of rounds in
SLOW-GREEDY.

3. If all directed paths in Gπ
(ni−1,ni]

have length at most ℓ, then epoch i of SLOW-GREEDY
terminates in at most ℓ rounds.

Algorithm 6 can be viewed as a special case of SLOW-GREEDY with n0 = 0, n1 = n, k = 1; in
particular, this shows that Algorithm 6 correctly computes the LFMIS of G with respect to π.

We now analyze the path lengths in the subgraphs Gπ
(i,j]. For i = 0, . . . , n, let us define

Di = max
v∈V π

(i,n]

|N in(v) ∩ V π
(i,n]|

Proposition D.2. With probability at least 1−n−100, we have Di ≤
200n logn

i for any i = 1, . . . , n.

Proof. Let us fix some vertex v, and we want to show that either v /∈ V(i,n] or |N
in(v) ∩ V(i,n]| ≤ d

for d = 200n logn
i . For each k = 1, . . . , n define Ek to be the event that v is alive and has at least d

alive in-neighbors after step k of Algorithm 5.
We compute the probability of Ek conditional on E1, . . . Ek−1. As E1, . . . , Ek−1 are determined

by π(1), . . . , π(k− 1), it suffices to compute the probability of Ei conditional on π(1), . . . , π(k − 1).
This allows us to determine the set A′ = A ∩N in(v) of alive in-neighbors of v after step k − 1. If
|A′| < d, then Ek is false. Otherwise, we have π(k) ∈ A′ with probability at least d

n−k+1 , in which

case v is removed from A after iteration k and Ek is false. Thus, Pr(Ek | E1, . . . , Ek−1) ≤ 1− d
n−k+1 .

This implies that

Pr(Ei) ≤ (1− d
n)(1−

d
n−1) . . . (1−

d
n−k+1) ≤

(

1− d
n

)i
≤ e−di/n = e−

200i log n
i = n−200

By definition V π
(i,n] contains only vertices which are alive after iteration i. Thus, if Ei is false,

the desired property holds for v and i. To finish, taking a union bound over all n2 values of v, i.

Proposition D.3. Suppose that we condition on π(1), . . . , π(i), and let s = Dij/n, and let L
denote the length of the longest path in Gπ

(i,j]. Then, with probability at least 1− n−5, it holds that

L ≤







O(s) if s ≤ log n

O( logn

log 2 log n
s

) if s > log n

Proof. Consider the induced graph H = G[V π
(i,n]], which depends only on the values π(1), . . . , π(i).

Let d = Di be the maximum in-degree of H. We can enumerate the length k paths of H by choosing
the final vertex in the path (n choices), and each of the k previous vertices in the path (d choices
each), so the number of length k-paths in H is at most n× dk−1.

A necessary condition for a path v1, . . . , vk to survive to Gπ
(i,j] is that π(v1) < π(v2) < · · · <

π(vk) ≤ j. Having conditioned on π(1), . . . , π(i), this event has probability

1

k!
×

j − i

n− i
×

j − i− 1

n− i− 1
× · · · ×

j − i− k + 1

n− i− k + 1
≤ (j/n)k/k!
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Taking a union-bound over all such paths, we have

Pr(L ≥ k) ≤ ndk−1(j/n)k/k! ≤ nsk/k! ≤ (es/k)k

If s > log n, then note that for k = 2es this is at most 2−k ≤ n−10. If s ≤ log n, then set

x = 2 logn
s ≥ 2 and k = 10 logn

logx ≤ O(s); we then have (es/k)k = exp
(

−10 logn
log x × log

(10 logn
es log x

)

)

=

exp
(

−10 logn
log x ×log

(

5x
e log x

)

)

. As x ≥ 1, standard analysis shows that log
(

5x
e log x

)

≥ 0.5 log x for x ≥ 1.

Thus, this is at most exp
(−10 logn

log x × 0.5 log x
)

= e−5 logn = n−5.

We are now ready to bound the runtime. We show a slightly tighter bound in terms of the
maximum in-degree of graph G.

Theorem D.4. Let d = maxv∈G |N
in(v)|. When π is chosen uniformly at random, then:

1. For d ≤ log n, Algorithm 6 takes O
(

logn

log
2 logn

d

)

rounds whp.

2. For d > log n, Algorithm 6 takes O(log n log 2d
logn) rounds whp.

In particular, Algorithm 6 takes O(log d log n) ≤ O(log2 n) rounds whp.

Proof. 1. By Proposition D.3 applied at i = 0, j = n, whp the graph Gπ
(0,n] has maximum path

length O( logn

log 2 log n
s

) where s = Di ≤ d ≤ log n. By Proposition D.1, this implies that Algorithm 6

terminates in O( logn

log
2 logn

d

) rounds whp.

2. We will use Proposition D.1 with parameters k = ⌈log2
4d

logn⌉ and nj = min(n, 2
jn logn

d ) for

j = 1, . . . , k and n0 = 0. Note that nk = n as required, since 2k logn
d ≥ 4d

logn ×
logn
d ≥ 4.

Define si = Dni−1ni/n for i = 1, . . . , k. For i = 1, we have si ≤ dn1/n ≤ d × 2n logn
nd ≤ log n.

For i ≥ 2, Proposition D.2 shows that Dni−1 ≤
200nd logn
2i−1n logn

= O(d/2i) with probability at least

1 − n−100, in which case si ≤ O(d/2i) × (2in log n/d)/n = O(log n). When these events occur,
then by Proposition D.3, each graph Gπ

(ni−1,ni]
for i ≥ 1 has maximum path length O(log n) with

probability at least 1− n−5.
By Proposition D.1, these facts imply that, whp, each epoch of SLOW-GREEDY takes O(log n)

rounds. Overall, the total number of rounds over all k epochs is O(k log n) = O(log n log 2d
logn).

E Hamiltonian cycles of Kn

In order to use algebraic tools, we encode a hamiltonian cycle (x1, . . . , xn, x1) of Kn as the permu-
tation π = (x1 x2 x3 . . . xn). In this way, the ground set U can be viewed as the set of permutations
π consisting of precisely one cycle of length n. We define R to be the group Sn with the natural
group action of left-multiplication on U ; thus properties (D0), (D2), (D3) are trivial.

For any sequence of distinct values x1, . . . , xk, let us define the set of permutations

T (x1, . . . , xk) =
{

(xk zk) · · · (x1 z1) | zi ∈ [n]− {xi, . . . , xk}
}

Note that each choice for the values for z1, . . . , zk give rise to a distinct permutation. Thus,
|T (x1, . . . , xk)| =

(n−1)!
(n−k−1)! .
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We are now ready to define the resampling-space itself. LetQ be the set of paths q = (x1, . . . , xk)
where x1, . . . , xk are distinct elements of [n]. We define the support of the path q by sup(q) =
{x1, . . . , xk}. For such path q, define an atomic event

〈q〉 =
{

π ∈ U | π(x1) = x2, . . . , π(xk−1) = xk
}

We define the dependency relation by setting 〈q〉 ∼ 〈q′〉 if sup(q) ∩ sup(q′) 6= ∅.
For a given set X ⊆ [n], let us define UX to be the set of permutations in Sn whose cycle

structure consists of fixed points at each x ∈ X, along with a single cycle on [n] −X. Note that
U = U∅. There is an important permutation which “normalizes” the path q = (x1, . . . , xk), namely

λq = (xk xk−1 . . . x1)

For q = (x1, . . . , xk), we define Γ〈q〉 to be to the uniform distribution on T (x1, . . . , xk−1)λq. The
following observations explain the role of λq:

Observation E.1. For π ∈ Sn and path q = (x1, . . . , xk), we have π ∈ 〈q〉 iff λqπ ∈ U{x1,...,xk−1}.

Proposition E.2. Let A = 〈(x1, . . . , xk)〉. For π ∈ A and σλq ∈ RA, we have σλqπ ∈ U .

Proof. Let σ = (xk−1 zk−1) · · · (x1 z1) where zi ∈ [n]−{xi, . . . , xk−1}, and τi = (xi zi) · · · (x1 z1)λqπ
for i = 0, . . . , k − 1. We show by induction on i that τi ∈ U{xi+1,...,xk−1}. The base case at i = 0 is
precisely Observation E.1 since τ0 = λqπ, and the case at i = k − 1 is what we are trying to show
since σ = τk−1 and U∅ = U .

For the induction step, we have τi = (xi zi)τi−1. The point xi does not appear in the cycle of
τi−1 by induction hypothesis. However, since zi ∈ [n]− {xi, . . . , xk−1}, the point zi does so. Thus
τi has xi inserted just before zi in its cycle, moving xi from a fixed point to part of its cycle.

We now show that the necessary properties are satisfied.

Proposition E.3. Properties (C5) and (C1) hold.

Proof. Consider A = 〈q〉 for a path q = (x1, . . . , xk) and let ρ ∈ U . We claim that there is precisely
one choice for the ordered pair (σ, π) with σ ∈ T (x1, . . . , xk−1) and π ∈ A such that ρ = σλqπ.

Since π is uniquely determined from ρ, σ, we will show that there is precisely one choice for σ
such that σ−1ρ ∈ λqA. By Observation E.1, this is equivalent to showing σ−1ρ ∈ U{x1,...,xk−1}.

Consider σ = (xk−1 zk−1) . . . (x1 z1) where zi ∈ [n]−{xi, . . . , xk}. We want to show that there is
a unique choice for indices z1, . . . , zk−1 such that σ−1ρ = (x1 z1) . . . (xk−1 zk−1)ρ is in U{x1,...,xk−1}.

It suffices to show that for any index j = k − 1, . . . , 1 and τ ∈ U{xj+1,...,xk−1}, there is a unique
choice for zj such that (xj zj)τ ∈ U{xj ,...,xk−1}. Since τ ∈ U{xj+1,...,xk−1}, the element xj appears in
the full cycle, followed by some y /∈ {xj+1 . . . , xk−1}. Now note that (xj zj)τ has an additional fixed
point at xj precisely if zj = y. Thus there is precisely one choice of zj with (xj zj) ∈ U{xj ,...,xk−1}.

This shows the claim and immediately gives (C5). For (C1), note that for any ρ ∈ U , the
probability of ρ = σλqπ, where σ is drawn uniformly from T (x1, . . . , xk−1) and π is drawn uniformly

from A, is precisely 1
|T (x1,...,xk−1)|

× 1
|A| =

(n−k−1)!
(n−1)! ×

1
(n−k−1)! =

1
(n−1)! .

Proposition E.4. Property (C2) holds.

Proof. Consider A = 〈q〉 for q = (x1, . . . , xk) and A′ = 〈q′〉 for q′ = (y1, . . . , yj) with A 6∼ A′ and
π ∈ A−A′. There must exist some index ℓ < i with π(yℓ) 6= yℓ+1.

Let σ ∈ T (x1, . . . , xk−1). We claim that σλqπyℓ 6= yℓ+1 so that σλqπ /∈ A′.
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To show this, define τi = (xi zi) · · · (x1 z1)λqπ for i = 0, . . . , k − 1, wherein zj ∈ [n] −
{xj , . . . , xk−1}. Suppose that i is minimal such that τiyℓ = yℓ+1. It cannot be i = 0, as
λqyℓ+1 = yℓ+1 (since yℓ+1 /∈ sup(q)).

For this value i > 0, it must be either that (a) xi = τi−1yℓ, zi = yℓ+1 or (b) zi = σi−1yℓ, xi = yℓ+1.
The former cannot occur as τi−1xi = xi and the latter cannot occur as xi 6= yℓ+1.

Proposition E.5. Let q = (x1, . . . , xk) and b ∈ [n]− {x1, . . . , xk}. Let σ = (xk−1 zk−1) · · · (x1 z1)
where zi ∈ [n]− {xi, . . . , xk−1}. Then σb = b iff z1, . . . , zk−1 are all distinct from b.

Proof. The reverse direction is immediate. For the forward direction, define σj = (xj zj) · · · (x1 z1)
for j = 0, . . . , k−1 and let i ≤ k−1 be minimal such that zi = b. We show by induction that for j ≥ i
we have σjb ∈ {x1, . . . , xk−1}. For the base case, we have σib = (xi b)(xi−1 zi−1) · · · (x1 z1)b = xi.
For the induction step, suppose that σj−1b = xr. If zi 6= xr we have σjb = σj−1b = xr as desired.
If zj = xr, then σjb = (xj xr)σj−1xr = xj , again as desired.

Thus, if some of the zi are equal to b then σb ∈ {x1, . . . , xk−1}, and in particular σb 6= b.

Proposition E.6. Property (C4) holds. Furthermore, for A = 〈q〉, A′ = 〈q′〉 with A 6∼ A′, q =
(x1, . . . , xk), q

′ = (y1, . . . , yj), we have

RA;A′ =
{

(xk−1 zk−1) · · · (x1 z1)λq | zi ∈ [n]− {y2, . . . , yj, xi, . . . , xk−1}
}

Proof. Let ℓ < j. Consider σ = (xk−1 zk−1) · · · (x1 z1)λq ∈ RA. For π ∈ A′, we have σλqπyℓ =
σλqyℓ+1 = σyℓ+1; by Proposition E.5 this is equal to yℓ+1 iff z1, . . . , zk−1 are distinct from yℓ+1.
Thus, σλqπ ∈ A′ iff z1, . . . , zk−1 are distinct from y2, . . . , yj. To show (C4), note that this criterion
does not depend on π, so it either holds for all π ∈ A ∩A′ or none of them.

Given any event A = 〈(x1, . . . , xk)〉 and stable set E 6∼ A, this result allows us to efficiently
draw from RA;E, by selecting indices z2, . . . , zk wherein each zi is distinct from the tail y2, . . . , yj
for each A′ = 〈(y1, . . . , yj) in E. In particular, this shows (D1’).

We will now show commutativity. This follows from the observation that T (x1, . . . , xk) depends
only on the unordered set {x1, . . . , xk}:

Proposition E.7. For any distinct values x1, . . . , xk and any permutation π ∈ Sk, we have

T (x1, . . . , xk) = T (xπ1, . . . , xπk)

Proof. It suffices to consider π = (j j + 1) for j < k. Consider σ = (xk zk) · · · (x1 z1) where
zi ∈ [n] − {xi, . . . , xk}. We will show that there exist wj, wj+1 such that (xj wj)(xj+1 wj+1) =
(xj+1 zj+1)(xj zj) with wj /∈ {xj , xj+2, . . . , xk}, wj+1 /∈ {xj , xj+1, xj+2, . . . , xk}. In this case,
replacing the terms (xj+1 zj+1)(xj zj) with (xj wj)(xj+1 wj+1) allows us to swap xj , xj+1, showing
that σ ∈ T (x1, x2, . . . , xj−1, xj+1, xj , xj+2, . . . , xk). There are a few cases.

1. If all four values zj , zj+1, xj, xj+1 are distinct, then (xj+1 zj+1)(xj zj) = (xj+1 zj+1)(xj zj)
and so wj = zj , wj+1 = zj+1 works.

2. If zj = zj+1 = z, then (xj+1 zj+1)(xj zj) = (xj xj+1 z) = (xj xj+1)(xj+1 z). Thus taking
wj = xj+1 and wj+1 = z works.

3. If zj+1 = xj , then (xj+1 zj+1)(xj zj) = (xj zj xj+1) = (xj zj)(xj+1 zj). Thus taking
wj = zj , wj+1 = zj works.

Proposition E.8. Property (C3’) holds.
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Proof. Let A1 = 〈q1〉, A2 = 〈q2〉 where q1 = (x1, . . . , xk), q2 = (b1, . . . , bℓ) with A1 6∼ A2. We will
show that

RA2RA1;A2 = T (H)λqλq′ (3)

where we define H = (x1, . . . , xk−1, b1, . . . , bℓ−1). Note that λq and λq′ commute since A1 6∼ A2,
and by Proposition E.7 the set T (H) does not depend upon the ordering of the list H, and so by
symmetry this will then show that RA2RA1;A2 = T (H)λqλq′ = RA1RA2;A1 as desired.

Since A1 6∼ A2, the values b1, . . . , bℓ are distinct from x1, . . . , xk. We have |RA2 | =
(n−1)!
(n−ℓ)!

and |T (H)| = (n−1)!
(n−1−(ℓ+k−2))! . Using the explicit description of RA1;A2 from Proposition E.6, we

calculate |RA1;A2 | =
(n−1−(ℓ−1))!

(n−1−(ℓ−1)−(k−1))! . Thus |RA2 | × |RA1;A2 | = |T (H)|. We will show that

T (H)λqλq′ ⊆ RA′RA;A′; a counting argument then shows Eq. (3).
Consider τ ∈ T (H) of the form

τ = (bℓ−1 cℓ−1) · · · (b1 c1)(xk−1 zk−1) · · · (x1 z1),

where zi /∈ {xi, . . . , xk−1, b1, . . . , bℓ−1} and ci /∈ {bi, . . . , bℓ−1}.
If zi 6= b1, then λq′(xi zi) = (xi zi)λq′ . Otherwise, for zi = b1, we have λq′(xi zi) = λq′(xi b1) =

(xi bℓ . . . b1) = (xi bℓ)λq′ . This shows that λq′(xk−1 z′k−1) · · · (x1 z′1) = (xk−1 zk−1) · · · (x1 z1)λq′ ,
where z′i is defined as

z′i =

{

b1 if zi = bℓ

zi otherwise

So we have shown that τλqλq′ = (bℓ−1 cℓ−1) · · · (b1 c1)λq′(xk−1 z′k−1) · · · (x1 z′1)λq. Since zi /∈
{xi, . . . , xk−1, b1, . . . , bℓ−1}, likewise z′i /∈ {xi, . . . , xk−1, b2, . . . , bℓ}. So, by Proposition E.6 we have
(xk−1 z′k−1) · · · (x1 z′1)λq′ ∈ RA;A′ . Clearly, (bℓ−1 cℓ−1) · · · (b1 c1)λq ∈ RA. So we have shown that
τλqλq′ can indeed be written as an element of RA2RA1;A2 .

F Perfect matchings of K
(s)
n

Let us fix s ≥ 2 throughout this section and n a multiple of s and we define U =M to be the set of

perfect matchings of K
(s)
n . Note that the case s = 2 is the space of perfect matchings of Kn, which

has been studied more extensively, with a commutative resampling oracle given by Kolmogorov
[29]. In [30], Lu, Székély & Mohr showed (non-algorithmically) that the LLLL held for all s ≥ 2.

We will construct an oblivious resampling-space for the uniform distribution onM. This gives
efficient sequential algorithms. We also show that when s = 2, the space is commutative and is
compatible with our parallel algorithm.

The probability space Ω is the uniform distribution onM. For every size-s subset e of [n], we
define the atomic event

〈e〉 =
{

M ∈M | e ∈M
}

The dependency relation ∼ is defined by setting 〈e〉 ∼ 〈e′〉 iff e 6= e′ and e ∩ e′ 6= ∅.
The monoid R is the symmetric group Sn, with the natural group action on U defined by

σM =
{

{σx1, . . . , σxs} | {x1, . . . , xs} ∈M
}

It is clear that properties (D0), (D2), (D3) hold.
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Whenever we enumerate an edge e = {x1, x2, . . . , xs}, we always assume implicitly it is sorted
so that x1 < x2 < · · · < xs. With this notation in mind, for an event A = 〈{x1, . . . , xs}〉 we define
the set of permutations

RA =
{

(x2 z2) . . . (xs zs) | zi ∈ [n]− {x1, . . . , xi−1}
}

and we define ΓA to be the uniform distribution on RA. Note that each choice of z2, . . . , zs gives
rise to a distinct permutation, so that ΓA also corresponds to the distribution obtained by choosing
each index zi independently and uniformly from the range the [n]− {x1, . . . , xi−1}.

Proposition F.1. For any event A = 〈e〉 and any N ∈ M, there are precisely (s − 1)! ordered
pairs (σ,M) ∈ RA ×A such that σM = N . In particular, for s = 2, property (C5) holds.

Proof. Let e = {x1, . . . , xs}. Since M is uniquely determined from σ,N it suffices to show there
are precisely (s− 1)! choices for σ such that σ−1N ∈ A.

Consider σ = (x2 z2) · · · (xs zs) where zi ∈ [n] − {x1, . . . , xi−1}. For each j = 1, . . . , s let us
define Aj to be the set of matchings M such that {x1, . . . , xi} ⊆ e for some e ∈M . We claim that,
given any matching M ∈ Aj, there are precisely s− j choices for zj+1 ∈ [n]−{x1, . . . , xj} such that
(xj+1 zj+1)M ∈ Aj+1. As N ∈ A1 = M and As = s, this will establish that there are precisely
(s− 1) · · · 1 = (s− 1)! choices for z2, . . . , zs such that (xs zs) · · · (x2 z2)N = σ−1N is in A.

Now suppose we have chosen values z2, . . . , zj , and so N ′ = (xj zj) . . . (x2 z2)N has been
determined. By hypothesis, N ′ ∈ Aj and so N ′ contains an edge e = {x1, . . . , xj , y1, . . . , ys−j}.
We have (xj+1 zj+1)N

′ ∈ Aj+1 iff xj+1 is swapped into edge e, which occurs precisely when
zj+1 ∈ {y1, . . . , ys−j}. Thus, there are s− j choices for zj+1 as we have claimed.

Proposition F.2. Property (C1) holds.

Proof. Consider event A = 〈e〉. By Proposition F.1, there are precisely (s−1)! pairs σ ∈ RA,M ∈ A
which lead to a given matching N = σM . Thus, when σ ≈ ΓA and M ≈ Ω|A, we have Pr(σM =
N) = (s− 1)!× 1

|RA| ×
1
|A| . This does not depend upon N , and so σM is uniformly distributed.

Proposition F.3. Property (C2) holds.

Proof. Consider A = 〈e〉 where e = {x1, . . . , xs} and A′ = 〈e′〉 and M ∈ A − A′. We cannot have
A = A′ since A−A′ is non-empty, and so e, e′ are disjoint.

Suppose for contradiction that e′ ∈ σM for σ ∈ RA. Let i ≥ 2 be maximal such that e′ ∈
(xi zi) · · · (xs zs)M . We must have i ≤ s, since e′ /∈ M . It must be the case that zi ∈ e′. Then
matching N = (xi+1 zi+1) · · · (xs zs)M must contain an edge (e′−zi)∪{xi}. Thus, xi is matched to
the vertices e′−zi in N . On the other hand, the entries zi+1, . . . , zs are all distinct from x1, . . . , xi+1;
therefore, in the matching N , the entries x1, . . . , xi are not affected, and so x1, . . . , xi are matched
to each other. Thus xi is matched in N to s − 1 vertices in e′ as well as i − 1 vertices in e. Since
N contains only s-edges, this is impossible.

Proposition F.4. Let A = 〈e〉 where e = {x1, . . . , xs} and A′ = 〈e′〉 and M ∈ A ∩ A′ for
A 6∼ A′. Consider σ ∈ RA of the form σ = (x2 z2) · · · (xs zs) where zi ∈ [n] − {x1, . . . , xi−1}. Let
Z = {z2, . . . , zs}.

1. If A = A′, then σM ∈ A′ ⇔ Z ⊆ e′

2. If A 6= A′, then σM ∈ A′ ⇔ Z ∩ e′ = ∅.
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Proof. For case (1), suppose Z ⊆ e′ = e. So each (xi zi) permutes two elements within e, and thus
a simple induction on i shows that (xi zi) · · · (xs zs)M = M for all i = k + 1, . . . , 2. In particular
σM = M . On the other hand, let i be maximal such that zi /∈ e. Then (xi+1 zi+1) · · · (xs zs)M = M .
This zi will remain matched to x1 in (x2 z2) · · · (xs zs)M , and in particular e /∈ (x2 z2) · · · (xs zs)M .

For case (2), we have e ∩ e′ = ∅ since A 6∼ A′. If Z ∩ e′ = ∅, then edge e′ is unaffected in
(x2 z2) · · · (xs zs)M , and so e′ ∈ M . On the other hand, let i be maximal such that zi ∈ e′. This
zi remains matched to x1 in (x2 z2) · · · (xs zs)M , and in particular the edge e′ cannot remain in
(x2 z2) · · · (xs zs)M .

Proposition F.5. Property (C4) holds.

Proof. Proposition F.4 gives an explicit condition on when σM ∈ A′ for A 6∼ A′,M ∈ A ∩ A′, σ ∈
RA. This condition depends solely on A,A′, σ and not on M .

Proposition F.6. Property (D1’) holds.

Proof. Consider E = {〈e1〉, . . . , 〈ek〉} and A = 〈e〉 where e = {x1, . . . , xs}. If e1, . . . , ek are distinct
from e, then we can sample σ = (x2 z2) . . . (xs zs) ≈ ΓA;E by selecting each zi independently from
the set [n] − (e1 ∪ · · · ∪ ek) − {x1, . . . , xi−1}. Similarly, if one of the sets ei is equal to e, then we
select zi independently from e− {x1, . . . , xi−1}.

Proposition F.7. For s = 2, property (C3’) holds.

Proof. Consider A1 = 〈(x1, y1)〉, A2 = 〈(x2, y2)〉 and a matching M ⊇ {{x1, y1}, {x2, y2}}. We
need to show that for any z1 ∈ [n] − {x1}, z2 ∈ [n] − {x1, y1, x2} there are z′2 ∈ [n] − {x2} and
z′1 ∈ [n]− {x2, y2, x1} such that

(y1 z1)(y2 z2)M = (y2 z′2)(y1 z′1)M (4)

By relabeling, we assume without loss of generality that x1 = 1, y1 = 3, x2 = 2, y2 = 4, and
z1, z2 ∈ {1, . . . , 6}, and that either M = {{1, 3}, {2, 4}, {5, 6}} or M = {{1, 3}, {2, 4}, {5, 7}, {6, 8}}.
We have exhaustively tested all choices z1, z2 in both cases, verifying that there is always a choice
of z′1, z

′
2 ∈ {1, . . . , 8} satisfying Eq. (4).
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