
37

Understanding (Mis)Behavior on the EOSIO Blockchain

YUHENG HUANG, Beijing University of Posts and Telecommunications, China
HAOYU WANG∗, Beijing University of Posts and Telecommunications, China
LEI WU∗, Zhejiang University, China
GARETH TYSON, Queen Mary University of London, United Kingdom
XIAPU LUO, The Hong Kong Polytechnic University, China
RUN ZHANG, Beijing University of Posts and Telecommunications, China
XUANZHE LIU, Peking University, China
GANG HUANG, Peking University, China
XUXIAN JIANG, PeckShield, Inc., China

EOSIO has become one of the most popular blockchain platforms since its mainnet launch in June 2018.
In contrast to the traditional PoW-based systems (e.g., Bitcoin and Ethereum), which are limited by low
throughput, EOSIO is the first high throughput Delegated Proof of Stake system that has been widely adopted
by many decentralized applications. Although EOSIO has millions of accounts and billions of transactions, little
is known about its ecosystem, especially related to security and fraud. In this paper, we perform a large-scale
measurement study of the EOSIO blockchain and its associated DApps. We gather a large-scale dataset of
EOSIO and characterize activities including money transfers, account creation and contract invocation. Using
our insights, we then develop techniques to automatically detect bots and fraudulent activity. We discover
thousands of bot accounts (over 30% of the accounts in the platform) and a number of real-world attacks (301
attack accounts). By the time of our study, 80 attack accounts we identified have been confirmed by DApp
teams, causing 828,824 EOS tokens losses (roughly $2.6 million) in total.

CCS Concepts: • Information systems → Web mining; • Security and privacy → Intrusion/anomaly
detection and malware mitigation;Web application security;

Keywords: EOSIO; blockchain; bot account; DApp; attack detection

ACM Reference Format:
Yuheng Huang, Haoyu Wang, Lei Wu, Gareth Tyson, Xiapu Luo, Run Zhang, Xuanzhe Liu, Gang Huang,
and Xuxian Jiang. 2020. Understanding (Mis)Behavior on the EOSIO Blockchain. In Proc. ACM Meas. Anal.
Comput. Syst., Vol. 4, 2, Article 37 (June 2020). ACM, New York, NY. 29 pages. https://doi.org/10.1145/3392155

∗Corresponding Authors: Haoyu Wang (haoyuwang@bupt.edu.cn) and Lei Wu.

Authors’ addresses: Yuheng Huang, Beijing University of Posts and Telecommunications, Beijing, China; Haoyu Wang,
Beijing University of Posts and Telecommunications, Beijing, China, haoyuwang@bupt.edu.cn; Lei Wu, Zhejiang University,
Hangzhou, China; Gareth Tyson, Queen Mary University of London, London, United Kingdom; Xiapu Luo, The Hong Kong
Polytechnic University, HongKong, China; Run Zhang, Beijing University of Posts and Telecommunications, Beijing, China;
Xuanzhe Liu, Peking University, Beijing, China; Gang Huang, Peking University, Beijing, China; Xuxian Jiang, PeckShield,
Inc. Beijing, China.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee
provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and
the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored.
Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires
prior specific permission and/or a fee. Request permissions from permissions@acm.org.
© 2020 Association for Computing Machinery.
2476-1249/2020/6-ART37 $15.00
https://doi.org/10.1145/3392155

Proc. ACM Meas. Anal. Comput. Syst., Vol. 4, No. 2, Article 37. Publication date: June 2020.

37:2 Huang and Wang, et al.

1 INTRODUCTION
Blockchain technologies, such as Bitcoin [25], have experienced much hype in recent years. They
have been proposed for applications in many areas, including financial and logistical systems. For
example, the Internet giant Facebook recently announced their plans for a cryptocurrency [24].
Blockchain technologies have found particular popularity with decentralized application (DApp)
developers, most notably for creating smart contracts. These consist of a decentralised protocol
which is capable of digitally negotiating an agreement in a cryptographically secure manner. As
the most widely used blockchain system after Bitcoin, Ethereum [26] offers support for executing
smart contracts, yet it suffers from poor performance (as with Bitcoin) due to the reliance on
Proof-of-Work (PoW) consensus protocols.

This has motivated researchers to propose new blockchain approaches that employ more efficient
consensus mechanisms. One particularly prominent example is EOSIO, the largest Initial Coin
Offering (ICO) project to date (over $4 billion). EOSIO adopts a Delegated Proof-of-Stake (DPoS)
consensus protocol. This allows EOSIO to achieve far higher performance throughput, i.e., up to
8, 000 Transactions Per Second (TPS) within a single thread, and unlimited for multiple-threaded
cases [2]. As a result, EOSIO has grown rapidly and successfully surpassed Ethereum in DApp
transactions just three months after its launch (in June 2018). For example, a recent report demon-
strated that the average amount of EOS (the EOSIO currency) traded in 24 hours has achieved 57
million (with a peak exceeding 80 million) [18]. As a comparison, Bitcoin has an average of 825
thousand transactions and Ethereum has an average of 717 thousand transactions.

Consequently, EOSIO has attracted significant attention from both industry and research commu-
nities alike. Criticisms, however, have started to emerge, accusing EOSIO of suffering from superficial
prosperity, i.e., it has a large number of transactions, yet the majority of users are inactive [3, 27].
Furthermore, recent years have witnessed attacks against EOSIO, exploiting vulnerabilities in
DApps. This has resulted in millions of dollars lost [14, 17, 23]. Despite these anecdotes [56, 63], we
still lack a comprehensive understanding of EOSIO’s operation in the wild, especially the severity of
problems that EOSIO faces.
To rectify this, we present a detailed study of the EOSIO ecosystem at scale, longitudinally

and across various dimensions. To this end, we first gather a large-scale dataset containing both
on-chain data of EOSIO and off-chain data related to DApps and attacks (Section 3). Our dataset
consists of over 3 billion transactions, over 1 million EOSIO accounts, thousands of bots and a
number of attack reports. Based on the collected dataset, we then perform an explorative study
to characterize the activities on EOSIO (Section 4), including money transfer, account creation,
and contract invocation. Following this, we identify bot-like accounts and fraudulent activities
by mining the relations and behavioral similarities among millions of accounts (Section 5). We
further investigate their incentives and purposes. Finally, we characterize security issues in EOSIO,
including permission misuse issues and attacks (Section 6).
To the best of our knowledge, this is the first comprehensive study of the EOSIO blockchain at

scale, longitudinally, and across various dimensions. We have revealed a range of seriousmisbehaviors.
Among many interesting results and observations, the following are prominent:

• The overall ecosystems follows the Pareto principle. Although the overall ecosystem
shows a growing volume of transactions (over 1 billion transfers), EOSIO is dominated by a
small percentage of accounts. The top 0.47% of accounts constitute 89% of the total transaction
volume. Cryptocurrency exchanges and gambling DApps dominate the transactions. Over
32% of the accounts are “silent”: they have never actively initiated any transaction with
other accounts.

Proc. ACM Meas. Anal. Comput. Syst., Vol. 4, No. 2, Article 37. Publication date: June 2020.

Understanding (Mis)Behavior on the EOSIO Blockchain 37:3

• Bot-like accounts are prevalent. We flag over 30.82% of the accounts (381,837) as bot-like,
with over 188 million transactions, and 776 million EOS transferred. These bots are mainly
used for malicious and fraudulent purposes including Bonus Hunting, Clicking Fraud, etc.

• Permissionmisuse issues are overlooked by users.We identify permissionmisuse issues
of 5,541 accounts, i.e., granting their “eosio.code” permissions to other accounts, which could
cause serious security issues (e.g., the accounts with that granted permission can stealthily
transfer users’ EOS tokens even without their attentions).

• EOSIO suffers from a number of serious attacks.We identify over 301 suspicious attack
accounts, causing over 1.5 million EOS losses. We have reported them to the DApp teams
(developers): 80 of the attacks (with 828,824 EOS losses) have been confirmed by the time of
our study. We further assist the DApp teams in tracing the losses.

We develop core methodologies to trace attacks and fraud, as well as deriving key insights
into EOSIO. Our efforts contribute developer awareness, inform the activities of the research
community and regulators, and promote better operational practices. We have released our dataset
and experiment results to the research community at Github:

https://github.com/EOSIO-analysis/EOSIO_open_source_data

2 BACKGROUND
We start by briefly presenting key concepts. Note that this is intended as an overview; we refer
readers to [15] for full details.

2.1 Overview of EOSIO
EOSIO is a decentralized enterprise system that executes industrial-scale DApps [20] — software
which relies on the EOSIO blockchain to cryptographically record transactions. The most common
transaction is transferring the EOSIO currency token, named EOS. In contrast to Bitcoin or Ethereum,
EOSIO is a DPoS-based system, which can scale to millions of transactions per second, making
EOSIO an attractive option for new DApp developers.

There are four key concepts to understand within EOSIO. If an entity wishes to interact with the
EOSIO blockchain, it must first create an account. This unique identity can then invoke a smart
contract through a transaction, which consists of one or more actions to perform. For example, an
action might be transferring an EOS token from one account holder to another. To enable this
process, accounts wishing to invoke a contract must first delegate appropriate permissions, granting
it the privileges to act on its behalf. The rest of this section describes in detail these four concepts.

2.2 EOSIO’s Smart Contract and Transactions
EOSIO adopts C++ as the official language for DApp developers to develop smart contracts. In
particular, the source code of smart contract is first compiled down to WebAssembly (aka Wasm)
bytecode. Upon invocation, the bytecode will then be executed in EOSIO’s Wasm VM, resulting in
transactions recorded on the blockchain, e.g., transferring EOS. As the basic element of communi-
cation between smart contracts, an action is a base32 encoded 64-bit integer which can be used to
represent a single operation. There are two types of actions: external action, when the user calls
an action directly from the outside; and an inline action, where an inline action refers to a call to
another action in a smart contract (same or external).

Each transaction can consist of one or more actions. In EOSIO, there are two ways to send actions
for communication: an inline action that performs an operation within the same transaction as
the original action, and deferred action that might be scheduled to perform operation in a future
(deferred) transaction. Inline actions are guaranteed to execute synchronously, while deferred

Proc. ACM Meas. Anal. Comput. Syst., Vol. 4, No. 2, Article 37. Publication date: June 2020.

37:4 Huang and Wang, et al.

actions will be executed asynchronously if being scheduled. The transaction will be rolled back if
an inline action fails or raises an exception.

2.3 EOSIO’s Account Management
In EOSIO, accounts are the entities that can execute transactions. An EOSIO account is a human-
readable name (up to 12 characters) recorded on the blockchain. In practice, accounts are autho-
rization structures that can define senders and receivers of contracts. Accounts can also grant
permissions to contracts and be configured to provide individual or group access to transfer/push
any valid transactions to the blockchain.

Note that an EOSIO account is different from (and more complicated than) that of Ethereum. Most
notably, accounts are hierarchical and can only be created by an existing account, thereby creating
a tree structure. This means the resources required to create new accounts must be allocated by
existing accounts (except the first privileged account named eosio — the root of the tree — created
by the blockchain system when the mainnet was launched). This inevitably consumes system
resource (RAM) and therefore the account creation of EOSIO is not free.1 This characteristic does
affect the behaviors of the blockchain, and determines the necessity and methods to perform the
relevant analyses in Section 4 and Section 5.
Permissions associated with an EOSIO account are used to authorize actions and transactions

to other accounts [36]. Specifically, the account can assign public/private keys to specific actions,
and a particular key pair will only be able to execute the corresponding action. By default, an
EOSIO account is attached to two public keys: the owner key (which specifies the ownership of the
account) and the active key (which grants access to activities with the account). These two keys
authorize two native named permissions: the owner and active permission, to manage accounts.
Apart from the native permissions, EOSIO also allows customized named permissions for advanced
account management.

2.4 Example

@alice

@carol

@alice
permissions

owner

active

custom1

custom2

Authorities

@aliceactive authority

threshold

2

accounts/keys weights

bob@active 2

carol@active 2

EOS8RtT... 1

EOS64Zv... 1

…

PermissionsAccounts

…

…

@bob @dave

@xxx @yyy @zzz

…

Fig. 1. An example of EOSIO accounts.

Fig. 1 gives an example to demonstrate the relationship between accounts, associated permissions
and authorities. These account permissions can be delegated to actions, such that transactions can
be performed on their behalf. The left most part of the figure shows the hierarchical structure (i.e.,
tree) of the accounts. The account named alice (marked as grey) is the root of the tree. Alice has
created three other accounts: bob, carol and dave. The central part of the figure shows that alice has
1More precisely, one has to buy RAM to store the account data [37].

Proc. ACM Meas. Anal. Comput. Syst., Vol. 4, No. 2, Article 37. Publication date: June 2020.

Understanding (Mis)Behavior on the EOSIO Blockchain 37:5

4 permissions, including two native permissions (owner and active) and two customized permission
(custom1 and custom2) respectively. The right most part of the figure gives the authority table of
the grey marked permission active. This cryptographically states which permissions have been
allocated to the children accounts of alice. Note that there exists a threshold that must be reached
to authorize the execution of the action. In addition, in order to be executed by or on behalf of alice,
a weight threshold of 2 must be reached as well [36]. The permissions and authorities will be used
in Section 6.1.

3 STUDY DESIGN & DATA COLLECTION
We seek to focus on the following three research questions (RQs):
RQ1 What are the characteristics of accounts and their transaction behaviors in the EO-

SIO ecosystem? No previous work has characterized the EOSIO ecosystem, including the
health of the platform and the various crypto-assets within. As previous work has investi-
gated the Ethereum blockchain [45], we wish to compare them and understand the difference
between these two blockchain platforms.

RQ2 How severe is the presence of bot activities in the ecosystem? As many applications
experience a range of bot activities [9], we wish to investigate whether blockchains are
also inundated with bot activities. Although millions of transactions are emerging on the
EOSIO platform, it is unknown how many of them are manipulated by bots and how many
accounts/activities are fake.

RQ3 Can we identify real-world security issues by analyzing the accounts and transac-
tions we collect? As one of the most popular platforms for DApps, EOSIO has always been
the target for hackers. A number of reports have already revealed attacks, leading to millions
of dollars lost. Thus, it is interesting to explore whether we can identify real-world attacks
and build an early warning system.

3.1 Data Collection
To provide a comprehensive analysis of EOSIO, we first seek to harvest both on-chain data and
off-chain information (cf. Table 1):
1) On-chain data of EOSIO blockchain:

• Transaction Records. To enforce a fine-grained analysis, we use actions to measure the
transaction activities because actions are the basic unit that constitute a transaction in EOSIO,
as mentioned in Section 2. However, due to the volume of on-chain data, it is not feasible
to fetch them either by querying public API endpoints or by crawling from the blockchain
explorer. To solve the problem, we have built a customized EOSIO client, which can be used
to synchronize with the mainnet in an efficient way. Specifically, the core service daemon
(named nodeos) of the official client provides different approaches as plugins to synchronize
the data. We further customize the MongoDB plugin (i.e., mongo_db_plugin) to accelerate the
performance. As a result, we can archive blockchain data through MongoDB directly rather
than fetching data from the client2. Note that we also collected all the notifications on the
EOSIO blockchain, which could be used to facilitate the detection of specific kinds of attacks
(e.g., Fake EOS Transfer attack, see Section 6).

• Account Information. An EOSIO account has many attributes, including creation informa-
tion (e.g., creator and creation time), owned system resources, assigned keys and permissions.
The creation information can be traced by crawling blockchain explorers (we take advantage

2mongo_db_plugin was deprecated on June, 2019. The state_history_plugin and the history-tools are recommended offi-
cially [38].

Proc. ACM Meas. Anal. Comput. Syst., Vol. 4, No. 2, Article 37. Publication date: June 2020.

37:6 Huang and Wang, et al.

Table 1. Overview of Our Dataset (On-chain And Off-chain)

Category Amount
Action trace 3, 208, 168, 339 actions

Account information 1, 239, 030 accounts
DApp accounts 1, 513 accounts
Bot accounts 63, 956 accounts

Attack accounts 37 accounts

of EOSPark). Other information can be queried through public API endpoints [8]. Many engi-
neering efforts were required to overcome the heterogeneous structures of different explorers
and APIs. To this end, we have implemented a generic collector that is capable of crawling
and querying necessary account information.

2) Off-chain data related to DApps, Bots and Attacks:
• DApp Information. As accounts on the EOSIO all have human-readable names, finding
whether an account belongs to a DApp is more straightforward than Ethereum. By crawling
data from websites including DAppTotal [13] and DAppReview [12], we have annotated
accounts with their DApp. To the best of our knowledge, we have collected the most complete
list of Dapp accounts available.

• Bot Accounts. Blockchain bots have been revealed by DApp teams and blockchain security
companies [27, 33]. We have collected 63,956 bot-like accounts with the help of PeckShield [29],
which will be used as our ground-truth in bot accounts identification (see Section 5).

• Attack Information. A number of attacks on EOSIO have already been observed in the wild.
To measure the severity, we collect existing attack information, including date, participants
(victims and attackers) and damage, by monitoring and collecting security news and blogs
from well-known blockchain security companies. Based on this ground-truth dataset, we
implement a monitoring system to perform attack detection and forensics (see Section 6).

In summary, we have collected transactions from 2018.06.09 to 2019.05.31, with over 3 billion
actions in total. We also collected information for all 1,239,030 accounts (including 2, 482, 192 keys).
Moreover, we have collected 1, 513 DApp accounts, 63,956 bot-like accounts and 40 attack events
(including 37 attack accounts).

3.2 Study Approach
To answer RQ1, we are focused on three important behaviors, including money transfer, account
creation and contract invocation, mainly based on graph analysis. To answer RQ2, we perform an
analysis of the account relationships to pinpoint bot candidates, and then perform behavior-level
similarity comparison to identify real bot accounts. To answer RQ3, we first provide a taxonomy
of the attacks found in the EOSIO platform. Then we further seek to explore the characteristics
of different kinds of attacks with regard to their behaviors at the transaction-level. Based on the
summarized behaviors, we have implemented a warning system to flag suspicious attacks and then
perform manually verification.

4 GENERAL OVERVIEW OF EOSIO
We first conduct a comprehensive investigation of EOSIO, exploring money transfers, account
creation and contract invocation.

Proc. ACM Meas. Anal. Comput. Syst., Vol. 4, No. 2, Article 37. Publication date: June 2020.

Understanding (Mis)Behavior on the EOSIO Blockchain 37:7

2018-06-09 2018-08-28 2018-11-16 2019-02-04 2019-04-25
date

0.00

0.25

0.50

0.75

1.00

nu
m

 o
f t

ra
ns

fe
r

1e7

(2018-11-10 , 11559894)

Fig. 2. The distribution of money transfers over time.

4.1 Money Transfers
4.1.1 Overview of Money Transfers. The total number of money transfer transactions is over 1

billion (1, 055, 690, 229), and the total number of EOS tokens being transferred is 15, 190, 552, 483.9523
EOS tokens. This represents over $47 billion market value3. Fig. 3 shows the number of transfers
and accounts involved over time. We see that the number of transfers achieves its peak between
2018.11.09 to 2018.11.14. This is mainly due to the rising popularity of four gambling games (EOS
Max, Dice, FAST and EOSJacks), as they cover 59.66 % of the total transfers during that time.

100 102 104 106 108

Transfer times per account

0.0

0.2

0.4

0.6

0.8

1.0

CD
F

of
 tr

an
sf

er
 ti

m
es

(105 , 90%)

Transfer In
Transfer Out

100 102 104 106 108

transfer quantity

0.0

0.2

0.4

0.6

0.8

1.0

CD
F

of
 tr

an
sf

er
 a

ct
io

n

(4 , 90%)

quantity

0.0 0.2 0.4 0.6 0.8 1.0
Top account ordered by quantity

0.0

0.2

0.4

0.6

0.8

1.0

CD
F

of
 to

ta
l E

OS
 fl

ow

(0.47% , 89%)

quantity

Fig. 3. Distributions of transfer frequency and quantity.

The distributions of transfer frequency and quantities are further shown in Fig. 3. The number
of accounts involved in transfers is 944, 907; in other words, 294, 123 (23.74% of all) accounts do
not perform any transactions. Fig. 3(a) shows that the transfer frequency of the majority of nodes
is below 100, which implies that most accounts are not particularly active. One interesting detail
is that 249, 644 accounts (20.15% of total) exclusively receive EOS tokens but never transfer them
out. Fig. 3(b) also shows the quantity exchanged within each transaction. For the 1 billion money
transfers, most are small: over 90% are under 4 EOS. We further analyze the total amount of money
transfers for each account (see Fig. 3(c)), and find that 0.47% of the accounts make up approximately
90% EOS tokens being transferred, which is a typical Pareto effect.

4.1.2 Graph Modeling of Money Transfers. We next inspect which accounts perform transfers.
To achieve this, we construct a graph from the set of < f rom, to,value > transaction tuples.
However, this would ignore time information, which is important and necessary to capture abnormal
behaviors. Therefore, we construct an Enhanced Money Flow Graph (EMFG) with timestamps, as
follows:
3We use the price up to October 2019 to calculate the market value.

Proc. ACM Meas. Anal. Comput. Syst., Vol. 4, No. 2, Article 37. Publication date: June 2020.

37:8 Huang and Wang, et al.

100 101 102 103 104 105 106

(a) degree

100

10−1

10−2

10−3

10−4

10−5

10−6

pr
op

or
tio

n
of

 n
od

es

y ~ x−2.74

100 101 102 103 104 105 106

(b) Indegree

100

10−1

10−2

10−3

10−4

10−5

10−6pr
op

or
tio

n
of

 n
od

es

y ~ x−2.97

100 101 102 103 104 105 106

(c) Outdegree

100

10−1

10−2

10−3

10−4

10−5

10−6pr
op

or
tio

n
of

 n
od

es

y ~ x−2.18

Fig. 4. The degree distributions of EMFG.

Table 2. A Comparison of The Graph Metrics. Note that the numbers in bold are the metrics of EOSIO
graphs, while the numbers in (brackets) are for Ethereum graphs [45].

Metrics EMFG EACG ECIG
Clustering 0.5049 (0.17) 0(0) 0.2375 (0.004)

Assortativity -0.3392 (−0.12) -0.1539 (−0.35) -0.1834 (−0.2)
Pearson 0.2448 (0.44) /(/) -0.00068 (0.11)
SCC 251,099 (466, 095) 1,239,028 (622, 158) 610,281 (682, 984)

Largest SCC 693,632 (1, 822, 192) 1(1) 688 (84)
WCC 1 (81) 3 (22, 260) 3 (4, 088)

Largest WCC 944,907 (2, 291, 707) 1,239,028 (126, 246) 611,083 (668, 891)

EMFG = (V , E,D,w), E = (vi ,vj ,Dk),vi ,vj ∈ V ,Dk ⊆ D

The order of the nodes in an edge indicates the direction of transferred money. Each edge has a
set of time attributes Dk . For d ∈ Dk , 2018.06.09 ≤ d ≤ 2019.05.31, indicating when the transfer
occurs (UTC time). If account vi transfers multiple EOS to vj across multiple days, there will be
more than one timestamp for edge (vi ,vj). w : (vi ,vj ,d) −→ R+ associates each edge (vi ,vj) on a
particular day d with the transfer quantity.

(a) EMFG (b) EACG (c) ECIG

Fig. 5. Visualization of the constructed graphs.

To measure the properties of the financial transactions, we apply some well-defined network
metrics. The clustering coefficient [11] measures the tendency that two nodes in a network cluster
together; this is calculated using the approach of [47]. The assortativity coefficient [61] measures the

Proc. ACM Meas. Anal. Comput. Syst., Vol. 4, No. 2, Article 37. Publication date: June 2020.

Understanding (Mis)Behavior on the EOSIO Blockchain 37:9

preference for nodes to attach to others, i.e., a network is assortative when high degree nodes are,
on average, connected to other nodes with high degree, and vice versa. Assortativity is calculated
based on [60]. We use Pearson coefficient [28] to measure the linear correlation between indegree
and outdegree. We also extract theWeakly Connected Components (WCC), and Strongly Connected
Components (SCC). Note that, we will use the same metrics to measure the graphs we construct for
money transfer, account creation and contract invocation.

4.1.3 Results of EMFG Graph Modeling. Overall, there are 10, 438, 158 edges and 944, 907 nodes.
Fig. 5 is a partial visualization of EMFG with 5, 000 nodes (19, 099 edges) randomly selected. The
overall-degree, in-degree and out-degree distributions of EMFG are shown in Fig. 4, and all of them
satisfy the power law distribution.
The metrics for the constructed EMFG are shown in Table 2. For context, we compare against

equivalent metrics for Ethereum, taken from [45] (note that although this study was performed
in 2018, it still offers a useful comparison). First, we see the EMFG is a single WCC because
of the specific account named eosio (the first privileged account created by the system), which
transferred to 163, 937 other accounts during the mainnet launch. This is different from Ethereum,
which contains 81 WCCs. The largest SCC contains 73.41% of all nodes, which is similar to that of
Ethereum (86.59%). This result suggests that EOS tokens can flow from one SCC to another one but
will not be transferred back (i.e., unidirectional transfer).

The clustering coefficient of EMFG is 0.5049, i.e., the likelihood of triadic closure between
accounts, is almost three times as large as that of Ethereum (0.17 [45]). The negative assortativity
coefficient also implies that high-degree nodes are more likely to connect to nodes with lower
degree. Such a phenomenonmay come from the existence of accounts having one-to-many mapping
relationship with others, such as exchanges, DApp games and some specific accounts like eosio
mentioned earlier.

We also identify the most central accounts (measured by PageRank) in the EMFG. For the top-10
accounts, 3 accounts are cryptocurrency exchanges and 4 accounts are gambling DApps. Comparing
with the previous Ethereum study [45], i.e., 8 exchanges and 0 gambling DApp, the composition of
top DApps suggests that EOSIO is very much about speculation of value because nearly half of
the top DApps are gambling games. We further analyze the categories of DApp accounts, and find
that the total volume of Gambling DApps has occupied 78.88% of the overall DApp volume, which
further supports our observation.

Findings #1:Most money transfers via EOSIO are small transfers (< 4 EOS). Although the overall
ecosystem shows a promising volume, EOSIO is dominated by a small percentage of accounts (i.e.,
the top 0.47% of accounts cover 90% of the total volume). Cryptocurrency exchanges and gambling
DApps dominate the transactions.

4.2 Account Creation
4.2.1 Overview of Account Creation. We next inspect the account creation properties that we

observe. The times series of daily account creation is shown in Fig. 6. There are several interesting
peaks. The first stems from the token registration during the mainnet launch. Another peak, arising
between 2019.04.23 and 2019.04.29, may seem a little strange though. 178, 018 accounts were created
during this period, belonging to two wallet accounts: trxcashstart and eostokenhome. However, only
a few accounts were directly created by them: 13, 292 for the former and 13, 014 for the latter. The
majority of the remaining accounts (from the 178, 018) were then indirectly created by the children

Proc. ACM Meas. Anal. Comput. Syst., Vol. 4, No. 2, Article 37. Publication date: June 2020.

37:10 Huang and Wang, et al.

2018 06 09 2018 08 28 2018 11 16 2019 02 04 2019 04 25
date

103

104

105

nu
m

(2018 06 09 , 163941)

(2019 04 28 , 30644)

Fig. 6. Distribution of account creation.

of eostokenhome. This “spawning” process is a bi-product of how accounts are created, hence we
give further analysis in Section 5.

This sporadic spawning of new accounts may suggest that not all are live and active. Hence, we
next inspect if they, indeed, perform any transactions. Although creating an account expends system
resources (like RAM, see Section 2.3), the liveness of accounts on EOSIO is far below expectation.

Overall, 31.75% accounts (i.e., 393, 430) are “silent” — they never actively initiate any transactions
with other accounts and never invoke any smart contracts. The proportion of silent accounts can
therefore be used to reflect the liveness of EOSIO accounts. Even those accounts that do perform
transactions, are rarely used. Over 66% of accounts performed 10 or fewer transactions. Such a
circumstance inevitably reveals the superficial prosperity of the EOSIO blockchain, as most of the
accounts are silent.

4.2.2 Graph Modeling of Account Creation. Intuitively, the relationship formed during account
creation activities can be modelled as a graph. This is because new accounts can only be created
by existing ones (see Section 2). Hence, we define and construct an Enhanced Account Creation
Graph (EACG), as follows:

EACG = (V , E,D), E = (vi ,vj ,d),vi ,vj ∈ V ,d ∈ D.

An edge (vi ,vj) indicates that account vi creates an account vj on day d , where 2018.6.9 ≤ d ≤

2019.5.31 (UTC time zone), indicating when the account was created.

100 102 104 106 108

invocate times
0.0

0.2

0.4

0.6

0.8

1.0

pr
op

or
tio

n
of

 n
od

es

(0 , 31.75%)

(a) CDF of invocation.

100 101 102 103 104

depth

100

101

102

103

104

105

106

nu
m

be
r o

f n
od

es

(b) Distribution of EACG.

Fig. 7. Account invocation and creation.

Proc. ACM Meas. Anal. Comput. Syst., Vol. 4, No. 2, Article 37. Publication date: June 2020.

Understanding (Mis)Behavior on the EOSIO Blockchain 37:11

Table 3. Top-5 Nodes of EACG Using Degree Centrality

Account Outdegree Identity
eosio 163, 946 Official account

senseaccount 50, 531 Sense Chat
eosaccountwm 45, 618 MEET.ONE
eostokenhome 35, 908 ET Wallet
lynxlynxlynx 33, 018 EOS LYNX

4.2.3 Result of EACG Graph Modeling. We compute our earlier graph metrics for the EACG, and
present them in Table 2. The EACG consists of 1, 239, 027 edges and 1, 239, 030 accounts in total. In
order to provide a more intuitive understanding of the graph, Fig. 5(b) gives a visualization for part
of EACG. The account named imtokenstart is selected as the root node, and the graph consists of
16, 382 nodes and their corresponding 16, 381 edges. This account is an example of a public service
for account creation.

We see that the EACG is a single tree when excluding a few isolated official accounts (eosio.prods,
eosio.null), and the root node of the whole EACG, eosio. Fig. 7b shows the distribution of account
trees by depth. We see that EACG is a wide tree with a few deep paths. We see that from depth
651 to depth 7, 198, there only exist two paths (see Fig. 8). The first path has a root node named
dogaigaohvwj; it has a height of 7, 195, and was created to transfer illegal profits of a publicly
known hacker account hnihpyadbunv [6]. This attack was initially reported to include just 2, 190
sub-accounts [7], yet we find this misses 5, 005 accounts. The second path has a root node named
chengcheng21; it has a height of 2, 000. Interestingly, a DApp named VSbet received 95.30% of the
total EOS it transferred out. The activities of these accounts are quite suspicious. Almost all of
them had transactions with VSbet, and the total amount of EOS they transfer to VSbet was almost
identical to what they received; we later revisit this trend (see Section 5).

(a) Subtree of dogaigaohvwj. (b) Subtree of chengcheng21.

Fig. 8. Visualization of the two anomalous paths.

Briefly, Table 3 lists the top-5 central nodes. All listed accounts are related to public services for
account creation, allowing users to obtain new accounts. The existence of such services breaks
the assumption that any new accounts are controlled by their creators. As we later revisit, this
becomes an obstacle to identify attackers and bots on EOSIO.

Proc. ACM Meas. Anal. Comput. Syst., Vol. 4, No. 2, Article 37. Publication date: June 2020.

37:12 Huang and Wang, et al.

Findings #2: Over 30% of accounts are “silent” and have never initiated any transactions. The
constructed EACG graph is a wide tree with several deep paths, while the outliers mainly belong
to attack and fraudulent accounts.

4.3 Contract Invocation
Finally, we inspect the contract invocation activities observed within EOSIO. There are 4,453 smart
contracts in EOSIO, which have been invoked 2,140,945,703 times. The time series of contract
invocation is shown in Fig. 9, which shows that creation has been stable after rapid growth in 2018.

2018-06-09 2018-08-28 2018-11-16 2019-02-04 2019-04-25
date

0.00

0.25

0.50

0.75

1.00

1.25

nu
m

 o
f i

nv
oc

at
io

ns

1e7
(2018-12-26 , 13742029)

Fig. 9. The number of contract invocations over time.

4.3.1 Graph Modeling of Contract Invocation. Again, we can model contract invocations as a
graph. Specifically, we define the Enhanced Contract Invocation Graph (ECIG), as follows:

ECIG = (V , E,D,A, f), E = (vi ,vj ,Dk ,Ak),

vi ,vj ∈ V ,Dk ⊆ D,Ak ⊆ A.

An edge (vi and vj) represents that an account vi invokes a smart contract vj . To facilitate
the identification of abnormal behavior, we annotate each edge with extra attributes. Each edge
has a set of timestamp attributes Dk . For d ∈ Dk , 2018.6.9 ≤ d ≤ 2019.5.31, indicating when the
invocation occurs (in UTC time zone). The name of the function for each invocation is also recorded
as a, a ∈ A. Each edge has a set of invocation actions, namely Ak . f : (vi ,vj ,d,a) −→ Z+ assigns
each edge (vi ,vj) with a particular day d and given action a the number of invocation.

4.3.2 Results of ECIG Graph Modeling. Overall, there are 4, 313, 739 edges and 611, 085 nodes.
Fig. 5(c) is a partial visualization of the ECIG with 10, 626 nodes (and 19, 079 edges) being randomly
selected. We compute our earlier metrics, and present the results in Table 2. Because of the existence
of the system contract, the largest SCC of EOSIO is larger than that of Ethereum, although there
are only 4, 453 contracts being invoked on EOSIO.
Table 4 lists the top-5 most important nodes in the ECIG. An intriguing observation is that no

exchanges are present in Table 4. This is quite different from Ethereum (7 reported by a recent
study [45]). Notice that the number of invocations by these nodes are quite high compared to their
degrees. Combined with the observation from Fig. 7a, we can confirm that most accounts rarely
invoke smart contracts. Obviously, a small set of accounts are much more active than the others:
the top 0.01% of accounts perform 80 % of contract invocations. Our manual investigation suggests
that there are many bots on EOSIO, as we will explore in Section 5.

Proc. ACM Meas. Anal. Comput. Syst., Vol. 4, No. 2, Article 37. Publication date: June 2020.

Understanding (Mis)Behavior on the EOSIO Blockchain 37:13

Table 4. Top-5 Nodes of ECIG Using Degree Centrality

Account Degree # of Invocation Identity
eosio 383, 590 8, 925, 999 Official account

betdicelucky 109, 151 48, 694, 997 DApp Dice
pornhashbaby 107, 417 64, 072, 844 DApp Hash Baby
hashbabycoin 96, 826 31, 380, 78 DApp Hash Baby
endlessdicex 93, 469 23, 955, 881 DApp Endless Game

Findings #3: Although there are only 4, 453 contracts in the platform, EOSIO has a large number
of contract invocations. A small number of accounts are much more active than the others. The
top 0.01% of accounts perform 80% of contract invocations, while the majority of accounts rarely
invoke contracts.

5 CHARACTERIZING BLOCKCHAIN BOTS
It is well-known that online activities are impacted by bots [9, 49]. We posit that these might heavily
also impact the EOSIO ecosystem, and therefore we next investigate how many activities are driven
by bots, and what are their incentives (purposes).

5.1 A Primer on Bots
We define bot-like account as those operated by machines (e.g., programs). These are already
known to exist in EOSIO, e.g., the famous DApp team “pornhashbaby” has reported 8 groups of
bots, and each group has hundreds to thousands of accounts [10]. These past findings have shown
that bot accounts usually operate in groups, and have repetitive behavioral patterns. In this paper,
we refer to a group containing bot-like accounts operated by a controller as a bot-like community.
Note, the bot accounts may be created by the same controller account (in the same sub-tree of
EACG) or by a number of different accounts (across different sub-trees of EACG). We will have two
complementary approaches to detect them.

5.2 Preliminary Observations
To help distinguish bot accounts from other normal accounts (especially public account creation
services), we perform a preliminary study of bot activities. We do this by harvesting a number
of ground-truth bot accounts from [10], as well as PeckShield, a well-known blockchain security
company. From this, we gather 63, 863 EOSIO bot accounts flagged by existing efforts. The accounts
were created within 21 bot-like communities. To further differentiate these accounts from normal
ones, we label 229, 907 normal accounts that belong to 25 public contract services (e.g., official
account, exchanges, and pocket) as a white-list for comparison. We then manually inspect these two
groups and make several observations from two perspectives: community-level and account-level.

5.2.1 Community-level Observation. First, controller accounts usually create a large number of
children accounts (bots). For the flagged 21 controller accounts, the out-degree of them in the EACG
varies from 108 to 15,025. In contrast, the average out-degree of the EACG graph is 30, while the
median is only 1. Thus, we argue that a “shortlist” of potential bot controllers could be identified
using the EACG graph. Note that this is not definitive though — many non-bots also have high
out-degrees. Hence, we turn to our second observation, where we find that accounts belonging to
the same bot-like community tend to share similar behaviors. For instance, they might perform

Proc. ACM Meas. Anal. Comput. Syst., Vol. 4, No. 2, Article 37. Publication date: June 2020.

37:14 Huang and Wang, et al.

2019-01-21 2019-03-02 2019-04-11 2019-05-21
date

10−4

10−3

10−2

10−1

100

101

102

EO
S

normal user (wangwan12345)
bot (wh5x2nvwcedf)

Fig. 10. An example of difference between bots and normal users in EOS transfer.

transactions on the same day using the same contract. We posit that this similarity could be used
to automatically group bots belonging to the same controller.

5.2.2 Account-level Observation. We further analyze the bots at a per-account level. As bot
accounts are controlled by machines, their behaviors usually have regular patterns. Figure 10 shows
an example of a labelled bot account and a normal account. The bot account has relatively small
but very frequent incoming transfer activities from February 2019 to May 2019. By analyzing its
activities, we find that it is performing Click Fraud. Each day it transfers a few EOS to eosvegasjack
(an account that belongs to a gambling game) several times. After each transfer, the bot instanta-
neously gets its money back. The time interval between each transfer is also regular (usually three
hours). Thus, we believe that the bot accounts could be classified based on their behavior patterns,
including the active time, frequency and volume of transfers, etc.

5.3 Detecting bots from community-level
Based on the aforementioned patterns, we next devise a simple algorithm capable of identifying
bot-like communities.

5.3.1 AlgorithmDesign. Our approach combines both account relations and behavioral similarities
to flag suspicious bot accounts. The algorithm has two stages. In the first step, we extract all accounts
that have created in excess of 30 new accounts (which is the average out-degree for nodes in the
EACG). This provides a shortlist of accounts that may be spawning many accounts for use as bots.
However, it is not necessarily accurate, as we have already identified legitimate services that also
spawn many accounts. Hence, the second step computes the similarity between accounts on the
shortlist to identify groups that operate in similar ways. To measure this similarity, we compare
accounts across two dimensions.
The first dimension is the invocation time and frequency, i.e., the time and frequency of

invoking smart contracts and transferring money. Specifically, for each account, we summarize its
money transfer actions and smart contract invocations in a feature vector. For each account on
day i , we calculate the frequency of its money transfer actions, and its smart contract invocations,
respectively. As we have collected all the action records since the launch of the EOSIO mainnet
(which lasts 357 days), the behavior of each account can be represented in a 714 dimension feature
vector ®ti (357 for the money transfer actions, and 357 for the contract invocations).

Proc. ACM Meas. Anal. Comput. Syst., Vol. 4, No. 2, Article 37. Publication date: June 2020.

Understanding (Mis)Behavior on the EOSIO Blockchain 37:15

0.0 0.5 1.0
distance of invocation target

0.0

0.2

0.4

0.6

0.8

1.0

di
st

an
ce

 o
f d

at
e

bots
norm

Fig. 11. Bot-like communities VS. normal communities.

Table 5. Bot-like Communities VS. Normal Ones

Metrics Bots Normal

Time Features Average 0.09 0.78
Std.Deviation 0.08 0.10

Target Features Average 0.03 0.87
Std.Deviation 0.05 0.12

The second dimension is the contract target of the transactions. This is because accounts
belonging to the same bot operator might invoke the same smart contracts. There are currently
4,453 unique smart contracts in the EOS ecosystem. Thus, for each account i , we represent its
targets in a 4,453 dimension vector ®si . Each dimension represents the number of times that the
account has invoked the corresponding smart contract.

The above provides two dimensions for which we can compute similarity between potential bot
accounts. We use cosine distance to measure the similarity between the feature vectors. Considering
there are a number of accounts in a potential bot-like community, we further calculate a group
similarity for each of them as follows:
(1) For a community with N non-silent nodes4, we calculate the feature vectors ®si ∈ S and ®ti ∈ T

for each node.
(2) We further calculate the median vector ®m, ®m = 1

N
∑N

j=1 ®vj for vectors in S and T .
(3) We then measure the average distance between each vector and median vector. dist =

1
N
∑N

j=1 cosineDist(®vj , ®m). As a result we get the overall distS and distT for S and T. Note that
dist ∈ [0, 1], where larger values means less similarity.

5.3.2 Defining the Similarity Threshold. The above allows us to compute the similarity between
accounts. The next step is to define an appropriate threshold of similarity that warrants a community
of accounts being classified as bots. Here we take an empirical approach, relying on our ground-truth
dataset of bots and normal accounts (from Section 5.2). Note that this covers 21 bot communities
(63,863 accounts) and the 25 normal ones (314,277 accounts). Figure 11 presents the similarity across
these 46 groups. Groups that fall on the lower left have tightly correlated behavior. Specifically, the
4We have removed “silent” nodes, as such nodes have no actual behaviors to measure.

Proc. ACM Meas. Anal. Comput. Syst., Vol. 4, No. 2, Article 37. Publication date: June 2020.

37:16 Huang and Wang, et al.

Table 6. Features Used to Classify Bot Accounts

feature bots (avg) normal (avg)
ACG depth 4.3 1.8
transferIn std 40.8 954
transferOut std 57.3 1267.3
volume per transferIn 2.2 104
volume per transferOut 6.2 553.1
transfer target num 5.9 12.6
invoke contract num 16.1 3.2
invocation num 518.5 2312.7
invocation std 6.2 40.3
activate time 74.6% 13.4%
siblings in same day 1724.1 117024.4

x-axis represents the average distance of the action target feature vectors, and y-axis represents
the average distance of the action time and frequency vectors.

Note that by Chebyshev’s Theorem, even for non-normally distributed variables, at least 88.8%
of cases should fall within properly calculated 3σ intervals. [54] Hence, we use the similarity score
ranges between -3σ and +3σ of the average as our threshold to filter bots (see the rectangular frame
in Fig. 11). Any groups of accounts that fall into this range are deemed to belong to the same bot
groups.

5.3.3 Analyzing the Public Key. We also observe that some users re-use the same public-private
key pair across multiple accounts. Hence, as a final step, we group all the flagged bot-like accounts
sharing the same public key into a community.

5.3.4 Results. Using the above techniques, we identify 351, 740 bot-like accounts, which cover
28.39% of all accounts in the EOSIO platform, and belong to 2, 362 communities. The number of
accounts in the identified bot communities varies from 30 to 15, 025 .

5.4 Detecting bots from per-account level
Bot accounts are not always created by the same controller account. In this case, the bot accounts
may reside within the ACG trees mixed up with normal accounts. To overcome this, we must also
perform per-account detection.

5.4.1 Algorithm Design. To differentiate accounts within the same ACG tree, we formulate the
problem as a binary classification task. Based on the graphs we constructed, we summarize 11
key account features in Table 6. We describe some representative features here. For EACG, the
ACG depth describes the depth of the account in EACG. Bots appear to be deeper in the tree. For
EMFG, as illustrated in Fig.10, bots usually receive EOS more frequently than normal accounts. So
we use features like transferIn std to describe the standard deviation of transfer volume over time.
The amount of EOS per transfer for bots is also much lower than that of normal ones. Thus, we
summarize the volume per transferIn as a feature. For ECIG, it appears that bots are more active
than normal accounts, i.e., the active day is 74.6% (bots) vs. 13.4% (normal) on average. In other
words, bots are more active than normal accounts. We use activate time to describe the activity.
The average values of aforementioned features in the labeled dataset are shown in Table 6.

Proc. ACM Meas. Anal. Comput. Syst., Vol. 4, No. 2, Article 37. Publication date: June 2020.

Understanding (Mis)Behavior on the EOSIO Blockchain 37:17

Thus, we generate a feature vector for each ground truth account, and then train a classifier
based on the random forest algorithm. To evaluate the effectiveness of our classifier, we perform
the 10-fold cross validation. The results suggest that our approach is promising in identifying bot
accounts, i.e., with an average accuracy of 99.55%.

5.4.2 Results. We use the classifier to identify bot accounts in the remaining 485, 742 accounts.
We discover 30, 419 new bots.Whenmerged with the community-level results,we identify 381,837
bot accounts in total. These accounts have invoked 188, 501, 976 times, and the amount of trans-
ferred EOS is 776, 837, 813.

5.5 Validating Bot Accounts
Before continuing, it is important to validate that the above approaches effectively identifies bot
accounts. We use three methods. First, we compare our results against the ground-truth bot accounts
(see Section 5.2), to find that we gain 100% accuracy — all 63, 956 ground-truth bot accounts are
identified by our techniques. In fact, by only using the random forest approach on the per-account
level, we could achieve an accuracy of 99.54%.
Second, we have reported a number of bot communities to the DApp developers and one

anonymized blockchain security company, and all of them were confirmed as bots. Third, we
randomly select 100 bot-like account communities for manual examination. We are confident that
over 86% are indeed bots, and we are able to know their purposes (see Section 5.6). For a further
14% of the bot-like accounts, although we cannot reverse engineer what they are doing, we are
able to identify some bot-control clues, e.g., the accounts have similar names, a large number of
accounts were created at the same time, etc.

5.6 Applications of Bot Accounts
We next examine the purposes of these bot accounts. We manually sample 100 bot communities, and
examine their actions, identifying 4 major categories, which we subsequently formulate automated
methods to detect. Table 7 provides a summary of these categories, highlighting their significant
impact of the wider ecosystem. Below, we discuss each category.

5.6.1 Bonus Hunters. We find many bot groups performing bonus hunting. This involves ex-
ploiting incentives in DApps, in order to gain profit. This is because EOSIO DApps often offer
incentives to attract users, including: (1) Login bonus: a reward given to users for logging into
DApps daily. For example, DApp BingoBet offers users one free lucky draw every day. Users can
get free EOS from 0.0005 to 50.0. (2) Free tokens: some DApps hand out tokens to attract active
users. For example, PRA Candybox offers each user a limited chance to get free tokens. In general,
each account can only get a limited number of tokens, so by creating multiple bots, a controller
can make more profit. (3) Invitation rewards: some DApps give rewards for inviting friends. For
example, Hash Baby offers 5% of its total tokens to those who invite friends. Thus, bots could create
a large number of accounts and invite them in order to gain profit.
Although we have manually identified many bonus hunters, it is non-trivial to automatically

identify them. Here, we propose a semi-automated but effective approach. One feature of bonus
hunter bots is that they invoke some specific contracts with a high frequency, or they will invite
other “similar” accounts to invoke the contracts. Thus, we first rank the bot-like accounts by their
frequency of contract invocations, and then check the most popular DApps they invoke. For the top
DApps, we then check to confirm whether they offer the aforementioned incentives. As a heuristic,
we assume that bot communities targeting these apps are likely bonus hunters. To gain an upper
estimate of how many bot communities are bonus hunters, we compute the proportion of money
hunting actions for each account. We consider anything above 50% to be indicative of a likely

Proc. ACM Meas. Anal. Comput. Syst., Vol. 4, No. 2, Article 37. Publication date: June 2020.

37:18 Huang and Wang, et al.

2019-03-29 2019-04-27 2019-05-23
date

0

200000

400000

600000

800000

EO
S

0

5000

10000

ac
co

un
t n

um

EOS received
account creation

Fig. 12. An example of the click fraud (EOS Global).

bonus hunter. Through this, we identify 162,147 accounts belonging to this category. It accounts for
35.79% of all bot-like accounts. These accounts contribute the second largest number of invocations
(56.42%).

5.6.2 Click Fraud. The second largest use of bots is for click fraud. These accounts create “fake”
traffic in order to promote the ranking of certain DApps. One major characteristic is that the amount
of EOS they transfer to DApps is almost identical to what they receive from the same DApps. We also
observe that these accounts are quite ephemeral, i.e., they become active for a few days and then
become “silent”. This results in the rank of the targeted DApp being boosted temporarily during
the active days.
The most extreme case is the EOS Global, which ranks 3rd among all DApps on 2019.4.27 (on

DappTotal). Using our EMFG, we find that account “egtradeadmin” (belonging to EOS Global),
ranks #1 among all accounts using PageRank. However, the transaction behaviors of “egtradeadmin”
are typically bot-like. To highlight this, Fig. 12 shows the money transfer and account creation
behaviors of EOS Global. A significant peak can be witnessed between 2019.04.23 and 2019.04.30.
The accounts contributing were flagged as bot-like accounts using our approach, as since their
creation, they have transferred a great deal of EOS to the EOS Global DApp, and received almost
identical EOS from EOS Global in return.

We define a heuristic to classify bot-like accounts in this category. We simply check their balance
(transfer in vs. transfer out) to identify whether they are suspicious. Accounts with a similar ratio
(over 95%) are deemed to be performing click fraud. Note that, we have filtered bot-like communities
that have very few transfers (e.g., <10 EOS) to remove potential false positives. We identify 136, 670
bot-like accounts belonging to this category. They have performed 32, 606, 630 invocations, with
an amount of 372, 613, 472 EOS.

5.6.3 DApp Team Controlled Accounts. We also observe that some bot-like accounts are con-
trolled by DApp teams. By analyzing the behaviors of such accounts, we see that they are mainly
used for: (1) Debugging: These bots are used to run automated product quality assurance tests
within the DApp. For example, account “zhaojingdong” has created 2,001 bot-like accounts, and
these accounts are used to invoke the debug interface of the smart contract “fastwinhold1” (fastwin-
hold1::debug), with 19,299 invocations. The “fastwinhold1” is a smart contract that belongs to Dapp
Fast. (2) Interacting with users: These accounts are created to support user-based activities within
DApps. There are also other cases where DApp Games cannot find enough real players (especially
during cold start), so they generate bots to interact with real users. (3) Control: These bot accounts
are mainly used to either vote for themselves or run DApps of their own. These accounts have
the same public key with DApp accounts, e.g. “eosiomeetone”, “eosasia11111”. As the EOS inherits
DPoS and only 21 block producers can be elected, these accounts are used to perform self-voting.

Proc. ACM Meas. Anal. Comput. Syst., Vol. 4, No. 2, Article 37. Publication date: June 2020.

Understanding (Mis)Behavior on the EOSIO Blockchain 37:19

Table 7. A Summary of the Bot-like Accounts

Category # Accounts (%) # Invocations (%) # Volume (EOS)
Bonus Hunter 162,147 (42.46%) 106,358,320 (56.42%) 58,299,990 (7.50%)
Click Fraud 136,670 (35.79%) 32,606,630 (17.30%) 372,613,472 (47.97%)
Dapp Team 18,828 (4.93%) 48,067,077 (25.5%) 324,244,893 (41.74%)
Account Seller 10,174 (2.66%) 328,787 (0.17%) 2,493,316 (0.32%)
Others 54,018 (14.15%) 1,141,162 (0.61%) 19,186,141 (2.47%)
Total 381,837 188,501,976 776,837,813

As we have collected the DApp info, Team Controlled Accounts can be verified easily. We have
identified 18,828 accounts (4.93%) belonging to this category. Note that these accounts invoke smart
contracts with high frequency (48,067,077 times in total), which represents 25.5% of the overall
bot-like invocations.

5.6.4 Account Sellers. Account Sellers involve creating large numbers of accounts with names
that are perceived to have potential future value, as names are unique in EOSIO and cannot be
reused. Account Sellers therefore bid for account names from the EOS authority, and then sell them
for a higher price. The public key of the accounts are identical and only after they are sold out will
they change their keys. We identify these account sellers by manually examining the websites of
each DApp, as they will advertise their ability to sell accounts. From this, we have identified 10,174
accounts in total.

5.6.5 Others. 14.15% of the bot-like accounts (54,018 accounts, 355 communities) remain uncat-
egorized, as we cannot identify generalizable traits that might reveal their motivation. That said,
we are nevertheless confident that they are bots. From this group, we manually sample 16,558 bot
accounts (194 communities), and observe several clues that give weight to this confidence: (1) A
large portion of these bot communities (33.47%) have confusingly similar names. For example, ac-
counts created by gotolab12345 are named things like gotolabms221, gotolabms222, while for normal
accounts, we rarely see this. (2) The account creation time of most of the bot communities (66.53 %)
is extremely intense, making normal human involvement unlikely, e.g., account staroverlord created
980 accounts in a few hours.

6 MEASUREMENT OF SECURITY ISSUES
In this section, we study the security issues of EOSIO by investigating both the on-chain and
off-chain data we collected.

6.1 eosio.code Permission Misuse
6.1.1 Overview of Permission Mechanism. EOSIO supports a permission system that can control

access to contracts (see Section 2.3). Users can modify their account permission group and link each
permission to different kinds of actions. For the default setting, only the owner key can sign the
updateauth action to change the private key of an account, yet custom permissions are incredibly
flexible and address numerous possible use cases when implemented. Most notably, the eosio.code
permission is designed to enable contracts to execute inline actions. However, once a user grants
this permission to a contract, it can call system contracts in the name of the user. This means
that the eosio.token permission can be assigned to transfer EOS tokens without notifying the user.
For example, this type of permission misuse has been discovered in a popular DApp named EOS
Fomo3D (whose account name is eosfoiowolfs), which led to many users stop using it [34].

Proc. ACM Meas. Anal. Comput. Syst., Vol. 4, No. 2, Article 37. Publication date: June 2020.

37:20 Huang and Wang, et al.

Alice example

Alice@active Alice@owner

Account Contract
Ask user to

Give permission

updateauth

example@eosio.code

(a) Permission assignment.

Alice

transfer

Account

Contract
eosio.token

…

exampleNon-sensitive action
Sign: Alice@active

Inline actionSensitive action
Sign: Alice@active

Contract

(b) Permission misuse.

Fig. 13. Illustration of permission misuse.

6.1.2 Overview of eosio.code Permission Misuse. Fig.13 illustrates how eosio.code permission
misuse occurs. First, a smart contract declares that the eosio.code permission is needed in the code.
A user then grants eosio.code during the contract invocation, through another two permissions,
i.e., owner and active. Specifically, users first link the eosio.code of one contract to the owner/active
permission using updateauth action (see Figure 13a). By doing so, for every action signed by
owner/active, the smart contract can invoke inline actions in the name of the user (see Figure 13b).
The above is is typically used for convenience, e.g., allowing a game to automatically initiate

transfers. However, in practice, the permission opens up a number of attacks. The community
suggests that contract developers should get rid of eosio.code [21, 22], and recommends users to
reserve their eosio.code permissions unless they trust that contract.

6.1.3 Detecting eosio.code Permission Misuse. As permission changes are related to action
updateauth, we can track on-chain data to see whether there exists any permission misuses. Once
we find an account grants the eosio.code permission to smart contract accounts with different public
keys5, we flag this behavior as a potential permission misuse. As aforementioned in Section 2.3, there
exists a threshold that must be reached to authorize the execution of the action. Thus, only when
the assigned permission weight surpasses the permission threshold can another account invoke the
corresponding permission. Otherwise, it may require several accounts to authorize a permission
invocation together. As a result, for each permission grant, we further analyze the weight of the
accounts who have been granted the eosio.code, and then compare it with the user-defined threshold,
to identify the permission misuse finally.

6.1.4 Results. In total, we have collected 327, 287 updateauth actions. Among them, 26, 899 are
associated with the permission eosio.code. After filtering out actions whose granted weight is lower
than the threshold, we identify 18, 321 permission grant actions in total, and 72.25% of them are
linked to active permission. Thus, we have identified 13,237 permission misuse in total, involving
5,541 user accounts, who grant their permissions to 407 smart contracts. The top 5 contracts that
have been granted eosio.code with active are shown in Table 8. Figure 14 illustrates the permission
misuse graph. Each node denotes an account, and each edge represents a permission grant action.
We observe that most of the smart contracts that require sensitive permissions are gambling games
(i.e., 4 in Top-5). Contract fastwincpuem is the most representative one. To play the game, over
1,400 users have to grant their eosio.code permissions to it, which pose serious security risks.

5Note that we compare the public keys of the involved accounts in order to filter the valid permission grants for users with
multiple accounts.

Proc. ACM Meas. Anal. Comput. Syst., Vol. 4, No. 2, Article 37. Publication date: June 2020.

Understanding (Mis)Behavior on the EOSIO Blockchain 37:21

Fig. 14. Visualization of the permission grant actions.

Table 8. Top Accounts with Granted eosio.code Permission

linked permission Account # auth account Identity

active

fastwincpuem 1, 453 gambling game
fastwincpu11 1, 231 gambling game
zyixjmpxrrpr 672 gambling game
exchangename 626 Account exchange
lihaihai1234 494 gambling game

6.2 Real-World Attacks
Although a number of security reports [14, 17, 23] have revealed attacks, it is still unknown how
prevalent they are. By surveying 37 attack reports [29, 32], we next manually classify attacks into
twomain categories:Unchecked Input Attacks and Predictable State Attacks. Using these observations,
we have implemented a monitoring system to identify suspicious actions and accounts.

6.2.1 Unchecked Input Attacks. We identify 4 samples of attacks that exploit unchecked in-
puts [16]. These rely on victim contracts failing to properly validate the identities of received tokens
or notifications [16]. For example, an attacker can create an EOS token and named it as “EOS”,
and then transfers a number of such tokens to a vulnerable (game) contract that does not verify
the issuer of the tokens. As a result, that attacker might be able to make profits after successfully
executing the remaining logic of the contract according to certain rules. It has two variants: (1) Fake
EOS Transfer Attack, which transfer fake EOS tokens to deceive the victim contract into believing
that it is receiving EOS tokens [4]. (2) Fake EOS Notice Attack, which sends fake notifications to
deceive the victim contract into believing that it is receiving EOS tokens [5].
We devise a pattern-based mechanism to detect these two types of attacks, by looking for the

patterns summarized in Table 9 [4, 5]. ✓ means the pattern is applicable to detect that particular
attack, whereas ✗ indicates that the pattern is not applicable. In addition, pattern with Yes means
the condition must be met; alternatively, pattern with No has to be otherwise satisfied. In total we
have 2 patterns for the Fake EOS Transfer Attack and 3 patterns for the Fake EOS Notice Attack
respectively. Note that the aforementioned patterns may lead to false positives. For instance, the
transfer token symbol can always be specified as “EOS” by the sender for any non-malicious (e.g.,
testing) purpose. Thus, we further use heuristic strategies to alleviate this issue. Specifically, for
the fake EOS transfer attack, if an account A sends fake EOS tokens to account B, and on the same

Proc. ACM Meas. Anal. Comput. Syst., Vol. 4, No. 2, Article 37. Publication date: June 2020.

37:22 Huang and Wang, et al.

Table 9. Patterns of Fake EOS Transfer/Notice Attacks

Pattern Fake EOS Transfer Fake EOS Notice
The transfer token symbol is EOS. ✓ ✓

Whether the contract executes “transfer” action
is the official contract (eosio.token) or not. No Yes

The notice receiver is the victim, rather
than any accounts involved in the transfer. ✗ ✓

day account A makes profit from B, we then mark A as suspicious. Similar to the fake EOS notice
attack, we further verify all accounts that have sent fake EOS notice to a DApp’s account. These
heuristics can identify all 4 unchecked input attacks.

6.2.2 Predictable State Attacks. We collect 33 samples of attacks that rely on predictable state.
These include variations such as: (1) The Random Number Attack, which exploits the vulnera-
bilities present in the procedure to generate random numbers. (2) The Roll Back Attack, which
defrauds the lottery game without actually paying the bet cost by rolling back the corresponding
unsatisfied reversible transaction [30, 31]. (3) The Transaction Congestion, which launches a
DoS attack by sending a large number of deferred transactions based on the predictable state, to
force the victim contract to regenerate a different result [19]. This kind of attack is usually targeted
at gambling games (32 out of 33 attack gambling games).

Such attacks cannot be identified using the heuristics in Section 6.2.1. Hence, we turn to another
intuition: accounts with large profits in a short period of time with high frequency may be suspicious.
This assumption, however, could lead to many false positives. To investigate this, we manually
analyze the collected attack accounts and summarize several characteristics:
(1) Although the profit attackers earn varies widely, their profitability ratio6 is relatively high. In

contrast, even though a normal account has the potential to earn high profits (e.g., if its wins
a large bet), it is unlikely that normal accounts consistently maintain a high profitability ratio.
For the collected attacks, the median profit is 2, 202 EOS, and the median of the attacker’s
profitability ratio is 2.4.

(2) Attacks usually happen over a relatively short time (e.g., from a few minutes to an hour). This is
quite different to other normal behaviors. As a reference, all the 33 Predictable State Attacks
finish within an hour.

(3) The total amount of the “excessive” profit always makes-up a large portion of the total volume
of the transactions for the account with the target DApp. Because attack accounts are usually
active for just a few days. Once attackers succeed, they usually do not use the Dapp anymore.
In contrast, normal users with high profits have no reasons to be “silent” after that.

Based on these observations, we are able to propose a semi-automated approach to label suspicious
attacker accounts, as follows:

Step 1.We first monitor the accounts (in the EMFG) that gain high profit with a high profitability
ratio. For a given account, if the profit is larger than a threshold W1 and the profitability ratio
is larger than a threshold W2 in some granularity of time period, we mark it as suspicious. In
particular, we specify two kinds of granularity: one day for the coarse-grained detection and an
hour for the fine-grained detection, to achieve a good accuracy with acceptable performance. Note
that, we empirically setW 1 = 400,W 2 = 1.2. This is a looser boundary (compared with known

6Here, we define the ratio as the amount of EOS received over the amount of EOS sent.

Proc. ACM Meas. Anal. Comput. Syst., Vol. 4, No. 2, Article 37. Publication date: June 2020.

Understanding (Mis)Behavior on the EOSIO Blockchain 37:23

attacks) to identify as many suspicious accounts as possible. This step is capable of filtering out
most of the unrelated normal accounts.

Step 2. For a given flagged victim DApp candidate, we record the profits and the corresponding
dates for all suspicious accounts. For each suspicious account, we further calculate the proportion
of profits (denoted by p) over the total incoming EOS tokens received from that DApp. An account
will be labelled as highly suspicious and require further verification if p is larger than a threshold
W3, which gives the liveness of one account to some extent. We empirically setW 3 = 0.9, i.e., the
excessive profits must have occupied at least 90% of all the money transfers. As a reference, for the
collected attack accounts, all of them have achieved 100% on this metric.
Step 3. The aforementioned profit-driven approaches are able to identify most of the attacks, as

the sole purpose of the attacks we considered is to make profit. However, it is quite possible that
we may include some benign behaviors, due to the limitation of the thresholds we defined. Thus,
to filter out possible false positives, our last step is to manually analyze the remaining suspicious
attack accounts and their behaviors. Note that, previous steps have filtered most of the accounts
and actions, making our manual analysis possible. Our goal is to either replay the “attacks” they
performed, or find more evidences, to confirm whether a suspicious account fulfills the characteristics
of the attacks..

To replay the attacks, one can use the EOSIO official testnet or build a local testnet. The former
is straightforward, whereas the latter requires more efforts to build the environment. We prefer
the latter because it provides the ability to perform (and customize if necessary) deeper analysis.
To the best of our knowledge, this is the only reliable way to manually label attacks. We employ
three techniques here. (1) Random number attacks can be reproduced on the testnet we built. Thus,
for each suspicious account, we first analyze whether it targets a gambling DApp. Then we repeat
its actions to see whether we are able to launch random number attacks. We have implemented
Proof-of-Concept (PoC) scripts on our testnet to verify the random number attacks are indeed
performed. (2) For the roll back attack, we take advantage of the EOSIO client we customized to
synchronize with the mainnet. Although roll back actions will not be put on the chain, they will be
broadcast and a client could receive them. For each account, we further analyze their broadcast
information. If one account has too many roll back transactions with a high profit, we believe it
launches roll back attacks. (3) The transaction congestion attack is quite noticeable, as attackers
usually create thousands of deferred transactions and may even paralyze the whole mainnet. Thus,
for each account, we analyze its deferred transactions to see whether it performs DDoS-like attack.
In brief, the manual investigation allows us to determine the attacks, the corresponding attack
accounts, and the victim DApps.

6.2.3 Detection Result. Using the above detection mechanisms, we identify the presence of
attacks across the entire EOSIO blockchain. We discover 301 attack accounts associating with
1, 518, 401 EOS tokens (roughly $4.8 million). Table 10 lists the top-3 of them. Specifically, we
discover 24 attack accounts associated with 136, 881 EOS tokens for the fake EOS transfer attacks, and
28 accounts associating with 235, 867 EOS tokens for the fake EOS notification attacks respectively7.
Furthermore, we find 251 attack accounts (1, 070, 005 EOS tokens) that rely on predictable state.
These attacks are targeting 112 victim DApps. Note that, we report all the identified attacks to

the corresponding DApp teams. By the time of our study, 80 attack accounts have been confirmed
by them, causing 828, 824 EOS tokens in losses (roughly $2.6 million). For the remaining attack
accounts being detected, We are still working with DApp developers to make final confirmation.8
Apart from notifying the DApp developers for a timely damage control, we also assist them in
7Two accounts are related to both fake EOS transfer and fake EOS notification attacks.
8Some DApp teams are no longer active due to the financial loss of attacks.

Proc. ACM Meas. Anal. Comput. Syst., Vol. 4, No. 2, Article 37. Publication date: June 2020.

37:24 Huang and Wang, et al.

Table 10. Top-3 Attack Accounts Identified

attackers target profit confirmed
hnihpyadbunv Dapp Dice 195, 530 Yes
ilovedice123 EOSBet 137, 970 Yes

eykkxszdrnnc EOS Max, BigGame 71, 731 Yes

tracing the losses and provide a digital forensic service to support advanced collaboration with
other third parties like exchanges. For example, we have assisted the development teams of DApp
BetDice, ToBet, EOS MAX, BigGame in tracing the losses of 288,329 EOS by providing them
attack evidence.

7 LIMITATIONS AND IMPLICATIONS
7.1 Limitations
Our study carries some limitations. In several cases, we have relied on heuristics and manual
validation. This was necessary due to the paucity of ground-truth data. For example, for the bot-like
account detection, we have tried our best to validate our approach, however, it is impossible for
us to make sure all accounts flagged are truly bots. Similarly, although we only focus on bot-like
accounts that operate in groups and have similar behaviors, it is possible that there are bots that
do not fall into this definition. Moreover, we did not precisely identify the boundary between
legitimate bots and fraudulent bots. Instead, we examine the purposes of the bot accounts, and
classify them into five main categories. In general, one would regard the bonus hunter bots and click
fraud bots as fraudulent bots, as they were created explicitly with the purpose to steal currency
or manipulate the ranking of DApps. Nevertheless, more precise and fine-grained techniques can
be applied to distinguish between legitimate and fraudulent bots. We raise similar observations
regarding our attack detection. We have applied heuristics to flag accounts that are suspicious, and
relied on manual efforts to confirm them. This, of course, might not be scalable and could mean
that we only offer a lower-bound. Future work will involve incorporating program analysis and
dynamic testing techniques to help us automatically identify attacks.

7.2 Implications
Our observations are of key importance to stakeholders in the community. First, considering the
large number of fraudulent behaviors and security issues we discover, the governance of EOSIO
needs to be improved. Second, we argue DApp developers should take actions immediately to
address the security issues introduced by vulnerabilities of smart contracts. Third, as mentioned
earlier, we provide a digital forensic service to help developers recoup the losses by collaborating
with other third parties like exchanges. As of this writing, we have helped four DApp teams in
tracing the losses by providing them with attack evidence. Moreover, our findings could help
users and investigators to understand the status quo of EOSIO ecosystem, and protect them from
being deceived by some “popular” DApps. Last but not least, our findings and techniques could
be generalized to other blockchain platforms as well. For example, it is reported that blockchain
bots were also found in the TRON DApp ecosystem [35]. Our observations and techniques could
be easily adopted to detect them.

Proc. ACM Meas. Anal. Comput. Syst., Vol. 4, No. 2, Article 37. Publication date: June 2020.

Understanding (Mis)Behavior on the EOSIO Blockchain 37:25

8 RELATEDWORK
8.1 EOSIO Analysis
As EOSIO was launched in June 2018, there are only a few studies looking at the EOSIO ecosystem.
Lee et al. [56] introduced and studied four attacks stemming from the unique design of EOSIO.
Quan et al. [63] focused on detecting two types of vulnerability for EOSIO smart contracts. He et
al. [52] proposed a symbolic execution based static analysis framework to identify four kinds of
vulnerabilities in EOSIO smart contracts. Lee et al. [55] found that attackers can undermine the
fairness of compensation policies by manipulating the production schedule of EOSIO. They also
discussed the applicability of attacks against the real EOSIO mainnet. There are also reports [1, 4, 5,
19, 30, 31] released by security companies. However, all of the existing studies were focused on
security issues introduced by the EOSIO framework and smart contracts, none of them have studied
security issues from the perspective of transaction-based analysis. Our paper is the first one that
analyzes the EOSIO blockchain ecosystem at scale, longitudinally and across various dimensions.

8.2 Transaction-based Analysis of Blockchain
Previous studies have investigated other blockchain systems by performing transaction-based
analyses. Several works focus on Bitcoin [40, 48, 59, 62, 64, 65, 73], including de-anonymization and
money laundering detection, by using graph-based approaches. Researchers have also investigated
Ethereum by using transaction-based analyses [43, 45]. For example, Chen et al. [45] presents a
graph-based analysis of Ethereum, which is somewhat similar to our approach in Section 4. However,
our work differs from previous studies. First, EOSIO is totally different to other blockchain systems,
from the underlying consensus protocol, to the account system, the permission management
mechanism and the smart contracts. We have compared the graph metrics of EOSIO and Ethereum,
and our observations reveal the unique characteristics of EOSIO ecosystem (see Section 4). Second,
we have proposed systematic approaches to successfully identify andmeasure bot-like andmalicious
accounts, while such accounts have never been identified in other platforms before. To the best of
our knowledge, this is the first comprehensive work to study transaction behaviors on EOSIO.

8.3 Vulnerability/Attack Detection of Blockchain
A number of studies have focused on detecting the vulnerabilities in Ethereum smart contracts [53,
57, 58, 66–69]. For example, Luu et al. [58] proposed Oyente, a symbolic execution tool which
analyses Ethereum smart contracts to detect bugs. Kalra et al. [66] proposed ZEUS, a framework for
formal verification of smart contracts using abstract interpretation and symbolic model checking.
He et al. [51] analyzed the copy-paste vulnerabilities introduce by code clones in smart contracts.
Most of the vulnerability detection approaches were performed based on static analysis. In contrast,
we adopt a statistical approach to detect attacks by analyzing the anomalies.

8.4 Blockchain Scam Detection
Blockchain platforms have been the target of scams. A few studies have characterized these scams.
Most of them were focused on detecting Ponzi schemes [39, 46]. For example, Bartoletti et al. [39]
summarized a set of criteria for determining whether a smart contract implements a Ponzi scheme,
and they have identified four kinds of Ponzi schemes in Ethereum. Chen et al. [46] proposed a
machine learning approach to identify Ponzi Schemes. They first extract features from user accounts
and operation codes of the smart contracts and then build a classification model. A few studies
have also characterized scam domains in the blockchain ecosystem. For example, Xia et al. [72]
have studied scam domains and fake mobile apps that target cryptocurrency exchanges. They have
identified over 1,500 scam domains and reveal that these scams have incurred financial losses of

Proc. ACM Meas. Anal. Comput. Syst., Vol. 4, No. 2, Article 37. Publication date: June 2020.

37:26 Huang and Wang, et al.

$520k at least. Although existing studies have characterized scams in the blockchain systems, no
previous paper has characterized the bot accounts in the EOSIO blockchain ecosystem.

8.5 Bot Account and Sybil Account Detection
Bot accounts and Sybil accounts are pervasive in today’s online communities. A large number
of studies have proposed to identify bot accounts and sybil accounts, mainly in the domain of
social networking systems (e.g., Twitter, Facebook, Instagram, and LinkedIn, etc.) [42, 44, 50, 70, 71].
For example, Wang et al. [71] proposed to detect sybil accounts based on server-side clickstream
models (the traces of click-through events generated by online users), as sybils and real users have
very different goals in their usage of online services. Thus, they build a a similarity graph that
captures distances between clickstream sequences and then apply clustering to identify groups of
user behavior patterns. Similarly, Cao et al. [42] proposed to cluster user accounts according to the
similarity of their actions and uncovered large groups of malicious accounts. Chavoshi et al. [44]
proposed DeBot, an unsupervised tool to detect bots on twitter based on the key observation that
highly synchronous user accounts are most likely bots. Cao et al. [41] proposed SybilRank, a tool
that relies on social graph properties to rank accounts based on their perceived likelihood of being
Sybils. Almost all the aforementioned studies were focused on social networks. Blockchain bots,
however, have not been well studied in our community. Accounts in the blockchain systems have
specialized behaviors compared with social accounts, e.g., money transfer and contract invocations.
To the best of our knowledge, this is the first research paper that proposed to detect bots in the
blockchain systems. Nevertheless, we admit that more advanced approaches in the social network
domain could be exploited to identify blockchain bots in the future work.

9 CONCLUSION
In this paper, we have performed the first large-scale measurement study of the EOSIO blockchain.
By constructing a comprehensive dataset, we first analyzed the activities including money transfer,
account creation and contract invocation. We further focused on security and fraudulent issues,
including bot-like accounts and attack detection. Our exploration has identified many security
issues and revealed various interesting observations, including thousands of bot accounts, hundreds
of real-world attacks, as well as insights for future research directions.

ACKNOWLEDGMENT
We sincerely thank our shepherd Prof. Michael Sirivianos (Cyprus University of Technology) and all
the anonymous reviewers for their valuable suggestions and comments to improve this paper. This
work is supported by the National Natural Science Foundation of China (grants No.61702045 and
No.61725201), Hong Kong RGC Project (No. 152193/19E), and Beijing Outstanding Young Scientist
Program BJJWZYJH01201910001004.

REFERENCES
[1] 2018. Defeating EOSGambling Games: The Tech Behind RandomNumber Loophole. https://medium.com/@peckshield/

defeating-eos-gambling-games-the-tech-behind-random-number-loophole-cf701c616dc0.
[2] 2018. EOSIO Dawn 3.0 Now Available. https://medium.com/eosio/eosio-dawn-3-0-now-available-49a3b99242d7.
[3] 2018. EOS’s Gloom: Real Users Account for 30% and 8 Million Yuan Lost to Hackers in Last Six Months. https:

//news.8btc.com/eoss-gloom-real-users-account-for-30-and-8-million-yuan-lost-to-hackers-in-last-six-months.
[4] 2018. “Fake EOS Attack” Upgraded, 60K EOS Tokens Lost by EOSCast. https://blog.peckshield.com/2018/11/02/eos/.
[5] 2018. “Fake Transfer Notice” Loophole Details Explained, 140K EOS Tokens Lost by EOSBet. https://blog.peckshield.

com/2018/10/26/eos/.
[6] 2018. FIBOS weekly. https://developpaper.com/fibos-weekly/.

Proc. ACM Meas. Anal. Comput. Syst., Vol. 4, No. 2, Article 37. Publication date: June 2020.

Understanding (Mis)Behavior on the EOSIO Blockchain 37:27

[7] 2018. Hacker created 2190 accounts to circumvent ECAF (in Chinese). https://www.myoschain.com/blog/
134430038970859522.

[8] 2019. API Endpoints. https://www.eosdocs.io/resources/apiendpoints/.
[9] 2019. Bots drove nearly 40% of internet traffic last year. https://thenextweb.com/security/2019/04/17/

bots-drove-nearly-40-of-internet-traffic-last-year-and-the-naughty-ones-are-getting-smarter/.
[10] 2019. Bots Index. https://github.com/hashbaby-com/eos-hall-of-shame/tree/master/bots.
[11] 2019. Clustering coefficient. https://en.wikipedia.org/wiki/Clustering_coefficient.
[12] 2019. DAppReview. https://www.dapp.review/.
[13] 2019. DAppTotal. https://dapptotal.com/.
[14] 2019. EOS DApps Lose Almost $1 Million to Hackers Over the Last Five Months. https://cointelegraph.com/news/

eos-dapps-lose-almost-1-million-to-hackers-over-the-last-five-months.
[15] 2019. EOS Developer Documentation. https://developers.eos.io/eosio-nodeos/docs.
[16] 2019. EOS Development Tutorials. https://github.com/peckshield/EOS/tree/master/eos-tutorials.
[17] 2019. EOS news update: 2.09 million EOS disappears in a hack attack – EOS accounts blocked by Houbi.
[18] 2019. EOS: porn blowing up transaction volumes? https://en.cryptonomist.ch/2019/09/03/

eos-porn-transaction-volumes/.
[19] 2019. EOS “Transaction Congestion Attack”: Attackers Could Paralyze EOS Network with Minimal Cost. https:

//blog.peckshield.com/2019/01/15/eos_CVE-2019-6199/.
[20] 2019. EOSIO Official Portal. https://eos.io/.
[21] 2019. EOSIO Permission Grant. https://blog.csdn.net/zhuxiangzhidi/article/details/81635688.
[22] 2019. EOSIO Secure Coding. https://github.com/peckshield/EOS/blob/master/eos-tutorials/README.md.
[23] 2019. EOS/USDmarket drops by 4% following $7.7million EOS hack attack. https://www.fxstreet.com/cryptocurrencies/

news/eos-usd-market-drops-by-4-following-77-million-eos-hack-attack-201902262151.
[24] 2019. Libra Core implements a decentralized, programmable database which provides a financial infrastructure that

can empower billions of people. https://github.com/libra/libra.
[25] 2019. Official Bitcoin Portal. https://bitcoin.org/en/.
[26] 2019. Official Ethereum Portal. https://www.ethereum.org/.
[27] 2019. Our AI Detects Your AI — Revealing the Secret Blockchain DApp World of Bots (Part 1 — EOS). https://medium.

com/@AnChain.AI/our-ai-detects-your-ai-revealing-the-secret-blockchain-dapp-world-of-bots-eed8884a07.
[28] 2019. Pearson correlation coefficient. https://en.wikipedia.org/wiki/Pearson_correlation_coefficient.
[29] 2019. PeckShield Official Portal. https://www.peckshield.com/home.html?lang=en.
[30] 2019. Roll Back Attack about blacklist in EOS. https://medium.com/@slowmist/

roll-back-attack-about-blacklist-in-eos-adf53edd8d69.
[31] 2019. Roll Back Attack about replay in EOS. https://medium.com/@slowmist/

roll-back-attack-about-replay-in-eos-acddee979396.
[32] 2019. SlowMist Official Portal. https://www.slowmist.com/en/index.html.
[33] 2019. Study: 75% of EOS Dapp Transactions Are Now Made By Bots. https://www.coindesk.com/

study-75-of-dapp-transactions-are-now-made-by-bots.
[34] 2019. The Security Issues of EOSIO.Code Permission for EOS Wolf. https://bihu.com/article/992656.
[35] 2019. TRON Plagued By Infestation Of dApp Bots. https://cryptobriefing.com/

tron-plagued-by-infestation-of-dapp-bots-anchain-report/.
[36] 2020. Accounts and Permissions. https://developers.eos.io/welcome/latest/protocol/accounts_and_permissions.
[37] 2020. Glossary of EOSIO. https://developers.eos.io/welcome/latest/glossary/index.
[38] 2020. History of Histories. https://eos.discussions.app/tag/voice/3i4rwgpi8cqal/dan_larimer_history_of_histories.
[39] Massimo Bartoletti, Salvatore Carta, Tiziana Cimoli, and Roberto Saia. 2020. Dissecting Ponzi schemes on Ethereum:

identification, analysis, and impact. Future Generation Computer Systems 102 (2020), 259–277.
[40] Alex Biryukov, Dmitry Khovratovich, and Ivan Pustogarov. 2014. Deanonymisation of clients in Bitcoin P2P network.

In Proceedings of the 2014 ACM SIGSAC Conference on Computer and Communications Security (CCS). ACM, 15—-29.
[41] Qiang Cao, Michael Sirivianos, Xiaowei Yang, and Tiago Pregueiro. 2012. Aiding the Detection of Fake Accounts in

Large Scale Social Online Services. In Proceedings of the 9th USENIX Conference on Networked Systems Design and
Implementation (NSDI’12). USENIX Association, USA, 15.

[42] Qiang Cao, Xiaowei Yang, Jieqi Yu, and Christopher Palow. 2014. Uncovering Large Groups of ActiveMalicious Accounts
in Online Social Networks. In Proceedings of the 2014 ACM SIGSAC Conference on Computer and Communications
Security. 477–488.

[43] Wren Chan and Aspen Olmsted. 2017. Ethereum transaction graph analysis. In 12th International Conference for
Internet Technology and Secured Transactions (ICITST). 498–500.

Proc. ACM Meas. Anal. Comput. Syst., Vol. 4, No. 2, Article 37. Publication date: June 2020.

37:28 Huang and Wang, et al.

[44] N. Chavoshi, H. Hamooni, and A. Mueen. 2016. DeBot: Twitter Bot Detection via Warped Correlation. In 2016 IEEE
16th International Conference on Data Mining (ICDM). 817–822.

[45] Ting Chen, Yuxiao Zhu, Zihao Li, Jiachi Chen, Xiaoqi Li, Xiapu Luo, Xiaodong Lin, and Xiaosong Zhang. 2018.
Understanding Ethereum via GraphAnalysis. In IEEE International Conference on Computer Communications (INFOCOM).
1484–1492.

[46] Weili Chen, Zibin Zheng, Jiahui Cui, Edith Ngai, Peilin Zheng, and Yuren Zhou. 2018. Detecting ponzi schemes on
ethereum: Towards healthier blockchain technology. In Proceedings of the 2018 World Wide Web Conference (WWW
’18). 1409–1418.

[47] Giorgio Fagiolo. 2007. Clustering in complex directed networks. Physical Review E 76, 2 (2007), 026107.
[48] Michael Fleder, Michael S. Kester, and Sudeep Pillai. 2015. Bitcoin Transaction Graph Analysis. arXivpreprintarXiv:

1502.01657
[49] Zafar Gilani, Jon Crowcroft, Reza Farahbakhsh, and Gareth Tyson. 2017. The implications of twitterbot generated data

traffic on networked systems. In Proceedings of the SIGCOMM Posters and Demos. 51–53.
[50] Zafar Gilani, Reza Farahbakhsh, Gareth Tyson, and Jon Crowcroft. 2019. A large-scale behavioural analysis of bots

and humans on twitter. ACM Transactions on the Web (TWEB) 13, 1 (2019), 1–23.
[51] Ningyu He, Lei Wu, Haoyu Wang, Yao Guo, and Xuxian Jiang. 2020. Characterizing code clones in the Ethereum smart

contract ecosystem. In Twenty-Fourth International Conference on Financial Cryptography and Data Security (FC ’20).
[52] Ningyu He, Ruiyi Zhang, Lei Wu, Haoyu Wang, Xiapu Luo, Yao Guo, Ting Yu, and Xuxian Jiang. 2020. Security

Analysis of EOSIO Smart Contracts. arXiv preprint arXiv:2003.06568 (2020).
[53] Bo Jiang, Ye Liu, andWK Chan. 2018. Contractfuzzer: Fuzzing smart contracts for vulnerability detection. In Proceedings

of the 33rd ACM/IEEE International Conference on Automated Software Engineering (ASE). ACM, 259–269.
[54] Alan Kvanli, Robert Pavur, and Kellie Keeling. 2005. Concise managerial statistics. Cengage Learning. 81–82 pages.
[55] Dongsoo Lee and Dong Hoon Lee. 2019. Push and Pull: Manipulating a Production Schedule and Maximizing Rewards

on the EOSIO Blockchain. In Proceedings of the Third ACM Workshop on Blockchains, Cryptocurrencies and Contracts
(BCC ’19). 11–21.

[56] Sangsup Lee, Daejun Kim, Dongkwan Kim, Sooel Son, and Yongdae Kim. 2019. Who Spent My {EOS}? On the (In)
Security of Resource Management of EOS. IO. In 13th {USENIX} Workshop on Offensive Technologies ({WOOT} 19).

[57] Chao Liu, Han Liu, Zhao Cao, Zhong Chen, Bangdao Chen, and Bill Roscoe. 2018. ReGuard: finding reentrancy bugs in
smart contracts. In Proceedings of the 40th International Conference on Software Engineering (ICSE-C). 65–68.

[58] Loi Luu, Duc-Hiep Chu, Hrishi Olickel, Prateek Saxena, and Aquinas Hobor. 2016. Making Smart Contracts Smarter.
In ACM SIGSAC Conference on Computer and Communications Security (CCS ’16). 254–269.

[59] Damiano Di Francesco Maesa, Andrea Marino, and Laura Ricci. 2016. An analysis of the Bitcoin users graph: inferring
unusual behaviours. In International Workshop on Complex Networks and their Applications. 749–760.

[60] Mark EJ Newman. 2003. Mixing patterns in networks. Physical Review E 67, 2 (2003), 026126.
[61] Rogier Noldus and Piet Van Mieghem. 2015. Assortativity in complex networks. Journal of Complex Networks 3, 4

(2015), 507–542.
[62] Silivanxay Phetsouvanh, Frédérique Oggier, and Anwitaman Datta. 2018. EGRET: Extortion Graph Exploration

Techniques in the Bitcoin Network. In 2018 IEEE International Conference on Data Mining Workshops (ICDMW).
244–251.

[63] Lijin Quan, Lei Wu, and Haoyu Wang. 2019. EVulHunter: Detecting Fake Transfer Vulnerabilities for EOSIO’s Smart
Contracts at Webassembly-level. arXivpreprintarXiv:1906.10362

[64] Fergal Reid andMartin Harrigan. 2011. An Analysis of Anonymity in the Bitcoin System. In 2011 IEEE Third International
Conference on Privacy, Security, Risk and Trust and 2011 IEEE Third International Conference on Social Computing. IEEE,
1318–1326.

[65] Dorit Ron and Adi Shamir. 2013. Quantitative Analysis of the Full Bitcoin Transaction Graph. In International Conference
on Financial Cryptography and Data Security (FC). 6–24.

[66] Sukrit SKalra, Seep Goel, Mohan Dhawan, and Subodh Sharma. 2018. ZEUS: Analyzing Safety of Smart Contracts. In
Network and Distributed Systems Security Symposium (NDSS). 1–12.

[67] Sergei Tikhomirov, Ekaterina Voskresenskaya, Ivan Ivanitskiy, Ramil Takhaviev, Evgeny Marchenko, and Yaroslav
Alexandrov. 2018. Smartcheck: Static analysis of ethereum smart contracts. In Proceedings of the 1st International
Workshop on Emerging Trends in Software Engineering for Blockchain(WETSEB ’18). IEEE, 9–16.

[68] Christof Ferreira Torres, Julian Schütte, and Radu State. 2018. Osiris: Hunting for Integer Bugs in Ethereum Smart
Contracts. In The 34th Annual Computer Security Applications Conference (ACSAC ’18). 664–676.

[69] Petar Tsankov, Andrei Dan, Dana Drachsler-Cohen, Arthur Gervais, Florian Bünzli, and Martin Vechev. 2018. Securify:
Practical Security Analysis of Smart Contracts. In ACM SIGSAC Conference on Computer and Communications Security
(CCS).

Proc. ACM Meas. Anal. Comput. Syst., Vol. 4, No. 2, Article 37. Publication date: June 2020.

Understanding (Mis)Behavior on the EOSIO Blockchain 37:29

[70] Onur Varol, Emilio Ferrara, Clayton A Davis, Filippo Menczer, and Alessandro Flammini. 2017. Online human-bot
interactions: Detection, estimation, and characterization. In Eleventh international AAAI conference on web and social
media.

[71] Gang Wang, Tristan Konolige, Christo Wilson, Xiao Wang, Haitao Zheng, and Ben Y. Zhao. 2013. You Are How You
Click: Clickstream Analysis for Sybil Detection. In 22nd USENIX Security Symposium (USENIX Security 13). 241–256.

[72] Pengcheng Xia, Bowen Zhang, Ru Ji, Bingyu Gao, Lei Wu, Xiapu Luo, HaoyuWang, and Guoai Xu. 2020. Characterizing
Cryptocurrency Exchange Scams. arXiv preprint arXiv:2003.07314 (2020).

[73] Chen Zhao and Yong Guan. 2015. A Graph-based investigation of Bitcoin transactions. In 11th IFIP International
Conference on Digital Forensics (DF). 79–95.

Received January 2020; revised February 2020; accepted March 2020

Proc. ACM Meas. Anal. Comput. Syst., Vol. 4, No. 2, Article 37. Publication date: June 2020.

