
RICH: Implementing Reductions in the Cache Hierarchy
Vladimir Dimić

Barcelona Supercomputing Center

Universitat Politècnica de Catalunya

vladimir.dimic@bsc.es

Miquel Moretó

Barcelona Supercomputing Center

Universitat Politècnica de Catalunya

miquel.moreto@bsc.es

Marc Casas

Barcelona Supercomputing Center

marc.casas@bsc.es

Jan Ciesko

Center for Computing Research,

Sandia National Laboratories

Albuquerque, NM, USA

jciesko@sandia.gov

Mateo Valero

Barcelona Supercomputing Center

Universitat Politècnica de Catalunya

mateo.valero@bsc.es

ABSTRACT
Reductions constitute a frequent algorithmic pattern in high-perfor-

mance and scientific computing. Sophisticated techniques are needed

to ensure their correct and scalable concurrent execution onmodern

processors. Reductions on large arrays represent the most demand-

ing case where traditional approaches are not always applicable

due to low performance scalability.

To address these challenges, we propose RICH, a runtime-assisted

solution that relies on architectural and parallel programming

model extensions. RICH updates the reduction variable directly

in the cache hierarchy with the help of added in-cache functional

units. Our programmingmodel extensions fit with themost relevant

parallel programming solutions for shared memory environments

like OpenMP. RICH does not modify the ISA, which allows the

use of algorithms with reductions from pre-compiled external li-

braries. Experiments show that our solution achieves the speedup

of 1.11× on average, compared to the state-of-the-art hardware-

based approaches, while it introduces 2.4% area and 3.8% power

overhead.

CCS CONCEPTS
•Computer systems organization→Multicore architectures;
•Computingmethodologies→ Parallel programming languages;
• Software and its engineering→ Runtime environments.
KEYWORDS
shared memory, caches, reductions, task-based programmingmodel

ACM Reference Format:
Vladimir Dimić, Miquel Moretó, Marc Casas, Jan Ciesko, and Mateo Valero.

2020. RICH: Implementing Reductions in the Cache Hierarchy. In 2020
International Conference on Supercomputing (ICS ’20), June 29-July 2, 2020,
Barcelona, Spain. ACM, New York, NY, USA, 13 pages. https://doi.org/10.

1145/3392717.3392736

ICS ’20, June 29-July 2, 2020, Barcelona, Spain
© 2020 Copyright held by the owner/author(s). Publication rights licensed to ACM.

This is the author’s version of the work. It is posted here for your personal use. Not

for redistribution. The definitive Version of Record was published in 2020 International
Conference on Supercomputing (ICS ’20), June 29-July 2, 2020, Barcelona, Spain, https:
//doi.org/10.1145/3392717.3392736.

1 INTRODUCTION
The CPU clock frequency stagnation due to the end of Dennard

scaling [14] has forced hardware vendors to consider increasingly

large core counts. To take advantage of these multi-core designs, the

software needs to be able to run concurrently on many threads. Cur-

rent high-performance systems are dominantly used in scientific

domain, where applications often rely on operations like reductions.

Therefore, the acceleration of such reductions is of paramount im-

portance to optimize parallel executions and properly reach the

best performance out of complex codes.

In general, reductions are operations that accumulate values on

a given data structure, called reduction variable. The performance

of a reduction operation is impacted by factors like the reduction

variable size or the memory access pattern. Applying case-specific

techniques is required to achieve optimal performance for the par-

allel execution of reductions. For example, in current systems, there

are two main techniques used to parallelize reductions:

(i) Software privatization [8, 46] progressively accumulates the

partial result into the thread-private copies of the reduction variable.

Once the algorithm finishes, partial results in the private copies

are combined into the final result. This solution works well with

small reduction variables, i.e. scalar variables, structures or short

arrays. However, in codes with large arrays, such as matrix-matrix

multiplication, data replication introduces cache pollution that can

significantly harm the application’s performance.

(ii) As an alternative, programmers can use atomic operations [4,

25, 27, 41] for implementing reductions. This software solution

outperforms privatization on large reduction variables. On the neg-

ative side, there is not always hardware support to atomically run

all arithmetic and logic operations. Moreover, atomics often suffer

from invalidations caused by the coherence protocol due to concur-

rent accesses to the same location as well as due to false sharing.

Consequently, atomics usually perform worse than privatization-

based software techniques for the case of reductions on scalars and

small arrays, as we demonstrate in Section 2.1.

Several techniques using hardware extensions for reductions

have been proposed, such as COUP [50] and PCLR [17], which

implement hardware privatization of the reduction variable. Such

solutions work well for small reduction variables. However, for

reductions on larger arrays, cache pollution caused by copies of

the reduction variable becomes an issue and may negatively affect

performance. Moreover, these techniques modify the processor’s

https://doi.org/10.1145/3392717.3392736
https://doi.org/10.1145/3392717.3392736
https://doi.org/10.1145/3392717.3392736
https://doi.org/10.1145/3392717.3392736


ISA, which makes them incompatible with external pre-compiled

algorithmic and mathematical libraries commonly used in complex

scientific and High Performance Computing (HPC) applications.

While there are well-performing solutions for reductions on

scalar variables, vector reductions still remain an open topic of

research. In order to solve the aforementioned challenges, we pro-

pose RICH, a runtime-assisted technique for performing reductions

in the processor’s cache hierarchy. The goal of RICH is to be a

universally applicable solution regardless of the reduction variable

type, size and access pattern. For its implementation, we design

a hardware extension equipped with functional units to perform

reductions at any level of the cache hierarchy. Existing constructs in

a shared-memory parallel programming model are extended to let

the programmer specify at which location in the cache hierarchy a

certain reduction should be computed. The runtime system couples

the application with the operating system, with the goal to provide

the underlying hardware with the information about the reduction

variable. This interface is designed without modifying the proces-

sor’s ISA. As a result, RICH supports the use of algorithms with

reductions implemented in third-party libraries.

This paper makes the following contributions:

• RICH enables the programmer to offload the reduction operation

from the core to a desired level of the cache hierarchy. This

functionality is facilitated by extending existing OpenMP-like

annotations in the parallel code.

• We propose a new hardware component, the Reduction Module,

able to perform reductions at all levels of the cache hierarchy.

• Our design couples the parallel application and the underlying

hardware with a runtime-assisted interface that does not modify

the processors ISA. As a result, RICH is applicable to common

scenarios where complex codes use reduction algorithms im-

plemented in third-party pre-compiled libraries, which is not

supported in the state-of-the-art hardware techniques for reduc-

tions, such as COUP [50] and PCLR [17].

• Experimental results for vector-reductions show that RICH achieves

performance improvements of 1.8× on average, compared to the

current approaches implemented in parallel programming mod-

els. With scalar-reductions, RICH outperforms software privati-

zation 1.09× on average. RICH performs on average 1.11× faster

than COUP.

The rest of the document is structured as follows. Section 2

provides context for our work and discusses current approaches

for performing reductions. Section 3 describes RICH, including the

architectural support for reductions and compiler and programming

model extensions. Section 4 explains the experimental methodology

and introduces the benchmarks used for the evaluation of RICH.

Section 5 discusses the most important design decisions, while

Section 6 presents a detailed evaluation of the proposal. Section 7

describes the related work and Section 8 concludes this document.

2 BACKGROUND AND MOTIVATION
In the context of parallel programming, reductions are operations

where input data is accumulated by applying an operator to gener-

ate output data [24]. For the rest of the article, we define a reduction

variable as a data structure that holds the output data of the reduc-

tion. Addition and multiplication are commonly used as reduction

operators in scientific computing. Reductions can be parallelized

because these operations are associative and commutative [37].

Based on the reduction variable’s size, we classify reductions into

two categories:

(i) Reductions over scalar-types. This type of reductions occurs
in a wide range of application domains including combinatorics

(e.g. satisfiability problems such as n-Queens) or scientific com-

puting (e.g. normalized residuals to verify convergence or code

correctness) or to implement hardware performance counters. On

current mainstream architectures, updates to shared data should

be avoided, since they may result in high cache coherence traffic

that significantly impacts execution performance.

(ii) Reductions over vector-types. Such reductions are usually

present in more complex scientific codes that accumulate results

on arrays or higher-dimensional matrices. Depending on how the

reduction variable is accessed during the reduction, we identify

two sub-categories: near-linear access patterns and irregular access

patterns. Near-linear reductions typically take place in scientific

codes where operations access just the neighboring grid elements,

such as in LULESH [29] and SPECFEMD [31]. Irregular array-type

reductions are frequently found in n-body codes, histogram compu-

tations, as well as in applications where data structure representing

a physical domain is accessed in an irregular manner. Concurrent

execution of vector-reductions requires solutions that avoid un-

necessary data privatization, prevent data races due to concurrent

updates to overlapping memory regions and effectively reduce

memory bandwidth and latency requirements.

2.1 Software-Based Solutions for Reductions
There are two intuitive software-based techniques to parallelize

reductions. The first approach, called privatization [8, 46], consists

in having each of the threads involved in the parallel execution

performing a partial reduction over its portion of input data. The

partial reduced data is stored in private per-thread copies of the re-

duction variable. Partial results are combined in the final result after

the parallel reduction tasks are completed. Privatization works well

for reductions over scalars and small arrays. For larger reduction

variables, however, privatized data increases cache pollution.

As an alternative, private threads directly update the shared re-

duction variable. To ensure correctness, the update operation is

guarded using atomic instructions that are commonly implemented

in modern processors [1, 4, 25, 27]. This method performs worse

than privatization for small reduction variables due to frequent

cache misses caused by the invalidations of cache lines in the pri-

vate caches as well as the increased coherence traffic. Figure 1

shows an example of such behavior by comparing the achieved

memory bandwidth of the two techniques mentioned above con-

sidering different reduction variable sizes. For this analysis we use

RandomAccess [2], a kernel that accesses the reduction variable

following a uniform probability distribution function.

Results show that for small array sizes, privatization is the ap-

proach delivering higher performance as it avoids the shared up-

dates. In contrast, atomics achieve significantly lower performance

for small problem sizes due to the coherence effects. The atomics

performance improves when the array size increases as conflicts

between different threads are less likely to occur. As the array size

approaches the size of the core’s portion of the shared L3 cache,

2



4
K

B
8

K
B

16
K

B
32

K
B

64
K

B
12

8
K

B
25

6
K

B
51

2
K

B
1

M
B

2
M

B
4

M
B

8
M

B
16

M
B

32
M

B
64

M
B

12
8

M
B

25
6

M
B

51
2

M
B

1
G

B

106

107

108

109

1010

B
an

dw
id

th
[B

/s
]

L1 L2 L3

Privatization Atomics

Figure 1: Achieved memory bandwidth for RandomAccess
benchmark for different reduction array sizes on an IBM
POWER8 processorwith 192 threads. Vertical lines show the
sizes of the data caches per core.

privatization suffers from a performance drop of 1000× due to the

overhead of handling the private copies of the reduction variable.

Although atomics also show a notable drop in performance, they

perform significantly better than privatization. With the further

increase of the reduction variable’s size beyond 8 MB, the perfor-

mance of privatization stagnates, while the performance of atomics

slowly degrades.

This analysis clearly shows how different reduction methods

deliver different performance depending on the size of the reduc-

tion variable. Specifically, the size of the reduction variable dictates

which reduction technique should be used to achieve better perfor-

mance. Solutions allowing a manual or automatic selection of the

reduction technique are required in order to achieve the best possi-

ble performance across all possible scenarios without exposing the

programmer to the complexity of implementing application-specific

ad hoc reduction techniques. To further reduce the overheads of

software techniques, hardware solutions are necessary.

2.2 Hardware-Assisted Reductions
There are several state-of-the-art hardware techniques addressing

issues related to coherence invalidations or data privatization costs.

They either implement atomic remote memory accesses [3] or use

private cache lines [17, 50]. Remote atomic updates implement

atomicity by performing the final reduction, involving all the partial

results, at a specific hardware component. These components can

be the last-level cache or the memory controller equipped with

additional functional units. The use of private cache lines is based on

the same concepts as its software privatization counterpart. In this

case, processor caches are used as temporal buffers to accumulate

intermediate results. Private cache lines are initialized to the neutral

element on the first access and are reduced at cache line eviction or

at the end of a software routine by generating the final value in the

last-level cache. Described designs avoid the high coherence traffic

triggered by shared updates to the reduction variable.

However, previous proposals do not perform optimally in all sce-

narios. Solutions based on remote memory accesses are not suitable

for small reduction variables due to higher chance of conflicts and

the resulting serialization of update operations. Applications with

irregular memory accesses do not efficiently use cache memories be-

cause such access patterns exhibit low spatial and temporal locality.

The usage of private cache lines in such codes results in a sequence

of initialization, cache placement and eviction events. Moreover, in

the case of large reduction arrays, privatizing the reduction variable

significantly pollutes the content of cache memories. Consequently,

further architectural innovations are needed to avoid these issues

while keeping the benefits of low coherence traffic.

2.3 Ongoing Challenges
Reductions on scalar variables or small output arrays are well sup-

ported in current designs. However, reductions considering large

arrays or displaying irregular access patterns require novel tech-

niques to avoid performance degradation due to cache pollution

and increased coherence traffic. Proposed hardware and software

solutions are just suitable for a subset of scenarios, depending on

the size of the reduction variable and its memory access pattern. To

the best of our knowledge, a technique effective for all reduction

scenarios has not been proposed. Moreover, previously proposed

hardware techniques require ISA extensions to handle reduction

operations, which makes them incompatible with applications that

use pre-compiled libraries containing reduction operations.

In this article we propose a solution aimed at achieving the fol-

lowing goals: (i) To achieve better performance than the state of

the art considering a wide range of reduction variable sizes and

different memory access patterns. (ii) To avoid modifications to the

processor’s ISA and thus maintain the compatibility with pre-com-

piled and dynamically linked libraries. (iii) To let the programmer

expose application-specific knowledge to the hardware without the

need for ad hoc implementations of reductions.

3 RICH: IMPLEMENTING REDUCTIONS IN
THE CACHE HIERARCHY

RICH is a runtime-assisted technique for performing reductions in

the cache hierarchy. The programmer makes use of simple source

code annotations to identify reduction variables and specify both

the reduction operator and the hardware components where reduc-

tions should take place. Such annotations are expressed in terms of

pragma directives [36]. The runtime system is responsible for pro-

viding the hardware with the information specified by the program-

mer. Finally, the additional hardware components in the processor’s

caches are responsible for handling and executing the reduction

operations. RICH relies on the following extensions:

• Programming model support to define the reduction technique

and the runtime system extensions to set up the relevant hard-

ware components.

• A novel hardware component, called Reduction Module (RM),

located at the cache hierarchy. The RM performs the reduction

instructions issued by the cores.

• Microarchitectural extensions in the processor and its memory

hierarchy to handle reduction requests in the core and their

propagation to the RM through the cache hierarchy.

In this section we describe these extensions in detail. Finally, we dis-

cuss different design decisions and the implications of the proposed

processor functionalities.

3



D
e
c
o
d
e

A
l
l
o
c
a
t
e

R
e
n
a
m
e

I
s
s
u
e

E
x
e
c
u
t
e

M
e
m

W
r
B
a
c
k

C
o
m
m
i
t

start @ end @ op type

RVT

L2 Ctrl

T
a
g

D
a
t
a

TLB RM

N
e
t
w
o
r
k
o
n
C
h
i
p

P
i
p
e
l
i
n
e

LLC Ctrl

T
a
g

D
a
t
a

M
S
H
R

RM

M
e
m
o
r
y
C
o
n
t
r
o
l
l
e
r
s

F
e
t
c
h

R
V
T

L1 Ctrl

T
a
g

D
a
t
a

M
S
H
R

M
S
H
R

Figure 2: The pipeline schematic with the added RVT com-
ponent (top left); Microarchitecture of the RVT (top right);
Microarchitecture of the memory hierarchy with the added
Reduction Modules (bottom). New components are colored
in solid gray and modified components in striped gray.

3.1 Microarchitectural Support for Reductions
In the following paragraphs we describe the hardwaremodifications

we propose to execute reduction operations in the cache hierarchy.

Figure 2 shows the relevant details of a multi-core processor mi-

croarchitecture with the added (solid gray) and modified (striped

gray) components. We describe our proposal in a context where

each core is equipped with two levels of private caches while the

Last-Level Cache (LLC) is shared among all cores. Our architectural

innovations can be also deployed, with minor adaptations, in other

contexts with different cache memory hierarchies. A Reduction

Module (RM) is added to the private caches of each core as well

as to the LLC. The private caches share a single RM. The cache

controllers are modified to communicate with the RM and to han-

dle reduction store instructions. A small hardware component that

holds the range of reduction variables for the current thread is

placed in each core. All added and modified hardware structures

are described in detail in the following paragraphs.

Recognizing reduction instructions is partially facilitated by
a special hardware structure called Reduction Variable Table (RVT).

For a given address, the RVT determines if the address belongs

to a reduction variable in the current thread. For load and store

instructions within the reduction task, the RVT is accessed in the

execute stage, once the destination address of the memory opera-

tion is calculated. The RVT holds the ranges of virtual addresses

corresponding to the reduction variables (start @ and end @), as

well as the data type (type) and the operator (op) used for accumu-

lating values into each reduction variable. The content of the RVT

is managed by the runtime system, as explained in Section 3.2.

The reduction operation is composed of: a load from the reduc-

tion variable into a register, an arithmetic or logic operation that

updates this register and a store of the modified register to the

original memory location. The load and the store instructions are

detected by a lookup of the load and the store addresses, respec-

tively, in the RVT. A successful lookup to the RVT signals to the

core that the address belongs to a reduction variable and that the

corresponding instruction is a reduction instruction. The arithmetic

operation that has the chain register dependency with the reduction

load and store instructions is also designated as a reduction instruc-

tion. Such design does not require load-modify-store instructions

to be consecutive.

Depending on the target architecture, the atomicity of the load-

modify-store chain is achieved in different ways: (i) Load-Link

and Store-Conditional instructions [4, 25, 41] and (ii) Compare-

And-Swap construct [27]. We implement RICH to support both

synchronization mechanisms. Since RICH uses only the address

accessed by the loads and stores to determine if they participate in

reduction operation, it is not important which mechanism is used

to ensure the atomicity of the reduction operation.

RICH supports reduction operations that update the reduction

variable with a sequence of load-modify-store instructions. All re-

duction operators defined in the OpenMP standard 5.0 have this

property. This covers arithmetic instructions ADD, SUB, MUL, log-

ical operations AND and OR, bitwise operations AND, OR and

XOR and MIN/MAX. In addition, RICH supports the DIV operation.

Operations on both integer and floating point data are allowed.

When a core recognizes a reduction operation, the arithmetic

or logic instructions involved in it plus the load instructions to the

reduction variable are converted into NOP instructions in the core’s

pipeline. After effectively eliminating these instructions, the CPU

converts the reduction store instruction into a special store instruc-

tion that holds information from these removed instructions: the

reduction operator, the data to be reduced and the reduction vari-

able’s address. The special store instruction is propagated through

the cache hierarchy until it arrives to the cache level configured to

perform the reduction. To ensure the correctness of this design, we

do not permit any instruction consuming the reduction variable

to execute before the reduction operation has finished. This is en-

forced by using existing OpenMP synchronization primitives such

as barriers or dependencies between different user functions [36].

Since the load and the arithmetic or logic instruction involved

in reduction are converted into NOP instructions, their destination

registers will not hold the loaded or computed value. This does

not present an issue due to the fact that programmer guarantees

that the reduction task only updates the reduction variable and

does not consume it. Therefore, an unmodified compiler already

generates a code that does not consume the values stored in these

registers. However, the compiler is allowed to reuse these registers

for independent instructions to store another variable, even inside

the reduction task. Themechanisms already present in the processor

pipeline ensure the correctness and efficiency of such execution in

an out-of-order processor.

Reduction Module. Figure 3 shows the microarchitecture of

a Reduction Module (RM) which consists of the following three

hardware structures:

The RM Instruction Queue (RMIQ) contains instructions that are

to be executed or are being executed by the RM. The RMIQ is de-

signed as a circular queue to maintain the order of the inserted

instructions. Each entry in the RMIQ contains information spec-

ified by a reduction instruction, i.e the reduction operation to be

performed (op), the address of the reduction variable (addr), its

size (sz) and the value that is to be reduced into the reduction vari-

able (val). The data field holds the current value of the accessed

location within the reduction variable, which may not be available

in cache at the time of inserting an instruction into the RMIQ. In

4



RMEX RM Store QueueRM Instruction Queue

to the Cache Controller

addr datasz
rdy op data valaddr szex dep b

y
p
a
s
s

Figure 3: Microarchitecture of the Reduction Module.

that case, the entry is marked as "not ready" (field rdy). Only ready

instructions can be executed. The ex field indicates whether the

instruction is being executed. The dep field points to an entry in

the RMIQ that depends on the result of this instruction.

The RM Execution Unit (RMEX) contains the logic that performs

arithmetic and logic operations on all standard data types. It consists

of an Arithmetic-Logic Unit (ALU) and a Floating-Point Unit (FPU).

The RM Store Queue (RMSQ) is a circular buffer for storing the

results of the reductions until they can be written back to the

cache’s data storage. Entries of the RMSQ contain an address, the

corresponding data and its size. Whenever a cache’s write port is

not in use, the controller writes the oldest entry from the RMSQ

into the cache and removes it from the RMSQ.

RICH configurations. In our proposed architecture, the sys-

tem can be configured to perform reductions at different levels of

the cache hierarchy, i.e. at any of the private caches or the shared

last-level cache. Although the inner behavior of the RM is the same,

the handling of the reduction instructions in the cache controller

depends on the RICH configuration. Depending on the cache level

where the reduction is performed, we define the following three con-

figurationsRICHL1,RICHL2 andRICHLLC . ConfigurationsRICHL1
and RICHL2 imply that partial reduction is performed in the corre-

sponding private caches. After the reduction task is finished, the

reduction lines from caches are written back and the final reduction

is carried out at the LLC level. In the RICHLLC configuration, only

the RM in the LLC is active. Inactive RMs do not consume energy

as they are turned off by the power gating mechanism [38].

Processing a reduction instruction in caches.The cache con-
trollers are set up to either process the special reduction store in-

structions or delegate it to the next cache in the memory hierarchy,

depending on the selected RICH configuration. This setup is per-

formed by the runtime system before the task user code starts

executing. When a special store instruction involved in a reduc-

tion reaches the cache level where it will run, it is inserted in the

RMIQ and marked as "not ready". Before the instruction can start

executing, the current value of the reduction variable needs to be

fetched into the RM. Depending on the state of the RM and the

corresponding cache, different actions are performed:

• If the RMIQ contains an entry reducing to the same address as

the new instruction, the new instruction needs to wait for the

data from the preceding instruction, whose dep field is updated

to point to the newly inserted instruction.

• Otherwise, the reduction data has to be read from the RMSQ

or the data cache. If the RMSQ contains an entry matching the

address of the new reduction instruction, data is read from the

RMSQ into the data field in the RMIQ and the new instruction is

marked as ready.

• If the reduction is performed in a private cache (RICHL1 and

RICHL2), data is fetched from the cache in the case of a cache
hit. In case of a cache miss, a cache line is allocated and filled

with neutral elements corresponding to the reduction operator.

When a cache line holding the reduction variable is evicted from

a private cache, it is reduced by the RM inside the LLC.

• If the reduction is performed in the shared cache (RICHLLC ), the

data is fetched from the cache’s data storage. In case of a cache
miss, a standard request is sent to the memory controller and the

pointer to the RMIQ entry requesting the data is inserted into

the MSHR. Once the data arrives to the cache, it is written into

the appropriate entry in the RMIQ, simultaneously marking the

entry as ready.

• In scenarios where the data is present in a level of the cache hier-

archy lower than the level where the reduction takes place (e.g.,

the valid data is located in the L1 cache in RICHL2 configuration),

the unmodified coherence protocol moves the data to the desired

cache level.

When scheduling an instruction for execution, the controller

takes the first ready instruction from the head of the RMIQ, sets its

ex bit and forwards the entry to the RMEX for execution. Once the

execution finishes, the result, together with the destination address,

is stored in the RMSQ, while the corresponding entry in the RMIQ

is freed. In case an instruction is waiting in the RMIQ for the output

of the finished reduction operation, this output is written in the

data field of the corresponding entry, marking it as ready. Entries

from the RMSQ are written back to the cache’s data store when the

cache’s write port is available and removed from the RMSQ.

When a request is sent to the RM, the corresponding cache line is

locked, which prevents it from being evicted. The lock guarantees

that the line is present for the write-back operation from the RM,

which releases the lock upon completion.

Accessing a reduction variable outside of the reduction
scope. Once the reduction finishes, the application often accesses

the reduction variable for further processing. It is necessary to

differentiate between accesses generated inside the reduction scope

and those accesses that happen outside of reduction context. RICH

uses the RVT to recognize reduction instructions. The runtime

system populates the RVT before the reduction context begins and

clears it after the reduction is finished. This mechanism is described

in Section 3.2. If the variable is accessed outside of the reduction

context, the request is processed as a normal memory instruction.

Also, we do not allow instructions accessing the reduction variable

that do not belong to the reduction operation to run before the

whole reduction has finished. This is automatically enforced by

OpenMP synchronization primitives [36], which are inserted by

the source-to-source compiler.

Memory consistency.Memory consistency of non-reduction

data is not affected. All loads and stores are issued by the core in a

way that maintains Total Store Order (TSO) memory consistency

model [45]. On the other hand, the loads and stores issued by the

RM and non-dependent, non-reduction loads and stores issued by

the core can be seen in different order by the memory subsystem.

To guarantee that an access to reduction variable never returns a

wrong value, (i) the programmer ensures that, within the reduction

task, the reduction variable is only accessed with read-modify-write

5



construct, i.e., reduction operation, and (ii) the source-to-source

compiler inserts a memory fence after a reduction task to guarantee

that successive consumer task accesses the correct data.

Cache coherence. RICH does not modify the cache coherence

protocol. Depending on the RICH configuration, specific explicit

synchronization actions are performed to guarantee coherence of

reduction data in the caches. In all configurations, the reduction

variable can either be present in the cache’s data store or in the

RMSQ of the same cache. The cache controller considers both lo-

cations when searching for a cache line of an in-flight reduction

variable. RICHL1 and RICHL2 require a final reduction of the par-

tially reduced data, which is performed at the end of the reduction

task. A memory fence, inserted by the source-to-source compiler,

guarantees that these data are not consumed before the final reduc-

tion takes place.

Support for precise exceptions and speculation. RICH im-

plementation maintains support for precise exceptions by guaran-

teeing in-order retiring of instructions. Events caused by exceptions

and mis-speculations are bidirectionally communicated between

the core and the RM. In case of an exception or mis-speculation,

the appropriate in-flight instructions in the RM are flushed, new

values stored in the RMSQ are discarded and old values stored in

the RMIQ are restored.

3.2 Programming Model and Compiler Support
The programming model support for the proposed hardware design

relies on the existing implementations of the most popular shared

memory parallel programming model, OpenMP [36]. OpenMP sup-

ports both loop-level and task-based parallelism. In task-based

codes, the programming model offers explicit synchronization with

taskwait constructs. In addition, if programmers define data de-

pendencies between tasks, OpenMP automatically ensures correct

execution in a data-flow manner by respecting the user-specified

task data dependencies. Specifically, tasks that depend on data pro-

duced by other tasks are scheduled to execute only when these

data dependencies are satisfied. When loop-based parallelism is

employed, implicit barriers are added to enforce synchronization.

We design RICH to be agnostic to the applied parallelization

technique. The proposed programming model extensions are built

on top of the existing implementation of reductions in OpenMP.

This is beneficial as any extension to a programming model re-

quires careful design for consistency with minimal implications on

unrelated constructs, user understanding and compatibility with

previous versions and existing codes.

We extend the reduction directive as follows, with the added

parameter shown in bold.

reduction(reduction-ident . : [reduction-technique] : list )

As defined in Section 2.19.5.4 of the OpenMP 5.0 standard [36],

reduction-identifier specifies the reduction operator while list speci-
fies the list of reduction variables. The added optional field reduction-
technique specifies which reduction technique to use (CPU ,RICHL1,

RICHL2 or RICHLLC ). The default configuration,CPU , executes the

reduction operations in the core and does not use the hardware

acceleration in the RM. Using the information specified in this

Figure 4: The code transformation done by the compiler.

annotation simplifies our design as it does not require adding spe-

cial reduction instructions to the processor’s ISA, and, therefore,

maintains the compatibility with pre-compiled libraries.

The information specified in the programming model directives

is forwarded to the RVT by a function call implemented in the

runtime library using instructions on memory-mapped registers.

This call is inserted by a source-to-source compiler in the code

location where the executing thread encounters the beginning of

the parallel region or a task that participates in a reduction. This

source code location is considered as the start of the reduction

scope, which is terminated once all tasks or iterations from that

parallel region finish.

Figure 4 illustrates how a programmer uses the programming

model extensions. The starting point in this example is a parallelized

vector reduction code that uses the OpenMP reduction construct.

The example is applicable to both task-based and loop-based parallel

codes. The programmer selects the cache level where the reduction

will take place by taking into account properties of the application

like the workload size, reduction variable size, and its memory

access pattern. In this example we decide to execute the reduction in

the L1 cache, which is specified in the reduction clause 1 , as defined

earlier in this section. The source-to-source compiler inserts calls

to functions implemented in the runtime system library used to

populate the RVT with the information about reduction variables

and the chosen reduction location 2 .

During program’s execution, the load and arithmetic operations

belonging to reductions 3 are discarded. The store instruction 4 is

enriched with the reduction operation type (ADD, from RVT) and the

register holding the value to be reduced (%edx, from the preceding

ALU instruction). The enriched store instruction is then forwarded

to the core’s RM. The further handling of reduction instructions by

the hardware is explained in detail in Section 3.1.

4 EXPERIMENTAL METHODOLOGY
4.1 Benchmarks
In Section 2 we introduced the two categories of reduction op-

erations based on the reduction variable size: scalar and vector

reductions. To evaluate RICH, we consider applications with re-

duction operations on scalar variables as well as parallel codes

containing more complex reduction variables composed of arrays.

Benchmarks are selected among HPC applications and kernels to

cover a wide range of algorithms used in scientific codes. We extend

the programming model annotations in the benchmarks to mark

the reduction variables as explained in Section 3.2.

6



Table 1: Benchmark details.

Benchmark

Short

Name

Input Parameters

Reduction task

workload size

Reduction

data/op type

Reduction

instr. ratio

Time spent by

redu. instr.

Dot Product DotP 256K elem. 100 iterations in: 2MB; out: 8B FP ADD 8.96% 7.95%

KnightsTour KT 5×5 chessboard in: 304K elem.; out: 4B INT ADD 0.74% 1.88%

NBinaryWords NB word length: 24 in: 2
24

elem.; out: 4B INT ADD 14.09% 9.50%

NQueens NQ 12 queens on 12×12 chessboard in: 12! elem.; out: 4B INT ADD 0.45% 0.30%

PowerSet PS set size: 24 elements in: 2
24

elem.; out: 4B INT ADD 14.37% 11.05%

S
c
a
l
a
r

Vector Reduction VectR 256K elem. 50 iterations in: 2MB, out 8B FP ADD 22.91% 43.24%

2D Convolution 2DC image 1024×1024 pixels, stencil 16×16 in: 16MB; out: 1MB FP ADD 9.87% 28.09%

Conjugate Gradient [28] CG matrix qa8fm [12], 16 blocks, 97 iterations in: 529.5KB; out: 516KB FP ADD 5.82% 1.82%

Dense Matrx Matrx Multipl. DGEMM matrix 1024×1024 elem., block 64×64 elem. in: 16MB; out: 8MB FP ADD 1.28% 0.10%

Dense Matrx Vect. Multipl. DGEMV matrix 2048×2048 elem., block 128×128 in: 32MB; out: 16KB FP ADD 14.21% 16.48%

2D Expl. Hydro. Frag. [34] EHF array 16×64K elem. in: 9MB; out: 6MB FP ADD 0.89% 11.14%

Stencil Histogram Hist input: 4MB, 512K bins, 27-point stencil in: 4MB; out: 2MB INT ADD 1.31% 11.77%

LULESH [29] LULESH cube 20
3
, 11 regions, 10 iterations in: 1500KB; out: 187.5KB FP ADD 0.35% 3.00%

Molecular Dynamics MD 2k atoms, periodic space, stretch phase change in: 326KB; out: 163KB FP ADD 2.34% 0.91%

N-body Simulation NBody 4096 bodies, 10 iterations in: 24MB out: 96KB FP ADD 5.88% 12.32%

1D Particle in Cell [34] PIC array 128K elem, 8K histogram, 1000 iter. in: 6.5MB; out: 64KB FP ADD 17.87% 9.99%

V
e
c
t
o
r

Sparse Matrix Vect. Multipl. SpMV matrix bcsstk32 [12] in: 12.9MB; out: 357KB FP ADD 10.63% 15.88%

Table 2: Parameters of the simulated system.

CPU 16 OoO superscalar cores, 128-entry ROB, 2.4GHz, issue width 4

Caches 64B line, non-inclusive, write-back, write-allocate, 16-entry MSHR

L1 private, 32 KB, 8-way set-associative, 4-cycle latency, split I/D

L2 private, 256 KB, 8-way set-associative, 12-cycle latency

L3 shared, 32 MB, 16-way set-associative, 36-cycle latency

RM 16-entry RMIQ, single pipelined FU and ALU

RVT 32 entries per core

Memory 64 cycles + 100ns latency, 85GB/s bandwidth

Table 1 shows the list of all benchmarks used for evaluation in-

cluding a summary of relevant parameters and properties. We split

benchmarks into two groups mentioned in the previous paragraph.

Even though CG application performs reduction on both vector and

scalar data, we classify it as an application with vector-reductions

for simplicity. The third column displays the input parameters used

to run each benchmark. The fourth column contains the reduction

variable sizes (denoted out) and the size of the input structures (de-

noted in). The fifth column shows the reduction variable’s data type

and the operator for accumulating the values into the reduction

variable. Finally, the last two columns show the ratio of executed

reduction instructions compared to the overall number of executed

instructions and the percentage of overall execution time spent by

reduction instructions, respectively.

4.2 Simulation Setup
We use TaskSim, a trace-driven cycle-accurate architecture simula-

tor [39, 40]. TaskSim simulates in detail the execution of parallel

applications with OpenMP pragma primitives [36] on parallel multi-

core environments. The simulated system mimics an Intel Xeon E7

based processor and consists of 16 cores connected to main mem-

ory. The cores follow a simple model of a superscalar out-of-order

Table 3: RICH design space exploration.

RMEX: 1, 2, 4 FUs
FU design: pipelined, non-pipelinedRM

RMIQ entries: 1, 2, 4, 8, 16, 32, 64
RVT 1, 2, 4, 8, 16, 32, 64, 128, 256, 512, 1024, 2048 entries

processor with a detailed three-level cache hierarchy. Each core

has two private cache levels, L1 and L2, while the L3 is shared. All

relevant parameters of the simulated system are shown in Table 2.

Power consumption is evaluated using the McPAT model [33]

with a transistor technology of 22 nm, a voltage of 1.2V, and the

default clock gating scheme. We incorporate the changes suggested

byXi et al. [47] to improve the accuracy of themodels. The hardware

structures RVT, RMIQ and RMSQ are modeled using CACTI 7 [7].

We add the appropriate counters in TaskSim to measure the extra

power introduced by the RM.

5 RICH DESIGN DECISIONS
5.1 Design Space Exploration
There are three design parameters that influence the performance

of the proposed Reduction Module: (i) The Reduction Module In-

struction Queue size; (ii) Number of the functional units in the

RMEX; and (iii) Design of the functional units in the RMEX. In this

section, we evaluate the impact of the aforementioned parameters

on the processor’s performance. In addition, we explore different

latencies of arithmetic operations in order to evaluate the perfor-

mance of the Reduction Module with all supported arithmetic and

logic operations on both fixed and floating-point numbers. Opera-

tions are modeled to have the same latency as the corresponding

instructions in current Intel processors. The list of parameters and

explored values is presented in Table 3. For the evaluation we use

the benchmarks described in Section 4.1. The final purpose of this

7



1 2 4 8 16

non-pipel.

0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

Sp
ee

du
p

vs
.

id
ea

l
re

du
ct

io
ns

1 FU

Reduction Location
L1 or L2 LLC

INT ADD
AND/OR/XOR

INT MUL
FP ADD
FP MUL

INT DIV
FP DIV

1 2 4 8 16

pipelined
1 2 4 8 16

non-pipel.
2 FUs

1 2 4 8 16

pipelined
1 2 4 8 16

non-pipel.
4 FUs

1 2 4 8 16

pipelined
RMIQ

FU design

Figure 5: RICH speedup vs. ideal reductions for different
configurations of functional units and RMIQ in the RM, de-
pending on operation type and reduction location.

analysis is to determine the optimal parameters of the RM in the

context of the simulated processor and evaluated benchmarks.

Figure 5 shows the speedup of RICH versus the ideal implemen-

tation of reductions, where each reduction instruction takes 1 cycle

and does not interact with the cache subsystem. The speedup of

1 represents the upper theoretical limit for the achievable perfor-

mance. On x-axis we show different configurations for some of

the RM’s components. We explore the effects of different counts of

functional units and their design (non-pipelined vs. pipelined). The

number of RMIQ entries per functional unit is denoted with RMIQ.
Each data point shows the mean speedup among all benchmarks

for a specific group of reduction operations and the cache level at

which the reduction is performed. Operations of similar latencies

and behaviors are grouped together. Each group is designated with

one of three symbols shown in the left part of the legend. Data

corresponding to configurations RICHL1 and RICHL2 are plotted

together as these configurations exhibit similar trends and sensi-

tivity to the RM’s parameters. Points belonging to RICHL1 and

RICHL2 are painted in light blue color, while points associated with

RICHLLC are presented in dark blue, as shown in the right part of

the legend.

The results show that reductions using addition or multiplication

exhibit little sensitivity to the RM’s configurations due to relatively

low operation latency. Division, however, benefits from having

more functional units and a larger RMIQ. Using two FUs in the

RMEX improves performance of RICHL1 and RICHL2 by 2.7% on

average compared to the single FU-design, but comes with 94.2%

higher area overhead. Pipelined functional units benefit from more

RMIQ entries as they are able to execute multiple independent

operations simultaneously, contrary to the non-pipelined designs.

Considering these results, we use a single pipelined ALU and a

single pipelined FPU. We decide to have an RMIQ with 16 entries to

get best possible division performance. This configuration will be

used for the further evaluation of RICH presented in the remaining

of this document.

Reduction Variable Table (RVT) is used by the core to recog-

nize the instructions involved in the reduction and is described in

detail in Section 3.1. To evaluate the impact of the RVT design on

the processor’s performance, we model the RVT using CACTI 7

based on the chip frequency of 2.4 GHz. The model shows that small

RVT designs with up to 256 entries can be accessed within 1 cycle,

Table 4: Hardware cost of implementing RICH in 22nm.

RVT RMIQ RMEXALU RMEXFPU RMSQ

Area [mm
2
] 0.0002 0.013 0.038 0.223 0.003

Storage [KB] 0.055 3.22 - - 2.09

Baseline processor’s area 192.48 mm
2

Reduction Module area (IQ + EX + SQ) 0.277 mm
2

Total area overhead (17 RMs + 16 RVTs) 4.71 mm
2

2.45 %

while medium (up to 1024 entries) and larger designs require 2 and

3 cycles respectively. RVT configurations with latencies of 2 and 3

cycles degrade the overall performance by negligible 0.8% and 1.8%

on average, respectively, compared to the RVT with 1-cycle latency.

Applications having more in-flight reduction variables that cannot

fit in the RVT are still executed correctly. In that case, reduction

operations on variables that do not fit into the RVT are not accel-

erated by the RM. To optimally run all benchmarks from Table 1,

a 4-entry RVT is needed. We select a design with a 32-entry RVT

as it covers potentially more complex codes while keeping 1-cycle

access latency.

5.2 Hardware Cost of Implementing RICH
In this section we discuss the area and storage required to imple-

ment RICH. As explained in Section 3.1, the Reduction Module (RM)

consists of two queues, RMIQ and RMSQ, and an Execution Unit

(RMEX) that contains two functional units, i.e. one ALU and one

FPU. Private caches L1 and L2 share a single Reduction Module and

the LLC has its own RM. Additionally, the design has a single Re-

duction Variable Table (RVT) per core. Thus, the simulated 16-core

processor contains 17 Reduction Modules and 16 RVTs.

Table 4 shows the sizes of particular RM components as well

as overall area of a processor occupied by the added hardware.

According to the McPAT model, the FPU used in the RM is 60%

smaller than the FPU in the core due to the removal of support

for SIMD instructions. The modeled ALU supports 32bit and 64bit

arithmetic and logic operations on integers.

The total area consumed by the RMs is 4.71 mm
2
or 2.4% of the

whole die area of the baseline processor. Alternatively, we consider

a processor design that uses a larger LLC. Our simulations show that

a processor with a 40 MB, 16-way set-associative LLC obtains on

average 1.5% better performance than the reference processor. RICH

performs 51.1% better than the baseline processor while requiring

30% less additional chip area than a 40 MB LLC. Thus, we conclude

that RICH utilizes additional hardware more efficiently than just

extending already existing hardware components like the LLC.

6 EVALUATION
6.1 Evaluating RICH with Vector-Reductions
The analysis in Section 2 shows that, in case of larger arrays, reduc-

tions implemented with atomics achieve better performance than

software privatization. Taking this into consideration, we choose

atomics as the baseline for evaluating RICH on benchmarks that

perform reductions on vector variables. All reported results in the

following sections correspond to the overall performance including

both reduction and non-reduction tasks.

8



MD LULESH EHF HIST CG DGEMM SpMV PIC NBody 2DC DGEMV g.mean

0.8
1.0
1.2
1.4
1.6
1.8
2.0

Sp
ee

du
p

2.
83

2.
82

2.
83

4.
11

4.
11

4.
11

4.
50

4.
42

4.
47

6.
00

6.
00

6.
00

1.
82

1.
80

2

Ideal RICHL1 RICHL2 RICHLLC RICHbest

MD LULESH EHF HIST CG DGEMM SpMV PIC NBody 2DC DGEMV a.mean

0

10

20

30

40

50

E
D

P
im

pr
ov

.[
%

]

-2
4.

4

86
.9

87
.2

92
.8

93
.2

94
.0

94
.1

-7
5.

2

96
.7

96
.8

-6
.7

44
.4

Figure 6: Speedup and Energy-Delay Product improvement
of RICH over the baseline with atomics for benchmarks
with reductions on arrays.

The upper part of Figure 6 shows performance speedups of the

three RICH configurations normalized to the reduction approach

based on atomic operations. We also show performance of ideal

reductions, where each reduction operation takes 1 cycle and does

not issue requests to the cache hierarchy. The ideal configuration

indicates the maximal achievable speedup per benchmark.

On average,RICHL1,RICHL2 andRICHLLC perform 1.79×, 1.76×

and 1.03× faster than the baseline, respectively. In general, RICH

outperforms the implementation with atomics due combination of

several factors. (i) RICH performs the load-modify-store sequence

as one instruction, and therefore reduces the number of requests

to the cache hierarchy and does not use ALUs and FPUs in the

core. (ii) RICH does not suffer from coherence effects caused by

conflicts between different threads, contrary to the reductions with

atomics. Coherence effects manifest themselves in increased miss

ratio to reduction variable due to invalidations by other threads and

retrying the update operation or waiting for a lock release, depend-

ing on the implementation of atomics in the target architecture.

(iii) When the reduction variable is updated at higher cache levels,

it is not present in the lower cache levels, reducing the pollution

of these caches. This effect results in better cache performance for

input data. Additionally, due to larger sizes of higher cache levels,

accesses to the reduction variable result in less misses, which is

explained in the following section. These three factors contribute

to, on average, lower execution time of RICH compared to atomics.

The highest performance gains are observed in PIC, NBody 2DC

and DGEMV, where RICHL1 performs from 2.8× to 6.0× faster than

atomics-based approach. The main contributor for faster execution

in case of PIC, NBody and DGEMV is the reduced number of misses,

as shown in Figure 7. On the other hand, for 2DCwe observe a small

reduction in cache misses. Even though collisions still occur, RICH

reduces amount of cycles spent on waiting due to lock contention.

The lower part of Figure 6 shows the improvements in energy-

delay product (EDP) of RICH compared to the baseline with atomics.

On average, the best RICH configuration per benchmark improves

EDP by 44.4% compared to the baseline. The highest EDP improve-

ments are observed for the benchmarks where RICH achieves high-

est speedups, ie. PIC, NBody, 2DC and DGEMV with 87.2% to 96.8%

A
T

M R
L1

R
L2

R
LL

C

MD

0.0

0.2

0.4

0.6

0.8

1.0

L1.miss L2.miss L3.miss Redu.miss

A
T

M R
L1

R
L2

R
LL

C

LULESH

A
T

M R
L1

R
L2

R
LL

C

EHF

A
T

M R
L1

R
L2

R
LL

C

HIST

A
T

M R
L1

R
L2

R
LL

C

CG

A
T

M R
L1

R
L2

R
LL

C

DGEMM

A
T

M R
L1

R
L2

R
LL

C

SpMV

A
T

M R
L1

R
L2

R
LL

C

PIC

A
T

M R
L1

R
L2

R
LL

C

NBody

A
T

M R
L1

R
L2

R
LL

C

2DC

A
T

M R
L1

R
L2

R
LL

C

DGEMV

A
T

M R
L1

R
L2

R
LL

C

Average

Figure 7: Breakdown of misses across all cache levels.
Redu.miss denotes misses generated by the Reduction Mod-
ule in the cache level where the reduction is performed.
ConfigurationsAtomics, RICHL1, RICHL2 and RICHLLC are de-
noted as ATM , RL1, RL2 and RLLC , respectively.

improvement. EDP is mainly improved due to lower execution time

and reduced energy consumption by the caches due to reduced

amount of misses in RICH configurations, which is demonstrated

in Section 6.2.

RICHLLC consumes less power than RICHL1 and RICHL2 since

it uses just one RM in the LLC. This effect is clearly observed for

EHF, Hist and SpMV. Even though these benchmarks achieve simi-

lar performance across all RICH configurations, there are notable

differences in the EDP among three RICH configurations. The addi-

tional reason for such behavior is the reduced number of misses in

RICHL2 and RICHLLC configurations, as we describe in Section 6.2.

We define RICHbest as the optimal RICH configuration per

benchmark. In benchmarks reducing on vector variables, RICHbest
achieves performance speedup of 1.8× and 44.4% better EDP than

atomics. Our proposal allows the programmer to specify the op-

timal reduction location via pragma constructs supported by the

programming model, as we describe in Section 3. In this context,

RICHbest represents the performance improvement that can be

obtained by choosing the best location to carry out the reductions.

6.2 Impact of RICH on Cache Performance
Figure 7 shows the breakdown of misses for all three cache levels

regarding benchmarks that perform reductions on vectors. Misses

are normalized to the total misses occurring when reductions rely

on atomic operations (configuration ATM). Label Redu.miss corre-

sponds to the misses triggered by accesses to the reduction variable

generated by the Reduction Module. These misses occur in the

cache level where the reduction is performed.

In eight benchmarks there is a negligible difference in total misses

between ATM and RICHL1. In these cases, the reduction variable

is accessed in a more structured manner which does not cause

data invalidations invoked by the coherence protocol. Nonetheless,

RICHL1 still achieves speedup over atomics due to time penalties

when using atomic instructions, in addition to the fact that RICH

internally compacts the load-modify-store instructions into one

instruction. For other benchmarks, we can observe the effects of

coherence invalidations that manifest themselves as increased total

number of misses inATM compared toRICHL1. This is most notable

in benchmarkswhere RICH achieves highest performance speedups,

ie. DGEMV, NBody and PIC.

9



NQ KT DotP NB PS VctR g.mean
0.9
1.0
1.1
1.2
1.3
1.4

Sp
ee

du
p

0.
53

0.
17

0.
27

1.76

0.
13

0.
38

1.
16

1.
09

5

Ideal RICHL1 RICHL2 RICHLLC RICHbest

NQ KT DotP NB PS VctR a.mean

0
10
20
30
40

E
D

P
im

pr
ov

.[
%

]

-2
46

.1

-2
72

6.
4

-1
10

4.
6

-5
17

9.
8

-1
54

2.
6

13
.3

Figure 8: Speedup and Energy-Delay Product of RICH com-
pared to the baseline with software privatization for bench-
marks that perform reductions on scalars.

Another interesting effect to analyze is the significant average

reduction of total number of misses when performing reductions

in higher cache levels, i.e. the L2 and the LLC. The cause for this

behavior is the reduced pollution of the L1 cache by the reduction

variable and higher hit ratio to the reduction variable in L2/LLC due

to larger size of those caches. This effect is observable in almost all

benchmarks and is most prominent in MD, DGEMM, Hist, NBody

and PIC. The reduction in misses is not translated into performance

improvements of RICHL2 over RICHL1 because the added miss

penalties are hidden by an out-of-order core. However, as having

less misses results in reduced cache traffic, the energy consumed by

the memory hierarchy is reduced, which is demonstrated through

EDP improvements in Section 6.1.

6.3 Evaluating RICH with Scalar-Reductions
As shown in Section 2, privatization is the best performing tech-

nique for handling reductions in applications with reductions on

scalar variables. Therefore, we select software privatization as the

baseline for parallel codes that perform reductions on scalars.

The top part of Figure 8 shows the performance speedup of three

RICH configurations normalized to software privatization. On aver-

age, RICHL1 and RICHL2 perform 1.095× faster than the baseline.

RICH achieves the highest performance benefits for applications

that have highest ratio of reduction instructions with respect to the

overall number of instructions, such as DotP, NB, PS and VctR. The

performance benefits come from the reduced number of instruc-

tions executed in the core. Specifically, since reduction operations

are offloaded to the Reduction Module (RM), the core can execute

instructions in advance while the RM computes the reduction in

the cache. NQ and KT exhibit marginal improvements since the

amount of instructions involved in reduction operations of these

benchmarks represents a small percentage of the whole execution.

We also show the performance of an idealistic implementation

of reductions, where each reduction operation is performed instan-

taneously and does not issue requests to the cache hierarchy, as

described in Section 6.1. Results show that RICH achieves close-

to-ideal performance in all benchmarks on scalars except VctR, a

benchmark that calculates a sum of double-precision floating point

values on a scalar variable of the same type. Since we model this

operation to take 3 cycles, the serialization of reductions in the RM

N
Q

K
T

D
ot

P

N
B PS

V
ct

R

M
D

C
G

E
H

F

L
U

L
E

SH PI
C

H
IS

T

N
B

od
y

D
G

E
M

M

Sp
M

V

D
G

E
M

V

2D
C

g.
m

ea
n1.0

1.1

1.2

1.3

1.4

Scalar Vector

Figure 9: Speedup of RICHbest compared to COUP [50].

combined with the high frequency of reduction instructions in this

benchmark limits the performance achieved by RICH.

In RICHL2 configuration, fetching data from the L2 cache to the

RM takes more cycles than the equivalent operation in RICHL1
configuration due to the higher access latency of the L2 cache.

Nonetheless, we observe the same performance for these configura-

tions. The explanation for this behavior is the fact that the execution

of reduction instructions in RICHL1 and RICHL2 configurations is

overlapped with other instructions executed at the CPU level in a

way that the reduction latencies are hidden.

RICHLLC suffers from performance slowdowns compared to the

baseline. With reductions on scalar variables at the LLC, all reduc-

tion instructions are serialized as they depend on each other. This

explains the performance slowdown suffered by DotP, NB, PS and

VctR. Contrarily, this effect is not visible in NQ and KT. Due to the

low ratio of reduction instructions in these benchmarks, serialized

instructions from one iteration in the LLC’s RM have time to finish

before the arrival of instructions from the next iteration. Moreover,

the benefits of offloading instructions to the RM outweigh the small

performance degradation due to serialization in the LLC.

The bottom part of Figure 8 shows the improvements in energy-

delay product (EDP) of RICH compared to the baseline with soft-

ware privatization. On average, RICHbest improves EDP by 13.3%

compared to the baseline. The main factor contributing to EDP

improvements is faster execution time, particularly for the four

benchmarks where RICH achieves notable speedups. In the case

of NQ and KT, RICHLLC achieves the best EDP due to less power

overhead of having just one RM in the LLC compared to having

one RM per core in RICHL1 and RICHL2 configurations.

6.4 Comparison with Other Proposals
In this section, we compare RICHbest with the state-of-the-art tech-

nique for reductions in hardware, COUP [50]. RICHbest is defined

as the best RICH configuration per benchmark in terms of perfor-

mance. COUP implements privatization of the reduction variable

in the private caches by modifying the cache coherence protocol.

This design allows multiple cores to acquire a line with update-only

permission. The partial results are accumulated in private caches

using in-core functional units, while the final result is calculated

on demand in the LLC or memory controller, which are equipped

with dedicated functional units. To simulate COUP, we mimic its

functionality in the context of our simulation infrastructure. We

assume coherence operations performed by COUP to have zero

cost. The handling of update-only lines is implemented in detail.

Figure 9 shows the speedup of RICHbest compared to COUP.

RICHbest achieves 1.11× better performance on average and up

10



to 1.38× improvement in case of 2DC. Significant improvements

are also obtained for Hist, NBody, DGEMM, SpMV and DGEMV.

RICH outperforms COUP due to reducing the traffic between the

core and the L1 cache as the reduction variable is updated directly

in the cache. Moreover, the ability to execute reductions at higher

cache levels benefits benchmarks like LULESH, 2DC and VctR.

According to the McPAT and CACTI models, RICH requires

2.45% more area than the baseline processor and introduces 3.8 % of

power overhead. However, the performance improvement of 1.11×

over COUP compensates for the increased power consumption of

the RICH design. Consequently, RICH achieves better energy con-

sumption than COUP. Another important improvement of RICH

over COUP is the support for external pre-compiled libraries. Many

scientific applications use mathematical libraries that implement

algorithms with reductions, e.g. matrix multiplications. COUP re-

quires modifying the ISA to mark the loads and stores belonging

to the reduction operation, which requires access to the complete

source code to be compiled. RICH uses information about the reduc-

tion variable provided by the runtime system and does not require

ISA modifications, thus supporting linking against pre-compiled

algorithmic libraries.

7 RELATEDWORK
Software techniques that support reduction operations fall into the

categories of direct access or techniques that reorder iterations. In

particular, the use of atomic updates is a technique that implements

direct accesses to either scalar or array reduction variables. Local-

Write [48] reorders iterations to avoid data races. PAE [20] and

SelectPriv [21] apply privatization selectively to mitigate effects

of concurrent updates while minimizing overheads due to priva-

tization. LocalWrite and SelectPriv require the knowledge of the

iteration space, making them applicable only to algorithms with

a static iteration space [22]. RICH does not suffer from these re-

strictions and is applicable to any iterative construct. PIBOR [9]

combines privatization and redirection to achieve linear updates

to private copies of reduction variable. OmpSs-RM [10] formalizes

support of the software techniques for declarative parallel program-

ming models. Unlike RICH, above-described software techniques

can suffer from negative effects of privatization and do not offer a

mechanism to select optimal reduction location.

ARMv8 ISA [6] offers vector instructions for reductions as a part

of the SIMD extensions. The list of supported operators is limited

and depends on the data type. Reductions on scalar variables are

easily supported while reductions on vectors require additional

effort from the programmer or the compiler, especially for applica-

tions with more complex access patterns. Moreover, operations are

performed in the core and, thus, do not reduce data movement in

the memory hierarchy.

Transactional Memory (TM) [23] offers mechanisms that can be

used for implementing reductions [18]. Software TM implementa-

tions utilize existing lock and atomic operations and, thus, have

similar drawbacks as other previously discussed solutions that use

these operations. Hardware-accelerated TM (HTM) handles con-

flicts with speculative execution and rollback mechanism, which

wastes energy in codes with frequently occurring conflicts.

Massively parallel processors (GPUs) offer primitives used by

algorithmic proposals for efficient execution of reductions [13, 15].

While these approaches are effective on GPUs owing to efficient

synchronization and lock-step execution inside a warp, they are not

applicable to general purpose processors, where these mechanisms

are not present.

Previously proposed hardware solutions, such as COUP [50],

CommTT [49] and PCLR [17], implement on-demand privatization

of reduction variable in on-chip private caches. As a consequence

of relying on privatization, these designs suffer from the same prob-

lems as software based approaches, e.g. cache pollution. PHI [35]

is another hardware-based approach for coalescing and buffering

of scattered updates in private caches. Similarly to RICH, PHI adds

functional units inside the cache controllers. RICH offers program-

ming model extensions to facilitate simple designation of the reduc-

tion variable, while none of the mentioned hardware-based prior

works offer such a mechanism. Contrary to RICH, these proposals

require ISA extensions to manually mark the reduction instruc-

tions, which limits their use in real systems in the proposed context.

Moreover, RICH gives a programmer options to select the optimal

reduction technique for a given scenario. Previous designs use fixed

configurations, which might not be the optimal solution for each

application. Finally, unlike RICH, COUP requires changes to the

cache coherence protocol. Complexity of coherence protocol valida-

tion increases dramatically with higher number of cores. Therefore,

RICH is better suited for modern and future many-core processors.

Scatter-Add in data parallel architectures [3] targets reductions

in SIMD/vector/stream memory systems [11]. Many designs im-

plement atomic operations beyond the private caches, such as

the LLC [5], memory controller [16, 26, 30, 32, 42, 51] and net-

work switches [19]. The operations are restricted to integer ad-

ditions and logic operations. This mechanism allows an efficient

implementation of synchronization primitives, such as barriers and

locks. However, the performance is limited for more complex re-

duction operations encountered in codes from the HPC domain.

Solutions [43, 44] that exploit the properties of DRAM technolo-

gies to offload reduction-like operations to the main memory are

limited only to simple operations. On the contrary, RICH supports

all commonly used reduction operations.

8 CONCLUSIONS
In this workwe present RICH, a proposal to accelerate the execution

of reductions on modern processors. RICH improves the perfor-

mance of vector-reductions while keeping well-performing support

for reductions on scalars. RICH enables the programmer to select

the optimal cache level where reductions take place. It relies on

hardware, runtime system and OpenMP-compatible programming

model extensions.

Extensive evaluation with reductions on vector variables show

that RICH outperforms the atomics-based software technique in

terms of execution speed on average by 1.8× and up to 6.0×. The

energy-delay product is improved up to 96.8% (44.4% on average).

Moreover, the total number of misses in the cache hierarchy is

reduced by up to 96.6% (34.0% on average). RICH implementation

requires only 2.4% additional silicon area and introduces a 3.8%

power overhead.

11



The results show that executing reductions in the private caches

performs significantly better compared to the case where their

execution is centralized in the last-level cache. In addition, the per-

formance is similar for both configurations that execute reductions

in the private caches. A fabricated chip could implement only one

of the two well-performing RICH configurations.

RICH outperforms COUP, a state-of-the art hardware-based tech-

nique for reductions, by up to 1.38× (1.11× on average). Further-

more, thanks to its runtime-hardware interaction, RICH does not

modify the ISA. Thus, it is compatible with applications that use

routines with reductions present in pre-compiled mathematical and

algorithmic libraries.

ACKNOWLEDGMENTS
This work has been supported by the RoMoL ERC Advanced Grant

(GA 321253), by the European HiPEAC Network of Excellence, by

the Spanish Ministry of Economy and Competitiveness (contract

TIN2015-65316-P), and by Generalitat de Catalunya (contracts 2017-

SGR-1414 and 2017-SGR-1328).

V. Dimić has been partially supported by the Agency for Man-

agement of University and Research Grants (AGAUR) of the Gov-

ernment of Catalonia under Ajuts per a la contractació de personal

investigador novell fellowship number 2017 FI_B 00855. M. Moretó

has been partially supported by the Spanish Ministry of Economy,

Industry and Competitiveness under Ramón y Cajal fellowship

number RYC-2016-21104. M. Casas has been partially supported

by the Spanish Ministry of Economy, Industry and Competitive-

ness under Ramon y Cajal fellowship number RYC-2017-23269.

This manuscript has been co-authored by National Technology

& Engineering Solutions of Sandia, LLC. under Contract No. DE-

NA0003525 with the U.S. Department of Energy/National Nuclear

Security Administration.

We appreciate the suggestions by anonymous reviewers which

helped us improve the quality of this work. We thank to Vicenç

Beltran and Sergi Mateo for sharing their valuable experience with

reductions in the context of programming models, to Lluc Alvarez,

Luc Jaulmes and Francesc Martinez for numerous technical dis-

cussions, and to Dimitrios Chasapis for the help on improving the

writing of this paper.

REFERENCES
[1] Advanced Micro Devices. 2018. AMD64 Architecture Programmer’s Manual, Vol-

ume 3: General-Purpose and System Instructions. Technical Report 24594. Advanced
Micro Devices.

[2] Vikas Aggarwal, Yogish Sabharwal, Rahul Garg, and Philip Heidelberger. 2009.

HPCC RandomAccess benchmark for next generation supercomputers. In Parallel
Distributed Processing, 2009. IPDPS 2009. IEEE International Symposium on. IEEE,
USA, 1–11. https://doi.org/10.1109/IPDPS.2009.5161019

[3] Jung Ho Ahn, Mattan Erez, and William J. Dally. 2005. Scatter-Add in Data

Parallel Architectures. In Proceedings of the 11th International Symposium on
High-Performance Computer Architecture (HPCA ’05). IEEE, USA, 132–142. https:

//doi.org/10.1109/HPCA.2005.30

[4] ARM 2013. ARM® Architecture Reference Manual. ARMv8, for the ARMv8-A
architecture profile. ARM.

[5] ARM 2016. ARM® Cortex®-A75 Core. Technical Reference Manual. ARM.

[6] ARM 2018. ARM® Architecture Reference Manual Suplement. The Scalable Vector
Extension (SVE), for ARMv8-A. ARM.

[7] Rajeev Balasubramonian, Andrew B. Kahng, Naveen Muralimanohar, Ali Shafiee,

and Vaishnav Srinivas. 2017. CACTI 7: New Tools for Interconnect Exploration

in Innovative Off-Chip Memories. ACM Trans. Archit. Code Optim. 14, 2, Article
14 (Jun 2017), 25 pages. https://doi.org/10.1145/3085572

[8] Bill Blume, Rudolf Eigenmann, Keith Faigin, John Grout, Jay Hoeflinger, David

Padua, Paul Petersen, Bill Pottenger, Lawrence Rauchwerger, Peng Tu, and

Stephen Weatherford. 1994. Polaris: The Next Generation in Parallelizing Com-

pilers. In Proceedings of the Workshop on Languages and Compilers for Parallel
Computing. Springer-Verlag, Berlin/Heidelberg, 10–1.

[9] Jan Ciesko, Sergi Mateo, Xavier Teruel, Vicenc Beltran, Xavier Martorell, and

Jesus Labarta. 2015. Boosting irregular array Reductions through In-lined Block-

ordering on fast processors. In 2015 IEEE High Performance Extreme Computing
Conference (HPEC) (Waltham, MA, USA). IEEE, USA, 1–6. https://doi.org/10.

1109/HPEC.2015.7322443

[10] Jan Ciesko, Sergi Mateo, Xavier Teruel, Xavier Martorell, Eduard Ayguadé, and

Jesus Labarta. 2016. Supporting Adaptive Privatization Techniques for Irregular

Array Reductions in Task-Parallel Programming Models. In OpenMP: Memory,
Devices, and Tasks: 12th International Workshop on OpenMP (Nara, Japan) (IWOMP
2016), Vol. 9903. Springer, Cham, 336–349. https://doi.org/10.1007/978-3-319-

45550-1_24

[11] William J. Dally, François Labonte, Abhishek Das, Patrick Hanrahan, Jung-Ho

Ahn, Jayanth Gummaraju, Mattan Erez, Nuwan Jayasena, Ian Buck, Timothy J.

Knight, and Ujval J. Kapasi. 2003. Merrimac: Supercomputing with Streams. In

Proceedings of the 2003 ACM/IEEE Conference on Supercomputing (Phoenix, AZ,

USA) (SC ’03). ACM, New York, NY, USA, 35. https://doi.org/10.1145/1048935.

1050187

[12] Timothy Davis and Yifan Hu. 2011. The University of Florida Sparse Matrix

Collection. ACM Trans. Math. Softw. 38, 1 (2011), 1–25. https://doi.org/10.1145/

2049662.2049663

[13] Simon Garcia De Gonzalo, Sitao Huang, Juan Gómez-Luna, Simon Hammond,

Onur Mutlu, and Wen-mei Hwu. 2019. Automatic Generation of Warp-level

Primitives and Atomic Instructions for Fast and Portable Parallel Reduction on

GPUs. In Proceedings of the 2019 IEEE/ACM International Symposium on Code
Generation and Optimization (Washington, DC, USA) (CGO 2019). IEEE Press,

Piscataway, NJ, USA, 73–84.

[14] Robert H. Dennard, Fritz H. Gaensslen, Hwa nien Yu, V. Leo Rideout, Ernest

Bassous, Andre, and R. Leblanc. 1974. Design of Ion-implanted MOSFETs with

Very Small Physical Dimensions. IEEE Journal of Solid-State Circuits 9, 5 (October
1974), 256–268. https://doi.org/10.1109/JSSC.1974.1050511

[15] Ian J. Egielski, Jesse Huang, and Eddy Z. Zhang. 2014. Massive Atomics for

Massive Parallelism on GPUs. In Proceedings of the 2014 International Symposium
on Memory Management (Edinburgh, United Kingdom) (ISMM ’14). ACM, New

York, NY, USA, 93–103. https://doi.org/10.1145/2602988.2602993

[16] Zhen Fang, Lixin Zhang, John B. Carter, Sally A. McKee, Ali Ibrahim, Michael A.

Parker, and Xiaowei Jiang. 2012. Active memory controller. The Journal of
Supercomputing 62, 1 (01 October 2012), 510–549. https://doi.org/10.1007/s11227-

011-0735-9

[17] María Jesús Garzarán, Milos Prvulovic, Ye Zhang, Josep Torrellas, Alin Jula,

Hao Yu, and Lawrence Rauchwerger. 2001. Architectural Support for Parallel

Reductions in Scalable Shared-Memory Multiprocessors. In Proceedings of the
2001 International Conference on Parallel Architectures and Compilation Techniques
(PACT ’01). IEEE Computer Society, USA, 243. https://doi.org/10.1109/PACT.

2001.953304

[18] Miguel A. Gonzalez-Mesa, Ricardo Quislant, Eladio Gutierrez, and Oscar Plata.

2013. Exploring Irregular Reduction Support in Transactional Memory. In Al-
gorithms and Architectures for Parallel Processing, Joanna Kołodziej, Beniamino

Di Martino, Domenico Talia, and Kaiqi Xiong (Eds.). Springer International Pub-

lishing, Cham, 257–266. https://doi.org/10.1007/978-3-319-03859-9_22

[19] Allan Gottlieb, Ralph Grishman, Clyde P. Kruskal, Kevin P. McAuliffe, Larry

Rudolph, and Marc Snir. 1983. The NYU Ultracomputer-Designing an MIMD

Shared Memory Parallel Computer. IEEE Trans. Comput. C-32, 2 (February 1983),

175–189. https://doi.org/10.1109/TC.1983.1676201

[20] Eladio Gutierrez, Oscar Plata, and Emilio L. Zapata. 2001. Improving Parallel

Irregular Reductions Using Partial Array Expansion. In Proceedings of the 2001
ACM/IEEE Conference on Supercomputing (Denver, CO) (SC ’01). ACM, New York,

NY, USA, 56–56. https://doi.org/10.1145/582034.582072

[21] Hwansoo Han and Chau-Wen Tseng. 1999. Improving Compiler and Run-Time

Support for Irregular Reductions Using Local Writes. In Proceedings of the 11th
International Workshop on Languages and Compilers for Parallel Computing (LCPC
’98). Springer-Verlag, London, UK, 181–196. https://doi.org/10.1007/3-540-48319-

5_12

[22] Hwansoo Han and Chau-Wen Tseng. 2001. A Comparison of Parallelization

Techniques for Irregular Reductions. In Proceedings of the 15th International
Parallel & Distributed Processing Symposium (IPDPS ’01). IEEE, USA, 27.

[23] Maurice Herlihy and J. Eliot B. Moss. 1993. Transactional Memory: Architectural

Support for Lock-free Data Structures. In Proceedings of the 20th Annual Inter-
national Symposium on Computer Architecture (San Diego, CA, USA) (ISCA ’93).
ACM, New York, NY, USA, 289–300. https://doi.org/10.1145/165123.165164

[24] Graham Hutton. 1999. A Tutorial on the Universality and Expressiveness of

Fold. J. Funct. Program. 9, 4 (July 1999), 355–372. https://doi.org/10.1017/

S0956796899003500

[25] IBM Corporation. 2017. Power ISA Version 3.0 B.

12

https://doi.org/10.1109/IPDPS.2009.5161019
https://doi.org/10.1109/HPCA.2005.30
https://doi.org/10.1109/HPCA.2005.30
https://doi.org/10.1145/3085572
https://doi.org/10.1109/HPEC.2015.7322443
https://doi.org/10.1109/HPEC.2015.7322443
https://doi.org/10.1007/978-3-319-45550-1_24
https://doi.org/10.1007/978-3-319-45550-1_24
https://doi.org/10.1145/1048935.1050187
https://doi.org/10.1145/1048935.1050187
https://doi.org/10.1145/2049662.2049663
https://doi.org/10.1145/2049662.2049663
https://doi.org/10.1109/JSSC.1974.1050511
https://doi.org/10.1145/2602988.2602993
https://doi.org/10.1007/s11227-011-0735-9
https://doi.org/10.1007/s11227-011-0735-9
https://doi.org/10.1109/PACT.2001.953304
https://doi.org/10.1109/PACT.2001.953304
https://doi.org/10.1007/978-3-319-03859-9_22
https://doi.org/10.1109/TC.1983.1676201
https://doi.org/10.1145/582034.582072
https://doi.org/10.1007/3-540-48319-5_12
https://doi.org/10.1007/3-540-48319-5_12
https://doi.org/10.1145/165123.165164
https://doi.org/10.1017/S0956796899003500
https://doi.org/10.1017/S0956796899003500


[26] IBM Corporation. 2018. Power9 Processor User’s Manual. version 2.0.

[27] Intel Corporation 2016. Intel® 64 and IA-32 Architectures Optimization Reference
Manual. Intel Corporation.

[28] Luc Jaulmes, Marc Casas, Miquel Moretó, Eduard Ayguadé, Jesús Labarta, and

Mateo Valero. 2015. Exploiting Asynchrony from Exact Forward Recovery for

DUE in Iterative Solvers. In Proceedings of the International Conference for High
Performance Computing, Networking, Storage and Analysis (Austin, Texas) (SC
’15). ACM, New York, NY, USA, Article 53, 12 pages. https://doi.org/10.1145/

2807591.2807599

[29] Ian Karlin, Jeff Keasler, and Rob Neely. 2013. LULESH 2.0 Updates and Changes.
Technical Report LLNL-TR-641973. Lawrence Livermore National Laboratory.

1–9 pages.

[30] Richard E. Kessler and Jim L. Schwarzmeier. 1993. Cray T3D: a new dimension

for Cray Research. In Digest of Papers. Compcon Spring (San Francisco, CA, USA).

IEEE, USA, 176–182. https://doi.org/10.1109/CMPCON.1993.289660

[31] Dimitri Komatitsch and Jeroen Tromp. 1999. Introduction to the spectral-element

method for 3-D seismic wave propagation. Geophysical Journal International 139,
3 (1999), 806–822.

[32] James Laudon and Daniel Lenoski. 1997. The SGI Origin: A ccNUMA Highly

Scalable Server. SIGARCH Comput. Archit. News 25, 2 (May 1997), 241–251.

https://doi.org/10.1145/384286.264206

[33] Sheng Li, Jung Ho Ahn, Richard D. Strong, Jay B. Brockman, Dean M. Tullsen,

and Norman P. Jouppi. 2009. McPAT: An Integrated Power, Area, and Timing

Modeling Framework for Multicore and Manycore Architectures. In Proceedings
of the 42nd Annual IEEE/ACM International Symposium on Microarchitecture (New
York, New York) (MICRO 42). Association for Computing Machinery, New York,

NY, USA, 469–480. https://doi.org/10.1145/1669112.1669172

[34] Francis H. McMahon. 1986. The Livermore Fortran Kernels: A Computer Test
of the Numerical Performance Range. Technical Report UCRL-53745. Lawrence
Livermore National Laboratory, Livermore, CA.

[35] Anurag Mukkara, Nathan Beckmann, and Daniel Sanchez. 2019. PHI: Architec-

tural Support for Synchronization- and Bandwidth-Efficient Commutative Scatter

Updates. In Proceedings of the 52nd Annual IEEE/ACM International Symposium
on Microarchitecture (Columbus, OH, USA) (MICRO ’52). ACM, New York, NY,

USA, 1009–1022. https://doi.org/10.1145/3352460.3358254

[36] OpenMP Architecture Review Board. 2016. OpenMP Technical Report 4 Version

5.0 Preview 1.

[37] William M. Pottenger. 1998. The Role of Associativity and Commutativity in the

Detection and Transformation of Loop-level Parallelism. In Proceedings of the
12th International Conference on Supercomputing (Melbourne, Australia) (ICS ’98).
ACM, New York, NY, USA, 188–195. https://doi.org/10.1145/277830.277870

[38] Michael Powell, Se-Hyun Yang, Babak Falsafi, Kaushik Roy, and T. N. Vijaykumar.

2000. Gated-Vdd: A Circuit Technique to Reduce Leakage in Deep-submicron

Cache Memories. In Proceedings of the 2000 International Symposium on Low
Power Electronics and Design (Rapallo, Italy) (ISLPED ’00). ACM, New York, NY,

USA, 90–95. https://doi.org/10.1145/344166.344526

[39] Alejandro Rico, Felipe Cabarcas, Carlos Villavieja, Milan Pavlovic, Augusto Vega,

Yoav Etsion, Alex Ramirez, and Mateo Valero. 2012. On the Simulation of Large-

scale Architectures Using Multiple Application Abstraction Levels. ACM Trans.
Archit. Code Optim. 8, 4, Article 36 (January 2012), 20 pages. https://doi.org/10.

1145/2086696.2086715

[40] Alejandro Rico, Alejandro Duran, Felipe Cabarcas, Yoav Etsion, Alex Ramirez, and

Mateo Valero. 2011. Trace-driven simulation of multithreaded applications. In

Performance Analysis of Systems and Software, 2011 IEEE International Symposium

on (Austin, TX, USA) (ISPASS’11). IEEE, USA, 87–96. https://doi.org/10.1109/

ISPASS.2011.5762718

[41] RISC-V Foundation 2017. The RISC-V Instruction Set Manual, Volume I: User-Level
ISA, Document Version 2.2. RISC-V Foundation. Editors Andrew Waterman and

Krste Asanović.

[42] Steven L. Scott. 1996. Synchronization and Communication in the T3E Multipro-

cessor. SIGPLAN Not. 31, 9 (September 1996), 26–36. https://doi.org/10.1145/

248209.237144

[43] Vivek Seshadri, Yoongu Kim, Chris Fallin, Donghyuk Lee, Rachata Ausavarung-

nirun, Gennady Pekhimenko, Yixin Luo, Onur Mutlu, Phillip B. Gibbons,

Michael A. Kozuch, and Todd C. Mowry. 2013. RowClone: Fast and Energy-

Efficient in-DRAM Bulk Data Copy and Initialization. In Proceedings of the 46th
Annual IEEE/ACM International Symposium on Microarchitecture (Davis, Califor-
nia) (MICRO-46). Association for Computing Machinery, New York, NY, USA,

185–197. https://doi.org/10.1145/2540708.2540725

[44] Vivek Seshadri, Donghyuk Lee, Thomas Mullins, Hasan Hassan, Amirali

Boroumand, Jeremie Kim, Michael A. Kozuch, Onur Mutlu, Phillip B. Gib-

bons, and Todd C. Mowry. 2017. Ambit: In-memory Accelerator for Bulk Bit-

wise Operations Using Commodity DRAM Technology. In Proceedings of the
50th Annual IEEE/ACM International Symposium on Microarchitecture (Cam-

bridge, Massachusetts) (MICRO-50 ’17). ACM, New York, NY, USA, 273–287.

https://doi.org/10.1145/3123939.3124544

[45] Peter Sewell, Susmit Sarkar, Scott Owens, Francesco Zappa Nardelli, and Mag-

nus O. Myreen. 2010. X86-TSO: A Rigorous and Usable ProgrammerâĂŹs

Model for X86 Multiprocessors. Commun. ACM 53, 7 (July 2010), 89–97.

https://doi.org/10.1145/1785414.1785443

[46] Robert P.Wilson, Robert S. French, Christopher S.Wilson, Saman P. Amarasinghe,

Jennifer M. Anderson, Steve W. K. Tjiang, Shih-Wei Liao, Chau-Wen Tseng,

MaryW. Hall, Monica S. Lam, and John L. Hennessy. 1994. SUIF: An Infrastructure

for Research on Parallelizing and Optimizing Compilers. SIGPLAN Not. 29, 12
(December 1994), 31–37. https://doi.org/10.1145/193209.193217

[47] Sam Xi, Hans Jacobson, Pradip Bose, Gu-Yeon Wei, and David Brooks. 2015.

Quantifying sources of error in McPAT and potential impacts on architectural

studies. In International Symposium on High Performance Computer Architecture
(HPCA) (Burlingame, CA, USA). IEEE, USA, 577–589. https://doi.org/10.1109/

HPCA.2015.7056064

[48] Hao Yu and Lawrence Rauchwerger. 2000. Adaptive Reduction Parallelization

Techniques. In ACM International Conference on Supercomputing 25th Anniversary
Volume (Munich, Germany). ACM, New York, NY, USA, 311–322. https://doi.

org/10.1145/2591635.2667180

[49] Guowei Zhang, Virginia Chiu, and Daniel Sanchez. 2016. Exploiting semantic

commutativity in hardware speculation. In 2016 49th Annual IEEE/ACM Inter-
national Symposium on Microarchitecture (MICRO). IEEE, USA, 1–12. https:

//doi.org/10.1109/MICRO.2016.7783737

[50] Guowei Zhang, Webb Horn, and Daniel Sanchez. 2015. Exploiting Commutativity

to Reduce the Cost of Updates to Shared Data in Cache-coherent Systems. In

Proceedings of the 48th International Symposium on Microarchitecture (Waikiki,

Hawaii) (MICRO-48). ACM, New York, NY, USA, 13–25. https://doi.org/10.1145/

2830772.2830774

[51] Lixin Zhang, Zhen Fang, and John B. Carter. 2004. Highly efficient synchro-

nization based on active memory operations. In 18th International Parallel
and Distributed Processing Symposium, 2004. Proceedings. IEEE, USA, 58–67.
https://doi.org/10.1109/IPDPS.2004.1302981

13

https://doi.org/10.1145/2807591.2807599
https://doi.org/10.1145/2807591.2807599
https://doi.org/10.1109/CMPCON.1993.289660
https://doi.org/10.1145/384286.264206
https://doi.org/10.1145/1669112.1669172
https://doi.org/10.1145/3352460.3358254
https://doi.org/10.1145/277830.277870
https://doi.org/10.1145/344166.344526
https://doi.org/10.1145/2086696.2086715
https://doi.org/10.1145/2086696.2086715
https://doi.org/10.1109/ISPASS.2011.5762718
https://doi.org/10.1109/ISPASS.2011.5762718
https://doi.org/10.1145/248209.237144
https://doi.org/10.1145/248209.237144
https://doi.org/10.1145/2540708.2540725
https://doi.org/10.1145/3123939.3124544
https://doi.org/10.1145/1785414.1785443
https://doi.org/10.1145/193209.193217
https://doi.org/10.1109/HPCA.2015.7056064
https://doi.org/10.1109/HPCA.2015.7056064
https://doi.org/10.1145/2591635.2667180
https://doi.org/10.1145/2591635.2667180
https://doi.org/10.1109/MICRO.2016.7783737
https://doi.org/10.1109/MICRO.2016.7783737
https://doi.org/10.1145/2830772.2830774
https://doi.org/10.1145/2830772.2830774
https://doi.org/10.1109/IPDPS.2004.1302981

	Abstract
	1 Introduction
	2 Background and Motivation
	2.1 Software-Based Solutions for Reductions
	2.2 Hardware-Assisted Reductions
	2.3 Ongoing Challenges

	3 RICH: Implementing Reductions in the Cache Hierarchy
	3.1 Microarchitectural Support for Reductions
	3.2 Programming Model and Compiler Support

	4 Experimental Methodology
	4.1 Benchmarks
	4.2 Simulation Setup

	5 RICH Design Decisions
	5.1 Design Space Exploration
	5.2 Hardware Cost of Implementing RICH

	6 Evaluation
	6.1 Evaluating RICH with Vector-Reductions
	6.2 Impact of RICH on Cache Performance
	6.3 Evaluating RICH with Scalar-Reductions
	6.4 Comparison with Other Proposals

	7 Related Work
	8 Conclusions
	Acknowledgments
	References

