
CSB-RNN: A Faster-than-Realtime RNN Acceleration
Framework with Compressed Structured Blocks

Runbin Shi1,2,∗,†, Peiyan Dong2,†, Tong Geng3,†, Yuhao Ding1, Xiaolong Ma2,
Hayden K.-H. So1, Martin Herbordt3, Ang Li4, Yanzhi Wang2

1The University of Hong Kong, 2Northeastern University, 3Boston University, 4Pacific Northwest National Laboratory
{rbshi,yhding,hso}@eee.hku.hk,{dong.pe,ma.xiaol}@husky.neu.edu,{tgeng,herbordt}@bu.edu,ang.li@pnnl.gov

yanz.wang@northeastern.edu

ABSTRACT
Recurrent neural networks (RNNs) have been widely adopted in
temporal sequence analysis, where realtime performance is often
in demand. However, RNNs suffer from heavy computational work-
load as the model often comes with large weight matrices. Pruning
(a model compression method) schemes have been proposed for
RNNs to eliminate the redundant (close-to-zero) weight values. On
one hand, the non-structured pruning methods achieve a high prun-
ing rate but introducing computation irregularity (random spar-
sity), which is unfriendly to parallel hardware. On the other hand,
hardware-oriented structured pruning suffers from low pruning
rate due to restricted constraints on allowable pruning structure.

This paper presents CSB-RNN, an optimized full-stack RNN
framework with a novel compressed structured block (CSB) prun-
ing technique. The CSB pruned RNN model comes with both fine
pruning granularity that facilitates a high pruning rate and regular
structure that benefits the hardware parallelism. To address the
challenges in parallelizing the CSB pruned model inference with
fine-grained structural sparsity, we propose a novel hardware archi-
tecture with a dedicated compiler. Gaining from the architecture-
compilation co-design, the hardware not only supports various
RNN cell types, but is also able to address the challenging workload
imbalance issue and therefore significantly improves the hardware
efficiency (utilization). Compared to the vanilla design without op-
timizations, the hardware utilization has been enhanced by over
2×. With experiments on 10 RNN models from multiple applica-
tion domains, CSB pruning demonstrates 3.5×-25× lossless pruning
rate, which is 1.6× to 3.9× over existing designs. With several other
innovations applied, the CSB-RNN inference can achieve faster-
than-realtime latency of 0.79µs-6.58µs in an FPGA implementation,
which contributes to 1.12×-12.57× lower latency and 3.53×-58.89×
improvement on power-efficiency over the state-of-the-art.

CCS CONCEPTS
• Computer systems organization→ Parallel architectures.

∗Contribution during visit at Northeastern University.
†Equal contribution.

ACMacknowledges that this contributionwas authored or co-authored by an employee,
contractor, or affiliate of the United States government. As such, the United States
government retains a nonexclusive, royalty-free right to publish or reproduce this
article, or to allow others to do so, for government purposes only.
ICS ’20, June 29-July 2, 2020, Barcelona, Spain
© 2020 Association for Computing Machinery.
ACM ISBN 978-1-4503-7983-0/20/06. . . $15.00
https://doi.org/10.1145/3392717.3392749

KEYWORDS
RNN, structured pruning, workload balancing, FPGA
ACM Reference Format:
Runbin Shi, Peiyan Dong, Tong Geng, Yuhao Ding, Xiaolong Ma, Hayden K.-
H. So, Martin Herbordt, Ang Li and Yanzhi Wang. 2020. CSB-RNN: A Faster-
than-Realtime RNN Acceleration Framework with Compressed Structured
Blocks. In 2020 International Conference on Supercomputing (ICS ’20), June
29-July 2, 2020, Barcelona, Spain. ACM, New York, NY, USA, 12 pages. https:
//doi.org/10.1145/3392717.3392749

1 INTRODUCTION
RNNs have been widely adopted for its high-accuracy on temporal
sequence analysis, such as machine translation [4], speech recogni-
tion [9], or even stock-price prediction [26]. However, the increas-
ingly large model size and tremendous computational workload
of the RNN hampers its deployment on embedded (edge) devices,
which strictly demand realtime processingwith limited hardware re-
sources. To address this issue, weight pruning techniques [11, 17, 30]
have been proposed, which shrink the model size, reduce storage
demand, and provide higher potential hardware performance by
eliminating the redundant (close-to-zero) weights and the corre-
sponding arithmetic operations in inference.

The weight pruning schemes in some existing works [11, 27]
are in a non-structured fashion and with extreme irregularities in
the computation, which is unfriendly to either the modern par-
allel device or the hardware architecture design. Thus the per-
formance degradation from the hardware inefficiency encroaches
upon the gains from model compression. Therefore, researchers
start to explore other pruning approaches, i.e., structured pruning
[19, 21, 30], in which the regular computation patterns are main-
tained. Although these structured-pruned models are relatively
hardware-friendly, the coarse pruning granularity (structure) leads
to either a significant degradation on model accuracy or a limited
pruning rate (the weight count ratio of the original model to pruned
model). To keep the accuracy loss acceptable, the attainable pruning
rates delivered in the existing structured pruning schemes are far
lower than that the ones with the non-structured pruning, wasting
potential pruning opportunities.

In this paper, we aim to overcome the above limitations. We
first propose a novel fine-grained structured pruning technique
(CSB pruning) that provides a similar compression rate (and test
accuracy) as non-structured pruning while offering a higher po-
tential for hardware acceleration than the non-structured methods.
During the training phase, each weight matrices are divided into
fine-grained blocks, and a structured pruning is conducted on every

ar
X

iv
:2

00
5.

05
75

8v
1

 [
cs

.D
C

]
 1

1
M

ay
 2

02
0

ICS ’20, June 29-July 2, 2020, Barcelona, Spain R. Shi, P. Dong, T. Geng, Y. Ding, X. Ma, H.K.-H. So, M. Herbordt, A. Li and Y. Wang

RNN
Cell

X1X2X3XL

Sequence Length (L) Em
be

dd
ed

Ve

ct
or h1h2h3

…
hL

Input Frames:
e.g., Words, Audio, Video

Output Frames:
e.g., Translation, PredictionContext Link

OUTPUT INPUT…

Cell Type: GRU Cell Type: LSTM
ft = �(Wfxxt + Wfhht�1 + bf)

it = �(Wixxt + Wihht�1 + bi)

ct = ft � ct�1 + it � ✓(Wcxxt + Wchht�1 + bc)

ot = �(Woxxt + Wohht�1 + bo)

ht = ot � ✓(ct)
<latexit sha1_base64="YiI9yYHWTD9/3V3X+LI8I289NVU=">AAADbHicdVJda9swFFXsfXTZR9NuDxtlIBZWGsqC3RW2l0HZXvbYwdIU4mBkRY5FZctI16NB+GU/cW/7CXvZb5j8sa5OsgtCl3OvzjlX3CgXXIPn/ew57p279+7vPOg/fPT4ye5gb/9Cy0JRNqFSSHUZEc0Ez9gEOAh2mStG0kiwaXT1qapPvzGlucy+wipn85QsMx5zSsBC4V7vO67CxGUI+PADDjRfpuQoSAkkUWymZWji69JcV+XjDpqUJrE3vPFLfGyiMoxHOAj6DR3/Px3fSsc36PgtOtrSNTYDuZBQYW13I1ejASQMunr0Rg934I4grhTp6EZQNoJb7MvtdHLDv/zHlvy1L9d81oONwsHQG3t14M3Eb5MhauM8HPwIFpIWKcuACqL1zPdymBuigFPByn5QaJYTekWWbGbTjKRMz029LCV+bZEFjqWyJwNco7dfGJJqvUoj21nNp9drFbitNisgfj83PMsLYBlthOJCYJC42jy84IpRECubEKq49YppQhShYPezbz/BXx95M7k4GftvxydfTodnH9vv2EEH6BU6Qj56h87QZ3SOJoj2fjm7znPnhfPbfeYeuC+bVqfXvnmKOuEe/gFNTBUF</latexit>

zt = �(Wizxt + Whzht�1 + bz)

rt = �(Wirxt + Whrht�1 + br)

eht = ✓(Wigxt + Whg(rt � ht�1))

ht = (1 � zt) � ht�1 + zt � eht
<latexit sha1_base64="0Mlx27heNkOF63dxdTYdlJUpVEI=">AAADOnicfVJNb9NAEF27QEv4SsuRy4oIlKhqZJdKcEGq4MIxSKSpFEfWer22V117rd1xS2L5d3HhV3DjwIUDCHHlB7COHZSkFSNZ+/Rm5r3x7Aa54Boc56tl79y6fWd3727n3v0HDx919w/OtCwUZWMqhVTnAdFM8IyNgYNg57liJA0EmwQXb+v85JIpzWX2AeY5m6UkznjEKQFD+fvWCNdRLiof8PPX2NM8TknfSwkkQVROKr/ki6r8WKcP19nEsIk54cit8GEZVP5igD2v08ip/8ipG+XUtpxak/OueMiAi5DhZKXcNGMPEgYEb1rEKwu84RFX/WYyT4YSjO7KcTD4Z7XS77v4qFnLoClfG69dV6OyPZzf7TlDZxn4OnBb0ENtjPzuFy+UtEhZBlQQraeuk8OsJAo4FazqeIVmOaEXJGZTAzOSMj0rl1df4WeGCXEklfkywEt2vaMkqdbzNDCV9Sb0dq4mb8pNC4hezUqe5QWwjDZGUSEwSFy/IxxyxSiIuQGEKm5mxTQhilAwr61jluBu//J1cHY8dF8Mj9+f9E7ftOvYQ0/QU9RHLnqJTtE7NEJjRK1P1jfrh/XT/mx/t3/Zv5tS22p7HqONsP/8BW0cBnU=</latexit>

SRU,
Li-GRU,
Future

Types…

Figure 1: Computation flow of RNN inference. Note that
there are multiple RNN cell types. The main workload is
matrix-vector multiplication (MVM).

block independently. The pruned blocks are encoded in a novel
compressed structured block (CSB) sparse format for inference ac-
celeration, which significantly reduces the weight storage demand
while retaining the fine-grained content in the original model.

To realize a realtime inference with parallel hardware, there are
still multiple challenges to design an architecture that can exploit
the benefits of CSB pruning in a seamless manner. In particular,
the parallel architecture should handle massive fine-grained blocks
with imbalanced workloads (sparsity) but maintain a high hardware
efficiency (utilization). Meanwhile, the architecture should be pro-
grammable for various RNN cell types (e.g., LSTM [12], GRU [4]), al-
though the existing RNN architectures are designed for a particular
cell type. To address the issues above, we propose an architecture-
compilation co-design to realize the best flexibility and acceleration
performance. A programmable RNN dataflow architecture is de-
signed that supports existing RNN cell types. In particular, the
CSB-Engine in our architecture is designed with a novel workload
sharing technique. With the one-shot compilation, the workload is
automatically balanced among processing elements (PEs) in CSB-
Engine, which improves the hardware efficiency to a near theoreti-
cal value.

The major contributions are summarized as follows:

• We present CSB-RNN, an optimized full-stack RNN acceleration
framework, which facilitates running various types of RNNs with
faster-than-realtime latency. CSB-RNN includes three innova-
tions: (1) an adaptive and fine-grained structured compression
technique, CSB pruning; (2) a programmable RNN dataflow ar-
chitecture equipped with CSB-Engine; (3) a compiler design with
optimizations to achieve almost perfect workload balance.
• The proposed CSB pruning technique provides ultra-high (3.5×-
25×) pruning rates without any loss on accuracy. Furthermore,
CSB pruning does not incur high-degree computational irregu-
larities, making highly efficient hardware acceleration possible.
• An architecture-compilation co-design is proposed to sufficiently
exploit the benefits of CSB pruning and provide close-to-theoretical
peak performance with automatic workload balancing.
• With experiments on 10 RNN models from various application
domains, CSB pruning demonstrates 3.5×-25× lossless pruning
rate, which is 1.6× to 3.9× over existing designs. With the pro-
posed architecture-compilation co-design applied, the CSB-RNN
delivers faster-than-realtime inference with the latency of 0.79µs-
6.58µs in an FPGA implementation. The proposed framework

(a) Element-wise Pruning
 (non-structured)

(b) Row/Column-wise
Pruning (structured)

✔ High pruning rate
✘ Hardware unfriendly

✘ Low pruning rate
✔ Hardware friendly

✔ High pruning rate
✔ Hardware friendly

(c) Fine-grained
Structured

CSB Pruning
(This work)

Figure 2: CSB pruning takes advantage of both non-
structured (random) pruning (a) and coarse-grained struc-
tured (row/column) pruning (b).

contributes to 1.12×-12.57× lower latency (with even fewer com-
putation resources) and 3.53×-58.89× improvement on power-
efficiency over the state-of-the-art.

2 BACKGROUND
2.1 Temporal Sequence Processing with RNN
The recurrent neural networks (RNNs) deliver high accuracy in
the temporal sequence processing. A typical schematic of RNN
computation is depicted in Fig. 1. Successive frames (e.g., word,
phoneme) from the temporal sequence (e.g., sentence, voice) are
embedded as input neuron-vectors (xt), and then sent to RNN cells
for inference computation. t represents the time point. The output
neuron-vector (ht) contains the inference results (e.g., translation,
prediction) that may have different dimensions with xt .

Multiple RNN cell types exist that are composed of different com-
putational dataflow but almost the same arithmetic primitives. Fig. 1
lists the arithmetic of two widely-used RNN cells, GRU [4] and
LSTM [12]. The significant workload ismatrix-vector multiplication
(MVM) between the weight matrices and input/hidden neurons;
And the rest workload is element-wise operations, including Sig-
moid (σ)/Tanh (θ) activation function, element-wise multiplication
(⊙) and addition. In particular, the RNN cell computation at time t
invokes the intermediate vector ct−1 and output vector ht−1 from
the previous timestamp. The data dependency results in a context
link between two successive RNN cell iterations, which helps to
memorize the temporal feature during inference.

2.2 RNNWeight Pruning Techniques
2.2.1 Non-structured Pruning v.s. Structured Pruning. The pruning
technique has been proposed for deep learning models to reduce re-
dundant (close-to-zero) weights and thus the computationworkload.
The early non-structured pruning [11] achieves a high pruning rate;
however, the random sparse model (Fig. 2(a)) brings a high degree
of irregularity to the inference computation, which is unfriendly
to either the modern parallel device or the hardware architecture
design. Some existing works [3, 10] address this issue by pruning
model with region-balanced sparsity (between non-structured and
structured sparsity), which reduced the attainable pruning rate. As
Fig. 2(b), the structured pruning schemes [7, 31] were proposed for
hardware friendly purpose that the entire row/column is removed
as a whole in pruning. Although the pruned model maintains the
regularity and can even be compacted to a dense matrix, the prun-
ing rate with this scheme is relatively low due to the coarse pruning

CSB-RNN: A Faster-than-Realtime RNN Acceleration Framework with Compressed Structured Blocks ICS ’20, June 29-July 2, 2020, Barcelona, Spain

granularity. With the advantages of both the non-structured and
coarse-grained structured pruning methods, the CSB pruning in
this work is a fine-grained structured method that not only achieves
a high pruning rate but also makes the hardware acceleration pos-
sible.

2.2.2 Model Training with ADMM-based Pruning Technique. The
training process is to find a proper set of weight values that reach
the minimal classification loss compared to the ground truth. The
objective of training an N -layer RNN can be formulated as,

minimize
{Wi }, {bi }

f ({Wi }Ni=1, {bi }Ni=1)

s .t . Wi ∈ Si , i = 1, ..., N
(1)

where function f represents inference loss on the given dataset,
Si is the feasible set of Wi , which is subject to the user constraints.
In the regular RNN training, Si is R (i.e., no constraint), and thus
the optimal weights (Wi) and bias (bi) for each layer can be ob-
tained by classical stochastic gradient descent (SGD) method [1].
However, once the weight pruning is conducted along with the
training process, the constraint of weight-sparsity represented by
Si becomes combinatorial and no longer convex, which prevents
the Eqn. 1 from being solved by classical SGD. The advanced Al-
ternating Direction Method of Multipliers (ADMM) method [2] is
leveraged in our CSB pruning scheme. The ADMM separates the
weight pruning (during training) problem into two subproblems,
which are iteratively solved until convergence. First, the problem
is reformulated as,

minimize
{Wi }, {bi }

f ({Wi }Ni=1, {bi }Ni=1) +
N∑
i=1

дi (Zi)

s .t . Wi = Zi , i = 1, ..., N
(2)

where Zi is an auxiliary variable for subproblem decomposition,
and the indicator function (Eqn. 3) is used to replace the original
constraint on feasible set.

дi (Zi) =
{
0 if Wi ∈ Si ,
+∞ otherwise.

(3)

Then the Eqn. 2 can be decomposed to two subproblems listed in
Eqn. 4 and Eqn. 5 with the formation of augmented Lagrangian [6].

minimize
{Wi }, {bi }

f ({Wi }Ni=1, {bi }Ni=1) +
N∑
i=1

ρi
2 | |Wi − Zti + Uti | |2F (4)

minimize
{Zi }

дi (Zi) +
N∑
i=1

ρi
2 | |W

t+1
i − Zi + Uti | |2F (5)

where t denotes the iteration index in the ADMM process, Ui is
the dual variable that is updated in each iteration through Uti =
Ut−1i +Wt

i −Z
t
i . Following the ADMMprocess, the two subproblems

are iteratively solved till convergence. The first subproblem (Eqn. 4)
is solved by the classical SGD method, and the solution for the
second subproblem (Eqn. 5) is obtained by

Zt+1i = proj
Si
(Wt+1

i + Uti) (6)

where proj is the Euclidean projection onto constraint set Si , which
guarantees the weight matrices exhibit the specific sparse pattern
defined in the constraint Si for each layer. In this work, we propose
a new type of structured sparse matrix with the novel CSB sparse
format, which is the target pattern (Si) in our RNN weight pruning
method. The detailed projection process for CSB formated weight
will be given in §3.2.

1 2 3
4 5 6

7 8 9

1 2 3
4 5 6

m

n

Kernel Matrix
0 1 2 3 4 5

0
1
2
3
4
5

1 2

3 4

1 2 3
4 5 6

7 8 9

W / M (blocks)

H
 / N

 (blocks)

M

N

7 8 9

Sp
ar

si
fie

d
R

ow
s

Sparsified ColumnsNon-zero Zero

(b) Sparsify the Block in Row/Column-wise

(c) CSB Format

(a) Weight Matrix Partition

Val={1, 2, 3, 4, 1, 2, 3, 4, 5, 6, 7, 8, 9,…}

RowIdx

ColIdx

= { 2, 4, 1, 2, 4,…}

= { 1, 4, 0, 2, 4,…}

n = { 2, 3, 3, 2, 2, 2 } -- for 6 blocks
= { 2, 3, 2, 2, 3, 2 }m

Kernel Matrix Size

Non-zero Row/Column Index

Non-zero Values

Block1 Block2

Block3 Block4

Block5 Block6

Block2

Block1 Block2

Block1 Block2

Figure 3: A novel structured sparsematrix (CSB)with its ded-
icated storage format, which benefits both the pruning flex-
ibility and hardware parallelism.

3 CSB PRUNING TECHNIQUE
3.1 A Novel Structured Sparse Weight Format
3.1.1 Definition of CSB. We propose the compressed structured
block (CSB), a novel structured sparse matrix for model pruning
that benefits both the pruning flexibility and the hardware paral-
lelism in inference acceleration. Fig. 3 illustrates the CSB matrix
and the dedicated storage format. As Fig. 3(a), we consider the
CSB-structured matrix (with a size ofW × H) to be composed of
multiple blocks with the sizeM ×N . Each block is sparsified in the
row/column-wise, as Fig. 3(b), in which the certain rows/columns
are set to zero as a whole. By doing so, the non-zero elements are
located at the cross-points of the un-sparsified rows/columns only.
A significant benefit of this structured sparsity is the non-zero ele-
ments in each block compose a dense kernel matrix that provides a
higher potential for parallel hardware acceleration than the random
sparsity. Corresponding to this particular sparsity, a new sparse
matrix format is developed for efficient storage and computation.
As Fig. 3(c), the CSB-format contains five arrays in three groups, (i)
array n{} and m{} are the row and column counts of the kernel ma-
trix in each block; (ii) array RowIdx{} and ColIdx{} store the index
of un-sparsified (non-zero) rows and columns, respectively; Note
that, the index count for each block equals to the corresponding
value in n{} or m{}; (iii) the non-zero values in successive blocks
(row-major order) are concatenated and stored continuously in the
array Val{}. Because the inference computation accesses the sparse
blocks in sequential, the offset for arbitrary access is omitted in the
CSB-format.

3.1.2 Advantages and Challenges of Pruning with CSB. We adopt
the CSB structured sparsity in pruning the RNN models, which
integrates two-fold advantages of both the non-structured pruning
and coarse-grained structured pruning in Fig. 2. On one hand, CSB
provides adequate pruning flexibility, because each block is pruned
independently, and the pruning rate varies among blocks that helps
to preserve the weights with important information. Physically,
each element in the weight matrix represents the synapses (connec-
tion) between input neurons (matrix column) and output neurons
(matrix row). The pruning process is zeroing the synapses between

ICS ’20, June 29-July 2, 2020, Barcelona, Spain R. Shi, P. Dong, T. Geng, Y. Ding, X. Ma, H.K.-H. So, M. Herbordt, A. Li and Y. Wang

two neurons without a strong connection. The CSB pruning auto-
matically groups the strongly-connected neurons into blocks with
high density while leaving the weakly-connected ones in the low-
density blocks. Further, the pruning granularity is adjustable
via changing the block size; Such that different weight matrices in
RNN model can be pruned with various granularities. The above
flexibilities enable a high pruning rate while maintaining the model
accuracy. On the other hand, the un-pruned weight values in each
block compose a dense kernel matrix that makes the inference com-
putation friendly to parallel hardware. Nevertheless, the blocks
may have different-sized kernel matrices that result in a work-
load imbalance issue while mapping computation of blocks to
parallel hardware. This paper carefully addresses this issue with an
architecture-compilation co-design in §4 and §5.

3.2 CSB Pruning Flow with ADMM

Algorithm 1: Auto Lossless CSB Pruning with ADMM
input :un-pruned RNN modelW; lossless accuracy accu ,

block size in CSB M × N ; weight matrix sizeW × H
initial pruning rate initPR
initial step of pruning rate initPRStep

output :maximally compressed model with CSB pruning Z

// Initialization.
U = 0; Z =W;W∗ =W; Flag =False
PruneRate =initPR; StepPruneRate =initPRStep
// Progressive iteration.

repeat
foreach t ∈ [0, 100) // Re-train and Pruning Epoch.

do
// Solve Eqn. 4 in ADMM (1st subproblem)
W∗=SGDTrain(W∗, U, Z)
// Solve Eqn. 5 in ADMM (2nd subproblem)

// Project weight matrix to CSB pattern S
Zi, j=Partition(W∗ + U), i ∈ [0, WM), j ∈ [0,

H
N)

foreach j ∈ [0, H/N) do
Z:, j=RowPrune(Z:, j , 1 −

√
1 − PruneRate)

foreach i ∈ [0,W /M) do
Zi, :=ColumnPrune(Zi, :, 1 −

√
1 − PruneRate)

U = U +W∗ − Z // Update U

// Set progressive pruning rate.

if Eval(Z)< accu then
Flag =True
StepPruneRate =StepPruneRate/2
PruneRate =PruneRate-StepPruneRate

else
if Flag then

StepPruneRate =StepPruneRate/2
PruneRate =PruneRate +StepPruneRate

until StepPruneRate ≤ 1
4 initPRStep & Eval(Z)≥ accu ;

With the ADMM-based pruning technique in §2.2.2, the weight
matrices can be pruned to an arbitrary sparse pattern by defining
the constraint S and applying the pattern-specific projection in
Eqn. 6. To obtain the RNN model with CSB pattern, we develop the
CSB pruning algorithm following the ADMM principle. Further, the
maximum pruning rate under lossless constraint is automatically

achieved via the progressive pruning. The entire CSB pruning flow
is presented in Algorithm 1 with carefully specified annotations. Ini-
tially, the baseline model (with dense weight matrixW) is obtained
via classical SGD training and input to the flow. Note that the bias
vector (b) is omitted as the CSB pruning flow does not touch it. The
lossless accuracy (accu) is given as the constraint of the progressive
pruning. Two input parameters, initial pruning rate (initPR) and
initial step of pruning rate reduction (initPRStep) are set for tuning
the pruning rate in the progressive flow. We use the progressive
increase manner in approaching the maximum value of lossless
pruning rate. Therefore, we set initPR to a small value (e.g., 4×) as
the starting point, which surely meets the lossless constraint. The
variables PruneRate and StepPruneRate are initialized to initPR
and initPRStep, respectively, at the beginning. In each progressive
iteration, the flow performs re-training and pruning on the model
with multiple epochs (e.g., 100 in Algorithm 1) to obtain the CSB-
formatted weight matrix (Z) with the ADMM-pruning fashion. In
each epoch, two subproblems are alternatively solved following the
principle of the ADMM-pruning technique in §2.2.2. The function
SGDTrain updates the weights with classical SGD (1st subproblem,
Eqn. 4), and the subsequent process prunes the weight matrix and
projects it to CSB-constrained set (2nd subproblem, Eqn. 5). The
process in Algorithm 1 details the projection corresponding to the
general representation in Eqn. 6. First, the weight from SGDTrain
is partitioned to multiple blocks Zi, j following the CSB method in
§3.1. Then the RowPrune process is applied to each block-column
independently. Specifically, for each block-column, the ℓ2-norm (ac-
cumulate the square of all elements) of each row (with the size ofM)
is obtained; Then, a row-wise pruning is conducted referring to the
ℓ2-norm values. Subsequently, the ColumnPrune is applied to each
block-row with the same behavior to RowPrune. Note that the prun-
ing rate in both RowPrune and ColumnPrune is 1−

√
1 − PruneRate,

which results in the target PruneRate after the combined processes.
Once the CSB-formatted weight matrix Z is obtained, it will be sent
to SGDTrain of the next epoch, along with un-pruned weight matrix
W∗ and accumulated difference matrix U. With multiple epochs,
weight Z will eventually meet the CSB pattern constraints and
achieve good accuracy.

After each progressive iteration, the CSB pruned model is evalu-
ated (Eval(Z)) and compared to the lossless accu. The PruneRate
is increased by StepPruneRate in the next iteration if the accu is
achieved. Once Eval(Z) < accu, the model is over-pruned and the
optimum pruning rate is just between the PruneRate of the two
neighboring iterations. Therefore, we reduce StepPruneRate by
half and reduce the PruneRate by this new step to further approach
the optimum point. The progressive CSB pruning flow terminates
until the pruning rate reaches a target precision. For instance, as
the last line in Algorithm 1, the flow terminates when the pruning
rate precision (StepPruneRate) ≤ 1

4 initPRStep.

4 UNIFIED ARCHITECTURE FOR CSB-RNN
4.1 Overview of Acceleration Framework
An overview of the CSB-RNN acceleration framework is illustrated
in Fig. 4. Although the CSB pruning (STEP1) shrinks the model
size and therefore reduces the computation in inference, parallel

CSB-RNN: A Faster-than-Realtime RNN Acceleration Framework with Compressed Structured Blocks ICS ’20, June 29-July 2, 2020, Barcelona, Spain

…

…

……

Original Dense Model

CSB Pruned Weight

STEP1:
CSB Pruning (§3)

STEP3:
Compilation

(§5)

Blk1
Blk2
Blk3
Blk4

 Imbalanced Workload
Low PE Utilization✘

LSTM

Different RNN Types
on One Design

GRU
SRU

…

STEP2: Unified RNN
Dataflow Architecture

(§4.2, §4.3)

PE PE PE

PE PE PE

PE PE PE

Challenges in Parallel Acceleration

Control
Instructions

FPGA Prototype
(§6)

✔ High PE Efficiency
✔ Super Real-time

Figure 4: Overview of CSB RNN acceleration framework, in-
cluding (i) CSB pruning algorithm, (ii) unified RNNdataflow
architecture, (iii) workload compilation with CSB pruned
model.

hardware acceleration is still in demand to achieve realtime perfor-
mance. The challenges in accelerating CSB-RNN are two-fold. First,
the architecture should be adaptive to various RNN cell types, i.e.,
LSTM, GRU, etc. Second, the kernel matrix in fine-grained blocks
may not provide enough inner-block parallelism for large-scale
hardware. To further improve the concurrency, inter-block paral-
lelism should be leveraged. However, the pruned blocks may have
different sparsities, leading to the workload imbalance issue for
inter-block parallelism, which usually causes a low utilization of
processing element (PE). To address these challenges, CSB-RNN
proposes an architecture-compilation co-design. In the architecture
aspect (STEP2), we propose a unified RNN dataflow architecture
that is programmable for different RNN cell types (§4.2); In particu-
lar, a novel CSB-Engine is designed with the support of workload
sharing and is equipped in CSB-RNN architecture to address the
workload imbalance issue (§4.3). In the compilation aspect (STEP3),
we define control instructions for the hardware and propose the
compilation algorithms to conduct the particular RNN type compu-
tation and balanced workload scheduling (§5).

4.2 Programmable RNN Dataflow Architecture
To generalize the architecture for different RNN cell types, we inves-
tigated the existing RNN cells and extracted the arithmetic prim-
itives, which compose the RNN computation in a dataflow fashion.
Fig. 5 presents the hardware components in this architecture, where
each operation unit serves the corresponding arithmetic primitive.
In particular, the CSB-Engine computes the main workload, MVM,
with the weight matrices after CSB pruning (CSB-MVM). The units
×, + are the element-wise multiplication and addition. δ and θ
operate the activation functions Sigmoid and Tanh, respectively.
The datapaths (arrows on Fig. 5) interconnect the operation units
and on-chip buffers, which transmit the intermediate results and
compose the dataflow graph for RNN cell computation. Importantly,
RNN dataflow architecture provides the programmable datapath
(red arrows on Fig. 5). Thus, the proper operation units can be in-
terconnected by programming control instructions for a particular
RNN cell type.

4.3 CSB-Engine
The CSB pruning scheme greatly shrinks the weight matrix size
and therefore reduces the main workload in inference. Although

CSB-Engine

CSB Weight
Buffer

PE Array

BufferB θ
δ

BufferBias

BufferC

BufferD BufferE Store
Unit

Fixed
DataPath

Programmable
DataPath

OnChip Memory

Operation Unit

Output

BufferA Load
Unit

Input

Figure 5: RNN dataflow architecture. Operation units serve
the RNN arithmetic primitives; The programmable datap-
aths construct the proper dataflow for target RNN cell via
instructions.

the fine-grained structure of CSB contributes to the regularity and
makes efficient hardware acceleration possible, it is still challenging
to design a parallel architecture that can fully exploit the benefits
of CSB pruning. The challenges in an efficient CSB-Engine design
are two-fold. First, both the inner-block and inter-block parallelism
should be fully exploited, as the regular inner-block computation
provides very limited concurrencywith small block size. Second, the
inter-block workload imbalance issue exists due to the sparsity
varies among blocks. The following §4.3.1 and §4.3.2 address these
two challenges, respectively.

4.3.1 Hierarchical Design for Inner- and Inter-Block Parallelism.
As illustrated in Fig. 6, the CSB-Engine design is in a two-level
hierarchy, processing element (PE) level and PEGroup level. The
hardware instances in each level are organized in a 2D fashion that
the architecture is composed of K × L PEGroups, and each PEGroup
contains P × Q PEs. The parallel PEs inside one PEGroup process
inner-block multiplication concurrently, while the PEGroups com-
puting different blocks in parallel (inter-block parallelism).

Inside each PEGroup, because the size of CSB kernel matrix (m×n)
might be larger than that of PE array (P ×Q), multi-pass processing
is required to handle the entire block. Thus, each PEGroup contains
a NeuronAccumBuffer, which stores the partial results and sums
up with the accumulation of horizontal PEs in each pass. The in-
put neurons required by the current block are preloaded to the
BlockNeuronBuffer and broadcasted to the PE array. Each PE col-
umn shares the same input neuron as the unpruned weights are
vertically aligned in the structured block with CSB pruning. Im-
portantly, the WeightBuffer provides the CSB-formatted weight
(Fig. 3), including the weight values (kernel matrix) for PEs, column
index for BlockNeuronBuffer to read the proper input neuron, row
index for NeuronAccumBuffer to accumulate the multiplication-
results to proper address in NeuronAccumBuffer, and the kernel
matrix size (m × n) for the PEGroup control logic which conducts
proper pass count in both axes.

In the higher-level of the design hierarchy, the PEGroups process
blocks in the row-major order. The PEGroups in one column concur-
rently compute the vertical blocks. Therefore, the PEGroups in one
column share the same partition of input neuron vector, while multi-
ports are provided on BlockNeuronBuffer for concurrent access.
Similarly, the blocks in horizontal axis are mapped to PEGroups in
the same row, with multi-pass processing. After the computation

ICS ’20, June 29-July 2, 2020, Barcelona, Spain R. Shi, P. Dong, T. Geng, Y. Ding, X. Ma, H.K.-H. So, M. Herbordt, A. Li and Y. Wang

PE
(1,1)

PE
(1,Q)

PE
(P,1)

PE
(P,Q)

… …

BlockNeuronBuffer

N
euronAccum

Buffer

C
SB

 W
ei

gh
t

Bu
ffe

r

PE
(1,2)

PE
(P,2)

…

PEGroup (1,1) PEGroup (L,1)

PEGroup (K,1)

…

N
euronAccum

Buffer

…

BlockNeuronBuffer

PEGroup (K, L)

…

…

PE Array

…

Input
Stream

Input
Stream

Ouput
Stream

R
eorderLogic

Weight
Buffer

Figure 6: Two-level hierarchical organization of CSB-Engine
for the main workload (CSB-MVM) computation.

of each block-row, the results in NeuronAccumBuffers are accu-
mulated in horizontal and output to ReorderLogic to obtain the
output neuron vector.

4.3.2 Inter-PEGroup Workload Sharing.
Workload Imbalance Challenge: The blocks in CSB pruned

model may have different-sized kernel matrices, and the resultant
inter-block workload imbalance brings challenges to exploit the inter-
block parallelism on hardware. As Fig. 7(b) demonstrates, with the
straightforward design, the workload imbalance issue results in
low utilization of PEGroups. The presented MVM workloads are
allocated to 2 × 2 PEGrounps that each contains 4 PEs. During the
execution, PEGroup1-3 enter the idle state before the PEGroup4 ac-
complishes its workload, which results in a severe under-utilization
of the overall hardware. In fact, the imbalanced sparsity naturally
exists in the RNN models. However, existing works [3, 10] relieve
the hardware pain by pruning the model with a region-balanced
sparsity compulsively. As a result, the neglect of natural sparsity-
imbalance significantly harms the pruning ratio andmodel accuracy.
By contrast, we handle this issue by improving the architecture
with the workload sharing technique.

Inter-PEGroup Workload Sharing: The concept of workload
sharing is illustrated in Fig. 7(c). Each PEGroup processes not only
the originally allocated block but also a partition of block from the
neighboring PEGroup, which is arranged with a heavier workload.
In the hardware aspect, as Fig. 7(c), dedicated workload sharing
paths (red arrows) are set for the inter-PEGroup data transmission,
and the interconnection adopts the torus topology in both dimen-
sions. With the hardware support of workload sharing, PEGroup4
migrates the extra workloads to PEGroup2 and PEGroup3; And
PEGroup2 migrates the Block2 workload partition to PEGroup1.
That significantly balances the workload and improves the utiliza-
tion. Considerations in the workload sharing design are two-fold.
(i) The input neurons should be sharable between the PEGroups;
(ii) The output neuron accumulation should be performed inter-
PEGroups. We discuss these issues and our strategies within two
cases, inwhich theworkload is shared between neighboring PEGroups
in horizontal or in vertical, respectively. For the horizontal sharing
case, an extra data port is set on the BlockNeuronBuffer to solve
the issue (i), which enables the PEGroup to access input neurons

from the neighboring PEGroup in horizontal. The issue (ii) is natu-
rally solved by the hierarchical CSB-Engine design, as the PEGroup
can store the partial results of the shared workload partition in its
local NeuronAccumBuffer, which will be accumulated in horizontal
after processing the entire block-row. For the vertical sharing case,
the PEGroup-column shares the same BlockNeuronBuffer, thus
the issue (i) is naturally solved by hardware. About the issue (ii),
the PEGroup should accumulate the vertically sharedworkload to its
original PEGroup, as the vertical PEGroups compute different block-
rows that cannot be accumulated in a mixed manner. However,
concurrent accumulation to one address in NeuronAccumBuffer
leads to the read-after-write (RAW) data hazard. To address this
issue, an accumulation path is set between vertical PEGroups and
connected to the adder, which accepts parallel results from neigh-
boring PEGroups, sums up and stores to the NeuronAccumBuffer
for one shot. With the hardware support on workload sharing, we
propose the compilation scheme in next section that schedules the
partition and sharing by analyzing the CSB pruned matrix and
generates the instruction to control the hardware-sharing behavior.

5 COMPILATION FOR CSB PRUNED MODEL
The proposed RNN dataflow architecture is controlled by the pre-
compiled instructions. The instruction set includes the macro-
instruction and micro-instruction, where the former one con-
ducts the operation units (in Fig. 5) for the proper RNN dataflow
(cell type); and the later one instructs the CSB-Engine with inter-
PEGroup workload sharing behavior as described in §4.3.2. Cor-
respondingly, the compilation is composed of two phases, RNN
dataflow compilation (§5.1) and workload sharing scheduling (§5.2).

5.1 RNN Cell to Dataflow Architecture
5.1.1 Macro-Instruction Set. We define the macro-instruction set
for our RNN dataflow architecture (§4.2). As Fig. 8, the micro-
instruction is composed of multiple sections, that each section
provides control signals for corresponding RNN primitive hard-
ware. All sections are concatenated to form a very long instruction
word (VLIW) item. Note that each section contains Count operand
to indicate the size of workload for corresponding hardware primi-
tive. Thus, one VLIW instruction is regarded as accomplished until
all hardware primitives finish the workload. The operands in each
instruction section are classified into two types, the Count type
controls the hardware iteration count, and the other operands in-
dicate the proper data source or destination for each primitive. For
the first type, the value of Count in element-wise operation units
(only CSB-Engine excluded) is measured by data element as these
units perform element-wise operation. Differently, the CountH/V in
CSB-Engine section represents the horizontal/vertical block itera-
tion counts over the entire CSB-Engine in processing the particular
weight matrix. For the second operand type, Addr(Memory) and
Addr(Buffer) give the access address of external memory (nor-
mally DRAM) and built-in buffers in the architecture, respectively.
Importantly, the programmable datapaths in the architecture (Fig. 5)
are indexed, and the DataFlowIdx is set in the operand to indicate
the proper data source or destination for hardware primitive. With

CSB-RNN: A Faster-than-Realtime RNN Acceleration Framework with Compressed Structured Blocks ICS ’20, June 29-July 2, 2020, Barcelona, Spain

PEGroup1 PEGroup2

PEGroup3 PEGroup4

PEGroup1 PEGroup2

PEGroup3 PEGroup4

PEGroup1

11.1%

Workload
Sharing Path

Block1 Block2

Block3 Block4

(b) (c)

Kernel
Matrix

(a) CSB Pruned Weight Matrix

Clock
Cycle
Utilization

Horizontal Sharing

Horizontal Sharing

Vertical Sharing

PEGroup2

44.4%

PEGroup3

11.1%

PEGroup4

100%

PEGroup1Clock
Cycle
Utilization

PEGroup2 PEGroup3 PEGroup4

100%75% 100% 100%

Figure 7: Inter-block workload imbalance issue occurs when mapping the CSB pruned matrix (a) to the vanilla (basic) CSB-
Engine (b), which results in a lowhardware utilization.Wepropose theworkload sharing technique that significantly increases
the utilization and reduces the time consumption, as demonstrated in (c).

LoadUnit
CSB-Engine

Sum1
Sum2

Sigmod (δ)
Tanh (θ)

Mult1
Mult2

StoreUnit

Addr(Memory)
Addr(BufferA)

-
BlockSizeH/V

Count
CountH/V

Addr(BufferA)
Addr(BufferB)

Addr(BufferB) Addr(BufferBias) Count -
- - Count Addr(BufferE)

Primitive SrcOp1 SrcOp2 SrcOp3 Dst

- - Count DataFlowIdx, Addr(BufferC)
DataFlowIdx, Addr(BufferC) - Count -
DataFlowIdx, Addr(Buffer) StreamIdx Count DataFlowIdx, Addr(BufferD)

Addr(BufferC) Addr(BufferE) Count -
DataFlowIdx, Addr(BufferE) - Count Addr(Memory)

1
2
3
4
5
6
7
8
9

Idx

Figure 8: Macro-instruction set (VLIW-like) for RNN
dataflow architecture that constructs proper arithmetic
dataflow for different RNN cell types.

the above settings, RNNmodels with various cell types can be trans-
lated to several VLIW instructions that are repetitively executed
during RNN inference.

5.1.2 Macro-Instruction Compilation. The objective of compila-
tion is to minimize the VLIW instruction count that maximizes
the utilization of operation units. We invoke the list scheduling
method [14] that is usually applied in VLIW compilation. The RNN
model with a particular cell type is translated to the directed acyclic
graph (DAG), in which the nodes represent the arithmetic primi-
tives and the edges are data dependencies. In the list scheduling,
we adopt the as soon as possible (ASAP) strategy that the operation
nodes are mapped to the corresponding hardware resources once
the resource is available and the dependency edge is ready. With the
proper operation units and interconnection in the RNN dataflow
architecture, the macro-instruction compilation can quickly achieve
an optimum point, in which the processing throughput is bounded
by the main workload (CSB-MVM) on CSB-Engine.

5.2 Workload Scheduling on CSB-Engine
5.2.1 Micro-Instruction Set. The micro-instructions are generated
for each PEGroup individually, which control the CSB-MVM opera-
tions on CSB-Engine. Specifically, the micro-instruction contains
the CSB-compression information (i.e., kernel matrix size, row- and
column-index in Fig. 3(c)) for the block workload allocated to the
certain PEGroup. In particular, the kernel matrix workload is par-
titioned to three submatrices and shared to neighboring PEGroups
(as Fig. 9(a)), the micro-instructions for one block iteration include

RowIdx 1…n'
RowIdx

ColIdx 1…m'
ColIdx

RowIdx 1…Δnh ColIdx 1…Δmh

RowIdx 1…Δnv ColIdx 1…Δmv

Sharing TripCount
No (Local)
Horizontal

Vertical

m' & n’
Δmh & Δnh

Δmv & Δnv

Micro-Instruction for next blocks

1
bl

oc
k

ite
ra

tio
n

…

Δmv

Δnv

Δmh

Δnh

m'

n'

(a) Partition of
with partition scheduling for workload balance

horizontal
sharing

vertical
sharing

kernel matrix workload
(b) Micro-Instruction

Figure 9: Micro-instruction indicates the kernel matrix
workload and the scheduling of partition for workload bal-
ancing.

three items, (i) local workload that is originally allocated, excluding
the portion shared to other PEGroups; (ii) workload shared from
the neighboring PEGroup in horizontal; (iii) workload shared from
the neighboring PEGroup in vertical. The micro-instruction con-
tains 4 operands, as Fig. 9(b). The operand Sharing gives a flag
(local/horizontal/vertical) to indicate the data source, where local
means the input and output neurons are in local PEGroup; horizon-
tal (sharing) indicates the input neurons should be read from the
BlockNeuronBuffer of left PEGroup; Vertical (sharing) means the
output should be accumulated to the NeuronAccumBuffer of upper
PEGroup. The operand TripCount gives the size of workload. Note
that, for each block, the kernel matrix is divided to tree regular
partitions as Fig. 9(a), for local (no-sharing), vertical- and horizontal-
sharing, respectively. The sizes of partitioned matrices are denoted
asm′×n′, ∆mv ×∆nv , ∆mh ×∆nh , which are turned to TripCount
values in the three micro-instruction items. The operands RowIdx
and ColIdx provide the non-zero row and column indices of each
submatrix. Note that each micro-instruction item may contain mul-
tiple RowIdx and ColIdx corresponding to the TripCount value.
Further, these two operands are stored in individual instruction
memories that are read and reused periodically in the submatrix
computation.

5.2.2 Micro-Instruction Compilation. The compilation of micro-
instruction is essentially searching theworkload partition scheme to
achieve the optimal balance, which facilitates a higher hardware uti-
lization (efficiency). Specifically, the compiler analyzes the weight

ICS ’20, June 29-July 2, 2020, Barcelona, Spain R. Shi, P. Dong, T. Geng, Y. Ding, X. Ma, H.K.-H. So, M. Herbordt, A. Li and Y. Wang

matrices and selects the proper partition variables (as Fig. 9(a)) for
each kernel matrix. Every K × L blocks (one block iteration) are an-
alyzed individually, which are executed on PEGroups in concurrent.
Within one block iteration, each PEGroup is supposed to take the
equivalent workload after balancing.

We regard the search of optimal partition variable as a satisfiabil-
ity modulo theories (SMT) problem [33], which searches the feasible
solutions in the constrained region. The existing SMT solver [5]
takes the constraints with logic programming and gives the satis-
fiability (existence of solution) and feasible solutions. In the com-
pilation for each block iteration, we declare the integer variables
includingm′(k, l),n′(k, l),∆mh (k, l),∆nh (k, l),∆mv (k, l),∆nv (k, l),
where k ∈ [1,K] and l ∈ [1,L]. The constraints are represented
with the constraint logic programming (CLP), in which each clause
gives a specific search limitation. The CLP in compilation is listed in
Eqn. 7, where ∧ represents logic AND and ∨ represents OR. CLP1,2
constraint the feasible search region, as the size of the partitioned
workload should ≤ kernel matrix size (m × n). CLP3,4 guarantee
regular partitions as Fig. 9(a). CLP5 determines the values of m′
and n′. To improve the PEGroup utilization, we set CLP6 constraint
that the size of partition workload should be integer-multiple of the
PEGroup size. Thus, the PEs are fully utilized on the sharedworkload
partition. Also, it helps to shrink the search space and speed up the
compilation. Within the idealized situation, each PEGroup is sched-
uled with workload that is the average value over all PEGroups in
the current block iteration. Otherwise, the PEGroup withmaximum
workload determines the run time (clock cycle) for this iteration.
CLP7 gives the constraint on the maximum workload that, to all
PEGroups, the exceeding part of scheduled workload to the average
value (avд) should ≤marдin, which is given before search. The last
CLP combines all above constraints to a conjunctive form, which is
subsequently sent to SMT-solver for a feasible solution.

CLP1 : {0 ≤ ∆mh (k, l) ≤ m(k, l)} ∧ {0 ≤ ∆nh (k, l) ≤ n(k, l)}
CLP2 : {0 ≤ ∆mv (k, l) ≤ ⌊m(k, l)/2⌋ } ∧ {0 ≤ ∆nv (k, l) ≤ n(k, l)}
CLP3 : {∆mh (k, l) =m(k, l)} ∧ {∆nv (k, l) + ∆nh (k, l) = n(k, l)}
CLP4 : {∆nv (k, l) = n(k, l)} ∧ {∆mh (k, l) + ∆mv (k, l) =m(k, l)}
CLP5 : {m′(k, l) =m(k, l) − ∆mv (k, l)} ∧ {n′(k, l) = n(k, l) − ∆nh (k, l)}
CLP6 : {∆mh (k, l)%P =m′v (k, l)%P = 0} ∧ {∆nh (k, l)%Q = n′v (k, l)%Q = 0}
CLP7 : | (m′(k, l) × n′(k, l) + ∆mh (k, l − 1) × ∆nh (k, l − 1)

+ ∆mv (k − 1, l) × ∆nv (k − 1, l)) − avд | ≤ marдin

CLP : CLP1 ∧ CLP2 ∧ (CLP3 ∨ CLP4) ∧ CLP5 ∧ CLP6 ∧ CLP7 (7)

Based on the above formulation, we propose the compilation
scheme in Algorithm 2 that seeks out the optimal scheduling solu-
tion. For a given CSB formatted weight matrix Wcsb , the compiler
partitions it to ⌈W /M/L⌉ × ⌈H/N /K⌉ temporal block iterations and
schedules each iteration individually. Before the multi-round search,
the compiler firstly analyzes the weight partition for current block
iteration that gives the kernel matrix size (m,n) for each block and
the average workload (avд). Themarдin is initialized to 0 that tar-
gets to schedule an idealized average workload on each PEGroup.
In the search round, BuildCLP constructs the constraints represen-
tation, which is input to SMTSolver. In case the constraints cannot
be satisfied (Satisfiability is False) over the feasible region, the
marдin value is supposed to increase by P ×Q in the next round.

Algorithm 2:Micro-Instruction Compilation
input :CSB pruned weight matrixWcsb ;

block size in CSB M × N ; weight matrix sizeW × H ;
size of each PEGroup P ×Q ; PRGroup count K × L

output :Micro-instruction list MicroInst
// Temporal block iterations in vertical.

for i ← 1 to ⌈H/N /K ⌉ do
// Temporal block iterations in horizontal.

for j ← 1 to ⌈W /M/L⌉ do
marдin=0
// ∀k ∈ [1, K], ∀l ∈ [1, L].
[m(k, l), n(k, l), avд]=Analyze (Wcsb ,i,j)
// Search with multiple rounds.

repeat
CLP =BuildCLP (m(k, l), n(k, l), avд,marдin)
// Give solution if satisified.
[Satisfiability, PartitionVar] = SMTSolver (CLP)
marдin+=P ×Q

until Satisfiability =True;
MicroInst=Append (MicroInst , PartitionVar)

Once the SMT problem is satisfied, the search stops and the parti-
tion variables (m′, n′, ∆mv , ∆nv , ∆mh , ∆nh) for each PEGroup are
assembled and appended to the micro-instruction list, that conducts
the CSB-Engine computation in a workload balanced fashion.

6 EVALUATION
In this section, we first brief the implementation of the CSB-RNN
framework (§6.1), and then give deep evaluations from the per-
formance of CSB pruning algorithm (§6.2) to the improvement
with the architecture-compilation co-design (§6.3). Meanwhile, 10
mainstream RNN models from multi-domains are invoked as the
evaluation benchmarks and presented in Table 1, in which we also
list the non-structured pruning rates as the theoretical optimum.

6.1 Implementation and Experiments Setup
The CSB pruning flowwas implemented with PyTorch [23], a frame-
work for deep learning model development. The benchmark models
were first trained with the SGD and the accuracy is regarded as the
lossless target value in the subsequent CSB pruning. These baseline
models were fed in the CSB pruning flow and get compressed with
the lossless constraints. In regarding the architecture-compilation
co-design, the proposed RNN dataflow architecture was realized
with Verilog RTL and implemented on an FPGA vendor evalua-
tion board (Xilinx-ZCU102), on which the FPGA contains enough
resources for our architecture with different design scales. The
compiler was implemented in C++ with the strategies in §5 and
Z3 [5] as the SMT solver. With the CSB pruned model, the com-
piler dumps the macro-instructions (§5.1) to build the proper RNN
dataflow and micro-instructions (§5.2) for the workload balancing.
These instructions are loaded to the RNN dataflow architecture be-
fore processing sequence continuously. With regard to the detailed
hardware efficiency (i.e, CSB-Engine utilization), cycle-level RTL
simulation was performed to profile the inference behavior.

CSB-RNN: A Faster-than-Realtime RNN Acceleration Framework with Compressed Structured Blocks ICS ’20, June 29-July 2, 2020, Barcelona, Spain

Table 1: Benchmark Models in CSB-RNN Evaluation

App. Abbr. Applications Dataset #Layer RNN Cell Layer #Input #Hidden Evaluation Metric Original Model Non-Structued Pruning
Idx. Index Neuron Neuron #Weight+Bias Result PruneRate #Weight Result

1 MT1 Machine Translation PTB[20] 2 LSTM[12] 1 128 256 Perplexity
(PPL, lower is better)

393K+1K 110.89 13.2× 29.8K 111.622 256 256 524K+1K 13.2× 39.7K

2 MT2 Machine Translation PTB[20] 2 LSTM[12] 3 1500 1500 Perplexity (PPL) 18M+6K 80.66 16.3× 1.1M 82.334 1500 1500 18M+6K 16.3× 1.1M

3 SR1 Speech Recognition TIMIT[8] 2 LSTMP[25] 5 153 1024 Phoneme Error Rate
(PER, lower is better)

3.25M+4K 19.39% 14.5× 224.0K 19.70%6 512 1024 4.72M+4K 14.5× 325.4K

4 SR2 Speech Recognition TIMIT[8] 2 GRU[4] 7 39 1024 PER 3.3M+3K 19.24% 21.7× 150.5K 19.80%8 1024 1024 6.3M+3K 21.7× 289.9K

5 SR3 Speech Recognition TIMIT[8] 2 Li-GRU[24] 9 39 512 PER 564.2K 16.87% 7.1× 79.5K 17.30%10 512 512 1M 7.1× 147.7K
6 SR4 Speech Recognition TDIGIT[15] 1 GRU[4] 11 39 256 Accuracy 226.6K+0.8K 99.98% 25.7× 8.8K 99.21%

7 SPP Stock Price Prediction S&P500[13] 2 LSTM[12] 12 1 128 Normalized Price Dist.
(lower is better)

66K+0.5K 0.47 4.1× 16.1K 0.5113 128 128 131K+0.5K 4.1× 32K

8 SC1 Sentiment Classification IMDB[18] 3 LSTM[12]
14 32 512 Accuracy

(higher is better)

1.11M+2K
86.37%

10.4× 107.1K
85.65%15 512 512 2.1M+2K 10.4× 201.6K

16 512 512 2.1M+2K 10.4× 201.6K
9 SC2 Sentiment Classification MR[22] 1 LSTM[12] 17 50 256 Accuracy 313.3K+1K 78.23% 7.2× 43.5K 76.31%

10 QA Question Answering BABI[32] 3 LSTM[12]
18 50 256

Accuracy
313.3K+1K

65.37%
7.9× 39.7K

64.51%19 256 256 524.3K+1K 7.9× 66.4K
20 256 256 524.3K+1K 7.9× 66.4K

Non-structured pruning
CSB pruing (block 16)
CSB pruing (block 32)
CSB pruing (block 64)
CSB pruing (block 128)

Figure 10: (a) shows the pruning rate comparison between non-structured pruning (optimum) and CSB pruning in different
block sizes. (b) shows the normalized index overhead (NIO). Comparing (a) and (b), we gain the insight that CSB pruning
dramatically reduces the NIO while maintaining a high pruning rate.

6.2 Evaluation of CSB pruning Rate
The CSB pruning is first evaluated in the aspect of pruning rate,
which is a significant metric to score the model compression meth-
ods. Because the parameterizable block size determines the struc-
tural granularity in pruning, we present the attainable maximum
pruning rate with various block sizes in §6.2.1. Further, comparison
with the prior art RNN compression schemes is given in §6.2.2.

6.2.1 Selection of Optimum Structural Granularity. CSB pruning
provides the flexibility that improves the pruning rate and also
the hardware-friendly regularity. Importantly, a trade-off exists be-
tween these two targets that motivate the following investigation.
Reducing the block size facilitates a more fine-grained pruning and
thus a higher pruning rate. However, more individual blocks require
extra storage for row and column index with the CSB-formatted
weight matrix (Fig. 3). Therefore, we present both the attainable
pruning rate and the index overhead with different block sizes in
each benchmark model. The block is set to square with sizes of 16,
32, 64, 128, considering the weight matrix dimensions in different
models. Note that for matrix with very small size (e.g., 256 × 39 in
SR4), the short dimension (39) is partitioned to Q blocks uniformly
after padding a zero-column. Multiple layers in one model adopt

the same pruning rate. The attainable pruning rate for each case is
presented in Fig. 10(a); Further, the index overheads are divided by
the corresponding weight count for normalization, and the values
of the normalized index overhead (NIO) are presented in Fig. 10(b).
Notably, the results with non-structured pruning are given for com-
parison (leftmost bar for each application); And its index overhead
is obtained by compressing the non-structured weight matrices
with the compressed sparse row (CSR) format.

As a result, the CSB pruning rate ranges from 3.5× to 25×, which
dramatically reduces the original model size by order of magnitude.
With the growth of block size, the pruning rate decreases as the
coarse-granularity block reduces the pruning flexibility. We note
that, in all benchmarks, the CSB pruning is capable of reaching a
maximum pruning rate with the block size of 16 or 32, which is
close to non-structured pruning. In the aspect of NIO, the index
overhead of non-structured pruning exceeds 100%, as at least one
index is required for a non-zero element. Nevertheless, for CSB
pruning, the NIO is below 50% in most cases due to index reusabil-
ity in the structured blocks. The NIO shows a significant decay
while enlarging the block size. With the block size of 32, the NIO
declines to ≈ 20%, which is 1/5 of that in non-structured pruning.
Interestingly, we gain the insight that with a block size of 32 and

ICS ’20, June 29-July 2, 2020, Barcelona, Spain R. Shi, P. Dong, T. Geng, Y. Ding, X. Ma, H.K.-H. So, M. Herbordt, A. Li and Y. Wang

Table 2: Pruning Rate Comparison

Abbr.
Compression
Technique

Prune
Rate

Weight
Width Metric Result

Impro-
vement

MT1
column pruning [29] 8× 16-bit PPL 112.73 1×
CSB pruning 12.5× 16-bit 112.02 1.6×

MT2
row-column [30] 3× floating

PPL
82.59 1×

bank balanced [3] 5× 16-bit 82.59 1.65×
CSB pruning 12× 16-bit 82.33 3.9×

SR1

block circulant [28] 8× 16-bit

PER

24.57% 1×
row balanced [10] 8.9× 16-bit 20.70% 1.1×
bank balanced [3] 10× 16-bit 23.50% 1.3×
CSB pruning 13× 16-bit 20.10% 1.6×

SR2
block circulant [16] 8× 16-bit PER 20.20% 1×
CSB pruning 20× 16-bit 20.01% 2.5×

SR4
column pruning [7] 14.3× 16-bit Accu 98.43% 1×
CSB pruning 23× 16-bit 99.01% 1.6×

16, most models achieve the close pruning rate. For instance, 13×
and 12× in MT1; both are 20× in SR2. Therefore, the larger block
size (32) is preferable for its low index overhead.

6.2.2 Comparison with Prior Art Compression Schemes. The CSB
pruning rate is further compared to the prior art RNN compres-
sion techniques in Table 2. The listed competitive techniques are
proposed to enable a faster, hardware-friendly RNN inference with
the compressed model. Note that these competitors quantized the
weight to 16-bit fixed-point numbers; Thus, we do the same quanti-
zation on CSB pruned model and report the corresponding results
for a fair comparison. In Table 2, row-column [30] technique prunes
each weight matrix as an entire block. Comparing to it, our fine-
grained CSB pruning improves the compression rate to 3.9×. The
row balanced [10] or bank balanced [3] techniques compulsively
train the model to a balanced sparse pattern; However, CSB prun-
ing remains the natural unbalanced sparsity in RNN model and
achieves a higher (1.6×) pruning rate. Overall, the CSB pruning
improves the pruning rate to 1.6×-3.9× of the existing schemes,
while maintaining an even better model accuracy.

6.3 Evaluation of RNN dataflow Architecture
with CSB Pruned Model

6.3.1 Hardware-resource Consumption. The hardware-resource
consumption (cost) of the RNN dataflow architecture is given in
Fig. 11, with various CSB-Engine configs (P ,Q ,K ,L and max sup-
ported block size). Notably, the CSB-Enginewith different workload
sharing configs, including no-sharing, vertical-sharing, horizontal-
sharing, 2D-sharing, are synthesized individually to evaluate the
hardware overhead onworkload sharing technique. The consump-
tion of hardware logic and memory from the FPGA vendor tool are
presented in Fig. 11. The configurable logic block (CLB, left axis)
is the FPGA building block for logic, which is used as the logic
resource metric; The memory resource is given in megabit (Mb
in the right axis). Note that most memory resource on our FPGA
device is configured as the weight buffer, although they may not be
fully used by small RNN models. The multiplier in each PE (16-bit
fixed-point) is mapped to digital signal processor (DSP) on FPGA,
and the DSP count in design is ≈ P × Q × K × L that is omitted
here. As a result, the hardware support of workload sharing costs
an acceptable overhead, which is 11.6%, 3.8%, and 15.6% for three
sharing cases (vertical/horizontal/2D-sharing), respectively.

Memory Size

CLB (Architecture
without workload sharing)
CLB (Workload sharing
hardware overhead)

No
-S

ha
rin

g
V-S

ha
rin

g
H-

Sh
ari

ng
2D

-S
ha

rin
g

MaxBlock32
4x4x4x4

MaxBlock64
4x4x4x4

MaxBlock128
4x4x4x4

MaxBlock32
3x3x5x5

MaxBlock64
3x3x5x5

MaxBlock128
3x3x5x5(PxQxKxL)

Figure 11: Hardware resource consumption with multi CSB-
Engine configs.

6.3.2 Performance. Due to the workload imbalance issue, the pro-
cessing performance of RNN dataflow architecture, CSB-Engine in
specific, is not deterministic. Hardware efficiency, the ratio of effec-
tive computation on PEs, is invoked to evaluate the improvement
of our workload sharing technique. We obtained the CSB-Engine
efficiency by measuring the PE pipeline utilization using 10 bench-
marks listed in Table 1 with different design choices of workload
sharing. Moreover, CSB prunedmodels with different block sizes are
used to evaluate the impact of block size on efficiency. The efficiency
is measured layer-by-layer on hardware with 4 × 4 PEGroups and
each contains 4×4 PEs. The results are presented in Fig. 12. Overall,
for the CSB-Engine without workload sharing, the efficiency is 42%
on average, which results from the imbalanced workload (sparsity)
of blocks. The single dimensional sharing (vertical or horizontal)
improves the efficiency to an average of 72%. After the 2D-sharing
is adopted, the efficiency is further improved to 94% on average, i.e.,
only 6% execution time of CSB-Engine is invalid. This 6% pipeline
gap is inevitable, as a few extremely imbalanced sparsity exists
in some weight matrices. For instance, we found diagonal dense
matrix exists that the blocks on the matrix diagonal contain signif-
icant workload compared to other blocks. In this case, the workload
sharing path in the current design is not enough, while adding more
sharing paths brings extra hardware costs.

Comparing the efficiency within the same layer but different
pruning block sizes, it is apparent that the smaller block size is
applied, the lower hardware efficiency CSB-Engine can achieve,
particularly in the no-sharing CSB-Engine cases. This is because
the small block includes less workload (with the same pruning
rate) but more temporal block iterations, which lead to PE idle
more easily. As mentioned in §6.2.1, using smaller block sizes in
compression guarantees higher model pruning rates, which bene-
fits are significantly encroached by the performance degradation
with small compression block in the no-sharing cases. Nevertheless,
we gain the insight that our architecture-compilation co-design
for 2D-sharing cases significantly subdues the degradation. For
instance, in Layer-2 (L2) of MT1 case, the no-sharing degradation
from block-64 to block-32 is 12%, while it is reduced to 3% by the
2D-sharing. On average, the degradation is reduced from 15% to
4%. In summary, with the proposed workload sharing technique, a
smaller block size in CSB pruning does not bring significant degra-
dation on hardware efficiency anymore (only 4% on average), so
that the benefits from higher pruning rates can be more sufficiently
exploited.

CSB-RNN: A Faster-than-Realtime RNN Acceleration Framework with Compressed Structured Blocks ICS ’20, June 29-July 2, 2020, Barcelona, Spain

No-Sharing Vertical-Sharing Only Horizontal-Sharing Only 2D-Sharing, with both vertical & horizontal

Figure 12: The efficiency (utilization) of the proposed architecture with different sharing strategies. The novel workload shar-
ing technique significantly improves the average efficiency from 42% (no-sharing) to 94% (2D-sharing). This improvement fully
exploits the benefits of fine-grained CSB pruning.

Table 3: Latency and Power Efficiency Comparison

Abbr. Work #PE Freq. Latency Power Power Eff. Power Eff.
(MHz) (µs) (Watt) (k-frames/W) Improv.

MT1
BBS [3] 1518 200 1.30 19 40.49 1×

CSB-RNN 512 200 0.79 8.9 142.72 3.53×

SR1

C-LSTM [28] 2680 200 8.10 22 5.61 19.35×
E-RNN [16] 2660 200 7.40 24 5.63 19.41×
ESE [10] 1504 200 82.70 41 0.29 1×
CSB-RNN 512 200 6.58 8.9 17.08 58.89×

SR2
E-RNN [16] 2280 200 6.70 29 5.15 1×
CSB-RNN 512 200 5.18 8.9 21.69 4.21×

6.3.3 Comparison with Related Works. The overall performance
of CSB-RNN, i.e., CSB pruned model inference speed on the pro-
posed RNN dataflow architecture, is listed in Table 3 and compared
with the prior art designs. We collected the statistics including the
PE count (#PE), operating frequency, latency in processing one
input frame and the power of design. As Table 3 shows, with the
same benchmark applications, the CSB-RNN reduces the latency
by 39%-92% that speeds up the processing from 1.12× to 12.57×
correspondingly; Nevertheless, CSB-RNN only uses 19%-34% PE
counts (hardware resource) of the competitors to attain this per-
formance. The latency ranges from 0.79µs to 6.58µs with different
model sizes. For generic high-precision speech recognition, at most
≈ 2000 frames should be processed per second, which requires a
latency ≤ 500µs to meet the realtime performance. As the achieved
latency with benchmark models is much lower than this require-
ment, the CSB-RNN provides a faster-than-realtime performance
and facilitates the device processing more complex RNN models in
the future. Besides the latency, we compare the power efficiency
(k-frames per Watt) among these competitive designs. The results
show the CSB-RNN achieves significant improvements from 3.53×
to 58.89× on power efficiency in processing the same model, which
makes the CSB-RNN quite suitable for embedded scenarios. Further,
while the existing works were designed for a particular RNN cell
type, CSB-RNN can be reprogrammed to adapt to different cells.

7 CONCLUSION
This paper presents CSB-RNN, an optimized full-stack RNN acceler-
ation framework. The fine-grained structured CSB pruning signifi-
cantly improves the pruning rate compared to existing hardware-
friendly pruning schemes. Meanwhile, an architecture-compilation
co-design is proposed that sufficiently exploits the benefits of the
CSB pruned model. The experiments show that the entire CSB-RNN

acceleration framework delivers a faster-than-realtime performance
on extensive RNNmodels, and dramatically reduces the latency and
improves the power efficiency compared with the existing works.
Future work:We are extending the CSB technique to other neural
network layers. In particular, the transformer models are composed
of more complex dataflow, however, the same MVM primitive as
RNN. With improvement on the dataflow abstraction, the proposed
CSB pruning and CSB-Engine will contribute to the realtime trans-
former inference.

ACKNOWLEDGMENTS
We would like to thank the anonymous reviewers for their valuable
comments. This research was supported in part by the Croucher
Foundation (Croucher Innovation Award 2013), the Research Grants
Council of Hong Kong grant number CRF C7047-16G, GRF 17245716.
This research was supported in part by the U.S. DOE Office of Sci-
ence, Office of Advanced Scientific Computing Research, under
award 66150: “CENATE - Center for Advanced Architecture Evalu-
ation”. This research was supported, in part, by the NSF through
awards CCF-1618303, CCF-1919130, CCF-1937500, CNS-1909172,
and CCF-1919117; the NIH through awards 1R41GM128533 and
R44GM128533; and by a grant from Red Hat.

REFERENCES
[1] Léon Bottou. 2010. Large-scale machine learning with stochastic gradient descent.

In Proceedings of COMPSTAT’2010. Springer, 177–186.
[2] Stephen Boyd, Neal Parikh, Eric Chu, Borja Peleato, Jonathan Eckstein, et al. 2011.

Distributed optimization and statistical learning via the alternating direction
method of multipliers. Foundations and Trends® in Machine learning 3, 1 (2011),
1–122.

[3] Shijie Cao, Chen Zhang, Zhuliang Yao, Wencong Xiao, Lanshun Nie, Dechen
Zhan, Yunxin Liu, Ming Wu, and Lintao Zhang. 2019. Efficient and effective
sparse LSTM on FPGA with bank-balanced sparsity. In Proceedings of the 2019
ACM/SIGDA International Symposium on Field-Programmable Gate Arrays. 63–72.

[4] Kyunghyun Cho, Bart van Merriënboer, Caglar Gulcehre, Dzmitry Bahdanau,
Fethi Bougares, Holger Schwenk, and Yoshua Bengio. 2014. Learning phrase
representations using RNN encoder-decoder for statistical machine translation.
In Proceedings of the 2014 Conference on Empirical Methods in Natural Language
Processing (EMNLP). 1724–1734.

[5] Leonardo De Moura and Nikolaj Bjørner. 2008. Z3: An efficient SMT solver. In
International conference on Tools and Algorithms for the Construction and Analysis
of Systems. Springer, 337–340.

[6] Michel Fortin and Roland Glowinski. 2000. Augmented Lagrangian methods:
applications to the numerical solution of boundary-value problems. Elsevier.

[7] Chang Gao, Daniel Neil, Enea Ceolini, Shih-Chii Liu, and Tobi Delbruck. 2018.
DeltaRNN: A power-efficient recurrent neural network accelerator. In Proceedings
of the 2018 ACM/SIGDA International Symposium on Field-Programmable Gate
Arrays. ACM, 21–30.

ICS ’20, June 29-July 2, 2020, Barcelona, Spain R. Shi, P. Dong, T. Geng, Y. Ding, X. Ma, H.K.-H. So, M. Herbordt, A. Li and Y. Wang

[8] John S Garofolo, Lori F Lamel, William M Fisher, Jonathan G Fiscus, and David S
Pallett. 1993. DARPA TIMIT acoustic-phonetic continous speech corpus CD-ROM.
NIST speech disc 1-1.1. NASA STI/Recon technical report n 93 (1993).

[9] Alex Graves, Abdel-rahman Mohamed, and Geoffrey Hinton. 2013. Speech
recognition with deep recurrent neural networks. In 2013 IEEE international
conference on acoustics, speech and signal processing. IEEE, 6645–6649.

[10] Song Han, Junlong Kang, Huizi Mao, Yiming Hu, Xin Li, Yubin Li, Dongliang
Xie, Hong Luo, Song Yao, Yu Wang, et al. 2017. ESE: Efficient speech recognition
engine with sparse LSTM on FPGA. In Proceedings of the 2017 ACM/SIGDA
International Symposium on Field-Programmable Gate Arrays. 75–84.

[11] Song Han, Huizi Mao, andWilliam J Dally. 2015. Deep compression: Compressing
deep neural networks with pruning, trained quantization and huffman coding.
arXiv preprint arXiv:1510.00149 (2015).

[12] Sepp Hochreiter and Jürgen Schmidhuber. 1997. Long short-termmemory. Neural
computation 9, 8 (1997), 1735–1780.

[13] S&P Dow Jones Indices. 2019. S&P Dow Jones Indices (2019). Retrieved January
2, 2020 from http://us.spindices.com/indices/equity/sp-500

[14] Monica Lam. 1988. Software pipelining: An effective scheduling technique
for VLIW machines. In Proceedings of the ACM SIGPLAN 1988 conference on
Programming Language design and Implementation. 318–328.

[15] R.G. Leonard, G.R. Doddington, and Linguistic Data Consortium. 1993. TIDIGITS.
Linguistic Data Consortium.

[16] Zhe Li, Caiwen Ding, Siyue Wang, Wujie Wen, Youwei Zhuo, Chang Liu, Qinru
Qiu, Wenyao Xu, Xue Lin, Xuehai Qian, et al. 2019. E-RNN: Design optimization
for efficient recurrent neural networks in FPGAs. In 2019 IEEE International
Symposium on High Performance Computer Architecture (HPCA). IEEE, 69–80.

[17] Sangkug Lym, Esha Choukse, Siavash Zangeneh, Wei Wen, Sujay Sanghavi, and
Mattan Erez. 2019. PruneTrain: fast neural network training by dynamic sparse
model reconfiguration. In Proceedings of the International Conference for High
Performance Computing, Networking, Storage and Analysis. 1–13.

[18] Andrew L Maas, Raymond E Daly, Peter T Pham, Dan Huang, Andrew Y Ng,
and Christopher Potts. 2011. Learning word vectors for sentiment analysis.
In Proceedings of the 49th annual meeting of the association for computational
linguistics: Human language technologies-volume 1. Association for Computational
Linguistics, 142–150.

[19] Huizi Mao, Song Han, Jeff Pool, Wenshuo Li, Xingyu Liu, Yu Wang, and William J
Dally. 2017. Exploring the regularity of sparse structure in convolutional neural
networks. arXiv preprint arXiv:1705.08922 (2017).

[20] Mitchell Marcus, Beatrice Santorini, andMary AnnMarcinkiewicz. 1993. Building
a large annotated corpus of English: The Penn Treebank. (1993).

[21] Sharan Narang, Eric Undersander, and Gregory Diamos. 2017. Block-sparse
recurrent neural networks. arXiv preprint arXiv:1711.02782 (2017).

[22] Bo Pang and Lillian Lee. 2005. Seeing stars: Exploiting class relationships for
sentiment categorization with respect to rating scales. In Proceedings of the
43rd annual meeting on association for computational linguistics. Association for
Computational Linguistics, 115–124.

[23] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory
Chanan, Trevor Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, et al.
2019. PyTorch: An imperative style, high-performance deep learning library. In
Advances in Neural Information Processing Systems. 8024–8035.

[24] Mirco Ravanelli, Philemon Brakel, Maurizio Omologo, and Yoshua Bengio. 2018.
Light gated recurrent units for speech recognition. IEEE Transactions on Emerging
Topics in Computational Intelligence 2, 2 (2018), 92–102.

[25] Haşim Sak, Andrew Senior, and Françoise Beaufays. 2014. Long short-term mem-
ory based recurrent neural network architectures for large vocabulary speech
recognition. arXiv preprint arXiv:1402.1128 (2014).

[26] Sreelekshmy Selvin, R Vinayakumar, EA Gopalakrishnan, Vijay Krishna Menon,
and KP Soman. 2017. Stock price prediction using LSTM, RNN and CNN-sliding
window model. In 2017 international conference on advances in computing, com-
munications and informatics (ICACCI). IEEE, 1643–1647.

[27] Runbin Shi, Junjie Liu, K-HHayden So, ShuoWang, and Yun Liang. 2019. E-LSTM:
Efficient Inference of Sparse LSTM on Embedded Heterogeneous System. In 2019
56th ACM/IEEE Design Automation Conference (DAC). IEEE, 1–6.

[28] Shuo Wang, Zhe Li, Caiwen Ding, Bo Yuan, Qinru Qiu, Yanzhi Wang, and Yun
Liang. 2018. C-LSTM: Enabling efficient lstm using structured compression tech-
niques on FPGAs. In Proceedings of the 2018 ACM/SIGDA International Symposium
on Field-Programmable Gate Arrays. ACM, 11–20.

[29] ShaorunWang, Peng Lin, Ruihan Hu, HaoWang, Jin He, Qijun Huang, and Sheng
Chang. 2019. Acceleration of LSTM with structured pruning method on FPGA.
IEEE Access 7 (2019), 62930–62937.

[30] W Wen, Y Chen, H Li, Y He, S Rajbhandari, M Zhang, W Wang, F Liu, and B Hu.
2018. Learning intrinsic sparse structures within long short-term memory. In
International Conference on Learning Representations.

[31] Wei Wen, Chunpeng Wu, Yandan Wang, Yiran Chen, and Hai Li. 2016. Learning
structured sparsity in deep neural networks. In Advances in neural information
processing systems. 2074–2082.

[32] Jason Weston, Antoine Bordes, Sumit Chopra, Alexander M Rush, Bart van Mer-
riënboer, Armand Joulin, and TomasMikolov. 2015. Towards ai-complete question

answering: A set of prerequisite toy tasks. arXiv preprint arXiv:1502.05698 (2015).
[33] Pawel Winter and J MacGregor Smith. 1992. Path-distance heuristics for the

Steiner problem in undirected networks. Algorithmica 7, 1-6 (1992), 309–327.

