
Comparing Random Data Allocation and Data Striping in
Multimedia Servers*

Jose Renato Santos t
UCLA

Computer Science Dept.
4732 Boelter Hall

Los Angeles, CA 90095-1596

santos @cs.ucla.edu

Richard R. Muntz
UCLA

Computer Science Dept.
4732 Boelter Hall

Los Angeles, CA 90095-1596

muntz@cs.ucla.edu

Berthier Ribeiro-Neto
Universidade Federal de

Minas Gerais
Av Antonio Carlos, 6627

Belo Horizonte MG, Brazil
berthier@dcc.ufmg.br

ABSTRACT
We compare perfbrmance of a mult imedia storage server
based on a random da ta allocation layout and block replica-
tion with t radi t ional da ta striping techniques. Data striping
techniques in mult imedia servers are often designed for re-
stricted workloads, e.g. sequential access pat terns with CBR
(constant bit rate) requirements. On the other hand, a sys-
tem based on random da ta allocation can support virtually
any type of mult imedia application, including VBR (variable
bit rate) video or audio, and interactive applications with
unpredictable access patterns, such as 3D interactive virtual
worlds, interactive scientific visualizations, etc. Surprisingly,
our results show tha t system performance with random da ta
allocation is competi t ive and sometimes even outperforms
tradi t ional da ta striping techniques, for the workloads for
which da ta striping is designed to work best; i.e. streams
with sequential access pat terns and CBR requirements. Due
to its superiority :in support ing general workloads and com-
petit ive system performance, we believe that random da ta
allocation will be the scheme of choice for next generation
mult imedia servers.

1. INTRODUCTION

1.1 Motivation
Advances in technology, have enabled the increasing use of
information systems for storing and retrieving mult imedia
data, such as images, video, audio, 3D graphics, etc. Con-
tinuous media da ta impose deadlines on the retrieval and de-
livery of information; namely da ta objects must be present
at the client platform prior to the t ime they are needed

*This research was supported in par t by grants from Intel
Corp., and NSF grants IRI-9527178 and EAR-9817773.

tThis author 's research was part ial ly supported by a fellow-
ship from CNPq (Brazil).

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that
copies are not made or distributed for profit or commercial sdvsnt
-age and that copies bear this notice and the full citation on the first page.
To copy otherwise, to republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee.
SIGMETRICS 2000 6•00 Santa Clara, California, USA
© 2000 ACM 1-58113-194-1/00/0006._$5.00

for display. Failure to provide real-t ime service can result
in disruptions and delays which compromise the quality of
the presentation observed by the end user. To achieve high
quality continuous media play-out, such disruptions must be
reduced to very low levels. Our assumption is tha t mult ime-
dia objects are too large to fit entirely in main memory and
need to be retrieved from disk on demand. Further, parallel
disks are required for the bandwidth and storage capacities
anticipated for multiple clients and for high performance ap-
plications.

Although video and audio require real-t ime service, their
workloads are, in general, predictable since a typical play-
out s tream accesses da ta sequentially. This predictabi l i ty
has been exploited in many mult imedia da ta server designs
in which, based on the sequential access pat tern , da ta is
carefully layed out across disk drives such tha t contention
for the drives is avoided and real-t ime guarantees can be
made. There are a number of proposals for layout of video
da ta on parallel disks. The most common method proposed
is to stripe each object across the parallel disks using a fixed
size stripe granule (i.e., disk block)[2] [5] [8] [14] [22] [27]. While
allocation of a disk block on a disk is often random, logically
consecutive blocks are typically allocated in str ict ly round-
robin order to disks. This approach can work well when the
workload is highly predictable, uniform and has constant bit
rate (CBR) . However, in practice several factors reduce the
workload predictabil i ty (even for video) and make the prob-
lem of optimal da ta layout difficult. One of these factors
is tha t video and audio are generally compressed by encod-
ing techniques such as MPEG1 and MPEG2. In order to
achieve a constant display quality, these encoding techniques
may generate variable bit rate (VBR) media streams which
introduces a temporal variabili ty to the I / O pattern. In ad-
dition, providing VCR features such as pause, fast forward
and rewind, also reduces the predictabil i ty of a s tream I / O
access pattern. Finally, multi resolution encoding schemes
such as found in the MPEG standards complicate da ta lay-
out and I / O scheduling [9].

New mult imedia applications, such as 3D interactive vir-
tual worlds [12][17], have I / O pat terns which are much less
predictable than video or audio. In a 3D interactive vir-
tual world application the user navigates through large 3D
graphic models at variable speed and along user controlled
paths. In order for the display engine to show the current
world view, the graphical models of nearby 3D objects need
to be continuously retrieved from disk as the user moves:

44

http://crossmark.crossref.org/dialog/?doi=10.1145%2F339331.339352&domain=pdf&date_stamp=2000-06-01

The da ta access pa t te rn thus depends on the speeds and
paths selected by the user, which makes prediction imper-
fect at best.
Because of the difficulties in predicting the I / O pat tern of
mult imedia da ta access, we believe tha t mult imedia da ta
servers will move towards solutions tha t do not rely on a
careful da ta layout designed to match a predicted pat tern
of access. Our approach to the problem is to use a random
allocation scheme for laying out da ta on disks. We randomly
select the disk to hold each da ta block as well as randomly
select the location of the block on the disk. This approach
has the advantage of mapping all access pat terns of differ-
ent mult imedia applications into the same random access
pat tern at the physical level. This simplifies the problem
of traffic characterization for admission control because it
is no longer necessary to worry about how the distinct ac-
cess pat terns affect the load distr ibution among the multiple
disks. As a result, it becomes easier to simultaneously sup-
port heterogeneous applications in the same storage system
(even if the applications have unpredictable access patterns)
because all applications generate, at the physical level, the
same random distr ibution of requests to the disks in the sys-
tem. Notice that , in the absence of a random da ta allocation
scheme, traffic characterization is much more complex be-
cause it depends on the access pa t te rn of each application,
which is not easy to characterize (specially for highly inter-
active applications).
Providing absolute real-time guarantees on a system with
random da ta allocation can limit the load to very low lev-
els, poorly utilizing the system resources. We thus consider
the storage server as a soft real-time system with statisti-
cal delay bound guarantees, i.e., the system guarantees that
requests are served within a given delay bound with very
high probability. We assume that a probabil i ty of exceed-
ing the delay bound equal to 10 -8 should be satisfactory
for most mult imedia applications. For soft real-time sys-
tems with statist ical guarantees of delay bounds, we want
to have response t ime distr ibutions with "short tails". Wi th
only random da ta allocation, statistical fluctuations in the
load of any disk can cause short term load imbalances, dur-
ing which some disks have higher load than others for short
periods of time. This may cause the tail of the response t ime
distribution to be relatively "heavy" (i.e., the t ime T, such
tha t only one in a million requests suffer a larger latency
than v can be larger than desirable). To address this issue,
we also consider the use of da ta replication, where a fraction
of the da ta blocks randomly selected are replicated on ran-
domly selected disks. This gives the system some flexibility
in selecting the disk to which a request is routed, improving
load balancing and causing an exponential reduction in the
tail of the response t ime distr ibution [10][20].
Using this approach, we designed and implemented the RIO
(Randomized I /O) Multimedia Storage Server which is a
universal mult imedia storage system capable of efficient con-
current retrieval of many types of media objects. RIO man-
ages a parallel disk storage system and supports real-time
da ta delivery with statist ical delay guarantees. A prototype
was implemented on a SMP machine and has been used to
simultaneously support delivery of MPEG encoded videos,
and 3D urban simulation city models. Other applications for
real-time scientific visualization and medical VR are under
development. A por t of the system to a cluster of worksta-
tions has also been completed.

The focus of this paper is on a performance comparison of
RIO with tradit ional striping schemes. Although RIO is
designed to support general mult imedia applications, tra-
ditional striping is designed to work best for streams with
CBP~ (constant bit rate) traffic and sequential access pat-
terns. Schemes that utilize da ta striping for VBR (variable
bit rate) traffic are discussed in [27] and [7], but system per-
formance is reduced in order to provide the necessary mar-
gin for variations in display rate. Thus, we assume CBR
streams in our comparison, which is the workload for which
da ta striping works best, thereby favoring tradi t ional strip-
ing schemes in our comparison. One would expect that since
t radi t ional striping schemes take advantage of the sequen-
tial access pat tern of this type of traffic it would outperform
RIO which is based on random da ta allocation. Surpris-
ingly, our results show tha t RIO is competi t ive and often
outperforms tradit ional striping schemes, even for uniform
sequential CBR stream workloads.

1.2 Related Work
Data striping has been proposed in many video servers, in
which videos are str iped over a set of disks [2][5][8][14][22]
[27]. The advantage of striping over designs in which dif-
ferent objects are stored on different disks is tha t it decou-
ples storage allocation from bandwidth allocation, avoiding
potential load imbalances due to variations in object pop-
ularity. However, striping imposes two basic l imitations to
the operation of the system. First , the performance is op-
t imized for CBR streams and it is somewhat reduced when
VBP~ streams are used. Second, to guarantee real-time op-
eration, the cycle durat ion is usually determined considering
worst case I /O times (because, with striping, disk schedul-
ing is usually based on synchronized cycles across all disks).
This causes most disks to be idle towards the end of each cy-
cle, reducing system performance. Random da ta allocation
provides the same benefits of striping (e.g., the decoupling
of disk bandwidth from storage capacity), does not impose
the same types of restrictions to the operation of the system,
and provides support for any type of traffic pa t te rn equally
well.
The RIO mult imedia storage server is s tudied in [24][11][21]
[25]. In [24] we present detailed discussions of the design
issues of RIO, as well as extensive system performance anal-
ysis. In [11] we describe a scalable clustered architecture
for RIO. In [21] we discuss fault tolerance issues and in [25]
we s tudy performance of RIO on heterogeneous disk config-
urations. In this paper we extend our previous results by
comparing the performance of RIO with t radi t ional striping
techniques for mult imedia servers.
The routing of requests for replicated blocks to the least
loaded disk is easily mapped to a problem tha t has been
well studied in the computer science l i terature for load bal-
ancing in distr ibuted systems [10], which is often referred
to as "random probing". Analytical models addressing this
problem are studied in [1] and [20].
Random da ta allocation for mult imedia servers has also been
considered in [3] [28] [4][19]. Wewari et all [28] analyze the
performance of a clustered video server with random allo-
cation of da ta blocks, using both an analytical model and
simulation. However, they do not consider da ta replication
in their analysis.
In a previous work [3] we have considered random da ta allo-
cation on RAID systems, which explores redundancy of par-

45

ity groups for load balancing, as opposed to replication. Birk
[4] extended this work by proposing a selective exploitation
of redundancy which favors access to data blocks as opposed
to parity blocks, reducing the number of exclusive OR op-
erations that are executed during normal system operation,
i.e., without disk failure. The use of parity groups for load
balancing has the advantage of providing fault tolerance us-
ing less storage space than a scheme based on replication but
increases system complexity and consumes more CPU and
memory bandwidth in performing exclusive OR operations.
Moreover, the scheme proposed in [4], is described in the
context of a video server where streams access data sequen-
tially. In this context, parity exploitation for load balancing
does not generate extra I /O requests, since parity groups
store contiguous blocks of video objects, and all data blocks
of a parity group are required during the video playout and
at consecutive times. Thus, using the parity block instead
of a data block (for load balancing), does not impose any
additional load on the disks. However, this scheme does not
work well for interactive applications which does not access
data blocks sequentially, as for example in 3D interactive
virtual world applications. In this case, if a data block has
to be reconstructed, it will require accessing all other blocks
in the parity group, increasing the I /O load significantly, if
the other data blocks would not be otherwise needed.
Our choice for using replication instead of parity for load bal-
ancing was motivated by several factors. First, we wanted
to support more generic workloads such as 3D virtual world
navigation, instead of being restricted to video or audio only.
Second, we note that current trends in disk technology show
that the cost of storage space is decreasing faster than the
cost of disk bandwidth[16] [15]. Thus, we expect that mul-
timedia servers will be increasingly limited by bandwidth as
opposed to being limited by storage space. In this scenario,
disks will typically be bought for their bandwidth and extra
storage space will be available at no cost, favoring a simpler
design based on data replication. Third, we wanted to ex-
plore scalable architectures based on clusters of machines.
Exploiting parity for load balancing on a clustered architec-
tures is more complex, since data accessed on different nodes
of the cluster need to be at a single location for executing
exclusive OR operations. Using replication in this case is
simpler and more efficient, since data can be transmitted
directly from the :node that accesses the data to the client
machine.
Comparison of data striping and random allocation is also
addressed in [19]. However this work differs from ours in
several aspects. First, the RDA scheme described in [19]
uses a disk scheduling algorithm based on synchronized cy-
cles across all disks which as we show later reduces system
performance. Also, in [19] the author compares random al-
location only with "wide" striping schemes in which mul-
tiple stripe units are read in parallel from all disks, which
is known to have a buffer explosion problem as the num-
ber of disks increases[13][4]. Also, the author only considers
the case with 100% replication, while we also consider par-
t i l l replication. Finally, in this paper we provide a more
detailed characterization of system performance in terms of
delay bound, probability of missing deadline, and block size.

1.3 Organization
This paper is orgemized as follows. In Section 2 we review
the traditional disk scheduling policy for multimedia sys-

Table 1: Notation
D Total number of disks
B Data block size (MB)
T Cycle time for striping (sec)

Rs Stream rate (MB/sec)
ND Number of streams per disk
N Total number of streams

Pmiss Prob. of missing deadline
tn,B Time to read n blocks of size B
t s Time to read 1 block of size B
RD Disk throughput (MB/sec)
LD Load per disk (MB/sec) (LD _< RD)
DB Delay bound for block request
nb Buffer size per stream in number of blocks

B F Buffer size per stream (MB) (BF ---- nb* B)
SL startup latency

tems based on data striping and discuss how we compute
performance for these systems. In Section 3 we describe RIO
and analyze its performance through experiments and sim-
ulations. In section 4 we compare system performance for
layout schemes based on random data allocation and strip-
ing. At the end of section 4 we discuss how RIO compares to
the RDA scheme proposed in [19] in terms of performance.
In Section 5 we discuss the main advantages of a random
data allocation approach over traditional data striping. Fi-
nally in Section 6 we present our conclusions.

2. DATA STRIPING REVIEW
The notation used in this section and in the remaining of
the paper is sumarized in table 1 for convenient reference.

2.1 Traditional Scheduling for Multimedia
Systems based on Striping

Data striping is a data layout scheme where multimedia ob-
jects (e.g. videos) are divided into fixed size data blocks (also
called stripe units) and striped across multiple disks in round
robin fashion as illustrated in Figure I [5][8][14][22][27].
In order to support real-time data streams delivering con-
tinuous media, the server must guarantee that data is re-
trieved from disk in a timely fashion. Most video servers
described in the literature implement a disk scheduling al-
gorithm based on cycles of constant duration T, as illus-
trated in Figure 2. The traditional approach is to have the
server retrieve one data block in each cycle for each active
stream. This data block is then delivered and consumed by
the client in the next cycle while the server retrieves the
next data block from disk. Note that since a typical video
play-out accesses data blocks sequentially, using a striping
layout implies that the server retrieves data blocks for each
active stream in round robin order across all disks. Figure 2
shows an example in which a stream starts accessing object
A. First, data block A1 is retrieved from disk 1, in a given cy-
cle i. Then, in the next cycle, i + 1, the previously retrieved
data block A1 is consumed by the client while the system
reads the next data block A2 from disk 2. This process con-
tinues until the entire video is delivered to the client. This
scheme guarantees that the client receives a video stream at
a sustained rate Rs = B / T , where B is the size of one data
block.

46

Object A Object B

i , , 1 , 2 1 , 3 1 , , i , s l . . . iB, 1 21B31 ,lBsl---

Disk1 Disk2 Disk3 Disk4

Figure 1: Typical striping layout.

stream A
admitted read A1

T
cycle i

, consumeA1 , consume A2
t e E I IB

i readA2 i readA3 ,
T T t

cycle i+1 cycle i+2

Figure 2: Traditional stream scheduling for striping layout

Given the duration of a cycle T, there is a maximum number
of data blocks that can be retrieved from each disk in that
amount of time, which is a function of the disk and I /O sys-
tem performance characteristics. This maximum number of
requests limits the maximum number of streams ND, that
can be supported by each disk. The total number of sup-
ported streams in a system with D disks is then N ---- ND *D.
Note that striping requires that the maximum number of
streams be a multiple of the number of disks, a condition
that is not required by RIO, as we will describe later.
Note that the load directed to a particular disk i in a partic-
ular cycle j (i.e. the streams that read a data block stored
in disk i at cycle j) , is transfered to the next logical disk
i + 1 in the following cycle j + 1, and this particular load
keeps cycling through all disks in round robin fashion. The
system must implement an admission control module which
accepts or denies service for a new stream request, based
on the current system load. Admission control can admit
a new stream, as long as there is one disk with bandwidth
available to support an additional stream, i.e. with less than
ND streams. The system just has to wait until the available
bandwidth cycles through the disks and reaches the disk
which stores the first data block of the object to be accessed
by the new stream. At this point the first data block of the
new stream can be successfully retrieved, and consequently
all successive data blocks can also be successfully retrieved
in consecutive cycles, since the load keeps cycling in lock
step through all disks, in a carrousel fashion.
This characteristic is based on the assumption that streams
access data sequentially at a constant bit rate (CBR), and
that all streams have the same play-out rate. Most video
servers described in the literature adopt this assumption.
Schemes that utilize data striping for VBR (variable bit
rate) traffic are discussed in [27] and [7], but system per-
formance is reduced in order to provide the necessary mar-
gin for variations in display rate. Thus, for the purpose of
performance comparison with random allocation, we assume
CBR streams, which is the workload for which data striping
works best, thereby favoring traditional striping schemes in

Table 2: Seagate Barracuda disk parameters
Storage Space 4096 MB
Number of zones 29
number of heads 21
Number of cylinders 3711
Sector size 512 bytes
Rotation speed 7200 RPM
Revolution time 8.33 ms
Track size 41 MB - 62.5 MB
Transfer rate 4.80 MB/sec - 7.32 MB/sec
Maximum seek time 16.86 ms
SCSI bus rate 20 MB/s
Track skew factor 7 - 11 sectors
Cylinder skew factor 15 - 22 sectors

our comparison.

2.2 Performance evaluation for Striping
In order to determine the maximum number of streams
ND that each disk can support, we have to consider how
data block requests are scheduled at each disk in each cycle.
The most used disk scheduling algorithm is the bidirectional
SCAN algorithm [6] [26], in which the disk head moves in
a single direction in each cycle, with alternate directions in
consecutive cycles, such that seek time overhead is mini-
mized.
In practical systems, new multimedia objects (e.g video)
need to be added to the the server and old objects removed,
on a continuous basis. Therefore, to avoid space fragmen-
tation, storage space is usually allocated and deallocated in
units of data blocks and no assumption can be made about
the relative order of data blocks on the disk surface. Thus,
the relative position of a data request for a particular stream
in a given cycle, may change in successive cycles. Therefore
the system must assume that a data block is available for
client consumption only at the end of the cycle in which it
is retrieved. This disk scheduling method requires that two
buffers be allocated to each stream, one to store the data
block being read in the current cycle and the other to store
the data block that was read in the previous cycle and is
being consumed by the client.
For the purposes of this paper we evaluate system perfor-
mance for a server based on an array of Seagate Barracuda
disks (model ST15150W), which is the disk model used in
our RIO prototype. The major characteristics of this disk
are summarized in Table 2.
In general, multimedia servers using data striping, limit the
maximum number of data blocks that can be read in a cycle
considering worst case I /O times in order to make abso-
lute real-time guarantees. However, in order to have a fair
comparison with random allocation, we also consider sta-
tistical guarantees similar to the approach used in RIO. In
the statistical approach, we compute the maximum num-
ber of streams ND such that the probability of missing a
request deadline is Pmiss _< 10 -6, which is the same prob-
ability used to compute performance for RIO. Let trND,B
be the time to read ND data blocks of size .B in a given
cycle. If trND,B > T some requests miss their deadlines.
For simplicity, we assume that when trND,B > T, only
the last request processed in that cycle misses its dead-
line. Note, that these simplifications are optimistic and favor

47

I I I I I '

. V . ;

" . ~ i ~
Block size: 128 Kbytes t . t : Disk model
Number of reuests: 10 I! I! _ _ _ Disk experiment

I: I!

f! I!

I : I! Tst=373
I ! I: '
~.: ~ i

I! I: i

I: I! i
I : m e o t l I :
I:' =319 ~': i
i:' i'. i

i..' 0, I

I : ' ~,,
1," ~, I

250 300 350 400
I / 0 time (msec)

Stotisticol bound Worst cose bound

(Prob(t>Tst)=10-5) (Prob(t>Tobs)=O)-i
robs~447 •

I

I

I

I

I

i
I

i
i
i
i

i I I I I I

45O

Figure 3: I /O time distribution for SCAN scheduling

striping. Therefore, to guarantee a request miss probability
Pmlss, for a cycle with ND block requests we should have
(P(trND,B > T) < Pmiss * ND).
In order to compute the maximum number of streams per
disk we developed a detailed disk model based on the model
described in [23]. In this model the I /O time for accessing
data on a disk drive is decomposed into several components
associated with the physical operations required to process
the I /O, such as seek time, rotational delay, transfer time,
track and cylinder switch times, SCSI bus transfer time, sys-
tem call overhead, etc. We model each of the components
of the I /O time as a random variable whose distribution
is based on knowledge of the physical operation associated
with that component. The parameters associated with each
of these distributions, for our Seagate Barracuda disk drive,
were obtained from the disk manual and/or from disk ex-
periments similar to the ones described in [29]. For more
details on the disk model the reader is referred to [24].

Using this model we can compute the probability density
function (pdf) of the I /O time trnr,B to read a particular
number of requests nr for a particular block size B, assum-
ing the nr requests are served according to a bidirectional
SCAN algorithm. Figure 3 shows the I /O time distribu-
tion obtained using our disk model for the case trlo,128KB,
i.e. 10 requests and blocks of size 128 KB . The figure also
shows the I /O time histogram obtained through measure-
ment experiments in our Seagate Barracuda disks. As we
can observe, our disk model is accurately modeling the real
disk performance. We also conducted experiments for other
block sizes B and number of requests nr and obtained the
same degree of accuracy as shown in Figure 3. These results
give us confidence in the performance results presented later,
which were based on our disk model.

Given the stream rate R s and a particular block size B, we
can obtain the cycle time T = B / R s and then compute the
maximum number of streams N o that can be supported by
each disk. For the statistical guarantee approach, the max-
imum number of streams No is the maximum number of

requests nr such that (P(t r ,~ , s > B / R s) < Pmis~ * nr), as-
suming a probability of missing the deadline Pmiss ---- 10 -6-
For the absolute guarantee approach we compute the worst
case (maximum) value of trnr,B assuming the worst case
value for each component of the I /O time model, i.e. worst
case rotational latency, worst case transfer time, worst case
seek time, etc. We then compute the maximum number of
streams ND as the maximum nr such that max(trnr,B) <
B / R s .
Figure 3 shows for the case of 10 requests and 128KB blocks,
the worst case I /O time T a b s -~ 447ms , and the statistical
bound Ts~ = 373ms for Pmiss = 10 -6, i.e. P(trlo,12sgB >
Tse) = 10 -5. We observe that for this case, performance is
improved by approximately 20%, by using a statistical ap-
proach. The figure shows that the average I /O time for this
example is 319 ms. Thus, if the cycle time is chosen using
the worst case approach, i.e. T = 447ms, on average the
disk will be idle during 29% of the time, and if the cycle
time is chosen using the statistical approach, T = 373ms,
the average disk idle time is 14%. This idle time is neces-
sary to absorb the fluctuations of the I /O time to read data
blocks.

3. PERFORMANCE EVALUATION
FOR RIO

3.1 RIO overview
In RIO a multimedia object is divided into fixed size data
blocks which are stored at random locations on randomly
selected disks. A fraction r of randomly chosen blocks in
the system (0 < r < 1) can be replicated, with each replica
being stored on a different, but otherwise randomly selected,
disk. Load balancing is implemented by a simple online
routing algorithm: a read request to a replicated data block
is directed to the least-loaded of the two disks holding a copy
of the block, at the time of the request arrival, i.e. routing
to the disk with the shortest queue.
After requests are routed to the appropriate disk they are
kept on the disk queue and then scheduled independently of
the other disks. Disk scheduling is not based on fixed dura-
tion cycles and disks axe not synchronized to each other as in
striping techniques. The disk scheduling algorithm used for
each disk queue is a simple FIFO (First In First Out) policy.
We adopted FIFO scheduling because this policy minimizes
request delay variance which is important for a performance
metric based on stochastic delay bounds, although the mean
service time may be larger than for example, with the SCAN
algorithm. Note that, by using a FIFO service discipline we
can only be conservative (e.g., if it is suboptimal) and thus
(again) favoring our comparison towards traditional strip-
ing.

3.2 Simulation Description for RIO
In order to evaluate the performance of RIO for more system
configurations than are currently available on our prototype,
a simulator was developed and validated.
For the purpose of performance comparison with striping
we assume the server is delivering a set of uniform CBI:L
streams with play-out rate R s . We assume that the data
block requests generated for each stream are staggered such
that the aggregate traffic has a constant rate of block re-
quests, as illustrated in Figure 4. However, for the purpose
of performance evaluation of the server only the aggregate

48

Streams A B C D A B C D
requests
rate:B/4P ~, ~, ~, ~ ~, ~, ~ ~t

y

Streams E F E F E F E F requests rate:B/2P ~ ~ ~ ~ ~ ~ ~ ~ ~t

Figure 4: Aggregate traffic

FIFO
Data block " ~ ~ ~ 1 ~ ~ I Traffic ~ Online I Generat°r[C°rn:tt~nt -I router

Figure 5: RIO simulator.

traffic is important and not the individual streams traffic.
Note, that the sequence of requests of the aggregate traffic
can represent any combination of streams which have the
same aggregate load. This is due to the fact that, because
of random allocation, the location of any data block is inde-
pendent of the location of any other data block, whether
they belong to the same multimedia object or not. For
example, in Figure 4 the aggregate traffic generated by 4
streams (A,B,C,D), each with rate Rs = B / 4 P is equiv-
alent to the load generated by 2 streams (E,F), each with
rate Rs = B/2P. Therefore our simulation described in the
next paragraphs, only considers the aggregate traffic. The
performance results obtained by our simulation can then be
used with any stream rate Rs, to compute the maximum
number of supported streams by the system.
Figure 5 shows the architecture of the simulator used to ob-
tain the performance results reported in this paper. The
traffic generator generates a sequence of data block read
requests at a constant rate R s (blocks/sec). The traffic
generator also selects the disk or disk pair which holds the
data block for each request. Requests axe independently
chosen to be replicated or not with probabilities r and 1 - r ,
respectively, where r is the replication level used in a partic-
ular simulation. The traffic generator independently selects
a random disk for each non replicated data block request
(with uniform probability), and a random pair of disks for
each replicated data block (also with uniform probability).
The online router directs requests to the appropriate disk
queue at the time of their arrival. For replicated data the
router directs the request to the shortest of the 2 possible
queues at the time of its arrival. Requests are then served in
each queue using a FIFO service discipline. The service time
for each request is drawn from the service time distribution
obtained from a model of the disk.
Although the detailed disk model described in section 2

Table 3: I /O service time parameters for different block sizes
Block I /O service time (trB)
size /z(trs) a(trs) CV(trB)

(KS) (ms) (ms) = a/iz
2 13.82 4.10

16 16.21 4.16
64 24.52 4.50
128 35.44 5.21
512 101.3 11.93
1024 189.7 22.68
4096 720.4 89.04

Disk
throughput

R D (B) (M B / s)
0.2967 0.14
0.2566 0.96
0.1835 2.55
0.1470 3.61
0.1178 4.93
0.1196 5.27
0.1235 5.55

could have been used in our simulator, we observed, through
experiments, that for a FIFO service discipline on the disk
queues, the system performance can be accurately predicted
using a much simpler disk model, based on a simple Gans-
sian distribution of the I /O service time. We used this
simplified disk model to obtain the performance results de-
scribed next. Our simulation validation results shown in
Section 3.3 confirms that this simplified disk model is mod-
eling disk performance accurately.
A set of experiments on the SEAGATE Barracuda disks
used in our prototype were conducted to evaluate their per-
formance. We measured the mean # and standard deviation
a of the disk I /O service time t r s for different block sizes in
the range [2KB, 4MB], assuming random data allocation,
and a FIFO service discipline. Table 3 shows a sample of
the results obtained. The table also shows the disk through-

B for each block size. As expected, disk put RD = ~~~7~~,
throughput is highly dependent on the selected block size.
Larger block sizes generate higher disk throughput since I /O
overhead such as rotational latency, seek time, etc., will be
amortized over a longer transfer time. We used the values
of the mean and standard deviation shown in Table 3 as the
parameters for the Gaussian disk model used in our simula-
tion.
In each simulation we generate a large number of requests
(2 • 10~) 1. We measured the delay for each request and
estimated the delay distribution from the measured delay
histogram. We then estimated the delay bound that can
be satisfied with probability 1 - 10 -6, using the delay his-
togram.

3.3 Simulation Results
In order to validate our simulation we compared the results
generated by simulation with the experimental results ob-
tained from measurements on our prototype.
Figure 6 shows the results obtained for a configuration with
a 128KB block size 2 and 14 disks connected to 7 fast-wide
SCSI busses (2 disks per SCSI bus to ensure that the SCSI
bus is not saturated), which is the configuration of our cur-
rent prototype. The graph shows delay bound as function
of the system load. The results are normalized along both
axis. The delay bound is normalized by the mean I /O ser-

1We repeated each experiment several times with different
random number generator seeds and consistently obtained
the same results. This gave us confidence that we simulated
the system for a period long enough to obtain accurate re-
sults for small probabilities in the order of 10 -6
2In [24] we validate our simulator for other block sizes and
obtain the same degree of accuracy as shown in Figure 6.

49

E

8
g

E
'6 30

~ 20

"o

~ lO
N

_ _ _ S l m u l o l : l o n # , '

....... Experiment ! ..
! . /

O~ repliccl|ion , ,"
25~ replication / ..'

40 EJ 100% replication L"
~. '

128 KB block 6"
Configuration with 14 disks x,,

. £ . "

. . . ' / / .

.... 2"-~>..e'& "$'=¢"
, . ~ - - ~ .

~' ,--~- .4... ~ #-:~--~ :':~
; - .~.~...,~.-.-

. _ 1 2 p = . = . : . # . . . _ . = E 3 -fl ~ e ~1~ -~B" "~ "12 [
o

0.60 0.70 0.80 0.90 1,00
Normalized load (disk utilization)

501 '

~> 40
g

g
E
3 30
m

~ 20
.o

"o

N

0 ,
0.60

' ' _ ' _ ' ; 'c,~e/.~oL 6..iO'(~Kb'-'BkB') T , ' : . " ' '
......... Coef. Vor. 0.23 (32 KB) / I / ."
_ _ Coef. Vor. 0.15 (128 KB) , I ' ~:'
. . . . Coal. Vor. 0.12 (512KB -4MB) /~/ / : , '

/ / , :
O~ replication / / ' /.:'

0 25% replication / / /:
,oo, rop,cot,oo

. ~ ~ =~ .= .= .~ . - := -~=-~-~-~-1 I -~ "=~

i i u i I - I I , , , , ,

0.70 0.80 0.90 1.00
Normalized load (disk utilization)

Figure 6: Simulation validation experiments Figure 7: System performance for different Coefficients of
Variation of the service time.

vice time (e.g. 35.44 ms for 128 KB block), and the load is
normalized by the maximum load, i.e. disk throughput (e.g.
3.61 MB/sec/disk, for 128 KB blocks). The different pairs
of curves correspond to different levels of replication: 0%,
25% and 100%. Clearly the results of the simulation track
very closely the measured results, confirming that our simu-
lation is modeling the disk behavior accurately. In addition
to illustrating the accuracy of the simulation, Figure 6 also
shows the value of replication and the effectiveness of online
load balancing. It is clear from these curves that the de-
lay bound that can be guaranteed with probability 1 - 10 -6
grows considerably with load when there is no replication
but is relatively flat when replication is used, even out to
95% utilization or more.

Figure 7 shows simulation results comparing the performance
of the system for a Gaussian distribution of the service time
with different coefficients of variations over the range of val-
ues shown in Table 3, which correspond to values of a wide
range of block sizes; 2KB to 4MB. Note that the mean of
the Gaussian distribution is not relevant since the results are
normalized. The results of Figure 7 show that the relative
performance of RIO is relatively insensitive to block size, at
least over the range of practical block size values. Although
there is some variation of the normalized delay bound for
different coefficients of variation of the service time, these
variations are very small. Therefore we use the same nor-
malized results for one particular block size, (e.g. 128 KB)
to predict the performance of RIO for other block sizes.
Note that, even though the relative performance for different
block sizes are equivalent, the absolute performance is dif-
ferent. The absolute performance curves that map absolute
load to absolute delay bounds (msec vs. Mbytes/sec/disk)
for different block sizes can be obtained by scaling the y axis
by the mean service time and the x axis by disk through-
put for that particular block size. In [24] we also show that
system performance is relatively insensitive to the number
of disks if the number of disks is not very small (at least
8). Thereforewe use the same set of normalized curves, e.g

curves for coefficient of variation 0.15, to compute system
performance for all block sizes for an arbitrary number of
disks.

3.4 Computing the Maximum Number of
S t r e a m s p e r Disk for RIO

In order to compute the maximum number of streams sup-
ported by the system we need to consider the required stream
rate R s and the delay bound DB required for each request.
The stream rate is a characteristic of the application but
the required delay bound is a function of the amount of
buffer allocated to each stream. For striping, the cycle based
scheduling approach requires a buffer to store exactly 2 data
blocks for each stream, one for the block being read in the
current cycle and another for the block read in the previous
cycle and being consumed by the client. In RIO, scheduling
is not based on cycles and the system can take advantage of
buffers that can hold a larger number of blocks.
Let's assume each stream is assigned an integral number nb
of buffers (nb _> 2), each of which can store one data block of
size B. At any instant one of the buffers contains the active
data block bi which is being consumed by the client. The
other nb - 1 buffers are assigned to the next data blocks
to be consumed by the client, i.e. b~+l,...,ii+,~b-1. These
buffers may already have data ready for consumption, or
may be waiting for data to be read from disk. The only
requirement is that data be available in the buffer at the
time it is needed for client consumption. When the active
data block bi is completely consumed by the client, its buffer
becomes available to store a new data block bi+nb 3. The

3Here we assume memory is allocated and released in in-
teger number of buffers. We could have optimized system
performance by assuming memory deallocation in pages of
smaller size. Since we do not assume this in the case of
striping, which would be too complex for analysis, we de-
cided not to consider continuous memory deallocation for
RIO either, so that, again, our comparison does not favor
RIO.

50

25

20

30

15

10

5

'0

. I I I
' Disk throughput (sequential access)

_ _ _ . _ _ _ _ _ - - . - - - -

/ .

.--~.7. .~- / " " .

¢

: / Stream rate: t .5 Mbit /sec
/

fi:' ! Replication for Random: Og

. . . . I

5OO

_ _ Random (Buffer: B blocks)
. Random (Buffer: 4 blocks /
_ _ . Random (Buffer: 2 Blocks)

Striping (Stotist iccl Max cycle)
Striping (Worst case Max cycle)

, i i I i , i I I i i , i

I 000 1500 2000
Block size (KBytee)

E

z

E

E
x
o

Figure 8: Maximum number of streams

. . . . I I I
Disk throughput (sequential access) .

;Or

:5~

5~ St ream rate: 1.5 Mbit /sec

(
Replication for Random: 25~

o,f
_ _ Random (Buffer: 8 blocks)

Random/Bu f fe r : 4- blocks~
51" Random (Buffer: 2 Blocks)

_ _ Striping (Statist ical Max cycle)
. Str iping (Worst case Max cycle)

0 , ~ , I t , , , I L , J , I , , ,

500 1 DO0 1500 2000
Block size (KBytes)

per disk as a function of block size.

system must be able to read data block b~+~b from disk to
memory, before the client needs its data, i.e. while the client
is consuming data from buffer b~+l to bi+nb-1. The time for
consuming each data block is B / R s and thus the required
delay bound is given by DB = B ~s * (n b - 1).
Given the delay bound DB we can obtain the maximum
load per disk LD (MB/sec/disk) such that the probability
of exceeding the delay bound is less than 10 -6 , from the
experimental results shown in Figure 7. To obtain the max-
imum load, we scale the normalized curves of Figure 7 by the
mean service time i~(trB) and by disk throughput RD(B) ,
for the selected block size B, on the y axis and x axis, re-
spectively. Using this load and the stream rate required for
each stream, we obtain the number of supported streams per
disk, ND : ~ Note that, the system does not require an

R S "

integer number of streams per disk. Only the total number
of streams in the system Lns • DJ needs to be rounded down
to an integer.

4. PERFORMANCE COMPARISON

4.1 Comparing RIO and Striping
Using the procedures described in Sections 2 and 3, we com-
puted the maximum number of streams ND that can be sup-
ported by each disk as a function of the block size B, both
for striping and for RIO. The results are shown in Figure
8. For these results we assumed a typical display rate of
MPEG1 encoded video, 1.5 Mbit/sec. The left graph on
the figure shows results for the case when random alloca-
tion uses no replication, and the right graph for case when
25% replication is used. Each graph shows results for strip-
ing both for the worst case approach and for the statistical
approach discussed in section 2. For RIO we consider 3 dif-
ferent number of buffers per stream: 2, 4 and 8 buffers of
size B (The curve for 4 buffers in Figure 8b is not visible
because it overlaps the one for 8 buffers). As discussed be-
fore, striping always uses 2 buffers per stream. The figure
also shows the theoretical maximum number of streams that
could be ,Supported that is limited by the disk bandwidth,

assuming the data could be read sequentially from disk and
thus with no incurred overhead due to seek and rotational
latencies.
As expected, for all cases the number of supported streams
per disk increases with block size, since disk I /O is more
efficient for larger blocks. We observe in Figure 8, that the
curves for data striping have discrete steps, due to the fact
that the number of streams supported by each disk has to
be an integer, a condition that is not required for RIO. The
most important result, though, is that RIO performs very
well, contrary to the common belief that random allocation
is associated with poor performance. Even with no replica-
tion and with only 2 buffers per stream, RIO can support
approximately the same number of streams as traditional
striping based on worst case I /O time. Moreover, if either
larger buffers (4 blocks) or some amount of replication -
even partial replication (25%) - is used, RIO has perfor-
mance equivalent to striping based on statistical guarantees
for lower values of block size and even outperforms striping
for larger block sizes.
A critical reader may argue that the comparison may not
be fair. If RIO uses more buffer or more storage space (for
replication) than striping, it should have a higher cost for
supporting the same number of streams. We address each
of these issues in turn.
To address the issue of buffer size, we compare the perfor-
mance of RIO and striping when the same amount of buffer
memory is used in both cases. Figure 9 shows the maximum
number of streams supported by disk as a function of buffer
size BF. The left graph shows results for a typical display
rate of MPEG1 encoded video, 1.5 Mbit/sec, while the right
graph shows results for a typical display rate of MPEG2 en-
coded video, 4 Mbit/sec. For striping the block size is always
B=BF/2 . For RIO, we select the optimal number of blocks
nb (and corresponding block size B = BF/nb) which maxi-
mizes the number of supported streams, for each particular
buffer size. Note that, it is possible to achieve better per-
formance using a smaller block size and a larger number of
blocks per buffer than using a larger block size, for the same
amount of buffer, because in the first case a higher delay

51

3O

55
~. 25

~ 20

~ ts
E

E 10 3

i i i I , i ' i ' i ,

Disk throughput (sequential access)

•S 2 _ f - : - : = ~

, : L ; J ..

/.I;
ih
lit Stream rote: 1.5 Mbit/sec

_ _ Random (100% replication)
....... Random I 257, replication)

5 _ _ _ Random (O% replication)
_ _ Striping (Stotlstical Max cycle)
. Striping (Worst case Max cyc le)

0 ~ I , I ~ I , I ~ I ~ I , I ,

0.00 1.00 2.00 3.00 4.00 5.00 6.00 7.00 8.00
Amount of Buffer Space per Stream (MBytes)

Figure 9: Maximum number of streams

' i , i ' i , i ' i ' i , i '

~2 : . 2L~! ~h_r?~gh_po_! _(s~?on_t!a_L o~_~e~)

i5 10

~_ y ' " r _ _ ~ . . _ ~ -_~.Z L ~ . _

8 _.,~_ ~/~-.C.~

i i . , ! /
3 6 ~.:J /

II/ /

/ i Stream rate: 4.0 Mbit/sec E
J
z
E 4

.E ~l
× _ _ Random (1007, replication)

....... Random { 25~ replication)
_ _ _ Random (O~ replication}
_ _ Striping (Statistical Max cycle)
. Striping (Worst case Max cycle)

0 , , I I , I i I , I ~ I

0.00 1.00 2.00 3.00 4.00 5.00 6.00 7.00 8.00
Amount of Duffer Space per Stream (MBytes)

per disk as a function of buffer size.

bound can be tolerated. For small buffers, the associated
block sizes are relatively small and performance is very sen-
sitive to block size. Thus in this case better performance
i§ obtained by using the minimum nb, i.e. maximizing the
block size. However when block size increases beyond a cer-
tain point (larger buffers) disk performance does not change
significantly with the block size and, at this point, increas-
ing the number of buffers rather than increasing the block
size becomes more effective. Although not presented in this
paper due to space limitation, we observed that the opti-
mal number of buffers per stream used in Figure 9 in fact
increases with the buffer size.
The results presented in Figure 9 confirm the previous re-
sults and show that RIO performs very well, even when us-
ing the same amount of buffer as striping. RIO outperforms
striping either if some amount of replication is used or if a
buffer larger than 3.5 MB per stream is used. Striping per-
forms better than RIO only for smaller amounts of buffer
space and when :RIO does not take advantage of replica-
tion. And even in this case, the difference in performance is
relatively small, typically 5% to 10% or lower.
These results may seem surprising, since in traditional strip-
ing, data is carefully organized on disk and disk scheduling
takes advantage of the sequential nature of the access pat-
tern. There are basically two reasons for striping having
lower or only slightly better performance than random data
allocation. The first and more important is the use of con-
stant duration cycles synchronized across all disks. For a
given block size and number of requests per SCAN cycle
there is a maximum data rate that can be supported by
each disk, the disk throughput for the selected block size.
In RIO, the load has to be set to a value lower than that,
i.e. the disk utilization has to be p < 1, such that delay
bounds can be guaranteed. We observed in the performance
curves of Figure 7 that RIO can achieve high disk utiliza-
tion if the delay bound is sufficiently large, which may be
achieved with a reasonable amount of buffer memory, or if
some replication is used. But for striping, disk utilization
also has to be p < 1. The number of requests in a cycle
has to be determined considering either worst case or sta-

tistically bounded I /O times, which makes the average I /O
time in a cycle lower than the cycle duration. This causes
disks to be idle towards the end of most cycles, and thus
impacting system performance. Note that in RIO, cycles
are asynchronous and disks do not have to wait for syn-
chronization points before starting processing new requests.
Another factor which limits performance for striping is that
the number of streams per disk has to be an integer, and
disks may have to waste some excess bandwidth if it is not
enough to support one new stream. Although this is a minor
effect for low bit rate streams, it will have higher impact for
higher bit rate streams such as those of high definition TV
(HDTV), for example.
Now let's address the concern that the use of replication
increases the system cost due to higher storage space re-
quirement. We argue that using replication does not neces-
sarily increase the number of disks in the system and thus
does not necessarily increase the system cost. Depending on
the relation of storage space required to store a set of mul-
timedia objects versus the bandwidth required to support
a desired maximum number of streams, the system could
be limited either by disk space or by disk bandwidth. If
the scarce resource is storage space, disks will be bought for
their space and typically there will be extra bandwidth avail-
able. In this case, a scheme with 0% replication would be
preferred. However, in this case the small variations in sys-
tem performance for RIO versus striping would probably not
be an issue, since the system would have excess bandwidth
available. Moreover we showed that even if no replication
is used, performance of RIO is competitive and can even
be better than performance for striping techniques. If on
the other hand bandwidth is the scarce resource, disks will
be bought by their bandwidth and typically extra storage
space will be available for replication. Therefore a random
allocation approach can take advantage of the extra storage
space and achieve better performance, thus reducing system
cost by using less disks, thus again favoring the use of a ran-
dom allocation approach. Note that traditional disk striping
techniques can not take advantage of replication to improve
performance, since the load is already optimally balanced

52

across all disks, by keeping all streams synchronized and
equally distributed among the disks. Moreover, we note
that current trends in disk technology show that the cost of
storage space is decreasing faster than the cost of disk band-
width[16] [15]. In [15] the authors observe that disk access
speeds have increased 10-fold in the last twenty years, but
during the same period, disk unit capacity have increased
hundred-fold and storage cost decreased ten-thousand-fold.
This trend is likely to continue in the future, and multime-
dia applications will increasingly be limited by bandwidth
as opposed to storage space. In this scenario optimizing
bandwidth utilization becomes more important than reduc-
ing storage requirement, and techniques which take advan-
tage of extra storage space to improve bandwidth utilization,
such as random.allocation with replication, become increas-
ingly more appealing.

4.2 Startup Latency Compar i son
Now we address the question of how the stream buffer size
should be selected. A typical approach used in some pa-
pers [6][22] is to minimize system cost for delivering a de-
sired number of streams, by considering both the cost of
buffer memory and cost of disks. Increasing the stream
buffer increases the memory cost, but decreases the disk
cost, since fewer disks are required to deliver the same num-
ber of streams. The approach is based on finding the opti-
mal buffer size which minimizes the total system cost, i.e.
finding the minima of the cost function.
We argue that the stream buffer can be located on the
client machine. Since today memory has very low cost (less
than $1.00/MB), the cost of the memory to support a few
megabytes of buffer on the client machine is insignificant
when compared to the cost of the client machine. Moreover,
most likely the client machine will have available memory
that could be used without extra cost. It is not unreason-
able to assume that the client machine can have at least 8
MB of memory available, even if the client is a simple set
top box.
We claim that a better approach for selecting the stream
buffer size is to limit the buffer size according to the de-
sired startup latency for new streams, i.e. the time elapsed
from the instant the server admits a new stream until the
video starts playing. Therefore, a better comparison be-
tween RIO and striping techniques should be based on the
number of supported streams as a function of the desired
maximum startup latency. For making such a comparison
we first evaluate the startup latency both for RIO and and
for striping.
In striping, a new stream can be admitted as long as there
are less than]VD * D active streams. However the server
has to wait until the available bandwidth cycles through the
disks in consecutive cycles, and reaches the disk which stores
the first data block of the multimedia object requested by
the stream. In the worst case the server has to wait D cycles
before it can retrieve the first data block from disk, where D
is the number of disks. Then, it will take one extra cycle to
read the block and start playing it. Therefore the maximum
startup latency is given by S L = (D + 1) * B / . R s = (D +
1) * B F / 2 R s . Note that the startup latency is proportional
to the buffer size and increases linearly with the number of
disks.
In our simulations for RIO we assumed that streams are
staggered and that at the maximum load (i.e. when the

. , , ' ' ' , ' . ' ' ' 1 . . ' '

_ _ Rondom (100% repl lcot lon) _ _ Striping (Stotlst lcol) (10 disks)
. Rondorn (25% repl icat ion) Striping (Stot ist icol) (50 disks)
_ _ _ Rondom (0% repl icst ion) Striping (Stot ist icol) (100 disks)

30 - ~ ~ 6~sk-i~r'£g~nZ('geq~i~i "~:::L--=.=-:- 5

St ore: 1.5 Mbi t /sec f - " " _ ~ - - - - :

~2o / ../ , ' " /" / '-

/ ...'; ." :J ,.
E 1o / ... / , / /

/ :":i / / / .r ! s" /"," / ../ ..,.'
/ / : / _i ~ ...,:" _.,.'" I . . . _ r . f _.'

0 ~ ' ~ : " i i / i i i l i i l ,'" I , ' i i I i l l i l

0.1 1.0 I 0 .0 100.0
Worst CGse Stortup Latency (seconds)

Figure 10: Maximum number of streams per disk as a func-
tion of maximum startup latency.

number of streams is N = ND * D), requests to data blocks
are generated at a constant rate, i.e. the aggregate traffic has
a constant inter arrival time P = B / (N * R s) as illustrated
in Figure 4. We can consider that the server divides every
interval of duration B i R s into N slots of equal duration.
If the server is delivering the maximum number of streams,
the server generates a data block request in each slot. If
there are less than N streams in the system, some slots
will be empty and no disk request will be generated during
that slot. If a new stream is admitted the server has to
wait for the next available slot. In the worst case the server
has to wait for N slots, i.e. it has to wait an interval of
time B / R s . Once the slot is allocated to the stream, the
request for the first data block is then submitted and it
will become available for display after the delay bound DB
guaranteed by the server. Since the delay bound is given by
DB = (n b - 1) * B / R s , the worst case startup latency is
given by S L = nb* B / R s = B F / R s . Note that for RIO the
startup latency is independent of the number of disks.

Using the results of Figure 9 and the above formulas for
startup latency we obtained the graph shown in Figure 10
which shows the maximum number of streams supported
by disk as a function of the desired maximum startup la-
tency, assuming streams with 1.5 Mbit /s playout rate. Note
that the x axis is in logarithmic scale. It is clear from this
graph that random allocation has significantly superior per-
formance than striping when a maximum startup latency
is important, even if no replication is used, and the dif-
ference in performance increases with the number of disks.
The main reason is that s t i r rup latency is constant with
the number of disks for RIO but increases linearly with the
number of disks for striping.

The average startup latency is another measure of interest.
Although with striping the average startup latency can be
small for low system utilization, it will grow as the number
of streams approaches the maximum sustainable streams. It
is also easy to see that the variance will be large relative to
randomized block allocation.

53

4.3 Comparing RIO with the RDA Scheme
The RDA (Random Duplicated Assignment) scheme which
also use random data allocation with block replication is
discussed in [19]. As previously discussed in Section 1.2,
the RDA scheme differs from RIO in many aspects. The
authors also compare RDA with data striping. However, in
[19] RDA is compared only with striping schemes which use
"wide" reads where multiple stripe units are read in parallel
from the disks, which is known to have a buffer explosion
problem[13]. Although in [19] RDA was shown to have bet-
ter performance than striping with "wide" reads, it is easy
to show that RDA will always have worse performance than
traditional striping with synchronized cycles. The reason
is that in the RDA scheme, disk scheduling is also done in
synchronized cycles, in the same fashion as done in striping.
The difference is that in RDA requests are routed to ran-
dom disks. This reduces the maximum number of streams
supported per disk when compared to striping, since ad-
mission control must target an average number of requests
per cycle per disk which is smaller than that used in strip-
ing, in order to absorb fluctuations in disk load due to the
random distribution of requests to disks. Since RIO (with
100% replication) outperforms striping with SCAN schedul-
ing which in turn outperforms the RDA scheme (which also
uses 100% replication), we conclude that RIO outperforms
RDA.

5. DISCUSSION
In the previous section we showed that random data allo-
cation has competitive performance and often outperforms
traditional data striping techniques for multimedia servers.
However the major advantage of a random layout is its flex-
ibility to support much more generic workloads than tradi-
tional striping techniques.
First, random allocation can support VBR streams much
more efficiently than striping. Although in the results pre-
sented in this paper we assumed a constant rate traffic, in
[24] we analyze performance of RIO for more general work-
loads. There we assume that the total number of disk ac-
cesses in consecutive intervals of duration T I is less or equal
nTX, where T I aztd riTZ are system parameters. Moreover,
we assume that the n T , requests are generated by many in-
dependent sessions, and thus their arrival times are approx-
imately uniformly distributed over each interval T I . The
performance results obtained for this type of traffic are al-
most indistinguishable from the results of Figure 7 and are
relatively insensitive to the duration of the interval T I . If
admission control limits the number of streams such that
the maximum number of requests per interval is less or equal
nT1 with high probability, the performance results shown in
Figure 7 are still valid. Given the statistical characteristics
of the VBR streams to be supported, one can determine the
maximum number of streams, such that this requirement
is satisfied. This admission control problem is beyond the
scope of this paper. However, one possibility is, for example,
to use the H-BIND model [18] that bounds the mean and
variance of the number of access for a given interval length.
Then using the Central Limit Theorem one can estimate the
probability that the actual number of requests in a given in-
terval exceeds a given number, n T I . Of course, the number
of supported streams will be lower than could be achieved
for CBR streams, since some margin for variations on the
stream rate must be provided. However, this margin should

be much lower than the margins that should be provided by
the techniques described in [27] and [7] that support VBR
traffic for striping based systems. The reason is that RIO
has to support variations only on the aggregate traffic gener-
ated by the combination of all streams while the techniques
used for striping have to support variations on the traffic di-
rected to each individual disk. By the law of large numbers
the total aggregate traffic should have a lower coefficient of
variation than the individual disk traffic, and thus a lower
margin may be achieved, for random allocation.
Another problem with traditional striping techniques is that
it is difficult to support VCR functionality such as pause,
skip, jump, fast forward and rewind. The reason is that any
user interactivity breaks the assumption of the sequential
access pattern. In a random allocation scheme, there is no
assumption about the order in which data blocks are ac-
cessed and thus providing VCR functionality is much easier.
Random data allocation also simplifies the implementation
of real-time data delivery with adaptive quality of service.
Adaptive quality of service is usually achieved via multi-
resolution data representation[9]. For example, in a video
server if the current load becomes too high such that full
resolution video can not be supported with the available
system bandwidth, the system can deliver lower resolutions
versions of some of the videos, temporarily reducing band-
width requirements. This requires changing the pat tern of
disk block accesses. With random data allocation, the sys-
tem can dynamically switch between different data repre-
sentations (resolution) of the same object, as required by
load fluctuations, since system performance is not depen-
dent on the application logical access pattern, as is the case
for striping techniques.
Also system reconfiguration is easier with a random alloca-
tion approach than with striping. If more disks are added
to a system using striping all objects have to be re-striped
across the disks, while with a random allocation approach
only a fraction of random selected blocks have to be moved
to the new disks, in order to keep the average load balanced
across the disks. In general, this results in a lower time for
reconfiguring a system based in random allocation, than for
a system based on striping.
Finally, interactive applications with unpredictable access
patterns, such as 3D virtual worlds, can not be efficiently
supported by schemes based on careful layout and predic-
tive disk scheduling algorithms such as used in data strip-
ing techniques. Random data allocation enables the sys-
tem to efficiently support interactive applications, since I /O
scheduling is not affected by the application access pattern.
Moreover, because random data allocation maps all access
patterns to an equivalent random access pat tern at the phys-
ical level, the storage system can simultaneously support
heterogeneous applications including a mixture of audio,
video, 3D interactive environments, and non real-time appli-
cations. Also with random allocation, it is possible to access
the same object at different rates. For example one might
download (write) an object into the server at a higher rate
than its normal play-out rate, as long as there is bandwidth
available, thus reducing download time.
In summary, any user interactivity or variation on access
pattern can be supported much easier on a system based on
random allocation than on a system based on striping.

6. CONCLUSION

54

We have compared r a n d o m da ta al location and da ta strip-
ing techniques for mu l t imed ia servers. We have shown tha t
r andom da ta al locat ion provides performance compet i t ive to
tha t obta ined wi th d a t a s t r iping if no repl icat ion is used. We
have also shown tha t r andom da ta al locat ion outperforms
da ta s t r iping if some repl icat ion is used, even if repl icat ion is
only partial . Moreover if we consider s ta r tup latencies, per-
formance for a r andom layout becomes much superior t han
tha t of s t r iping techniques, even if no replicat ion is used,
especially for configurat ions wi th large number of disks.
The main reason tha t s tr iping techniques do not outper form
random da ta al locat ion is the variabil i ty on the I / O t ime on
current disks, which forces idle t imes on disks. We note tha t
for large block sizes typical of mul t imed ia applicat ions this
variabil i ty is due most ly to differences in disk transfer t ime
on the various regions (zones) of the disks (outer-most t racks
have higher t ransfer ra te t han inner-most tracks in modern
disks which use disk zoning techniques), and to a lesser de-
gree to seek and ro ta t ion latencies. The relat ive variance
in disk transfer t ime should not change as disk technology
improves, since it is mos t ly due to the rat io of the diame-
ters of outer tracks versus inner tracks, which are not likely
to change with advances in technology. Thus, we expect
tha t the specific quan t i t a t ive results presented in this pa-
per, which were based on the characteris t ics of a par t icular
disk, will cont inue to be qual i ta t ively valid in the future for
new disk models.
R a n d o m da ta al locat ion enables mul t imed ia systems to sup-
por t much more generic workloads than da ta striping, in-
cluding mixed workloads of VBP~ video and audio, interac-
t ive mul t imed ia applicat ions, etc., and has performance at
least compet i t ive to da t a s t r iping which is ta i lored to much
more restr ict ive workloads. Thus, we believe tha t r andom
da ta al location will be the scheme of choice for next gener-
at ion mul t imed ia servers.

7. REFERENCES

[1] Y. Azar, A. Broder, A. Karlin, and E.Upfal. Balanced alloca-
tions. In Proc. 26th Annual A C M Symposium on the Theory
of Computing (STOC 94), pages 593-602, 1994.

[2] S. Berson, R. Muntz, S. Ghandeharizadeh, and X. Ju. Stag-
gered striping in multimedia information systems. In A C M
SIGMOD 94, pages 79-90. ACM, 1994.

[3] S. Berson, R. Muntz, and W. Wong. 'randomized data allo-
cation for real-time disk i/o. In Compcon 96, pages 286-90,
1996.

[4] Y. Birk. Random raids with selective exploitation of redun-
dancy for high performance video servers. In 7th Interna-
tional Workshop on Network and Operating System Support
for Digital Audio and Video (NOSSDAV 97), pages 13-23,
St. Louis MO, May 1997.

[5] W. Bolosky, J. Barrera, R. Draves, R. Fitzgerald, G. Gibson,
M. Jones, S. Levi, N. Myhrvold, and R. Rashid. The tiger
video fileserver. In 6th International Workshop on Network
and Operating System Support for Digital Audio and Video
(NOSSDAV96), April 1996.

[6] E. Chang and H. Garcia-Molina. 'effective memory use in a
media server. In Proc. of the 23rd VLDB Conference, pages
496-505, Athens, Greece, 1997.

[7] E. Chang and A. Zakhor. Cost analyses for vbr video servers.
IEEE Multimedia, 3(4):56-71, Winter 1996.

[8] A. Chervenak, D. Patterson, and R. Katz. Choosing the best
storage system for video service. In A C M Multimedia 95,
pages 109-19, San Francisco, CA, 1995. ACM.

[9] T. Chiueh and R. Katz. Multi-resolution video representation

for parallel disk arrays. In A C M Multimedia 93, pages 401-9,
1993.

[10] D. Eager, E. Lazowska, and J. Zahorjan. Adaptive load shar-
ing in homogeneous distributed systems. IEEE Transactions
on Software Engineering, 12(5):662-75, May 1986.

[11] F. Fabbrocino~ J. Santos, and R. Muntz. An implicitly scal-
able, fully interactive multimedia storage server. In Second
International Workshop on Distributed Interactive Simula-
tion and Real Time Applications (DIS-RT'98), pages 92-101,
Montreal, Canada, July 1998.

[12] T. Funkhauser, C. Sequin, and S. Teller. Management of
large amounts of data in interactive building walkthroughs.
In Proc. of the 1992 Symposium on Interactive 3D Graph-
ics, pages 11-20, Cambridge, MA, March 1992. ACM SIG-
GRAPH.

[13] D. Gemmell, H. Via, D. Kandlur, V. Rangan, and L. Rowe.
Multimedia storage servers: A tutorial. IEEE Computer,
28(5):40-49, May 1995.

[14] S. Ghandeharizadeh, R. Zimmermann, W. Shi, R. Rejale,
D. Ierardi, and T.-W. Li. Mitra: a scalable continuous media
server. In Multimedia Tools and Applications, pages 79-108.
Kluwer Academic Publishers, July 1997.

[15] J. Gray and G. Graefe. The five-minute rule ten years later,
and other computer storage rules of thumb. SIGMOD Record,
26(4):63-68, December 1997.

[16] E. Grochowski and R. Hoyt. Future trends in hard disk
drives. IEEE Transactions on Magnetics~ 32(3):1850-4, May
1996.

[17] W. Jepson, R. Liggett, and S. Friedman. Virtual modeling
of urban environments. Presence: Teleoperators and Virtual
Environments, 5(1), 1996.

[18] E. W. Knightly. H-bind: A new approach to providing statis-
tical performance guarantees to vbr traffic. In Proc. of IEEE
INFOCOM, pages 24-28, March 1996.

[19] J. Korst. Random duplicated assignment: An alternative to
striping in video servers. In A C M Multimedia 97, pages 219-
26, Seattle, WA, 1997.

[20] M. Mitzenmacher. The Power of Two Choices in Random-
ized Load Balancing. PhD thesis, University of California at
Berkeley, Computer Science Department, 1996.

[21] R. Muntz, J. Santos, and F. Fabbrocino. Design of a fault tol-
erant real-time storage system for multimedia applications. In
3rd IEEE International Computer Performance and Depend-
ability Symposium (IPDS98), pages 174-83, Durham, NC,
September 1998.

[22] B. Ozden, R. Rastogi, and A. Silberschatz. Disk striping in
video server environments. In Proceedings of the International
Conference on Multimedia Computing and Systems, pages
172-80, Hiroshima, Japan, June 1996.

[23] C. Ruemmler and J. Wilkes. An introduction to disk driving
modeling. IEEE Computer, 27(3):17-28, March 1994.

[24] J. Santos. RIO: A Universal Multimedia Storage System
Based on Random Data Allocation and Block Replication.
PhD thesis, University of California, Los Angeles, Computer
Science Department, 1998.

[25] J. Santos and R. Muntz. Performance analysis of the rio
multimedia storage system with heterogeneous disk configura-
tions. In A C M Multimedia 98, pages 303-308, Bristol, United
Kingdom, September 1998.

[26] M. Seltzer, P. Chen, and J. Ousterhout. Disk scheduling re-
visited. In USENIX, pages 313-324, Winter 1990.

[27] P. Shenoy and H. Via. Efficient striping techniques for multi-
media file servers. In 7th International Workshop on Network
and Operating System Support for Digital Audio and Video
(NOSSDAV 97), pages 25-36, St. Louis, MO, May 1997.

[28] R. Tewari, R. Mukherjee, D. Dias, and H. Vin. Design and
performance tradeoffs in clustered video servers. In Proceed-
ings of the International Conference on Multimedia Comput-
ing and Systems, pages 144-50, 1996.

[29] B. Worthington, G. Ganger, Y. Patt , and J. Wilkes. On-line
extraction of scsi disk drive parameters. In Proc. of the A CM
S I G M E T R I C S 95 Conference, pages 146-156, 1995.

55

