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ABSTRACT 
We compare perfbrmance of a mult imedia storage server 
based on a random da ta  allocation layout and block replica- 
tion with t radi t ional  da ta  striping techniques. Data  striping 
techniques in mult imedia  servers are often designed for re- 
stricted workloads, e.g. sequential access pat terns  with CBR 
(constant bit  rate) requirements. On the other hand, a sys- 
tem based on random da ta  allocation can support  virtually 
any type of mult imedia  application, including VBR (variable 
bit  rate) video or audio, and interactive applications with 
unpredictable access patterns,  such as 3D interactive virtual  
worlds, interactive scientific visualizations, etc. Surprisingly, 
our results show tha t  system performance with random da ta  
allocation is competi t ive and sometimes even outperforms 
tradi t ional  da ta  striping techniques, for the workloads for 
which da ta  striping is designed to work best; i.e. streams 
with sequential access pat terns  and CBR requirements. Due 
to its superiority :in support ing general workloads and com- 
petit ive system performance, we believe that  random da ta  
allocation will be the scheme of choice for next generation 
mult imedia servers. 

1. INTRODUCTION 

1.1 Motivation 
Advances in technology, have enabled the increasing use of 
information systems for storing and retrieving mult imedia 
data, such as images, video, audio, 3D graphics, etc. Con- 
tinuous media da ta  impose deadlines on the retrieval and de- 
livery of information; namely da ta  objects must be present 
at the client platform prior to the t ime they are needed 
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for display. Failure to provide real-t ime service can result 
in disruptions and delays which compromise the quality of 
the presentation observed by the end user. To achieve high 
quality continuous media play-out,  such disruptions must be 
reduced to very low levels. Our assumption is tha t  mult ime- 
dia objects are too large to fit entirely in main memory and 
need to be retrieved from disk on demand. Further,  parallel 
disks are required for the bandwidth and storage capacities 
anticipated for multiple clients and for high performance ap- 
plications. 

Although video and audio require real-t ime service, their 
workloads are, in general, predictable since a typical  play- 
out s tream accesses da ta  sequentially. This predictabi l i ty  
has been exploited in many mult imedia  da ta  server designs 
in which, based on the sequential access pat tern ,  da ta  is 
carefully layed out across disk drives such tha t  contention 
for the drives is avoided and real-t ime guarantees can be 
made. There are a number of proposals for layout of video 
da ta  on parallel disks. The most common method  proposed 
is to stripe each object across the parallel disks using a fixed 
size stripe granule (i.e., disk block)[2] [5] [8] [14] [22] [27]. While 
allocation of a disk block on a disk is often random, logically 
consecutive blocks are typically allocated in str ict ly round- 
robin order to disks. This approach can work well when the 
workload is highly predictable,  uniform and has constant bit  
rate (CBR) . However, in practice several factors reduce the 
workload predictabil i ty (even for video) and make the prob- 
lem of optimal da ta  layout difficult. One of these factors 
is tha t  video and audio are generally compressed by encod- 
ing techniques such as MPEG1 and MPEG2. In order to 
achieve a constant display quality, these encoding techniques 
may generate variable bit  rate (VBR) media streams which 
introduces a temporal  variabili ty to the I / O  pattern.  In ad- 
dition, providing VCR features such as pause, fast forward 
and rewind, also reduces the predictabil i ty of a s tream I / O  
access pattern.  Finally, multi  resolution encoding schemes 
such as found in the MPEG standards  complicate da ta  lay- 
out and I / O  scheduling [9]. 

New mult imedia applications, such as 3D interactive vir- 
tual  worlds [12][17], have I / O  pat terns  which are much less 
predictable than video or audio. In a 3D interactive vir- 
tual world application the user navigates through large 3D 
graphic models at variable speed and along user controlled 
paths. In order for the display engine to show the current 
world view, the graphical models of nearby 3D objects need 
to be continuously retrieved from disk as the user moves: 
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The da ta  access pa t te rn  thus depends on the speeds and 
paths selected by the user, which makes prediction imper- 
fect at best. 
Because of the difficulties in predicting the I / O  pat tern of 
mult imedia da ta  access, we believe tha t  mult imedia da ta  
servers will move towards solutions tha t  do not rely on a 
careful da ta  layout designed to match a predicted pat tern  
of access. Our approach to the problem is to use a random 
allocation scheme for laying out da ta  on disks. We randomly 
select the disk to hold each da ta  block as well as randomly 
select the location of the block on the disk. This approach 
has the advantage of mapping all access pat terns  of differ- 
ent mult imedia applications into the same random access 
pat tern  at the physical level. This simplifies the problem 
of traffic characterization for admission control because it 
is no longer necessary to worry about how the distinct ac- 
cess pat terns  affect the load distr ibution among the multiple 
disks. As a result, it  becomes easier to simultaneously sup- 
port  heterogeneous applications in the same storage system 
(even if the applications have unpredictable access patterns) 
because all applications generate, at the physical level, the 
same random distr ibution of requests to the disks in the sys- 
tem. Notice that ,  in the absence of a random da ta  allocation 
scheme, traffic characterization is much more complex be- 
cause it depends on the access pa t te rn  of each application, 
which is not easy to characterize (specially for highly inter- 
active applications). 
Providing absolute real-time guarantees on a system with 
random da ta  allocation can limit the load to very low lev- 
els, poorly utilizing the system resources. We thus consider 
the storage server as a soft real-time system with statisti-  
cal delay bound guarantees, i.e., the system guarantees that  
requests are served within a given delay bound with very 
high probability. We assume that  a probabil i ty of exceed- 
ing the delay bound equal to 10 -8 should be satisfactory 
for most mult imedia  applications. For soft real-time sys- 
tems with statist ical  guarantees of delay bounds, we want 
to have response t ime distr ibutions with "short tails". Wi th  
only random da ta  allocation, statistical fluctuations in the 
load of any disk can cause short term load imbalances, dur- 
ing which some disks have higher load than others for short  
periods of time. This may cause the tail of the response t ime 
distribution to be relatively "heavy" (i.e., the t ime T, such 
tha t  only one in a million requests suffer a larger latency 
than v can be larger than desirable). To address this issue, 
we also consider the use of da ta  replication, where a fraction 
of the da ta  blocks randomly selected are replicated on ran- 
domly selected disks. This gives the system some flexibility 
in selecting the disk to which a request is routed, improving 
load balancing and causing an exponential reduction in the 
tail  of the response t ime distr ibution [10][20]. 
Using this approach, we designed and implemented the RIO 
(Randomized I /O)  Multimedia Storage Server which is a 
universal mult imedia storage system capable of efficient con- 
current retrieval of many types of media objects. RIO man- 
ages a parallel disk storage system and supports  real-time 
da ta  delivery with statist ical  delay guarantees. A prototype 
was implemented on a SMP machine and has been used to 
simultaneously support  delivery of MPEG encoded videos, 
and 3D urban simulation city models. Other applications for 
real-time scientific visualization and medical VR are under 
development. A por t  of the system to a cluster of worksta- 
tions has also been completed. 

The focus of this paper  is on a performance comparison of 
RIO with tradit ional  striping schemes. Although RIO is 
designed to support  general mult imedia  applications, tra-  
ditional striping is designed to work best for streams with 
CBP~ (constant bit rate) traffic and sequential access pat-  
terns. Schemes that  utilize da ta  striping for VBR (variable 
bit  rate) traffic are discussed in [27] and [7], but  system per- 
formance is reduced in order to provide the necessary mar- 
gin for variations in display rate. Thus, we assume CBR 
streams in our comparison, which is the workload for which 
da ta  striping works best, thereby favoring tradi t ional  strip- 
ing schemes in our comparison. One would expect that  since 
t radi t ional  striping schemes take advantage of the sequen- 
tial access pat tern  of this type of traffic it would outperform 
RIO which is based on random da ta  allocation. Surpris- 
ingly, our results show tha t  RIO is competi t ive and often 
outperforms tradit ional  striping schemes, even for uniform 
sequential CBR stream workloads. 

1.2 Related Work 
Data  striping has been proposed in many video servers, in 
which videos are str iped over a set of disks [2][5][8][14][22] 
[27]. The advantage of striping over designs in which dif- 
ferent objects are stored on different disks is tha t  it  decou- 
ples storage allocation from bandwidth allocation, avoiding 
potential  load imbalances due to variations in object  pop- 
ularity. However, striping imposes two basic l imitations to 
the operation of the system. First ,  the performance is op- 
t imized for CBR streams and it is somewhat reduced when 
VBP~ streams are used. Second, to guarantee real-time op- 
eration, the cycle durat ion is usually determined considering 
worst case I /O  times (because, with striping, disk schedul- 
ing is usually based on synchronized cycles across all disks). 
This causes most disks to be idle towards the end of each cy- 
cle, reducing system performance. Random da ta  allocation 
provides the same benefits of striping (e.g., the decoupling 
of disk bandwidth from storage capacity),  does not impose 
the same types of restrictions to the operation of the system, 
and provides support  for any type of traffic pa t te rn  equally 
well. 
The RIO mult imedia storage server is s tudied in [24][11][21] 
[25]. In [24] we present detailed discussions of the design 
issues of RIO, as well as extensive system performance anal- 
ysis. In [11] we describe a scalable clustered architecture 
for RIO. In [21] we discuss fault tolerance issues and in [25] 
we s tudy performance of RIO on heterogeneous disk config- 
urations. In this paper  we extend our previous results by 
comparing the performance of RIO with t radi t ional  striping 
techniques for mult imedia servers. 
The routing of requests for replicated blocks to the least 
loaded disk is easily mapped  to a problem tha t  has been 
well studied in the computer science l i terature for load bal- 
ancing in distr ibuted systems [10], which is often referred 
to as "random probing". Analytical  models addressing this 
problem are studied in [1] and [20]. 
Random da ta  allocation for mult imedia servers has also been 
considered in [3] [28] [4][19]. Wewari et all [28] analyze the 
performance of a clustered video server with random allo- 
cation of da ta  blocks, using both an analytical  model and 
simulation. However, they do not consider da ta  replication 
in their analysis. 
In a previous work [3] we have considered random da ta  allo- 
cation on RAID systems, which explores redundancy of par- 
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ity groups for load balancing, as opposed to replication. Birk 
[4] extended this work by proposing a selective exploitation 
of redundancy which favors access to data blocks as opposed 
to parity blocks, reducing the number of exclusive OR op- 
erations that  are executed during normal system operation, 
i.e., without disk failure. The use of parity groups for load 
balancing has the advantage of providing fault tolerance us- 
ing less storage space than a scheme based on replication but  
increases system complexity and consumes more CPU and 
memory bandwidth in performing exclusive OR operations. 
Moreover, the scheme proposed in [4], is described in the 
context of a video server where streams access data sequen- 
tially. In this context, parity exploitation for load balancing 
does not generate extra I /O  requests, since parity groups 
store contiguous blocks of video objects, and all data blocks 
of a parity group are required during the video playout and 
at consecutive times. Thus, using the parity block instead 
of a data block (for load balancing), does not impose any 
additional load on the disks. However, this scheme does not 
work well for interactive applications which does not access 
data blocks sequentially, as for example in 3D interactive 
virtual world applications. In this case, if a data block has 
to be reconstructed, it will require accessing all other blocks 
in the parity group, increasing the I /O load significantly, if 
the other data blocks would not be otherwise needed. 
Our choice for using replication instead of parity for load bal- 
ancing was motivated by several factors. First, we wanted 
to support more generic workloads such as 3D virtual world 
navigation, instead of being restricted to video or audio only. 
Second, we note that  current trends in disk technology show 
that the cost of storage space is decreasing faster than the 
cost of disk bandwidth[16] [15]. Thus, we expect that  mul- 
timedia servers will be increasingly limited by bandwidth as 
opposed to being limited by storage space. In this scenario, 
disks will typically be bought for their bandwidth and extra 
storage space will be available at no cost, favoring a simpler 
design based on data replication. Third, we wanted to ex- 
plore scalable architectures based on clusters of machines. 
Exploiting parity for load balancing on a clustered architec- 
tures is more complex, since data accessed on different nodes 
of the cluster need to be at a single location for executing 
exclusive OR operations. Using replication in this case is 
simpler and more efficient, since data can be transmitted 
directly from the :node that  accesses the data to the client 
machine. 
Comparison of data striping and random allocation is also 
addressed in [19]. However this work differs from ours in 
several aspects. First, the RDA scheme described in [19] 
uses a disk scheduling algorithm based on synchronized cy- 
cles across all disks which as we show later reduces system 
performance. Also, in [19] the author compares random al- 
location only with "wide" striping schemes in which mul- 
tiple stripe units are read in parallel from all disks, which 
is known to have a buffer explosion problem as the num- 
ber of disks increases[13][4]. Also, the author only considers 
the case with 100% replication, while we also consider par- 
t i l l  replication. Finally, in this paper we provide a more 
detailed characterization of system performance in terms of 
delay bound, probability of missing deadline, and block size. 

1.3 Organization 
This paper is orgemized as follows. In Section 2 we review 
the traditional disk scheduling policy for multimedia sys- 

Table 1: Notation 
D Total number of disks 
B Data block size (MB) 
T Cycle time for striping (sec) 

Rs Stream rate (MB/sec) 
ND Number of streams per disk 
N Total number of streams 

Pmiss Prob. of missing deadline 
tn,B Time to read n blocks of size B 
t s  Time to read 1 block of size B 
RD Disk throughput (MB/sec) 
LD Load per disk (MB/sec) (LD _< RD) 
DB Delay bound for block request 
nb Buffer size per stream in number  of blocks 

B F  Buffer size per stream (MB) (BF  ---- nb* B) 
SL startup latency 

tems based on data striping and discuss how we compute 
performance for these systems. In Section 3 we describe RIO 
and analyze its performance through experiments and sim- 
ulations. In section 4 we compare system performance for 
layout schemes based on random data allocation and strip- 
ing. At the end of section 4 we discuss how RIO compares to 
the RDA scheme proposed in [19] in terms of performance. 
In Section 5 we discuss the main advantages of a random 
data allocation approach over traditional data striping. Fi- 
nally in Section 6 we present our conclusions. 

2. DATA STRIPING REVIEW 
The notation used in this section and in the remaining of 
the paper is sumarized in table 1 for convenient reference. 

2.1 Traditional Scheduling for Multimedia 
Systems based on Striping 

Data striping is a data layout scheme where multimedia ob- 
jects (e.g. videos) are divided into fixed size data blocks (also 
called stripe units) and striped across multiple disks in round 
robin fashion as illustrated in Figure I [5][8][14][22][27]. 
In order to support real-time data streams delivering con- 
tinuous media, the server must guarantee that  data is re- 
trieved from disk in a timely fashion. Most video servers 
described in the literature implement a disk scheduling al- 
gorithm based on cycles of constant duration T, as illus- 
trated in Figure 2. The traditional approach is to have the 
server retrieve one data block in each cycle for each active 
stream. This data block is then delivered and consumed by 
the client in the next cycle while the server retrieves the 
next data block from disk. Note that  since a typical video 
play-out accesses data blocks sequentially, using a striping 
layout implies that  the server retrieves data blocks for each 
active stream in round robin order across all disks. Figure 2 
shows an example in which a stream starts accessing object 
A. First, data block A1 is retrieved from disk 1, in a given cy- 
cle i. Then, in the next cycle, i + 1, the previously retrieved 
data block A1 is consumed by the client while the system 
reads the next data block A2 from disk 2. This process con- 
tinues until  the entire video is delivered to the client. This 
scheme guarantees that  the client receives a video stream at 
a sustained rate Rs = B / T ,  where B is the size of one data 
block. 
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Object A Object B 

i , ,  1 , 2 1 , 3 1 , , i , s l  . . .  iB, 1 21B31 ,lBsl--- 

Disk1 Disk2 Disk3 Disk4 

Figure 1: Typical striping layout. 

stream A 
admitted read A1 

T 
cycle i 

, consumeA1 , consume A2 
t e E I IB  

i readA2 i readA3 , 
T T t 

cycle i+1 cycle i+2 

Figure 2: Traditional stream scheduling for striping layout 

Given the duration of a cycle T, there is a maximum number 
of data blocks that can be retrieved from each disk in that  
amount of time, which is a function of the disk and I /O sys- 
tem performance characteristics. This maximum number of 
requests limits the maximum number of streams ND, that  
can be supported by each disk. The total number of sup- 
ported streams in a system with D disks is then N ---- ND *D. 
Note that striping requires that  the maximum number of 
streams be a multiple of the number of disks, a condition 
that is not required by RIO, as we will describe later. 
Note that the load directed to a particular disk i in a partic- 
ular cycle j (i.e. the streams that read a data block stored 
in disk i at cycle j ) ,  is transfered to the next logical disk 
i + 1 in the following cycle j + 1, and this particular load 
keeps cycling through all disks in round robin fashion. The 
system must implement an admission control module which 
accepts or denies service for a new stream request, based 
on the current system load. Admission control can admit 
a new stream, as long as there is one disk with bandwidth 
available to support an additional stream, i.e. with less than 
ND streams. The system just  has to wait until  the available 
bandwidth cycles through the disks and reaches the disk 
which stores the first data block of the object to be accessed 
by the new stream. At this point the first data block of the 
new stream can be successfully retrieved, and consequently 
all successive data blocks can also be successfully retrieved 
in consecutive cycles, since the load keeps cycling in lock 
step through all disks, in a carrousel fashion. 
This characteristic is based on the assumption that streams 
access data sequentially at a constant bit rate (CBR), and 
that all streams have the same play-out rate. Most video 
servers described in the literature adopt this assumption. 
Schemes that  utilize data striping for VBR (variable bit 
rate) traffic are discussed in [27] and [7], but system per- 
formance is reduced in order to provide the necessary mar- 
gin for variations in display rate. Thus, for the purpose of 
performance comparison with random allocation, we assume 
CBR streams, which is the workload for which data striping 
works best, thereby favoring traditional striping schemes in 

Table 2: Seagate Barracuda disk parameters 
Storage Space 4096 MB 
Number of zones 29 
number of heads 21 
Number of cylinders 3711 
Sector size 512 bytes 
Rotation speed 7200 RPM 
Revolution time 8.33 ms 
Track size 41 MB - 62.5 MB 
Transfer rate 4.80 MB/sec - 7.32 MB/sec 
Maximum seek time 16.86 ms 
SCSI bus rate 20 MB/s 
Track skew factor 7 - 11 sectors 
Cylinder skew factor 15 - 22 sectors 

our comparison. 

2.2 Performance evaluation for Striping 
In order to determine the maximum number of streams 
ND that  each disk can support, we have to consider how 
data block requests are scheduled at each disk in each cycle. 
The most used disk scheduling algorithm is the bidirectional 
SCAN algorithm [6] [26], in which the disk head moves in 
a single direction in each cycle, with alternate directions in 
consecutive cycles, such that  seek time overhead is mini- 
mized. 
In practical systems, new multimedia objects (e.g video) 
need to be added to the the server and old objects removed, 
on a continuous basis. Therefore, to avoid space fragmen- 
tation, storage space is usually allocated and deallocated in 
units of data blocks and no assumption can be made about 
the relative order of data blocks on the disk surface. Thus, 
the relative position of a data request for a particular stream 
in a given cycle, may change in successive cycles. Therefore 
the system must assume that  a data block is available for 
client consumption only at the end of the cycle in which it 
is retrieved. This disk scheduling method requires that  two 
buffers be allocated to each stream, one to store the data 
block being read in the current cycle and the other to store 
the data block that was read in the previous cycle and is 
being consumed by the client. 
For the purposes of this paper we evaluate system perfor- 
mance for a server based on an array of Seagate Barracuda 
disks (model ST15150W), which is the disk model used in 
our RIO prototype. The major characteristics of this disk 
are summarized in Table 2. 
In general, multimedia servers using data striping, limit the 
maximum number of data blocks that  can be read in a cycle 
considering worst case I /O times in order to make abso- 
lute real-time guarantees. However, in order to have a fair 
comparison with random allocation, we also consider sta- 
tistical guarantees similar to the approach used in RIO. In 
the statistical approach, we compute the maximum num- 
ber of streams ND such that  the probability of missing a 
request deadline is Pmiss _< 10 -6, which is the same prob- 
ability used to compute performance for RIO. Let trND,B 
be the time to read ND data blocks of size .B in a given 
cycle. If trND,B > T some requests miss their deadlines. 
For simplicity, we assume that  when trND,B > T, only 
the last request processed in that  cycle misses its dead- 
line. Note, that  these simplifications are optimistic and favor 
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Figure 3: I /O time distribution for SCAN scheduling 

striping. Therefore, to guarantee a request miss probability 
Pmlss, for a cycle with ND block requests we should have 
(P(trND,B > T)  < Pmiss * ND). 
In order to compute the maximum number of streams per 
disk we developed a detailed disk model based on the model 
described in [23]. In this model the I /O time for accessing 
data on a disk drive is decomposed into several components 
associated with the physical operations required to process 
the I /O,  such as seek time, rotational delay, transfer time, 
track and cylinder switch times, SCSI bus transfer time, sys- 
tem call overhead, etc. We model each of the components 
of the I /O time as a random variable whose distribution 
is based on knowledge of the physical operation associated 
with that  component. The parameters associated with each 
of these distributions, for our Seagate Barracuda disk drive, 
were obtained from the disk manual and/or  from disk ex- 
periments similar to the ones described in [29]. For more 
details on the disk model the reader is referred to [24]. 

Using this model we can compute the probability density 
function (pdf) of the I /O time trnr,B to read a particular 
number of requests nr  for a particular block size B, assum- 
ing the nr requests are served according to a bidirectional 
SCAN algorithm. Figure 3 shows the I /O time distribu- 
tion obtained using our disk model for the case trlo,128KB, 
i.e. 10 requests and blocks of size 128 KB . The figure also 
shows the I /O time histogram obtained through measure- 
ment experiments in our Seagate Barracuda disks. As we 
can observe, our disk model is accurately modeling the real 
disk performance. We also conducted experiments for other 
block sizes B and number of requests nr and obtained the 
same degree of accuracy as shown in Figure 3. These results 
give us confidence in the performance results presented later, 
which were based on our disk model. 

Given the stream rate R s  and a particular block size B, we 
can obtain the cycle time T = B / R s  and then compute the 
maximum number of streams N o  that  can be supported by 
each disk. For the statistical guarantee approach, the max- 
imum number of streams No is the maximum number of 

requests nr such that (P( t r ,~ , s  > B / R s )  < Pmis~ * nr),  as- 
suming a probability of missing the deadline Pmiss ---- 10 -6- 
For the absolute guarantee approach we compute the worst 
case (maximum) value of trnr,B assuming the worst case 
value for each component of the I /O time model, i.e. worst 
case rotational latency, worst case transfer time, worst case 
seek time, etc. We then compute the maximum number of 
streams ND as the maximum nr  such that  max(trnr,B)  < 
B / R s .  
Figure 3 shows for the case of 10 requests and 128KB blocks, 
the worst case I /O time T a b  s -~ 447ms , and the statistical 
bound Ts~ = 373ms for Pmiss = 10 -6, i.e. P(trlo,12sgB > 
Tse) = 10 -5. We observe that  for this case, performance is 
improved by approximately 20%, by using a statistical ap- 
proach. The figure shows that  the average I /O  time for this 
example is 319 ms. Thus, if the cycle time is chosen using 
the worst case approach, i.e. T = 447ms, on average the 
disk will be idle during 29% of the time, and if the cycle 
time is chosen using the statistical approach, T = 373ms, 
the average disk idle time is 14%. This idle time is neces- 
sary to absorb the fluctuations of the I /O time to read data 
blocks. 

3. PERFORMANCE EVALUATION 
FOR RIO 

3.1 RIO overview 
In RIO a multimedia object is divided into fixed size data 
blocks which are stored at random locations on randomly 
selected disks. A fraction r of randomly chosen blocks in 
the system (0 < r < 1) can be replicated, with each replica 
being stored on a different, but  otherwise randomly selected, 
disk. Load balancing is implemented by a simple online 
routing algorithm: a read request to a replicated data block 
is directed to the least-loaded of the two disks holding a copy 
of the block, at the time of the request arrival, i.e. routing 
to the disk with the shortest queue. 
After requests are routed to the appropriate disk they are 
kept on the disk queue and then scheduled independently of 
the other disks. Disk scheduling is not based on fixed dura- 
tion cycles and disks axe not synchronized to each other as in 
striping techniques. The disk scheduling algorithm used for 
each disk queue is a simple FIFO (First In First Out) policy. 
We adopted FIFO scheduling because this policy minimizes 
request delay variance which is important  for a performance 
metric based on stochastic delay bounds, although the mean 
service time may be larger than for example, with the SCAN 
algorithm. Note that, by using a FIFO service discipline we 
can only be conservative (e.g., if it is suboptimal) and thus 
(again) favoring our comparison towards traditional strip- 
ing. 

3.2 Simulation Description for RIO 
In order to evaluate the performance of RIO for more system 
configurations than are currently available on our prototype, 
a simulator was developed and validated. 
For the purpose of performance comparison with striping 
we assume the server is delivering a set of uniform CBI:L 
streams with play-out rate R s .  We assume that  the data 
block requests generated for each stream are staggered such 
that  the aggregate traffic has a constant rate of block re- 
quests, as illustrated in Figure 4. However, for the purpose 
of performance evaluation of the server only the aggregate 
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Figure 4: Aggregate traffic 
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Figure 5: RIO simulator. 

traffic is important  and not the individual streams traffic. 
Note, that  the sequence of requests of the aggregate traffic 
can represent any combination of streams which have the 
same aggregate load. This is due to the fact that, because 
of random allocation, the location of any data block is inde- 
pendent of the location of any other data block, whether 
they belong to the same multimedia object or not. For 
example, in Figure 4 the aggregate traffic generated by 4 
streams (A,B,C,D), each with rate Rs = B / 4 P  is equiv- 
alent to the load generated by 2 streams (E,F), each with 
rate Rs = B/2P.  Therefore our simulation described in the 
next paragraphs, only considers the aggregate traffic. The 
performance results obtained by our simulation can then be 
used with any stream rate Rs, to compute the maximum 
number of supported streams by the system. 
Figure 5 shows the architecture of the simulator used to ob- 
tain the performance results reported in this paper. The 
traffic generator generates a sequence of data block read 
requests at a constant rate R s  (blocks/sec). The traffic 
generator also selects the disk or disk pair which holds the 
data block for each request. Requests axe independently 
chosen to be replicated or not with probabilities r and 1 - r ,  
respectively, where r is the replication level used in a partic- 
ular simulation. The traffic generator independently selects 
a random disk for each non replicated data block request 
(with uniform probability), and a random pair of disks for 
each replicated data block (also with uniform probability). 
The online router directs requests to the appropriate disk 
queue at the time of their arrival. For replicated data the 
router directs the request to the shortest of the 2 possible 
queues at the time of its arrival. Requests are then served in 
each queue using a FIFO service discipline. The service time 
for each request is drawn from the service time distribution 
obtained from a model of the disk. 
Although the detailed disk model described in section 2 

Table 3: I /O service time parameters for different block sizes 
Block I /O service time (trB) 
size /z(trs) a( trs)  CV(trB) 

(KS) (ms) (ms) = a/iz 
2 13.82 4.10 

16 16.21 4.16 
64 24.52 4.50 
128 35.44 5.21 
512 101.3 11.93 
1024 189.7 22.68 
4096 720.4 89.04 

Disk 
throughput 

R D ( B ) ( M B / s )  
0.2967 0.14 
0.2566 0.96 
0.1835 2.55 
0.1470 3.61 
0.1178 4.93 
0.1196 5.27 
0.1235 5.55 

could have been used in our simulator, we observed, through 
experiments, that for a FIFO service discipline on the disk 
queues, the system performance can be accurately predicted 
using a much simpler disk model, based on a simple Gans- 
sian distribution of the I /O service time. We used this 
simplified disk model to obtain the performance results de- 
scribed next. Our simulation validation results shown in 
Section 3.3 confirms that this simplified disk model is mod- 
eling disk performance accurately. 
A set of experiments on the SEAGATE Barracuda disks 
used in our prototype were conducted to evaluate their per- 
formance. We measured the mean # and standard deviation 
a of the disk I /O service time t r s  for different block sizes in 
the range [2KB, 4MB], assuming random data allocation, 
and a FIFO service discipline. Table 3 shows a sample of 
the results obtained. The table also shows the disk through- 

B for each block size. As expected, disk put RD = ~~~7~~, 
throughput is highly dependent on the selected block size. 
Larger block sizes generate higher disk throughput since I /O 
overhead such as rotational latency, seek time, etc., will be 
amortized over a longer transfer time. We used the values 
of the mean and standard deviation shown in Table 3 as the 
parameters for the Gaussian disk model used in our simula- 
tion. 
In each simulation we generate a large number of requests 
(2 • 10~) 1. We measured the delay for each request and 
estimated the delay distribution from the measured delay 
histogram. We then estimated the delay bound that can 
be satisfied with probability 1 - 10 -6, using the delay his- 
togram. 

3.3 Simulation Results 
In order to validate our simulation we compared the results 
generated by simulation with the experimental results ob- 
tained from measurements on our prototype. 
Figure 6 shows the results obtained for a configuration with 
a 128KB block size 2 and 14 disks connected to 7 fast-wide 
SCSI busses (2 disks per SCSI bus to ensure that  the SCSI 
bus is not saturated), which is the configuration of our cur- 
rent prototype. The graph shows delay bound as function 
of the system load. The results are normalized along both 
axis. The delay bound is normalized by the mean I /O ser- 

1We repeated each experiment several times with different 
random number generator seeds and consistently obtained 
the same results. This gave us confidence that  we simulated 
the system for a period long enough to obtain accurate re- 
sults for small probabilities in the order of 10 -6 
2In [24] we validate our simulator for other block sizes and 
obtain the same degree of accuracy as shown in Figure 6. 
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Figure 6: Simulation validation experiments Figure 7: System performance for different Coefficients of 
Variation of the service time. 

vice time (e.g. 35.44 ms for 128 KB block), and the load is 
normalized by the maximum load, i.e. disk throughput (e.g. 
3.61 MB/sec/disk, for 128 KB blocks). The different pairs 
of curves correspond to different levels of replication: 0%, 
25% and 100%. Clearly the results of the simulation track 
very closely the measured results, confirming that our simu- 
lation is modeling the disk behavior accurately. In addition 
to illustrating the accuracy of the simulation, Figure 6 also 
shows the value of replication and the effectiveness of online 
load balancing. It is clear from these curves that  the de- 
lay bound that  can be guaranteed with probability 1 - 10 -6 
grows considerably with load when there is no replication 
but is relatively flat when replication is used, even out to 
95% utilization or more. 

Figure 7 shows simulation results comparing the performance 
of the system for a Gaussian distribution of the service time 
with different coefficients of variations over the range of val- 
ues shown in Table 3, which correspond to values of a wide 
range of block sizes; 2KB to 4MB. Note that  the mean of 
the Gaussian distribution is not relevant since the results are 
normalized. The results of Figure 7 show that  the relative 
performance of RIO is relatively insensitive to block size, at 
least over the range of practical block size values. Although 
there is some variation of the normalized delay bound for 
different coefficients of variation of the service time, these 
variations are very small. Therefore we use the same nor- 
malized results for one particular block size, (e.g. 128 KB) 
to predict the performance of RIO for other block sizes. 
Note that,  even though the relative performance for different 
block sizes are equivalent, the absolute performance is dif- 
ferent. The absolute performance curves that  map absolute 
load to absolute delay bounds ( msec vs. Mbytes/sec/disk) 
for different block sizes can be obtained by scaling the y axis 
by the mean service time and the x axis by disk through- 
put for that  particular block size. In [24] we also show that 
system performance is relatively insensitive to the number 
of disks if the number of disks is not very small (at least 
8). Thereforewe use the same set of normalized curves, e.g 

curves for coefficient of variation 0.15, to compute system 
performance for all block sizes for an arbitrary number of 
disks. 

3.4 Computing the Maximum Number of 
S t r e a m s  p e r  Disk for RIO 

In order to compute the maximum number of streams sup- 
ported by the system we need to consider the required stream 
rate R s  and the delay bound DB required for each request. 
The stream rate is a characteristic of the application but 
the required delay bound is a function of the amount of 
buffer allocated to each stream. For striping, the cycle based 
scheduling approach requires a buffer to store exactly 2 data 
blocks for each stream, one for the block being read in the 
current cycle and another for the block read in the previous 
cycle and being consumed by the client. In RIO, scheduling 
is not based on cycles and the system can take advantage of 
buffers that can hold a larger number of blocks. 
Let's assume each stream is assigned an integral number nb 
of buffers (nb _> 2), each of which can store one data block of 
size B. At any instant  one of the buffers contains the active 
data block bi which is being consumed by the client. The 
other nb - 1 buffers are assigned to the next data blocks 
to be consumed by the client, i.e. b~+l,...,ii+,~b-1. These 
buffers may already have data ready for consumption, or 
may be waiting for data to be read from disk. The only 
requirement is that  data be available in the buffer at the 
time it is needed for client consumption. When the active 
data block bi is completely consumed by the client, its buffer 
becomes available to store a new data block bi+nb 3. The 

3Here we assume memory is allocated and released in in- 
teger number of buffers. We could have optimized system 
performance by assuming memory deallocation in pages of 
smaller size. Since we do not assume this in the case of 
striping, which would be too complex for analysis, we de- 
cided not to consider continuous memory deallocation for 
RIO either, so that,  again, our comparison does not favor 
RIO. 
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system must be able to read data block b~+~b from disk to 
memory, before the client needs its data, i.e. while the client 
is consuming data from buffer b~+l to bi+nb-1. The time for 
consuming each data block is B / R s  and thus the required 
delay bound is given by DB = B ~s * ( n b -  1). 
Given the delay bound DB we can obtain the maximum 
load per disk LD (MB/sec/disk) such that the probability 
of exceeding the delay bound is less than 10 -6 , from the 
experimental results shown in Figure 7. To obtain the max- 
imum load, we scale the normalized curves of Figure 7 by the 
mean service time i~(trB) and by disk throughput RD(B) , 
for the selected block size B, on the y axis and x axis, re- 
spectively. Using this load and the stream rate required for 
each stream, we obtain the number of supported streams per 
disk, ND : ~ Note that, the system does not require an 

R S " 

integer number of streams per disk. Only the total number 
of streams in the system Lns • DJ needs to be rounded down 
to an integer. 

4. PERFORMANCE COMPARISON 

4.1 Comparing RIO and Striping 
Using the procedures described in Sections 2 and 3, we com- 
puted the maximum number of streams ND that can be sup- 
ported by each disk as a function of the block size B, both 
for striping and for RIO. The results are shown in Figure 
8. For these results we assumed a typical display rate of 
MPEG1 encoded video, 1.5 Mbit/sec. The left graph on 
the figure shows results for the case when random alloca- 
tion uses no replication, and the right graph for case when 
25% replication is used. Each graph shows results for strip- 
ing both for the worst case approach and for the statistical 
approach discussed in section 2. For RIO we consider 3 dif- 
ferent number of buffers per stream: 2, 4 and 8 buffers of 
size B (The curve for 4 buffers in Figure 8b is not visible 
because it overlaps the one for 8 buffers). As discussed be- 
fore, striping always uses 2 buffers per stream. The figure 
also shows the theoretical maximum number of streams that 
could be ,Supported that is limited by the disk bandwidth, 

assuming the data could be read sequentially from disk and 
thus with no incurred overhead due to seek and rotational 
latencies. 
As expected, for all cases the number of supported streams 
per disk increases with block size, since disk I /O is more 
efficient for larger blocks. We observe in Figure 8, that  the 
curves for data striping have discrete steps, due to the fact 
that  the number of streams supported by each disk has to 
be an integer, a condition that  is not required for RIO. The 
most important result, though, is that RIO performs very 
well, contrary to the common belief that  random allocation 
is associated with poor performance. Even with no replica- 
tion and with only 2 buffers per stream, RIO can support 
approximately the same number of streams as traditional 
striping based on worst case I /O time. Moreover, if either 
larger buffers (4 blocks) or some amount of replication - 
even partial replication (25%) - is used, RIO has perfor- 
mance equivalent to striping based on statistical guarantees 
for lower values of block size and even outperforms striping 
for larger block sizes. 
A critical reader may argue that  the comparison may not 
be fair. If RIO uses more buffer or more storage space (for 
replication) than striping, it should have a higher cost for 
supporting the same number of streams. We address each 
of these issues in turn. 
To address the issue of buffer size, we compare the perfor- 
mance of RIO and striping when the same amount of buffer 
memory is used in both cases. Figure 9 shows the maximum 
number of streams supported by disk as a function of buffer 
size BF. The left graph shows results for a typical display 
rate of MPEG1 encoded video, 1.5 Mbit/sec, while the right 
graph shows results for a typical display rate of MPEG2 en- 
coded video, 4 Mbit/sec. For striping the block size is always 
B=BF/2 .  For RIO, we select the optimal number of blocks 
nb (and corresponding block size B = BF/nb)  which maxi- 
mizes the number of supported streams, for each particular 
buffer size. Note that, it is possible to achieve better per- 
formance using a smaller block size and a larger number of 
blocks per buffer than using a larger block size, for the same 
amount of buffer, because in the first case a higher delay 
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bound can be tolerated. For small buffers, the associated 
block sizes are relatively small and performance is very sen- 
sitive to block size. Thus in this case better performance 
i§ obtained by using the minimum nb, i.e. maximizing the 
block size. However when block size increases beyond a cer- 
tain point (larger buffers) disk performance does not change 
significantly with the block size and, at this point, increas- 
ing the number of buffers rather than increasing the block 
size becomes more effective. Although not presented in this 
paper due to space limitation, we observed that  the opti- 
mal number of buffers per stream used in Figure 9 in fact 
increases with the buffer size. 
The results presented in Figure 9 confirm the previous re- 
sults and show that  RIO performs very well, even when us- 
ing the same amount of buffer as striping. RIO outperforms 
striping either if some amount of replication is used or if a 
buffer larger than 3.5 MB per stream is used. Striping per- 
forms better than RIO only for smaller amounts of buffer 
space and when :RIO does not take advantage of replica- 
tion. And even in this case, the difference in performance is 
relatively small, typically 5% to 10% or lower. 
These results may seem surprising, since in traditional strip- 
ing, data is carefully organized on disk and disk scheduling 
takes advantage of the sequential nature of the access pat- 
tern. There are basically two reasons for striping having 
lower or only slightly better performance than random data 
allocation. The first and more important  is the use of con- 
stant duration cycles synchronized across all disks. For a 
given block size and number of requests per SCAN cycle 
there is a maximum data rate that  can be supported by 
each disk, the disk throughput for the selected block size. 
In RIO, the load has to be set to a value lower than that, 
i.e. the disk utilization has to be p < 1, such that  delay 
bounds can be guaranteed. We observed in the performance 
curves of Figure 7 that  RIO can achieve high disk utiliza- 
tion if the delay bound is sufficiently large, which may be 
achieved with a reasonable amount of buffer memory, or if 
some replication is used. But for striping, disk utilization 
also has to be p < 1. The number of requests in a cycle 
has to be determined considering either worst case or sta- 

tistically bounded I /O times, which makes the average I /O 
time in a cycle lower than the cycle duration. This causes 
disks to be idle towards the end of most cycles, and thus 
impacting system performance. Note that  in RIO, cycles 
are asynchronous and disks do not have to wait for syn- 
chronization points before starting processing new requests. 
Another factor which limits performance for striping is that  
the number of streams per disk has to be an integer, and 
disks may have to waste some excess bandwidth if it is not 
enough to support one new stream. Although this is a minor 
effect for low bit rate streams, it will have higher impact for 
higher bit rate streams such as those of high definition TV 
(HDTV), for example. 
Now let's address the concern that  the use of replication 
increases the system cost due to higher storage space re- 
quirement. We argue that  using replication does not neces- 
sarily increase the number of disks in the system and thus 
does not necessarily increase the system cost. Depending on 
the relation of storage space required to store a set of mul- 
timedia objects versus the bandwidth required to support 
a desired maximum number of streams, the system could 
be limited either by disk space or by disk bandwidth. If 
the scarce resource is storage space, disks will be bought for 
their space and typically there will be extra bandwidth avail- 
able. In this case, a scheme with 0% replication would be 
preferred. However, in this case the small variations in sys- 
tem performance for RIO versus striping would probably not 
be an issue, since the system would have excess bandwidth 
available. Moreover we showed that  even if no replication 
is used, performance of RIO is competitive and can even 
be better than performance for striping techniques. If on 
the other hand bandwidth is the scarce resource, disks will 
be bought by their bandwidth and typically extra storage 
space will be available for replication. Therefore a random 
allocation approach can take advantage of the extra storage 
space and achieve better performance, thus reducing system 
cost by using less disks, thus again favoring the use of a ran- 
dom allocation approach. Note that  traditional disk striping 
techniques can not take advantage of replication to improve 
performance, since the load is already optimally balanced 
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across all disks, by keeping all streams synchronized and 
equally distributed among the disks. Moreover, we note 
that current trends in disk technology show that the cost of 
storage space is decreasing faster than the cost of disk band- 
width[16] [15]. In [15] the authors observe that disk access 
speeds have increased 10-fold in the last twenty years, but  
during the same period, disk unit  capacity have increased 
hundred-fold and storage cost decreased ten-thousand-fold. 
This trend is likely to continue in the future, and multime- 
dia applications will increasingly be limited by bandwidth 
as opposed to storage space. In this scenario optimizing 
bandwidth utilization becomes more important than reduc- 
ing storage requirement, and techniques which take advan- 
tage of extra storage space to improve bandwidth utilization, 
such as random.allocation with replication, become increas- 
ingly more appealing. 

4.2 Startup Latency  Compar i son  
Now we address the question of how the stream buffer size 
should be selected. A typical approach used in some pa- 
pers [6][22] is to minimize system cost for delivering a de- 
sired number of streams, by considering both the cost of 
buffer memory and cost of disks. Increasing the stream 
buffer increases the memory cost, but decreases the disk 
cost, since fewer disks are required to deliver the same num- 
ber of streams. The approach is based on finding the opti- 
mal buffer size which minimizes the total system cost, i.e. 
finding the minima of the cost function. 
We argue that  the stream buffer can be located on the 
client machine. Since today memory has very low cost (less 
than $1.00/MB), the cost of the memory to support a few 
megabytes of buffer on the client machine is insignificant 
when compared to the cost of the client machine. Moreover, 
most likely the client machine will have available memory 
that could be used without extra cost. It is not unreason- 
able to assume that  the client machine can have at least 8 
MB of memory available, even if the client is a simple set 
top box. 
We claim that a better approach for selecting the stream 
buffer size is to limit the buffer size according to the de- 
sired startup latency for new streams, i.e. the time elapsed 
from the instant the server admits a new stream until the 
video starts playing. Therefore, a better comparison be- 
tween RIO and striping techniques should be based on the 
number of supported streams as a function of the desired 
maximum startup latency. For making such a comparison 
we first evaluate the startup latency both for RIO and and 
for striping. 
In striping, a new stream can be admitted as long as there 
are less than ]VD * D active streams. However the server 
has to wait until the available bandwidth cycles through the 
disks in consecutive cycles, and reaches the disk which stores 
the first data block of the multimedia object requested by 
the stream. In the worst case the server has to wait D cycles 
before it can retrieve the first data block from disk, where D 
is the number of disks. Then, it will take one extra cycle to 
read the block and start playing it. Therefore the maximum 
startup latency is given by S L  = (D + 1) * B / . R s  = (D + 
1) * B F / 2 R s .  Note that  the startup latency is proportional 
to the buffer size and increases linearly with the number of 
disks. 
In our simulations for RIO we assumed that streams are 
staggered and that  at the maximum load (i.e. when the 
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Figure 10: Maximum number of streams per disk as a func- 
tion of maximum startup latency. 

number of streams is N = ND * D), requests to data blocks 
are generated at a constant rate, i.e. the aggregate traffic has 
a constant inter arrival time P = B / ( N  * R s )  as illustrated 
in Figure 4. We can consider that  the server divides every 
interval of duration B i R s  into N slots of equal duration. 
If the server is delivering the maximum number of streams, 
the server generates a data block request in each slot. If 
there are less than N streams in the system, some slots 
will be empty and no disk request will be generated during 
that  slot. If a new stream is admitted the server has to 
wait for the next available slot. In the worst case the server 
has to wait for N slots, i.e. it has to wait an interval of 
time B / R s .  Once the slot is allocated to the stream, the 
request for the first data block is then submitted and it 
will become available for display after the delay bound DB 
guaranteed by the server. Since the delay bound is given by 
DB = ( n b  - 1) * B / R s ,  the worst case startup latency is 
given by S L  = nb* B / R s  = B F / R s .  Note that  for RIO the 
startup latency is independent of the number of disks. 

Using the results of Figure 9 and the above formulas for 
startup latency we obtained the graph shown in Figure 10 
which shows the maximum number of streams supported 
by disk as a function of the desired maximum startup la- 
tency, assuming streams with 1.5 Mbit /s  playout rate. Note 
that the x axis is in logarithmic scale. It is clear from this 
graph that random allocation has significantly superior per- 
formance than striping when a maximum startup latency 
is important,  even if no replication is used, and the dif- 
ference in performance increases with the number of disks. 
The main reason is that s t i r rup  latency is constant with 
the number of disks for RIO but  increases linearly with the 
number of disks for striping. 

The average startup latency is another measure of interest. 
Although with striping the average startup latency can be 
small for low system utilization, it will grow as the number 
of streams approaches the maximum sustainable streams. It 
is also easy to see that the variance will be large relative to 
randomized block allocation. 
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4.3 Comparing RIO with the RDA Scheme 
The RDA (Random Duplicated Assignment) scheme which 
also use random data allocation with block replication is 
discussed in [19]. As previously discussed in Section 1.2, 
the RDA scheme differs from RIO in many aspects. The 
authors also compare RDA with data striping. However, in 
[19] RDA is compared only with striping schemes which use 
"wide" reads where multiple stripe units are read in parallel 
from the disks, which is known to have a buffer explosion 
problem[13]. Although in [19] RDA was shown to have bet- 
ter performance than striping with "wide" reads, it is easy 
to show that  RDA will always have worse performance than 
traditional striping with synchronized cycles. The reason 
is that  in the RDA scheme, disk scheduling is also done in 
synchronized cycles, in the same fashion as done in striping. 
The difference is that  in RDA requests are routed to ran- 
dom disks. This reduces the maximum number of streams 
supported per disk when compared to striping, since ad- 
mission control must target an average number of requests 
per cycle per disk which is smaller than that  used in strip- 
ing, in order to absorb fluctuations in disk load due to the 
random distribution of requests to disks. Since RIO (with 
100% replication) outperforms striping with SCAN schedul- 
ing which in turn  outperforms the RDA scheme (which also 
uses 100% replication), we conclude that  RIO outperforms 
RDA. 

5. DISCUSSION 
In the previous section we showed that  random data allo- 
cation has competitive performance and often outperforms 
traditional data striping techniques for multimedia servers. 
However the major advantage of a random layout is its flex- 
ibility to support much more generic workloads than tradi- 
tional striping techniques. 
First, random allocation can support VBR streams much 
more efficiently than striping. Although in the results pre- 
sented in this paper we assumed a constant rate traffic, in 
[24] we analyze performance of RIO for more general work- 
loads. There we assume that  the total number of disk ac- 
cesses in consecutive intervals of duration T I  is less or equal 
nTX, where T I  aztd riTZ are system parameters. Moreover, 
we assume that  the n T ,  requests are generated by many in- 
dependent sessions, and thus their arrival times are approx- 
imately uniformly distributed over each interval T I .  The 
performance results obtained for this type of traffic are al- 
most indistinguishable from the results of Figure 7 and are 
relatively insensitive to the duration of the  interval T I .  If 
admission control limits the number of streams such that  
the maximum number of requests per interval is less or equal 
nT1 with high probability, the performance results shown in 
Figure 7 are still valid. Given the statistical characteristics 
of the VBR streams to be supported, one can determine the 
maximum number of streams, such that  this requirement 
is satisfied. This admission control problem is beyond the 
scope of this paper. However, one possibility is, for example, 
to use the H-BIND model [18] that  bounds the mean and 
variance of the number of access for a given interval length. 
Then using the Central Limit Theorem one can estimate the 
probability that  the actual number of requests in a given in- 
terval exceeds a given number, n T I .  Of course, the number 
of supported streams will be lower than could be achieved 
for CBR streams, since some margin for variations on the 
stream rate must be provided. However, this margin should 

be much lower than the margins that  should be provided by 
the techniques described in [27] and [7] that  support VBR 
traffic for striping based systems. The reason is that  RIO 
has to support variations only on the aggregate traffic gener- 
ated by the combination of all streams while the techniques 
used for striping have to support variations on the traffic di- 
rected to each individual disk. By the law of large numbers 
the total aggregate traffic should have a lower coefficient of 
variation than the individual disk traffic, and thus a lower 
margin may be achieved, for random allocation. 
Another problem with traditional striping techniques is that 
it is difficult to support VCR functionality such as pause, 
skip, jump, fast forward and rewind. The reason is that  any 
user interactivity breaks the assumption of the sequential 
access pattern. In a random allocation scheme, there is no 
assumption about the order in which data blocks are ac- 
cessed and thus providing VCR functionality is much easier. 
Random data allocation also simplifies the implementation 
of real-time data delivery with adaptive quality of service. 
Adaptive quality of service is usually achieved via multi- 
resolution data representation[9]. For example, in a video 
server if the current load becomes too high such that  full 
resolution video can not be supported with the available 
system bandwidth, the system can deliver lower resolutions 
versions of some of the videos, temporarily reducing band- 
width requirements. This requires changing the pat tern of 
disk block accesses. With random data allocation, the sys- 
tem can dynamically switch between different data repre- 
sentations (resolution) of the same object, as required by 
load fluctuations, since system performance is not depen- 
dent on the application logical access pattern, as is the  case 
for striping techniques. 
Also system reconfiguration is easier with a random alloca- 
tion approach than with striping. If more disks are added 
to a system using striping all objects have to be re-striped 
across the disks, while with a random allocation approach 
only a fraction of random selected blocks have to be moved 
to the new disks, in order to keep the average load balanced 
across the disks. In general, this results in a lower time for 
reconfiguring a system based in random allocation, than for 
a system based on striping. 
Finally, interactive applications with unpredictable access 
patterns, such as 3D virtual worlds, can not be efficiently 
supported by schemes based on careful layout and predic- 
tive disk scheduling algorithms such as used in data strip- 
ing techniques. Random data allocation enables the sys- 
tem to efficiently support interactive applications, since I /O 
scheduling is not affected by the application access pattern. 
Moreover, because random data allocation maps all access 
patterns to an equivalent random access pat tern at the phys- 
ical level, the storage system can simultaneously support 
heterogeneous applications including a mixture of audio, 
video, 3D interactive environments, and non real-time appli- 
cations. Also with random allocation, it is possible to access 
the same object at different rates. For example one might 
download (write) an object into the server at a higher rate 
than its normal play-out rate, as long as there is bandwidth 
available, thus reducing download time. 
In summary, any user interactivity or variation on access 
pattern can be supported much easier on a system based on 
random allocation than on a system based on striping. 

6. CONCLUSION 
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We have compared  r a n d o m  da ta  al location and da ta  strip- 
ing techniques for mu l t imed ia  servers. We have shown tha t  
r andom da ta  al locat ion provides performance  compet i t ive  to 
tha t  obta ined  wi th  d a t a  s t r iping if no repl icat ion is used. We 
have also shown tha t  r andom da ta  al locat ion outperforms 
da ta  s t r iping if some repl icat ion is used, even if repl icat ion is 
only partial .  Moreover  if we consider s ta r tup  latencies, per- 
formance for a r andom layout  becomes much superior  t han  
tha t  of s t r iping techniques,  even if no replicat ion is used, 
especially for configurat ions wi th  large number  of disks. 
The  main  reason tha t  s tr iping techniques do not  outper form 
random da ta  al locat ion is the  variabil i ty on the  I / O  t ime  on 
current  disks, which forces idle t imes on disks. We note  tha t  
for large block sizes typical  of mul t imed ia  applicat ions this 
variabil i ty is due most ly  to differences in disk transfer  t ime  
on the  various regions (zones) of the  disks (outer-most  t racks 
have higher t ransfer  ra te  t han  inner-most  tracks in modern  
disks which use disk zoning techniques),  and to a lesser de- 
gree to seek and ro ta t ion  latencies. The  relat ive variance 
in disk transfer  t ime  should not  change as disk technology 
improves,  since it is mos t ly  due to the  rat io of the  diame- 
ters of outer  tracks versus inner tracks, which are not  likely 
to change with  advances in technology. Thus,  we expect  
tha t  the  specific quan t i t a t ive  results  presented in this pa- 
per, which were based on the  characteris t ics  of a par t icular  
disk, will cont inue to be qual i ta t ively  valid in the  future for 
new disk models.  
R a n d o m  da ta  al locat ion enables mul t imed ia  systems to sup- 
por t  much more generic workloads than  da ta  striping, in- 
cluding mixed  workloads of VBP~ video and audio, interac- 
t ive mul t imed ia  applicat ions,  etc., and  has performance at 
least compet i t ive  to da t a  s t r iping which is ta i lored to much 
more restr ict ive workloads. Thus,  we believe tha t  r andom 
da ta  al location will be  the  scheme of choice for next  gener- 
at ion mul t imed ia  servers. 
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