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ABSTRACT 
With the exponential growth of hosts and traffic workloads 
on the Internet,  collaborative web caching has been recog- 
nized as an efficient solution to alleviate web page server 
bottlenecks and reduce traffic. However, cache discovery, 
i.e., locating where a page is cached, is a challenging prob- 
lem, especially in the fast growing World Wide Web envi- 
ronment, where the number of participating proxies can be 
very large. In this paper, we propose a new scheme which 
employs proxy affinities to maintain a dynamic distributed 
collaborative caching infrastructure. Web pages are par- 
titioned into clusters according to proxy reference patterns. 
All proxies which frequently access some page(s) in the same 
web page cluster form an "information group". When web 
pages belonging to a web page cluster are deleted from or 
added into a proxy's cache, only proxies in the associated 
information group are notified. This scheme can be shown 
to greatly reduce the number of messages and other over- 
head on individual proxies while maintaining a high cache 
hit rate. Finally, we employ trace driven simulation to eval- 
uate our web caching scheme using three web access trace 
logs to verify that  our caching structure can provide signifi- 
cant benefits on real workloads. 

1. INTRODUCTION 
As traffic on the Internet continues to grow, how to im- 
prove Internet performance has become a challenging issue. 
Recent research to tackle this problem falls into three cate- 
gories. 

• server load balancing. It is well known that  the ac- 
cesses over Internet are not uniformly distributed. A 
common approach adopted by popular web sites to al- 
leviate server bottleneck is to provide a virtual URL 
interface and use a distributed server architecture un- 
derneath. Some internal mechanism to dynamically 
assign client requests to the web servers is required 
to achieve scalability and transparency to the clients. 
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This assignment decision can be taken at the IP level or 
at the domain name system level. In addition to their 
individual drawbacks [5], both schemes require the set 
up of additional server(s) at local or remote sites to 
handle request overloads. This approach can be taken 
to avoid request overload at web sites which are contin- 
uously popular (e.g., DBLP bibliography web site) or 
predictably popular  during some period (e.g., Olympic 
game web site). However, due to its static nature, 
this mechanism can not handle unforeseeable bursty 
requests effectively. 

intra-net collaborative caching. Within  a medium area 
network (MAN) (e.g., campus wide network), several 
proxies are usually connected via high speed links. 
Web pages fetched from the content server by one 
proxy can b e  used to potentially fulfill later requests 
(of the same web page) from other proxies within the 
same MAN. If multiple requests of the same web page 
are submit ted from the same MAN within a short pe- 
riod of time, only the first one will go through the con- 
tent server. Since the proxy is usually much "closer" 
to the client than the content server, the average la- 
tency of web page retrieval is reduced. In addition, 
only a fraction of all requests need to be handled by 
the server, thus the server workload and Internet  traf- 
fic are also reduced. Summary cache [11] is an example 
of this type of technique. However, this approach still 
can not fully eliminate the server bottleneck caused by 
some unforeseeable Internet-wide bursty accesses since 
a cached copy of a web page is only shared by clients 
within the same MAN. 

inter-net collaborative caching. Based on the following 
observations, inter-net collaborative Caching has been 
recognized as another feasible approach to improve In- 
ternet performance. 

1. Retrieving data from a nearby proxy usually is 
much faster than fetching.the data from a more 
distant server (less latency and, most likely, higher 
bandwidth).  

2. A proxy that  fetched a web page could potentially 
serve as the provider of this web page at a later 
time (as long as it still caches an up-to-date copy 
of the web page). 

However, the number of proxies connected via the In- 
ternet is large. Without  incurring large overhead, how 
to identify a potential cache provider and moreover, 
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if multiple providers exist, how to choose an optimal 
one, axe very crucial for the scalable performance of 
the caching scheme. Harvest [9] [6] uses a proxy hier- 
archy to conduct the search for a potential provider. 
This hierarchy is formed statically and independent 
of the proxy affinity for web pages. Thus, it is likely 
that the cache providers are far apart (in the hierar- 
chy) from the requester. In such a case, large overhead 
will be incurred for cache discovery. [19] also tries to 
solve this problem by maintaining a dynamic routing 
table. In our proposed approach, instead of employ- 
ing a fixed hierarchy, proxy affinities are used to group 
proxies dynamically. Intuitively, from the viewpoint 
of a proxy, each web page request falls into one of the 
following three categories. 

1. The proxy locally caches an up-to-date version of 
the requested web page. 

2. An up-to-date version of the requested web page 
is cached by some other nearby proxy. 

3. The requested web page has to be obtained from 
the content server. 

Web pages in the first and third categories are easy to 
handle since the operations are local to each individ- 
ual proxy. However, collaborations among proxies is 
required to locate cached web pages in the second cat- 
egory. A carefully designed caching scheme is crucial in 
order to avoid large overhead. In our approach, prox- 
ies that have similar affinities will cooperate and share 
their cache content with each other in such a manner 
that little overhead is required to achieve a relatively 
high cache hit ratio. Whenever a proxy fetches a web 
page, it will serve as a cache provider until this copy 
is obsolete. 

Our ultimate goal is to minimize the average response time 
of web page retrievals. Two aspects are involved. (1) What 
should be cached and where? (2) How does a proxy locate a 
remote cache containing a desired page? The first question 
can be addressed by algorithms for prefetching [14] [12]. Due 
to space limitations, we will not address this issue but  rather 
focus on the second one. 

The second issue is how to discover which proxy has a cached 
copy of a particular web page. Basically, there are two 
approaches to cache discovery: pull and push. The pull 
technique is that, when a proxy tries to locate a cache, it 
first finds which proxy caches the web page, and then re- 
trieves the page. This usually increases the average response 
time. With the push technique, when the cache contents of 
a proxy changes, the proxy will tell other proxies about the 
change. However, the push technique can communicate a 
large amount of unnecessary information. This generates a 
significant overheadnot only on the network, but also on the 
proxies due to message processing. In addition, to locate a 
cache for a particular web page, a proxy has to maintain 
the information about other proxy's cache contents. This 
can consume a significant amount of resources when the 
number of proxies is large. Therefore, a proxy should be 
selective concerning which proxies it should send the up- 
dates of its cache contents and how often. The trend of 
increasing diversity of web page popularity [2] also indicates 

that a static global caching structure regardless of individ- 
ual proxy affinities would become less effective. In fact, an 
optimal cache scheme should have good adaptabili ty to di- 
verse proxy affinities and their changes. In our scheme, a 
dynamic distributed collaborative caching infrastructure is 
built according to the proxy affinities so that  unnecessary 
communication between proxies of distinct affinities can be 
avoid and changes of proxy affinities can be adapted to easily 
and quickly. 

Moreover, scalability is an important  aspect of a web caching 
scheme since the number of proxies and servers could range 
up to hundreds of thousands in the Internet environment. It 
will be shown in a later section that  our approach can scale 
well when the number of proxies is large. 

In this paper, we propose a scheme using proxy profiles and 
information groups which is based on web page access pat- 
terns. The goal of this scheme is to reduce the average num- 
ber of messages among proxies for updating the cache sta- 
tus while maintaining a high cache hit rate. In our scheme, 
a proxy profile contains a list of URLs of the web pages 
that are frequently accessed by the proxy, while an informa- 
tion group is essentially a multicast group that  links proxies 
which are collaboratively caching web pages that  are of com- 
mon interest. We group web pages into a set of overlapping 
web page clusters. A proxy may choose to join an informa- 
tion group if the intersection of the associated page cluster 
and the proxy's profile is significant. Generally, a proxy joins 
enough information groups to cover its most frequently ac- 
cess pages. Since a proxy's profile may evolve over time, the 
web page cluster generation and information group forma- 
tion are performed periodically (and incrementally) to adapt 
to changes in the proxy's access pattern. 

When a host wants to access a web page, it sends a request to 
its local proxy. If the requested web page is not cached in the 
local proxy, then the proxy checks whether other proxies in 
the information group(s) (for this page) currently have this 
page in their cache. The request will be sent to the "nearest" 
site which has this page. Once there are enough changes in 
the cache contents of a proxy, the proxy will notify other 
proxies in the same information group(s) of the changes. 
Therefore, in order to achieve optimal performance, each 
information group should be of moderate size because a large 
group size incurs significant overhead for bookkeeping while 
a small group suffers from low cache hit ratio. 

The remainder of this paper is organized as follows. We dis- 
cuss some related work in Section 2. Section 3 presents the 
objective model'for our caching scheme. The simulation set 
up is presented in Section 4. Our page clustering algorithm 
and information group formation algorithm are presented in 
Section 5 and 6, respectively. In Section 7 and 8, we dis- 
cuss the web page retrieval process and optimal information 
group size estimation, respectively. Finally, conclusions are 
drawn in Section 9. 

2. RELATED W O R K  
In this section, we discuss some other web caching schemes 
proposed recently. We note that  most previous cooperative 
caching schemes [6] [19] [11] focused on how caches coop- 
erate with each other. They did not take into account the 
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correlation among proxy affinities. How to best utilize refer- 
ence pattern information to improve the Web performance 
has become a topic of increasing interest [8]. One contri- 
bution of our work is a scheme to efficiently analyze refer- 
ence patterns to organize proxies into collaborative caching 
groups. High cache hit rate can still be maintained at the 
cost of much fewer inter-proxy messages as compared with 
previous schemes. 

2.1 Caching in Harvest 
The caching scheme in Harvest is presented in [9] [6]. Caches 
are organized in a hierarchy. Each cache in the hierarchy in- 
dependently decides whether to fetch the reference from the 
object's home site or from its parent or sibling caches using 
a resolution protocol. If the URL contains any of a config- 
urable list of substrings, then the object is fetched directly 
from the object's home, rather than through the cache hi- 
erarchy. This feature is used to force the cache to resolve 
non-cacheable URLs (e.g., cgi-bin) formed pages and local 
URLs directly from the object's home. Otherwise, when a 
cache receives a request for a URL that misses, it performs 
an ICP(Internet  Caching Protocol) to all of its siblings and 
parents, checking if the URL hits any sibling or parent. Of 
all the sites which report having the object, the object is 
retrieved from the site with the lowest measured latency. 

2.2 Adaptive Web Caching 
An adaptive web ,:aching scheme is proposed in [19]. Cache 
servers are self-organizing and form a tight mesh of over- 
lapping multicast groups and adapt as necessary to chang- 
ing conditions. This mesh of overlapping groups forms a 
scalable, implicit hierarchy that  is used to efficiently diffuse 
popular web content towards the demand. Adaptive web 
caches exchange a description of their content state with 
other members of their cache groups to eliminate the delay 
and unnecessary use of resources of explicit cache probing. 
For each request, a cache first determines whether a copy 
of the requested web page is cached by one of its group 
members. If not, the request will be forwarded to another 
cache (in the web caching infrastructure) which is signifi- 
cantly more likely to have the data. This routing is accom- 
plished using a URL routing table maintained at each web 
cache. The information in the URL routing table is learned 
from the source-based and content-based entries from other 
web caches. 

2.3 Summary Cache 
Summary cache is a scalable wide area web cache shar- 
ing protocol proposed in [11]. In this protocol, each proxy 
keeps a summary of the cache directory of each participat- 
ing proxy. When a user request misses in the local cache, 
the proxy checks these summaries for potential hits. If a hit 
occurs, the proxy sends out requests to the relevant prox- 
ies to fetch the document. Otherwise, the proxy sends the 
request directly to the web server. In order to reduce the 
network overhead, a proxy does not update the copy of its 
summary stored with other proxies upon every modification 
of its directory: it rather waits until  a certain percentage 
of its cached documents are not reflected in other proxies. 
In addition, bloom filters [3] are used to build summaries 
in order to keep each individual summary small. Experi- 
ments have shown that  summary cache reduces the number 

of inter-cache protocol messages, the bandwidth consump- 
tion, the protocol CPU overhead significantly while main- 
taining almost the same cache hit ratio as the ICP. However, 
when the number of proxies is large, the network traffic for 
updating cache contents could also be large. Thus summary 
cache may have poor scalability. 

2.4 Web Caching Based on Dynamic Access 
Patterns 

A "local" caching algorithm based on dynamic access pat- 
terns was presented in [18]. This caching algorithm flexibly 
adapts its parameters (such as the number  of documents, the 
size of cache, and the actual documents in the cache, etc.) 
based on the observation that  there is a strong relationship 
between frequency and probability of access. The analysis 
is based upon a model from psychological research on hu- 
man memory. The probability of future document access is 
estimated based on frequency of prior document accesses. 
However, this algorithm did not address the issue of coop- 
erative caching. 

2.5 Server Volumes and Proxy Filters 
[8] proposed an end-to-end approach to improve Web perfor- 
mance using server volumes and proxy profiles. The server 
groups related resources into volumes based on access pat- 
terns (captured by conditional probability) and the file sys- 
tem's directory structure. This information is piggybacked in 
the servers response message to the requesting proxy. The 
proxy generated filter, which indicates the type of informa- 
tion of interest to the proxy, is used to tailor the piggyback 
information. This piggyback information can be used to im- 
prove the effectiveness of a variety of proxy policies such as 
cache coherency, prefetching, cache replacement, and so on. 
Experimental results show that  probability-based volumes 
can achieve higher prediction rate with a lower piggyback 
size than the directory-based structure. Further reductions 
in processing and memory overhead are possible by limit- 
ing the calculation of probability implications to pairs of 
resources that  have the same directory prefix, at the ex- 
pense of missing associations between resources in different 
directories. 

3. OBJECTIVE MODEL 
The objective of our web caching scheme is to minimize the 
average latency (or response time) of web page retrieval. 
The following is a list of parameters for estimating the av- 
erage response time. 

• ~ :  local cache hit ratio. The ratio of the number of 
requests which are served by local proxy over the total 
number of requests. 

* w :  remote cache hit ratio. The ratio of the number  of 
requests which are served by remote proxies over the 
number of outgoing requests, i.e., the requests which 
can not be satisfied locally. 

• Local_Cost: the average response time of serving a 
request by the local proxy. 

• Remote_Cost: the average response t ime to serve a 
request through a remote proxy. 
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Server_Cost: the average response time to serve a re- 
quest from the content server. 

Locating_Cost: the average time to find whether (and 
where) a cached web page exists. 

Push_Cost: the average overhead (per outgoing re- 
quest) incurred by multicasting the changes of cache 
content to remote proxies. Usually, the volume of valid 
web pages cached at each proxy remains the same 
roughly if the system is stable. In other words, the 
web page expiration rate is commensurate with the 
fetch-in rate. Therefore, the change of cache content 
can be measured by the amount of new web pages 
fetched in. Assume that whenever the cache content 
changes by c~%, the proxy will multicast the descrip- 
tion of the changes to other proxies, and assume that 
this a% change is the result of q (q > 1) outgoing 
requests on average, which take a period of time of 
length tq on average. Then, each proxy multicasts, 
on average, once for every tq length of time. Assume 
that a proxy receives m multicast messages (from other 
proxies) on average between two consecutive multi- 
casts. Then, a proxy needs to spend ts + m x t~ 
time to process multicast messages, where ts and t~ 
are the average time to generate and send out a multi- 
cast message to other proxies and the average time to 
receive a multicast message sent by other proxy and 
update its local information, respectively. Thus, the 
total push cost for all proxies over a period of time tq 
is Np x (ts + m x tr) + Np x tn where Np, t~, and 
Np x tn are the total number of proxies, the average 
additional delay to other network traffic due to the 
transmission of such a multicast message 1, and the 
overall overhead incurred due to the delivery all mul- 
ticast messages sent out by all proxies during tq, re- 
spectively. Since the information multicasted is used 
to facilitate the remote cache discovery process, we 
should factor in this cost when we estimate the search 
cost of each outgoing request. Since there is on averag e 
of Np x q outgoing requests overall (during the period 
of tq), the average overhead for each outgoing request 
is Push_Cost  : ~ + r n X t r ~ t n .  

q 

Search_Cost: Push_Cost  + Locating_Cost. 

Cost: average response time of retrieval of a web page. 

Cost = "7 x Local_Cost + (1 - 9') x Search_Cost 

+(1 - 7) x w x Remote_Cost  

+(1 - 9') x (1 - w) x Server_Cost  

To simplify the problem, we assume that  a web caching al- 
gorithm can only control the following parameters: Cost, 
Locating_Cost, Push_Cost ,  Search_Cost, w, but  does not 
have control over the rest of parameters; so they can be 
viewed as constant. To minimize Cost, we therefore need to 

1Transmitting this multicast message would consume cer- 
tain network bandwidth and hence might cause some delay 
in the delivery of other packets. 

minimize the following function: 

Search_Cost + w x Remote_Cost  
+(1 - w )  x Server_Cost  

_ ts+mxt,+t~ + Locating_Cost + w  x Remote_Cost  
q 

+(1 --w) x Server_Cost  
(1) 

where Server_Cost  > Remote_Cost.  

Each of w and Search_Cost can be viewed as a function of 
the number of proxies in collaboration (denoted by m). The 
more proxies that  are involved, the higher the remote cache 
hit ratio and the search cost. Thus, a moderate value of m 
should be chosen to balance the tradeoff between the remote 
cache hit ratio and the search cost. Moreover, an Optimal 
strategy will be a scheme which has a higher remote cache 
hit ratio for a given search cost, or a lower search cost for  
a given remote cache hit ratio. It follows that  during the 
push process, the update information should only be sent 
to those proxies which have an affinity to the involved web 
pages. By similar reasoning, during the remote cache dis- 
covery process, only those proxies that  have an affinity for 
the requested page need to be queried. In our proposed 
scheme, proxies that share some common affinities will form 
an information group which serves as the basis of collabo- 
ration. All other parameters except m in Function 1 can 
be either collected or estimated at run time. Then, the op- 
timal size of an information group m (i.e., the number of 
proxies in collaboration) can be calculated accordingly. In 
addition, instead of enforcing a unique information group 
size, we employ two parameters Imi~ and Ima~ to indicate 
the range of optimal value of m and require that the size 
of each information group is within the range l imit ,  Imax]. 
This not only accommodates the evaluated error during the 
estimation of m, but also provides some flexibility to the 
construction of information group (without sacrificing the 
quality of collaboration). Values of Imi~ and Ima~ will be 
discussed in Section 8. 

4. TRACES AND SIMULATIONS 
In this paper, we use three sets of traces of HTTP requests 
to verify our design: 

• DEC traces [10]: Digital Equipment Corporation Web 
Proxy Server traces from Aug. 29 to Sep. 4, 1996. 

• ClarkNet traces [7]: ClarkNet is a full Internet ac- 
cess provider for the Metro Baltimore-Washington DC 
area. The traces contain all requests to ClarkNet server 
from August 24 to September 10, 1995. 

• L traces [13]: an 100 days (during Aug.31 to Oct.7, 
1997) worth of logs of H T T P  requests from about 3000 
distinct clients. It contains a total of 10 million re- 
quests. There are a total 12,000 servers and 300,000 
distinct web pages represented in the trace. 

Since the information in the trace logs is insufficient for the 
purpose of simulation, e.g., the trace logs do not reveal the 
connectivities of these hosts, we had to approximate the 
needed information for the detailed simulation. To build 
the topology of these hosts, we first need to find the number 
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of servers. We assume that web pages served by the same 
server all have the same first level URL component. For ex- 
ample, the URLs of all web pages served by the ACM server 
starts with "www.acm.org". By examining the IP address of 
each user/host, we can discover the number of subnets. Fur- 
thermore, we assume that  hosts in a subnet are connected 
by a 100 MBit/s  :fast Ethernet and there is a proxy for each 
subnet. Then we generate a random connected graph in 
which each node corresponds to a server or a subnet. The 
edges of the graph correspond to the communication links 
between the server and client subnets. The bandwidth on 
these links is 10MBit/s. We generate a background work- 
load which consumes half of the bandwidth on each commu- 
nication link on average. In this paper we assume that  the 
average lifetime of a web page is 7 days, and after a proxy 
fetches a web page, this copy of the web page will reside in 
the proxy's cache until  it becomes obsolete 2. Last but  not 
least, the page size follows a log-normal distribution with an 
average 8KB[2]. Table 1 shows some statistical information 
on the above three traces. 

5. PAGE CLUSTER 
Web pages are identified by their URLs. Intuitively, dif- 
ferent sets of web pages may have different popularity, i.e., 
some web pages are hot spots whereas some others are rarely 
accessed. Experimental results have shown that  majority of 
the references go to a small percentage of the web pages[4]. 
It is much more beneficial to improve the cache hit rate for 
these hot web pages. Therefore, we focus on the set of fre- 
quently accessed web pages for the following reasons: (1) If 
a page is not frequently accessed by any proxy, then it is un- 
likely that  an up-to-date copy of this page is cached by some 
proxy. When this page is needed by a proxy, the proxy has 
to fetch it from the server in most cases. Therefore, there 
is no incentive to analyze the access patterns of this set of 
web pages because we can rarely benefit from it. (2) The 
analysis of access patterns has a certain overhead which is 
reduced quickly by eliminating from consideration all infre- 
quently referenced pages. Each proxy keeps a log of the web 
page reference history of local clients, which is a sequence 
of web page references. Given a web page and a trace log, 
the ratio of the number of accesses to this web page over the 
total number of accesses within the trace log is referred to 
as the frequency of the web page within the trace log. For 
example, if there are 100 web page accesses overall and a 
web page is referenced 30 times, then the frequency of that  
web page is 30% in this trace. 

We use a threshold f~ (specified as a percentage) to deter- 
mine whether a page is considered to be frequently accessed 
or not. A page is considered frequently accessed if and only 
if the reference frequency of that  web page is at least j3. 
Intuitively, the frequency can be viewed as an indicator of 
popularity of that  page. Table 2 shows the effects of varying 
the value of j3. For example, when f~ is chosen as 0.01~0 (i.e., 
a page is considered frequently accessed only if it is accessed 
at least once per 10,000 references), then 4% of all pages 
are considered to be frequently accessed, and 40% of all re- 
quests are to these 4% of the pages referenced in the DEC 
trace. (These vaJues are in the page coverage and request 

2This is feasible since all cached web pages can be stored on 
disk. 

coverage columns, respectively.) We will discuss the effect 
of the value of/~ on the cache hit ratio, average number  of 
messages, average size of a message, etc. in Section 7. 

Page clusters (of frequently referenced web pages) can be 
formed according to the combined access patterns of all 
proxies. Grouping web pages into clusters based on these 
logs consists of two steps: 

1. Each proxy sends its profile (i.e., local frequently ac- 
cessed web pages) to a central site S. 

2. An optimal or near optimal parti t ion of frequently ac- 
cessed web pages is generated. 

Each proxy maintains a profile which consists of URLs of 
its locally frequently accessed web pages. This can be easily 
done by examining the local trace log. We will explain later 
that  this profile is used not only by the central site to group 
the page clusters but  also by the proxy to guide itself to join 
appropriate information groups. 

At the site S all reported web pages are grouped into a 
set of page clusters (See Figure 1). If a proxy frequently 
accesses at least one page in a page cluster, then we say that  
it has an ajffinity for that  page cluster. An information group 
will be formed for each cluster for collaborative caching. A 
proxy may choose to join an information group if it has an 
affinity for the corresponding cluster. However, due to the 
overlaps among page clusters, a proxy might not join an 
information group even though the proxy has an affinity for 
the corresponding page cluster since the proxy may choose to 
join another information group that  also accounts for those 
pages. Let Imax be the maximum number  of proxies allowed 
in an information group. The size of each page cluster is 
determined in such a way that  the number  of proxies that  
join the corresponding information group is at most Ima~ 
(e.g., Ima~ ---- 3 in Figure 1) 3. As mentioned before, our goal 
is to reduce both the average number of messages processed 
by each proxy for updating other proxy's cache status and 
the size of these messages while maintaining the cache hit 
rate. 

Moreover, we want to minimize the average number  of in- 
formation groups a proxy may join so that  the bookkeeping 
overhead can be minimized. Replications are allowed during 
grouping (i.e., two page clusters might contain some com- 
mon web pages) for such a purpose. However, allowing a 
large amount of replication would cause another problem: 
the number of collaborating proxies for a web page tends to 
be small 4. As a result, the cache hit ratio could be impacted 
severely. In order to prevent such an occurrence, some mech- 
anism has to be employed to restrict the number  of replicas 
allowed for a page during the web page clustering procedure. 
Let Imi~ be the minimum number of collaborating proxies 
required to maintain an acceptable cache hit ratio for a web 
page (Imin = 2 in Figure 1). Then, the problem becomes 
how to guarantee that  a web page A can be allowed to repli- 
cate in a page cluster PGi only if it would not cause the size 
of any information group to be less than I~i~.  

3The optimal value of I m ~  is. much larger in reality 
4We will explain it later this section. 

82 



Ta bl e  1: S ta t i s t i ca l  I n f o r m a t i o n  o f  T r a c e  Logs  
DEC Traces ClarkNet Traces L Traces 

Number of Requests 3.54 million 3.3 million 10 million 
Number of Proxies 16 2000 546 
Number of Clients/Hosts 10,000 21,000 3000 
Number of Servers 70,000 1 12,000 

Table  2: P a g e / R e q u e s t  C o v e r a g e  for  D i f f e r e n t  F r e q u e n c i e s  
fl DEC Traces ClarkNet Traces L Traces 

0.005% 
0.01% 
0.05% 

page request 
coverage coverage 

9% 60% 
4% 40% 

0.4% 17% 

page request 
coverage coverage 

10% 58% 
4% 39% 

0.4% 16% 

page ~ request 
coverage coverag e 

10% 62% 
4 %  41% 
0.4% 17% 

Proxyl _ ~  
Proxy2 _ ~  

Proxy(n-l) 

Proxy(n) 

Proxy Affinity 

¢~"~'~Page Cluster 

[ ]  Web Page 

Proxies 
Frequently 

Accessed 
Web Pages 

F i g u r e  1: G e n e r a l  Scenar io  

The information group sizes is crucial to the overall perfor- 
mance. We will analyze the effects of different information 
group sizes and how to determine the optimal size in later 
sections. 

General Approach 
This is a hyper-graph part i t ion problem with replication as 
follows. Each frequently accessed web page is mapped  to a 
vertex; each proxy's  profile (i.e., affinity set) is mapped to 
a hyper-link among corresponding vertices (See Figure 2). 
The objective is to minimize the average number of infor- 
mation groups a proxy may join in order to cover all its 
frequently accessed web pages. 

A move-based algorithm [1] can be employed to form the 
page clusters. Let Np and np be the number of proxies 
and the average number of "frequently accessed" web pages 
per proxy, respectively. We first group all web pages into Nc 
clusters without any replication where Nc = r Np ×np ] ) (lma= +1mln )/2 
if no page cluster exists previously. Otherwise, the previ- 
ously page clusters will be taken as the initial grouping. Be- 
ginning from this initial grouping, a series of passes are made 
to improve the quality of grouping by either moving pages 
among clusters, replicating pages to some clusters, or remov- 

Proxy Affinity 

O Proxy 

] Web Page 

F i g u r e  2: M a p  to  a H y p e r - g r a p h  

ing replicas from some clusters. During each pass, pages are 
successively examined until each page has been examined 
exactly once. Given a current grouping P~, the previously 
unexamined page with the highest g a i n  (defined shortly) is 
examined and the corresponding action (moving, replicat- 
ing, or unreplicating) to incur such gain is taken to modify 
the current grouping. Given the curi:ent grouping P ' ,  the 
gain of an action Ac is defined as the reduction of average 
number of information groups a proxy has to join if action 
Ac is taken. Note tha t  the gain can be either positive or 
negative. After each pass, the best grouping observed dur- 
ing this pass 5 becomes the initial grouping for a new pass. 
This procedure terminates when a pass fails to improve the 
quality of its initial grouping. 

Proxy Bucket 

proxy ID 

list of frequently 
accessed pages 

l istof 
interested clusters 

Page Bucket 

page 1D 

I~toffrequenfly 
accessing proxies 

Iht of 
participating clusters 
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Cluster Bucket 

cluster ID 
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(a) (b) (c) 

F i g u r e  3: D a t a  S t r u c t u r e  

5Note tha t  an individual action during a pass might not 
always improve the grouping quality. But it  may create an 
opportuni ty  for a bet ter  grouping to be obtained later. 
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Some necessary data structures are maintained to facilitate 
the partit ion process by a scan of all proxies' messages. A 
proxy table, a page table, and a cluster table are built for 
all proxies, for all web pages frequently accessed by some 
proxies, and for all web page clusters, respectively. Without  
loss of generality, we assume that each proxy (page / clus- 
ter) can be uniquely identified by its ID which is a number 
between 1 and Np (N~, / Nc), where Np (N~ / N~) is the to- 
tal number of proxies (frequently accessed web pages / web 
page clusters) 8. In the proxy table, each slot, referred to as 
a proxy bucket (Figure 3(a)), consists of three components: 
proxy ID, a linked list of web pages this proxy frequently 
accesses, and a linked list of web page clusters to which this 
proxy has an affinity. In the page table, each slot, referred 
to as a page bucket (Figure 3(b)), maintains the following 
information: 

1. page ID 

2. a linked list of proxies which frequently access this page 

3. a linked list of web page clusters which contain this 
page 

4. gainarray: an array of buckets, each of which contains 
its gain on some action. 

The action on a page can be one of the following. 

• move to another cluster. 

• replicate in another cluster. 

• remove replica from this cluster. 

Since the size of the information group corresponding to a 
cluster can not exceed Imam, when a cluster PGi grows to 
such a level that  its estimated information group size reaches 
Imax, pages in other clusters are not allowed to move to 
PGi or to be replicated in PGi until some page in PG~ is 
removed from PGi. Every time an action is taken on a page 
A, the gains of relevant pages (those pages which axe also 
frequently accessed by the proxies which frequently access 
A) are updated. For example, page B and C are relevant 
to A in Figure 1 since they are also frequently accessed by 
Proxy 1 that accesses A frequently. 

In general, as shown in Figure 4(a), when a web page A 
moves from cluster PGi to PGj,  the information group 
for PGj tends to grow since proxies which have an affin- 
ity for A may join this information group. On the other 
hand, the information group for PGi tends to shrink since 
proxies which hawe an affinity for A but  not for other web 
pages in PGi will withdraw. Similarly, given that  A E 
PGil NPGi2n..  "NPGik (Figure 4(b)), replicating A to PGj 
(j ~ il, i2 , . . . ,  ik) causes the information group for PGj to 
grow and the information groups for PGil, PGi2, . . . ,  PGi~ 
to shrink for the following two reasons. 

6In a general scenario where this assumption does not hold, 
a hash table can always be employed to provide a fast map- 
ping between a proxy ID (page ID / cluster ID) to its asso- 
ciated information. 

(a) move A from PGi to PGj 

PG2 PG2 
P G ~  ~ P G ~  

PGj PGj 
(b) replicate A to PGj 

Figure 4: M o v i n g  a n d  R e p l i c a t i n g  a P a g e  

1. Before the replication, all proxies which have an affin- 
ity only for A and some other pages in the set PGj N 
(PG~i U. . .  U PGik) (light shaded area in Figure 4(b)) 
will join at least one of the information groups PGil, 
PGi2, . . . ,  PGik. After the replication, some of these 
proxies may join PGj instead. Note that,  in this case, 
the average number of proxies in each information group 
would not be changed since the replication only causes 
some proxies to move from information groups for PGil, 
PGi2, . . . ,  PGik to that  for PGj. 

2. Those proxies which have an affinity for A and PGj 
but  not for any other web pages in PGi1 U. • • U PGik 
(dark shaded area in Figure 4(b)) will not join the 
information groups for PGil,  PGi2, . . . ,  PGik any 
longer. They just  need to join the information group 
for PGj now. In other words, the information groups 
for PGil, PG~2, . . . ,  PGik will shrink while the size 
of information group for PGj keeps the same in this 
case. As a consequence, the average number of proxies 
in an information group decreases. 

Therefore, replication tends to reduce the average number 
of proxies in each information group. Besides the estimated 
information group size of PGj, another criteria to deter- 
mine if A should be replicated in a cluster PGj is that  the 
estimated information group size of PGil,  PGi2, . . . ,  PGik 
or PGj must remain at least Imi,~ if the replication is per- 
formed. 

Performance measurements of our proposed web page par- 
titioning algorithm is shown in Table 3. Here the central- 
ized computing site S is a UltraSparc Workstation which 
has a 200MB main memory and one single 366MHz CPU. 
Note that  the efficiency comes partially from the trick that  
new partition is always generated incrementally by taking 
the previous partit ion as the initial partition. This parti- 
tion process does not significantly impact the performance 
of other workload on the central site and can be further 
optimized in the following ways. 

• The entire partit ioning process can be done offiine or 
taken as a background process. If the central site is 
heavily loaded, it can postpone the computat ion of its 
frequently access web pages until  it is idle or lightly 
loaded. 
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• The gainarray computation can be done parallel. There- 
fore, multiple machines can be used to share the work- 
load of the partit ioning process. 

After the page clusters are formed, a server will be chosen 
to be the coordinator for each information group by S. Usu- 
ally, the coordinator of an information group is the server 
which owns the most pages in the corresponding page clus- 
ter. Finally, the content of all page clusters and their co- 
ordinators are broadcast to all proxies s. Each proxy will 
match its profile with the page clusters and send message(s) 
to the coordinator(s) of page cluster(s), for which they have 
an affinity, to join the information group(s). 

Since the content of all page clusters could be large, we 
use a Bloom Filter [3] [15] to encode the contents of page 
clusters. A Bloom Filter is a method for representing a 
set A = {a l, a 2 , . . . ,  an} of n keys to frequency membership 
queries. The idea is to allocate a vector v of m bits, initially 
set to 07 and then choose k independent hash functions, 
hi,h2,.. .  ,h~, with range {1, . . .  ,m}. For each key a E A, 
the bits hl(a),h2(a),... ,hk(a) of v are set to 1. Given a 
query key b, we check the bits hi (b), h2 (b) , . . . ,  hk (b). If any 
of these bits are 0, then b is not in the set A. Otherwise, 
we conjecture that  b is in the set although there is a small 
probability that  we are wrong. Ill] reports that  when the 
number of hash functions is five and ten bits are used to 
encode an entry, the error (false positive) is about 0.9%. 

6. I N F O R M A T I O N  G R O U P  M A I N T E N A N C E  
Information groups are formed based on page clusters. Each 
information group is associated with one page cluster. A 
proxy may join multiple information groups based on its pro- 
file and the contents of these page clusters. In the previous 
section, we described a periodically executed algorithm that  
globally forms page clusters. The manager broadcasts the 
page clustering information (i.e., the coordinator for each 
cluster and the content of each cluster) to all participating 
proxies. Then each proxy, based on its proxy profile, deter- 
mines which page cluster(s) it has an affinity for. 

A proxy may join the information groups for interesting page 
clusters. There may be several combinations of information 
groups a proxy can join. The choice of which information 
groups to join is based on the number of matches between a 
proxy's profile and the content of a page cluster. We employ 
a greedy algorithm to determine which information groups 
a proxy should join. First, a proxy finds a page cluster 
which contains the maximum number of web pages in the 
proxy's profile. The proxy joins the information group for 
that page cluster. Next, the proxy finds another page clus- 
ter which contains the maximum number of web pages in 
the remainder of the proxy's profile. The proxy joins the 
information group for the second page cluster. This process 
continues until the proxy joins the information groups for 
all web pages in its profile. 

SAn alternative would be that  the central site S determines 
the information groups a proxy may join and sends to the 
proxy only related information. However, the proxy will lose 
the opportunity to join other information groups when its 
profile changes because of lack of information about other 
available web page clusters and their associated information 
groups. 

Note that the proxy profile may change dynamically to re- 
flect the changes of its client access affinity. Then every 
time the profile changes, the proxy may choose to withdraw 
from some information groups and/or  join some other in- 
formation groups to accommodate the change of the access 
affinity. It is possible that,  at a given time, an information 
group may contain more than Ima~ or less than Imin proxies 
due to the changes of proxy affinities. In such a case, a local 
reorganization procedure can be performed on web pages in 
the web page clusters associated with the oversize and/or  
undersize information group(s). Due to space limitations, 
we will not elaborate on this in this paper. 

If a proxy wants to join an information group, then the 
proxy sends a message to the coordinator of that informa- 
tion group. The coordinator keeps a record of which proxies 
are in the information group. It then sends to the new proxy 
a list of the members of the information group. And the new 
proxy sends the intersection of its cache content and the cor- 
responding page cluster to all members in the information 
group. In turn, all old proxies in the information group also 
tell the new proxy their cache contents which intersect the 
corresponding cluster. (These messages can be sent via mul- 
ticast.) If a proxy wants to withdraw from an information 
group, then the proxy sends a multicast message to all mem- 
bers (including the coordinator) of this information group to 
notify this change. 

Figure 5 shows the average cache hit ratio as a function of 
the information group size m. In our simulations~ when the 
contents of a proxy's cache for a page cluster changes by 
more than 10%, the proxy multicasts the changes to other 
proxies in the information group for that cluster. We choose 
10% as the threshold because it is shown from experiments 
that the stale hit rate will be large otherwise [11]. For the 
summary cache, when the overall cache content in a proxy 
changes over 10%, the proxy then broadcasts the updates 
to all proxies. In our proposed scheme the updates are 
only multicasted to the proxies in the associated information 
group(s). When j3 decreases, the cache hit ratio increases 
because more pages are clustered and proxies exchange in- 
formation on more web pages. It is more likely, when a 
proxy tries to retrieve a web page, it can fetch the page 
from another proxy instead of the server. Moreover, with 
/3 = 0.005% and a reasonable information group size (i.e., 
m _> 10 for DEC trace and m ~ 60 for L trace and ClarkNet 
trace), the cache hit rate for our scheme is similar to that  of 
summary cache because the web pages for about 60% of the 
requests are analyzed and clustered. The rest of the web 
pages are not "hot", and therefore, the requests for these 
non-clustered pages will likely result in a cache miss even 
in the summary cache. In addition, for those "hot" pages, 
collaborative caching among a relatively small number of 
proxies is sufficient to maintain a high cache hit rate. Coor- 
dinating a large number of proxies in such a process (i.e., the 
scenario in summary cache scheme) would incur large over- 
head but little improvement on cache hit rate. We explore 
this issue more in the next section. 

7. W E B  P A G E  R E T R I E V A L  
In this section, we first discuss how the content of the cache 
at one proxy propagates to other proxies, then we will present 
the detailed procedure for actual retrieval of web pages from 
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the server or another proxy. A proxy may join several infor- 
mation groups. When the cache contents of one proxy for 
one page cluster has changed over a threshold (measured as 
a percentage), a, then the proxy will multicast the changes 
to all proxies in the information group (for that page cluster) 
using a Bloom Filter. This procedure is similar to that  used 
in the summary cache by Fang, et. al. [11] except that  in our 
approach the scope of consideration is each individual page 
cluster and its corresponding information group. When the 
cache contents for one page cluster changes by more than a 
at a proxy, the proxy will multicast the changes (related to 
that  page cluster) to other proxies in the associated infor- 
mation group. In addition, this multicast message can be 
delivered at a lower priority than other packets to reduce its 
impact to the normal Internet  traffic 9. 

When 1% < a < 10%, the stale cache hit ratios of summary 
cache and our scheme (with ~ = 0.005%, 0.01%, 0.05%) are 
very similar, which are between 9% to 12% for the three 
traces. A similar result is also reported in [11]. In the 
summary cache scheme, each proxy needs to maintain infor- 
mation of all other proxies' cache contents, whereas in our 
scheme, a proxy only needs to keep information of collabo- 
rating proxies' cache contents. Figure 6 shows the different 
size of cache status information maintained by the summary 
cache and our scheme. For both schemes, the pages are 
encoded with a Bloom Filter and each entry consumes 8 
bits. It is clear that  the summary cache would require much 
more maintenance effort than our caching scheme especially 
when the number of proxies is large. ClarkNet traces have 
the largest number of proxies and the size of cache status 

OWe find empirically that the incurred small delay in updat- 
ing cache status information has little impact on the overall 
cache hit ratio. 

information of other proxies ranges up to several GB in sum- 
mary cache and it could severely impact the proxy's ability 
to serve pages to its clients. In contrast, with the increase 
of the number of proxies or the cache size on each proxy, 
the size of cache status information in our proposed scheme 
does not increase as fast as the summary cache. This is 
due to the fact that  each proxy only receives the cache sta- 
tus of other proxies in the same information group(s) and 
only cache status of web pages in the corresponding page 
cluster(s) is maintained. 

Now we explain how a page is retrieved. Let's assume a 
client attached to proxy PRx sends a request for a partic- 
ular web page to proxy PRx.  If PRx can not find the web 
page in its local cache, then it will decide from which remote 
proxy or the server it will fetch the web page. During this 
process, PRx first finds which page cluster the web page 
belongs to by examining the Bloom Filters. If the page does 
not belong to any cluster, then PRx will directly fetch the 
page from the server. Otherwise, PRX finds the informa- 
tion group(s) for the cluster(s). (The page may belong to 
multiple clusters.) Then PRx ranks all.proxies in the infor- 
mation group(s) and the server of that  particular web page 
based on distance. We use the round-trip latency to esti- 
mate the distance between two proxies [17] [16]. This does 
not require extra overhead because the round-trip time can 
be obtained when the updates of cache contents are sent out 
and the acknowledge of the updates are received. 

PRx forwards the request to the "nearest" site (proxy or 
the server) which has the page. If the remote proxy does not 
have the web page because of (1) cache invalidation (stale 
hit) or (2) error of the Bloom Filter (false hit), then PRx 
will forward the request to the second "nearest" site (proxy 
or the server). This process continues until  the web page is 
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retrieved. It is guaranteed that this process will terminate 
eventually because the server always has the web page. 

Figure 7 and 8 show the average number of network mes- 
sages per user request and the average size of network mes- 
sages per user request. Here each message processed by a 
proxy counts as one message. For example, if a multicast 
message is sent to 20 proxies, then the message is counted 
20 times. Our proposed scheme has not only a much smaller 
number of network messages per user request, but  also the 
message size is much smaller especially when the number of 
proxies is large (L and ClarkNet traces) due to the cache 
update information. 

Figure 9 shows the average latency for a user request. In 
DEC traces, there are total 16 proxies, our proposed scheme 
does not have a significant advantage or disadvantage over 
summary cache. However, when the total number of proxies 
is large, our proposed scheme could have a significant bene- 
fit over summary cache due to the less network traffic seen 
by each proxy. The average latency of our proposed scheme 
varies significantly as a function of the information group 
size m. When m is too small, the cache hit rate will be low 
but the network traffic will also be low because each proxy 
only need to notify a small number of proxies. On the other 
hand, when m is large, the cache hit ratio is high but the net- 
work traffic is also high. From the experiment, we found that  
50 to 70 would be the appropriate range for m for the trace 
data in our test. Moreover, from Figure 9, we can see that 
the scalability of our proposed scheme is better than that  
of summary cache. The response time of summary cache 
scheme increases from L trace to ClarkNet trace because of 
the increase of the proxies (about four folds). However, the 
response time of our scheme accurately decrease because of 
the utilization of the proxy affinity! 

8. E S T I M A T I O N  O F  I N F O R M A T I O N  G R O U P  

S I Z E  
It is clear that the information group size m plays a decisive 
role in our scheme and is a prerequisite to partition page 
clusters. In this section, we propose a method to estimate 
the optimal information group size. As we explained in Sec- 
tion 3, besides m, the following parameters also participate 
in the cost function. 

• a: Every time a proxy's cache content changes by c~%, 
the proxy will multicast the description of the changes 

to other proxies in the information group. We set c~ = 
lo%. 

• q: the average number of outgoing requests (from a 
proxy) which would cause this c~% change.. 

• t~: the average time for a proxy to generate the de- 
scription of its cache changes and send out as a multi- 
cast message. 

• tn: the average network overhead incurred by trans- 
mit t ing this multicast message. Because our scheme 
requires a much smaller number (and size) of multicast 
messages for updating cache status changes and these 
messages are delivered at lower priority, no significant 
delay for delivery of other packets will be thereby in- 
curred. Thus we will omit it in the cost function (i.e., 
t~ = 0). 

• tr: the average time for a proxy to receive this multi- 
cast message and update its local information. 

• Locating_Cost: the average time to find whether (and 
where) an up-to-date copy of the requested web page 
exists in the information group. 

• w: remote cache hit ratio. It is the probability that  
an outgoing request from a proxy will be served by 
another proxy in the information group. 

• Remote_Cost: the average time to retrieve a cached 
web page from another proxy in the information group. 

• Server_Cost: the average time to serve a request from 
the content server. 

Therefore, we need to obtain the value of these parame- 
ters in order to calculate the optimal m. Fortunately, all 
of them can be easily collected by each proxy and reported 
to the central site S together with the proxy profile except 
for the first time the web page clusters are constructed. At 
the first time, since no information group exists previously, 
some parameters have to be estimated from other available 
information. Each proxy can still collect the value of q, ts, 
tr, and Server_Cost because introducing information group 
will not have significant influence to these parameters. 

However, the value of Locating_Cost, w, and Remote_Cost 
depends heavily on the formation of the information group. 
We employ some heuristics to estimate them. For each page 
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A in the proxy profile, each proxy PRi  calculates the num- 
ber of requests of A from its local clients and the percentage 
of time (referred to as pi(A)) PR~ caches a valid copy of A 
and sends this information together with the profile to the 
central site S. Note that  pi (A) is essentially the probability 
that  PRi is able to serve the request of A for other proxy. In 
addition, each proxy also reports the number of requests to 
infrequently accessed web pages. All these additional calcu- 
lations can be easily done locally by a proxy via a sequential 
scan of its local trace log. 

At the central site S, a small random sample of web page 
URLs are taken from the pool of proxy profiles for the pur- 
pose of parameter estimation. The estimation of Locating_Cost 
and Remote_Cost are similar. For each web page A in the 
sample set, the list of proxies which have an affinity for 
A is generated. This proxy list together with their associ- 
ated pi (A) are sent to each individual proxy in the list. Ev- 
ery proxy then computes the expected Locating_Cost and 
Remote_Cost of A from its own prospect and returns back 
the S. Finally, the weighted average of values reported by 
all queried proxies on all web pages in the sample set is taken 
as the estimated value of Locating_Cost and Remote_Cost 
where the number of accesses of a web page by a proxy serves 
as the weight factor. 

A different strategy is used to estimate the remote cache hit 
ratio w. For each web page A in the sample set, we calcu- 
late the probability p(A) that,  at any given time, at least 
one proxy caches a valid copy. Without  loss of generality, as- 
sume that  A appears in the profiles of proxies PR1,. . . ,  PRj 
and each proxy's web page request behavior is independent 
of each other. We have p(A) = 1 - IIl_<i<_j(1 - p i ( A ) ) .  The 
value of p(A) is used to approximate the cache hit ratio of 
A and the average cache hit ratio w' of web page in the 

sample set can be computed by taking a weighted average l° 
of all individual cache hit ratios. Note that  w' only cap- 
tures the cache hit ratio of frequently accessed web pages 
(i.e., web pages reported in proxy profiles). Since proxies 
do not collaborate on infrequently accessed web pages, all 
such requests will go directly to the content server and hence 
no remote cache hit will happen. Then the overall remote 

cache hit ratio is w = ~ where Nf and Nu are the N y + N u  
total number of requests for frequently accessed web pages 
and the total number of requests for infrequently accessed 
web pages for all proxies n .  

Although the above estimation process is complicated and 
consumes a certain amount  of resources, it only needs to 
be performed once - -  the first time the cache collaboration 
structure is employed. At each consequent page cluster re- 
organization, each proxy can collect the local value of these 
parameters and send to the central site together with the 
profile. The overall value of a parameter can be obtained 
by taking the (weighted) average of all local values of this 
parameter. It is clear that  little overhead is incurred by 
such a process. After plugging in these estimated param- 
eters, Function 1 in Section 3 becomes a a function with 
single variable m. The optimal value of m which minimizes 
the function can be obtained by examining the derivative 
of Function 1 (with respect to m). In order to accommo- 
date the evaluated error during parameter estimation and 
provide more flexibility to the formation of an information 
group, Imi,~ and I~a~ are used to indicate the range of valid 
information group size. These two parameters are set in 
such a manner  that  the value of Function 1 is within an 
acceptable distance (e.g., 10%) from the optimal one. 

1°The number of accesses to a web page is the weight factor. 
nAgain ,  these two parameters can be easily computed from 
the information provided by proxies. 
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9. CONCLUSION 
In this paper, we propose a new scheme which employs proxy 
affinities to guide the caching structure. Web pages are par- 
titioned into clusters dynamically according to proxy ref- 
erence patterns. All proxies which frequently access some 
page in the same web page cluster form an "information 
group" which serves as the infrastructure for caching collab- 
oration. The dynamic nature of the caching structure pro- 
vides the opportunity to adapt the changes of proxy affinity 
efficiently. Trace driven simulation using three web access 
trace logs shows that  this approach can greatly reduce the 
number of messages and other overhead on individual prox- 
ies while maintaining a high cache hit rate. Last but not 
least, our scheme also provides good scalability with respect 
to number of proxies. 
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