
Collaborative Web Caching Based on Proxy Affinities

Jiong Yang
T. J. Watson Research Center

IBM

jiyang@us.ibm.com

Wei Wang
T. J. Watson Research Center

IBM

wwl@us.ibm.com

Richard Muntz
Computer Science

Department
UCLA

muntz@cs.ucla.edu

ABSTRACT
With the exponential growth of hosts and traffic workloads
on the Internet, collaborative web caching has been recog-
nized as an efficient solution to alleviate web page server
bottlenecks and reduce traffic. However, cache discovery,
i.e., locating where a page is cached, is a challenging prob-
lem, especially in the fast growing World Wide Web envi-
ronment, where the number of participating proxies can be
very large. In this paper, we propose a new scheme which
employs proxy affinities to maintain a dynamic distributed
collaborative caching infrastructure. Web pages are par-
titioned into clusters according to proxy reference patterns.
All proxies which frequently access some page(s) in the same
web page cluster form an "information group". When web
pages belonging to a web page cluster are deleted from or
added into a proxy's cache, only proxies in the associated
information group are notified. This scheme can be shown
to greatly reduce the number of messages and other over-
head on individual proxies while maintaining a high cache
hit rate. Finally, we employ trace driven simulation to eval-
uate our web caching scheme using three web access trace
logs to verify that our caching structure can provide signifi-
cant benefits on real workloads.

1. INTRODUCTION
As traffic on the Internet continues to grow, how to im-
prove Internet performance has become a challenging issue.
Recent research to tackle this problem falls into three cate-
gories.

• server load balancing. It is well known that the ac-
cesses over Internet are not uniformly distributed. A
common approach adopted by popular web sites to al-
leviate server bottleneck is to provide a virtual URL
interface and use a distributed server architecture un-
derneath. Some internal mechanism to dynamically
assign client requests to the web servers is required
to achieve scalability and transparency to the clients.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that
copies are not made or distributed for profit or commercial advant
-age and that copies bear this notice and the full citation on the first page.
To copy otherwise, to republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee.
SIGMETRICS 2000 6•00 Santa Clara, California, USA
© 2000 ACM 1 - 58113-194-1/00/0006..= $ 5.00

This assignment decision can be taken at the IP level or
at the domain name system level. In addition to their
individual drawbacks [5], both schemes require the set
up of additional server(s) at local or remote sites to
handle request overloads. This approach can be taken
to avoid request overload at web sites which are contin-
uously popular (e.g., DBLP bibliography web site) or
predictably popular during some period (e.g., Olympic
game web site). However, due to its static nature,
this mechanism can not handle unforeseeable bursty
requests effectively.

intra-net collaborative caching. Within a medium area
network (MAN) (e.g., campus wide network), several
proxies are usually connected via high speed links.
Web pages fetched from the content server by one
proxy can b e used to potentially fulfill later requests
(of the same web page) from other proxies within the
same MAN. If multiple requests of the same web page
are submit ted from the same MAN within a short pe-
riod of time, only the first one will go through the con-
tent server. Since the proxy is usually much "closer"
to the client than the content server, the average la-
tency of web page retrieval is reduced. In addition,
only a fraction of all requests need to be handled by
the server, thus the server workload and Internet traf-
fic are also reduced. Summary cache [11] is an example
of this type of technique. However, this approach still
can not fully eliminate the server bottleneck caused by
some unforeseeable Internet-wide bursty accesses since
a cached copy of a web page is only shared by clients
within the same MAN.

inter-net collaborative caching. Based on the following
observations, inter-net collaborative Caching has been
recognized as another feasible approach to improve In-
ternet performance.

1. Retrieving data from a nearby proxy usually is
much faster than fetching.the data from a more
distant server (less latency and, most likely, higher
bandwidth).

2. A proxy that fetched a web page could potentially
serve as the provider of this web page at a later
time (as long as it still caches an up-to-date copy
of the web page).

However, the number of proxies connected via the In-
ternet is large. Without incurring large overhead, how
to identify a potential cache provider and moreover,

78

http://crossmark.crossref.org/dialog/?doi=10.1145%2F339331.339360&domain=pdf&date_stamp=2000-06-01

if multiple providers exist, how to choose an optimal
one, axe very crucial for the scalable performance of
the caching scheme. Harvest [9] [6] uses a proxy hier-
archy to conduct the search for a potential provider.
This hierarchy is formed statically and independent
of the proxy affinity for web pages. Thus, it is likely
that the cache providers are far apart (in the hierar-
chy) from the requester. In such a case, large overhead
will be incurred for cache discovery. [19] also tries to
solve this problem by maintaining a dynamic routing
table. In our proposed approach, instead of employ-
ing a fixed hierarchy, proxy affinities are used to group
proxies dynamically. Intuitively, from the viewpoint
of a proxy, each web page request falls into one of the
following three categories.

1. The proxy locally caches an up-to-date version of
the requested web page.

2. An up-to-date version of the requested web page
is cached by some other nearby proxy.

3. The requested web page has to be obtained from
the content server.

Web pages in the first and third categories are easy to
handle since the operations are local to each individ-
ual proxy. However, collaborations among proxies is
required to locate cached web pages in the second cat-
egory. A carefully designed caching scheme is crucial in
order to avoid large overhead. In our approach, prox-
ies that have similar affinities will cooperate and share
their cache content with each other in such a manner
that little overhead is required to achieve a relatively
high cache hit ratio. Whenever a proxy fetches a web
page, it will serve as a cache provider until this copy
is obsolete.

Our ultimate goal is to minimize the average response time
of web page retrievals. Two aspects are involved. (1) What
should be cached and where? (2) How does a proxy locate a
remote cache containing a desired page? The first question
can be addressed by algorithms for prefetching [14] [12]. Due
to space limitations, we will not address this issue but rather
focus on the second one.

The second issue is how to discover which proxy has a cached
copy of a particular web page. Basically, there are two
approaches to cache discovery: pull and push. The pull
technique is that, when a proxy tries to locate a cache, it
first finds which proxy caches the web page, and then re-
trieves the page. This usually increases the average response
time. With the push technique, when the cache contents of
a proxy changes, the proxy will tell other proxies about the
change. However, the push technique can communicate a
large amount of unnecessary information. This generates a
significant overheadnot only on the network, but also on the
proxies due to message processing. In addition, to locate a
cache for a particular web page, a proxy has to maintain
the information about other proxy's cache contents. This
can consume a significant amount of resources when the
number of proxies is large. Therefore, a proxy should be
selective concerning which proxies it should send the up-
dates of its cache contents and how often. The trend of
increasing diversity of web page popularity [2] also indicates

that a static global caching structure regardless of individ-
ual proxy affinities would become less effective. In fact, an
optimal cache scheme should have good adaptabili ty to di-
verse proxy affinities and their changes. In our scheme, a
dynamic distributed collaborative caching infrastructure is
built according to the proxy affinities so that unnecessary
communication between proxies of distinct affinities can be
avoid and changes of proxy affinities can be adapted to easily
and quickly.

Moreover, scalability is an important aspect of a web caching
scheme since the number of proxies and servers could range
up to hundreds of thousands in the Internet environment. It
will be shown in a later section that our approach can scale
well when the number of proxies is large.

In this paper, we propose a scheme using proxy profiles and
information groups which is based on web page access pat-
terns. The goal of this scheme is to reduce the average num-
ber of messages among proxies for updating the cache sta-
tus while maintaining a high cache hit rate. In our scheme,
a proxy profile contains a list of URLs of the web pages
that are frequently accessed by the proxy, while an informa-
tion group is essentially a multicast group that links proxies
which are collaboratively caching web pages that are of com-
mon interest. We group web pages into a set of overlapping
web page clusters. A proxy may choose to join an informa-
tion group if the intersection of the associated page cluster
and the proxy's profile is significant. Generally, a proxy joins
enough information groups to cover its most frequently ac-
cess pages. Since a proxy's profile may evolve over time, the
web page cluster generation and information group forma-
tion are performed periodically (and incrementally) to adapt
to changes in the proxy's access pattern.

When a host wants to access a web page, it sends a request to
its local proxy. If the requested web page is not cached in the
local proxy, then the proxy checks whether other proxies in
the information group(s) (for this page) currently have this
page in their cache. The request will be sent to the "nearest"
site which has this page. Once there are enough changes in
the cache contents of a proxy, the proxy will notify other
proxies in the same information group(s) of the changes.
Therefore, in order to achieve optimal performance, each
information group should be of moderate size because a large
group size incurs significant overhead for bookkeeping while
a small group suffers from low cache hit ratio.

The remainder of this paper is organized as follows. We dis-
cuss some related work in Section 2. Section 3 presents the
objective model'for our caching scheme. The simulation set
up is presented in Section 4. Our page clustering algorithm
and information group formation algorithm are presented in
Section 5 and 6, respectively. In Section 7 and 8, we dis-
cuss the web page retrieval process and optimal information
group size estimation, respectively. Finally, conclusions are
drawn in Section 9.

2. RELATED W O R K
In this section, we discuss some other web caching schemes
proposed recently. We note that most previous cooperative
caching schemes [6] [19] [11] focused on how caches coop-
erate with each other. They did not take into account the

79

correlation among proxy affinities. How to best utilize refer-
ence pattern information to improve the Web performance
has become a topic of increasing interest [8]. One contri-
bution of our work is a scheme to efficiently analyze refer-
ence patterns to organize proxies into collaborative caching
groups. High cache hit rate can still be maintained at the
cost of much fewer inter-proxy messages as compared with
previous schemes.

2.1 Caching in Harvest
The caching scheme in Harvest is presented in [9] [6]. Caches
are organized in a hierarchy. Each cache in the hierarchy in-
dependently decides whether to fetch the reference from the
object's home site or from its parent or sibling caches using
a resolution protocol. If the URL contains any of a config-
urable list of substrings, then the object is fetched directly
from the object's home, rather than through the cache hi-
erarchy. This feature is used to force the cache to resolve
non-cacheable URLs (e.g., cgi-bin) formed pages and local
URLs directly from the object's home. Otherwise, when a
cache receives a request for a URL that misses, it performs
an ICP(Internet Caching Protocol) to all of its siblings and
parents, checking if the URL hits any sibling or parent. Of
all the sites which report having the object, the object is
retrieved from the site with the lowest measured latency.

2.2 Adaptive Web Caching
An adaptive web ,:aching scheme is proposed in [19]. Cache
servers are self-organizing and form a tight mesh of over-
lapping multicast groups and adapt as necessary to chang-
ing conditions. This mesh of overlapping groups forms a
scalable, implicit hierarchy that is used to efficiently diffuse
popular web content towards the demand. Adaptive web
caches exchange a description of their content state with
other members of their cache groups to eliminate the delay
and unnecessary use of resources of explicit cache probing.
For each request, a cache first determines whether a copy
of the requested web page is cached by one of its group
members. If not, the request will be forwarded to another
cache (in the web caching infrastructure) which is signifi-
cantly more likely to have the data. This routing is accom-
plished using a URL routing table maintained at each web
cache. The information in the URL routing table is learned
from the source-based and content-based entries from other
web caches.

2.3 Summary Cache
Summary cache is a scalable wide area web cache shar-
ing protocol proposed in [11]. In this protocol, each proxy
keeps a summary of the cache directory of each participat-
ing proxy. When a user request misses in the local cache,
the proxy checks these summaries for potential hits. If a hit
occurs, the proxy sends out requests to the relevant prox-
ies to fetch the document. Otherwise, the proxy sends the
request directly to the web server. In order to reduce the
network overhead, a proxy does not update the copy of its
summary stored with other proxies upon every modification
of its directory: it rather waits until a certain percentage
of its cached documents are not reflected in other proxies.
In addition, bloom filters [3] are used to build summaries
in order to keep each individual summary small. Experi-
ments have shown that summary cache reduces the number

of inter-cache protocol messages, the bandwidth consump-
tion, the protocol CPU overhead significantly while main-
taining almost the same cache hit ratio as the ICP. However,
when the number of proxies is large, the network traffic for
updating cache contents could also be large. Thus summary
cache may have poor scalability.

2.4 Web Caching Based on Dynamic Access
Patterns

A "local" caching algorithm based on dynamic access pat-
terns was presented in [18]. This caching algorithm flexibly
adapts its parameters (such as the number of documents, the
size of cache, and the actual documents in the cache, etc.)
based on the observation that there is a strong relationship
between frequency and probability of access. The analysis
is based upon a model from psychological research on hu-
man memory. The probability of future document access is
estimated based on frequency of prior document accesses.
However, this algorithm did not address the issue of coop-
erative caching.

2.5 Server Volumes and Proxy Filters
[8] proposed an end-to-end approach to improve Web perfor-
mance using server volumes and proxy profiles. The server
groups related resources into volumes based on access pat-
terns (captured by conditional probability) and the file sys-
tem's directory structure. This information is piggybacked in
the servers response message to the requesting proxy. The
proxy generated filter, which indicates the type of informa-
tion of interest to the proxy, is used to tailor the piggyback
information. This piggyback information can be used to im-
prove the effectiveness of a variety of proxy policies such as
cache coherency, prefetching, cache replacement, and so on.
Experimental results show that probability-based volumes
can achieve higher prediction rate with a lower piggyback
size than the directory-based structure. Further reductions
in processing and memory overhead are possible by limit-
ing the calculation of probability implications to pairs of
resources that have the same directory prefix, at the ex-
pense of missing associations between resources in different
directories.

3. OBJECTIVE MODEL
The objective of our web caching scheme is to minimize the
average latency (or response time) of web page retrieval.
The following is a list of parameters for estimating the av-
erage response time.

• ~ : local cache hit ratio. The ratio of the number of
requests which are served by local proxy over the total
number of requests.

* w : remote cache hit ratio. The ratio of the number of
requests which are served by remote proxies over the
number of outgoing requests, i.e., the requests which
can not be satisfied locally.

• Local_Cost: the average response time of serving a
request by the local proxy.

• Remote_Cost: the average response t ime to serve a
request through a remote proxy.

80

Server_Cost: the average response time to serve a re-
quest from the content server.

Locating_Cost: the average time to find whether (and
where) a cached web page exists.

Push_Cost: the average overhead (per outgoing re-
quest) incurred by multicasting the changes of cache
content to remote proxies. Usually, the volume of valid
web pages cached at each proxy remains the same
roughly if the system is stable. In other words, the
web page expiration rate is commensurate with the
fetch-in rate. Therefore, the change of cache content
can be measured by the amount of new web pages
fetched in. Assume that whenever the cache content
changes by c~%, the proxy will multicast the descrip-
tion of the changes to other proxies, and assume that
this a% change is the result of q (q > 1) outgoing
requests on average, which take a period of time of
length tq on average. Then, each proxy multicasts,
on average, once for every tq length of time. Assume
that a proxy receives m multicast messages (from other
proxies) on average between two consecutive multi-
casts. Then, a proxy needs to spend ts + m x t~
time to process multicast messages, where ts and t~
are the average time to generate and send out a multi-
cast message to other proxies and the average time to
receive a multicast message sent by other proxy and
update its local information, respectively. Thus, the
total push cost for all proxies over a period of time tq
is Np x (ts + m x tr) + Np x tn where Np, t~, and
Np x tn are the total number of proxies, the average
additional delay to other network traffic due to the
transmission of such a multicast message 1, and the
overall overhead incurred due to the delivery all mul-
ticast messages sent out by all proxies during tq, re-
spectively. Since the information multicasted is used
to facilitate the remote cache discovery process, we
should factor in this cost when we estimate the search
cost of each outgoing request. Since there is on averag e
of Np x q outgoing requests overall (during the period
of tq), the average overhead for each outgoing request
is Push_Cost : ~ + r n X t r ~ t n .

q

Search_Cost: Push_Cost + Locating_Cost.

Cost: average response time of retrieval of a web page.

Cost = "7 x Local_Cost + (1 - 9') x Search_Cost

+(1 - 7) x w x Remote_Cost

+(1 - 9') x (1 - w) x Server_Cost

To simplify the problem, we assume that a web caching al-
gorithm can only control the following parameters: Cost,
Locating_Cost, Push_Cost , Search_Cost, w, but does not
have control over the rest of parameters; so they can be
viewed as constant. To minimize Cost, we therefore need to

1Transmitting this multicast message would consume cer-
tain network bandwidth and hence might cause some delay
in the delivery of other packets.

minimize the following function:

Search_Cost + w x Remote_Cost
+(1 - w) x Server_Cost

_ ts+mxt,+t~ + Locating_Cost + w x Remote_Cost
q

+(1 --w) x Server_Cost
(1)

where Server_Cost > Remote_Cost.

Each of w and Search_Cost can be viewed as a function of
the number of proxies in collaboration (denoted by m). The
more proxies that are involved, the higher the remote cache
hit ratio and the search cost. Thus, a moderate value of m
should be chosen to balance the tradeoff between the remote
cache hit ratio and the search cost. Moreover, an Optimal
strategy will be a scheme which has a higher remote cache
hit ratio for a given search cost, or a lower search cost for
a given remote cache hit ratio. It follows that during the
push process, the update information should only be sent
to those proxies which have an affinity to the involved web
pages. By similar reasoning, during the remote cache dis-
covery process, only those proxies that have an affinity for
the requested page need to be queried. In our proposed
scheme, proxies that share some common affinities will form
an information group which serves as the basis of collabo-
ration. All other parameters except m in Function 1 can
be either collected or estimated at run time. Then, the op-
timal size of an information group m (i.e., the number of
proxies in collaboration) can be calculated accordingly. In
addition, instead of enforcing a unique information group
size, we employ two parameters Imi~ and Ima~ to indicate
the range of optimal value of m and require that the size
of each information group is within the range l imit , Imax].
This not only accommodates the evaluated error during the
estimation of m, but also provides some flexibility to the
construction of information group (without sacrificing the
quality of collaboration). Values of Imi~ and Ima~ will be
discussed in Section 8.

4. TRACES AND SIMULATIONS
In this paper, we use three sets of traces of HTTP requests
to verify our design:

• DEC traces [10]: Digital Equipment Corporation Web
Proxy Server traces from Aug. 29 to Sep. 4, 1996.

• ClarkNet traces [7]: ClarkNet is a full Internet ac-
cess provider for the Metro Baltimore-Washington DC
area. The traces contain all requests to ClarkNet server
from August 24 to September 10, 1995.

• L traces [13]: an 100 days (during Aug.31 to Oct.7,
1997) worth of logs of H T T P requests from about 3000
distinct clients. It contains a total of 10 million re-
quests. There are a total 12,000 servers and 300,000
distinct web pages represented in the trace.

Since the information in the trace logs is insufficient for the
purpose of simulation, e.g., the trace logs do not reveal the
connectivities of these hosts, we had to approximate the
needed information for the detailed simulation. To build
the topology of these hosts, we first need to find the number

81

of servers. We assume that web pages served by the same
server all have the same first level URL component. For ex-
ample, the URLs of all web pages served by the ACM server
starts with "www.acm.org". By examining the IP address of
each user/host, we can discover the number of subnets. Fur-
thermore, we assume that hosts in a subnet are connected
by a 100 MBit/s :fast Ethernet and there is a proxy for each
subnet. Then we generate a random connected graph in
which each node corresponds to a server or a subnet. The
edges of the graph correspond to the communication links
between the server and client subnets. The bandwidth on
these links is 10MBit/s. We generate a background work-
load which consumes half of the bandwidth on each commu-
nication link on average. In this paper we assume that the
average lifetime of a web page is 7 days, and after a proxy
fetches a web page, this copy of the web page will reside in
the proxy's cache until it becomes obsolete 2. Last but not
least, the page size follows a log-normal distribution with an
average 8KB[2]. Table 1 shows some statistical information
on the above three traces.

5. PAGE CLUSTER
Web pages are identified by their URLs. Intuitively, dif-
ferent sets of web pages may have different popularity, i.e.,
some web pages are hot spots whereas some others are rarely
accessed. Experimental results have shown that majority of
the references go to a small percentage of the web pages[4].
It is much more beneficial to improve the cache hit rate for
these hot web pages. Therefore, we focus on the set of fre-
quently accessed web pages for the following reasons: (1) If
a page is not frequently accessed by any proxy, then it is un-
likely that an up-to-date copy of this page is cached by some
proxy. When this page is needed by a proxy, the proxy has
to fetch it from the server in most cases. Therefore, there
is no incentive to analyze the access patterns of this set of
web pages because we can rarely benefit from it. (2) The
analysis of access patterns has a certain overhead which is
reduced quickly by eliminating from consideration all infre-
quently referenced pages. Each proxy keeps a log of the web
page reference history of local clients, which is a sequence
of web page references. Given a web page and a trace log,
the ratio of the number of accesses to this web page over the
total number of accesses within the trace log is referred to
as the frequency of the web page within the trace log. For
example, if there are 100 web page accesses overall and a
web page is referenced 30 times, then the frequency of that
web page is 30% in this trace.

We use a threshold f~ (specified as a percentage) to deter-
mine whether a page is considered to be frequently accessed
or not. A page is considered frequently accessed if and only
if the reference frequency of that web page is at least j3.
Intuitively, the frequency can be viewed as an indicator of
popularity of that page. Table 2 shows the effects of varying
the value of j3. For example, when f~ is chosen as 0.01~0 (i.e.,
a page is considered frequently accessed only if it is accessed
at least once per 10,000 references), then 4% of all pages
are considered to be frequently accessed, and 40% of all re-
quests are to these 4% of the pages referenced in the DEC
trace. (These vaJues are in the page coverage and request

2This is feasible since all cached web pages can be stored on
disk.

coverage columns, respectively.) We will discuss the effect
of the value of/~ on the cache hit ratio, average number of
messages, average size of a message, etc. in Section 7.

Page clusters (of frequently referenced web pages) can be
formed according to the combined access patterns of all
proxies. Grouping web pages into clusters based on these
logs consists of two steps:

1. Each proxy sends its profile (i.e., local frequently ac-
cessed web pages) to a central site S.

2. An optimal or near optimal parti t ion of frequently ac-
cessed web pages is generated.

Each proxy maintains a profile which consists of URLs of
its locally frequently accessed web pages. This can be easily
done by examining the local trace log. We will explain later
that this profile is used not only by the central site to group
the page clusters but also by the proxy to guide itself to join
appropriate information groups.

At the site S all reported web pages are grouped into a
set of page clusters (See Figure 1). If a proxy frequently
accesses at least one page in a page cluster, then we say that
it has an ajffinity for that page cluster. An information group
will be formed for each cluster for collaborative caching. A
proxy may choose to join an information group if it has an
affinity for the corresponding cluster. However, due to the
overlaps among page clusters, a proxy might not join an
information group even though the proxy has an affinity for
the corresponding page cluster since the proxy may choose to
join another information group that also accounts for those
pages. Let Imax be the maximum number of proxies allowed
in an information group. The size of each page cluster is
determined in such a way that the number of proxies that
join the corresponding information group is at most Ima~
(e.g., Ima~ ---- 3 in Figure 1) 3. As mentioned before, our goal
is to reduce both the average number of messages processed
by each proxy for updating other proxy's cache status and
the size of these messages while maintaining the cache hit
rate.

Moreover, we want to minimize the average number of in-
formation groups a proxy may join so that the bookkeeping
overhead can be minimized. Replications are allowed during
grouping (i.e., two page clusters might contain some com-
mon web pages) for such a purpose. However, allowing a
large amount of replication would cause another problem:
the number of collaborating proxies for a web page tends to
be small 4. As a result, the cache hit ratio could be impacted
severely. In order to prevent such an occurrence, some mech-
anism has to be employed to restrict the number of replicas
allowed for a page during the web page clustering procedure.
Let Imi~ be the minimum number of collaborating proxies
required to maintain an acceptable cache hit ratio for a web
page (Imin = 2 in Figure 1). Then, the problem becomes
how to guarantee that a web page A can be allowed to repli-
cate in a page cluster PGi only if it would not cause the size
of any information group to be less than I~i~.

3The optimal value of I m ~ is. much larger in reality
4We will explain it later this section.

82

Ta bl e 1: S ta t i s t i ca l I n f o r m a t i o n o f T r a c e Logs
DEC Traces ClarkNet Traces L Traces

Number of Requests 3.54 million 3.3 million 10 million
Number of Proxies 16 2000 546
Number of Clients/Hosts 10,000 21,000 3000
Number of Servers 70,000 1 12,000

Table 2: P a g e / R e q u e s t C o v e r a g e for D i f f e r e n t F r e q u e n c i e s
fl DEC Traces ClarkNet Traces L Traces

0.005%
0.01%
0.05%

page request
coverage coverage

9% 60%
4% 40%

0.4% 17%

page request
coverage coverage

10% 58%
4% 39%

0.4% 16%

page ~ request
coverage coverag e

10% 62%
4 % 41%
0.4% 17%

Proxyl _ ~
Proxy2 _ ~

Proxy(n-l)

Proxy(n)

Proxy Affinity

¢~"~'~Page Cluster

[] Web Page

Proxies
Frequently

Accessed
Web Pages

F i g u r e 1: G e n e r a l Scenar io

The information group sizes is crucial to the overall perfor-
mance. We will analyze the effects of different information
group sizes and how to determine the optimal size in later
sections.

General Approach
This is a hyper-graph part i t ion problem with replication as
follows. Each frequently accessed web page is mapped to a
vertex; each proxy's profile (i.e., affinity set) is mapped to
a hyper-link among corresponding vertices (See Figure 2).
The objective is to minimize the average number of infor-
mation groups a proxy may join in order to cover all its
frequently accessed web pages.

A move-based algorithm [1] can be employed to form the
page clusters. Let Np and np be the number of proxies
and the average number of "frequently accessed" web pages
per proxy, respectively. We first group all web pages into Nc
clusters without any replication where Nc = r Np ×np]) (lma= +1mln)/2
if no page cluster exists previously. Otherwise, the previ-
ously page clusters will be taken as the initial grouping. Be-
ginning from this initial grouping, a series of passes are made
to improve the quality of grouping by either moving pages
among clusters, replicating pages to some clusters, or remov-

Proxy Affinity

O Proxy

] Web Page

F i g u r e 2: M a p to a H y p e r - g r a p h

ing replicas from some clusters. During each pass, pages are
successively examined until each page has been examined
exactly once. Given a current grouping P~, the previously
unexamined page with the highest g a i n (defined shortly) is
examined and the corresponding action (moving, replicat-
ing, or unreplicating) to incur such gain is taken to modify
the current grouping. Given the curi:ent grouping P ' , the
gain of an action Ac is defined as the reduction of average
number of information groups a proxy has to join if action
Ac is taken. Note tha t the gain can be either positive or
negative. After each pass, the best grouping observed dur-
ing this pass 5 becomes the initial grouping for a new pass.
This procedure terminates when a pass fails to improve the
quality of its initial grouping.

Proxy Bucket

proxy ID

list of frequently
accessed pages

l istof
interested clusters

Page Bucket

page 1D

I~toffrequenfly
accessing proxies

Iht of
participating clusters

gainarray of all
possible actions

Cluster Bucket

cluster ID
cluster size
list of pages

list of frequently
accessing proxies

(a) (b) (c)

F i g u r e 3: D a t a S t r u c t u r e

5Note tha t an individual action during a pass might not
always improve the grouping quality. But it may create an
opportuni ty for a bet ter grouping to be obtained later.

83

Some necessary data structures are maintained to facilitate
the partit ion process by a scan of all proxies' messages. A
proxy table, a page table, and a cluster table are built for
all proxies, for all web pages frequently accessed by some
proxies, and for all web page clusters, respectively. Without
loss of generality, we assume that each proxy (page / clus-
ter) can be uniquely identified by its ID which is a number
between 1 and Np (N~, / Nc), where Np (N~ / N~) is the to-
tal number of proxies (frequently accessed web pages / web
page clusters) 8. In the proxy table, each slot, referred to as
a proxy bucket (Figure 3(a)), consists of three components:
proxy ID, a linked list of web pages this proxy frequently
accesses, and a linked list of web page clusters to which this
proxy has an affinity. In the page table, each slot, referred
to as a page bucket (Figure 3(b)), maintains the following
information:

1. page ID

2. a linked list of proxies which frequently access this page

3. a linked list of web page clusters which contain this
page

4. gainarray: an array of buckets, each of which contains
its gain on some action.

The action on a page can be one of the following.

• move to another cluster.

• replicate in another cluster.

• remove replica from this cluster.

Since the size of the information group corresponding to a
cluster can not exceed Imam, when a cluster PGi grows to
such a level that its estimated information group size reaches
Imax, pages in other clusters are not allowed to move to
PGi or to be replicated in PGi until some page in PG~ is
removed from PGi. Every time an action is taken on a page
A, the gains of relevant pages (those pages which axe also
frequently accessed by the proxies which frequently access
A) are updated. For example, page B and C are relevant
to A in Figure 1 since they are also frequently accessed by
Proxy 1 that accesses A frequently.

In general, as shown in Figure 4(a), when a web page A
moves from cluster PGi to PGj, the information group
for PGj tends to grow since proxies which have an affin-
ity for A may join this information group. On the other
hand, the information group for PGi tends to shrink since
proxies which hawe an affinity for A but not for other web
pages in PGi will withdraw. Similarly, given that A E
PGil NPGi2n.. "NPGik (Figure 4(b)), replicating A to PGj
(j ~ il, i2 , . . . , ik) causes the information group for PGj to
grow and the information groups for PGil, PGi2, . . . , PGi~
to shrink for the following two reasons.

6In a general scenario where this assumption does not hold,
a hash table can always be employed to provide a fast map-
ping between a proxy ID (page ID / cluster ID) to its asso-
ciated information.

(a) move A from PGi to PGj

PG2 PG2
P G ~ ~ P G ~

PGj PGj
(b) replicate A to PGj

Figure 4: M o v i n g a n d R e p l i c a t i n g a P a g e

1. Before the replication, all proxies which have an affin-
ity only for A and some other pages in the set PGj N
(PG~i U. . . U PGik) (light shaded area in Figure 4(b))
will join at least one of the information groups PGil,
PGi2, . . . , PGik. After the replication, some of these
proxies may join PGj instead. Note that, in this case,
the average number of proxies in each information group
would not be changed since the replication only causes
some proxies to move from information groups for PGil,
PGi2, . . . , PGik to that for PGj.

2. Those proxies which have an affinity for A and PGj
but not for any other web pages in PGi1 U. • • U PGik
(dark shaded area in Figure 4(b)) will not join the
information groups for PGil, PGi2, . . . , PGik any
longer. They just need to join the information group
for PGj now. In other words, the information groups
for PGil, PG~2, . . . , PGik will shrink while the size
of information group for PGj keeps the same in this
case. As a consequence, the average number of proxies
in an information group decreases.

Therefore, replication tends to reduce the average number
of proxies in each information group. Besides the estimated
information group size of PGj, another criteria to deter-
mine if A should be replicated in a cluster PGj is that the
estimated information group size of PGil, PGi2, . . . , PGik
or PGj must remain at least Imi,~ if the replication is per-
formed.

Performance measurements of our proposed web page par-
titioning algorithm is shown in Table 3. Here the central-
ized computing site S is a UltraSparc Workstation which
has a 200MB main memory and one single 366MHz CPU.
Note that the efficiency comes partially from the trick that
new partition is always generated incrementally by taking
the previous partit ion as the initial partition. This parti-
tion process does not significantly impact the performance
of other workload on the central site and can be further
optimized in the following ways.

• The entire partit ioning process can be done offiine or
taken as a background process. If the central site is
heavily loaded, it can postpone the computat ion of its
frequently access web pages until it is idle or lightly
loaded.

84

• The gainarray computation can be done parallel. There-
fore, multiple machines can be used to share the work-
load of the partit ioning process.

After the page clusters are formed, a server will be chosen
to be the coordinator for each information group by S. Usu-
ally, the coordinator of an information group is the server
which owns the most pages in the corresponding page clus-
ter. Finally, the content of all page clusters and their co-
ordinators are broadcast to all proxies s. Each proxy will
match its profile with the page clusters and send message(s)
to the coordinator(s) of page cluster(s), for which they have
an affinity, to join the information group(s).

Since the content of all page clusters could be large, we
use a Bloom Filter [3] [15] to encode the contents of page
clusters. A Bloom Filter is a method for representing a
set A = {a l, a 2 , . . . , an} of n keys to frequency membership
queries. The idea is to allocate a vector v of m bits, initially
set to 07 and then choose k independent hash functions,
hi,h2,.. . ,h~, with range {1, . . . ,m}. For each key a E A,
the bits hl(a),h2(a),... ,hk(a) of v are set to 1. Given a
query key b, we check the bits hi (b), h2 (b) , . . . , hk (b). If any
of these bits are 0, then b is not in the set A. Otherwise,
we conjecture that b is in the set although there is a small
probability that we are wrong. Ill] reports that when the
number of hash functions is five and ten bits are used to
encode an entry, the error (false positive) is about 0.9%.

6. I N F O R M A T I O N G R O U P M A I N T E N A N C E
Information groups are formed based on page clusters. Each
information group is associated with one page cluster. A
proxy may join multiple information groups based on its pro-
file and the contents of these page clusters. In the previous
section, we described a periodically executed algorithm that
globally forms page clusters. The manager broadcasts the
page clustering information (i.e., the coordinator for each
cluster and the content of each cluster) to all participating
proxies. Then each proxy, based on its proxy profile, deter-
mines which page cluster(s) it has an affinity for.

A proxy may join the information groups for interesting page
clusters. There may be several combinations of information
groups a proxy can join. The choice of which information
groups to join is based on the number of matches between a
proxy's profile and the content of a page cluster. We employ
a greedy algorithm to determine which information groups
a proxy should join. First, a proxy finds a page cluster
which contains the maximum number of web pages in the
proxy's profile. The proxy joins the information group for
that page cluster. Next, the proxy finds another page clus-
ter which contains the maximum number of web pages in
the remainder of the proxy's profile. The proxy joins the
information group for the second page cluster. This process
continues until the proxy joins the information groups for
all web pages in its profile.

SAn alternative would be that the central site S determines
the information groups a proxy may join and sends to the
proxy only related information. However, the proxy will lose
the opportunity to join other information groups when its
profile changes because of lack of information about other
available web page clusters and their associated information
groups.

Note that the proxy profile may change dynamically to re-
flect the changes of its client access affinity. Then every
time the profile changes, the proxy may choose to withdraw
from some information groups and/or join some other in-
formation groups to accommodate the change of the access
affinity. It is possible that, at a given time, an information
group may contain more than Ima~ or less than Imin proxies
due to the changes of proxy affinities. In such a case, a local
reorganization procedure can be performed on web pages in
the web page clusters associated with the oversize and/or
undersize information group(s). Due to space limitations,
we will not elaborate on this in this paper.

If a proxy wants to join an information group, then the
proxy sends a message to the coordinator of that informa-
tion group. The coordinator keeps a record of which proxies
are in the information group. It then sends to the new proxy
a list of the members of the information group. And the new
proxy sends the intersection of its cache content and the cor-
responding page cluster to all members in the information
group. In turn, all old proxies in the information group also
tell the new proxy their cache contents which intersect the
corresponding cluster. (These messages can be sent via mul-
ticast.) If a proxy wants to withdraw from an information
group, then the proxy sends a multicast message to all mem-
bers (including the coordinator) of this information group to
notify this change.

Figure 5 shows the average cache hit ratio as a function of
the information group size m. In our simulations~ when the
contents of a proxy's cache for a page cluster changes by
more than 10%, the proxy multicasts the changes to other
proxies in the information group for that cluster. We choose
10% as the threshold because it is shown from experiments
that the stale hit rate will be large otherwise [11]. For the
summary cache, when the overall cache content in a proxy
changes over 10%, the proxy then broadcasts the updates
to all proxies. In our proposed scheme the updates are
only multicasted to the proxies in the associated information
group(s). When j3 decreases, the cache hit ratio increases
because more pages are clustered and proxies exchange in-
formation on more web pages. It is more likely, when a
proxy tries to retrieve a web page, it can fetch the page
from another proxy instead of the server. Moreover, with
/3 = 0.005% and a reasonable information group size (i.e.,
m _> 10 for DEC trace and m ~ 60 for L trace and ClarkNet
trace), the cache hit rate for our scheme is similar to that of
summary cache because the web pages for about 60% of the
requests are analyzed and clustered. The rest of the web
pages are not "hot", and therefore, the requests for these
non-clustered pages will likely result in a cache miss even
in the summary cache. In addition, for those "hot" pages,
collaborative caching among a relatively small number of
proxies is sufficient to maintain a high cache hit rate. Coor-
dinating a large number of proxies in such a process (i.e., the
scenario in summary cache scheme) would incur large over-
head but little improvement on cache hit rate. We explore
this issue more in the next section.

7. W E B P A G E R E T R I E V A L
In this section, we first discuss how the content of the cache
at one proxy propagates to other proxies, then we will present
the detailed procedure for actual retrieval of web pages from

85

eq

0.5-

0.4-

0.3-

0.2-

0.1-

0.005%
DEC 0.01%

0.05%
0.005%

Clark 0.01%
0.05%

0.005%
L 0.01%

0.05%

DEC Traces

T a b l e 3: W e b P a g e P a r t i t i o n C o s t
CPU Time Average CPU Time Average Message
on S (min) on Each Proxy 7 (min) size (KB)

30 10 122
20 10 47
6 1 3

42 7.5 146
24 4 51
5 0.5 4

38 5 101
20 3 33
4 0.35 2

L Traces CiarkNet Traces
Summary Cache

_ _ _ 1~=o.oo5%

. ~=o .o1%

.................................... 1 3 = o . o 5 %

3 6 9 12 15 20 40 60 80 100
m m

F i g u r e 5: C a c h e Hi t R a t e v e r s u s

20 40 60 80 100
m

t h e I n f o r m a t i o n G r o u p S i z e

the server or another proxy. A proxy may join several infor-
mation groups. When the cache contents of one proxy for
one page cluster has changed over a threshold (measured as
a percentage), a, then the proxy will multicast the changes
to all proxies in the information group (for that page cluster)
using a Bloom Filter. This procedure is similar to that used
in the summary cache by Fang, et. al. [11] except that in our
approach the scope of consideration is each individual page
cluster and its corresponding information group. When the
cache contents for one page cluster changes by more than a
at a proxy, the proxy will multicast the changes (related to
that page cluster) to other proxies in the associated infor-
mation group. In addition, this multicast message can be
delivered at a lower priority than other packets to reduce its
impact to the normal Internet traffic 9.

When 1% < a < 10%, the stale cache hit ratios of summary
cache and our scheme (with ~ = 0.005%, 0.01%, 0.05%) are
very similar, which are between 9% to 12% for the three
traces. A similar result is also reported in [11]. In the
summary cache scheme, each proxy needs to maintain infor-
mation of all other proxies' cache contents, whereas in our
scheme, a proxy only needs to keep information of collabo-
rating proxies' cache contents. Figure 6 shows the different
size of cache status information maintained by the summary
cache and our scheme. For both schemes, the pages are
encoded with a Bloom Filter and each entry consumes 8
bits. It is clear that the summary cache would require much
more maintenance effort than our caching scheme especially
when the number of proxies is large. ClarkNet traces have
the largest number of proxies and the size of cache status

OWe find empirically that the incurred small delay in updat-
ing cache status information has little impact on the overall
cache hit ratio.

information of other proxies ranges up to several GB in sum-
mary cache and it could severely impact the proxy's ability
to serve pages to its clients. In contrast, with the increase
of the number of proxies or the cache size on each proxy,
the size of cache status information in our proposed scheme
does not increase as fast as the summary cache. This is
due to the fact that each proxy only receives the cache sta-
tus of other proxies in the same information group(s) and
only cache status of web pages in the corresponding page
cluster(s) is maintained.

Now we explain how a page is retrieved. Let's assume a
client attached to proxy PRx sends a request for a partic-
ular web page to proxy PRx. If PRx can not find the web
page in its local cache, then it will decide from which remote
proxy or the server it will fetch the web page. During this
process, PRx first finds which page cluster the web page
belongs to by examining the Bloom Filters. If the page does
not belong to any cluster, then PRx will directly fetch the
page from the server. Otherwise, PRX finds the informa-
tion group(s) for the cluster(s). (The page may belong to
multiple clusters.) Then PRx ranks all.proxies in the infor-
mation group(s) and the server of that particular web page
based on distance. We use the round-trip latency to esti-
mate the distance between two proxies [17] [16]. This does
not require extra overhead because the round-trip time can
be obtained when the updates of cache contents are sent out
and the acknowledge of the updates are received.

PRx forwards the request to the "nearest" site (proxy or
the server) which has the page. If the remote proxy does not
have the web page because of (1) cache invalidation (stale
hit) or (2) error of the Bloom Filter (false hit), then PRx
will forward the request to the second "nearest" site (proxy
or the server). This process continues until the web page is

86

~, 100000-

~ ~ ~ooo- N'.~
~ ~ ~oo-
0 I -

,o

DEC Traces

20 40 60
Cache Size (GB) in

each proxy (m=10)

L Traces

22
ClarkNet Traces

¢2
20 40 60 20 40 60

Cache Size (GB) in Cache Size (GB) in

each proxy (m=10) each proxy (m=10)

Summary Cache

- - - ~=0.005%
. 13=o.o1%
. 13=o.o5%

F i g u r e 6: S i ze o f cache s t a t u s i n f o r m a t i o n (N o t e t h e y - a x i s is in t h e log scale)

retrieved. It is guaranteed that this process will terminate
eventually because the server always has the web page.

Figure 7 and 8 show the average number of network mes-
sages per user request and the average size of network mes-
sages per user request. Here each message processed by a
proxy counts as one message. For example, if a multicast
message is sent to 20 proxies, then the message is counted
20 times. Our proposed scheme has not only a much smaller
number of network messages per user request, but also the
message size is much smaller especially when the number of
proxies is large (L and ClarkNet traces) due to the cache
update information.

Figure 9 shows the average latency for a user request. In
DEC traces, there are total 16 proxies, our proposed scheme
does not have a significant advantage or disadvantage over
summary cache. However, when the total number of proxies
is large, our proposed scheme could have a significant bene-
fit over summary cache due to the less network traffic seen
by each proxy. The average latency of our proposed scheme
varies significantly as a function of the information group
size m. When m is too small, the cache hit rate will be low
but the network traffic will also be low because each proxy
only need to notify a small number of proxies. On the other
hand, when m is large, the cache hit ratio is high but the net-
work traffic is also high. From the experiment, we found that
50 to 70 would be the appropriate range for m for the trace
data in our test. Moreover, from Figure 9, we can see that
the scalability of our proposed scheme is better than that
of summary cache. The response time of summary cache
scheme increases from L trace to ClarkNet trace because of
the increase of the proxies (about four folds). However, the
response time of our scheme accurately decrease because of
the utilization of the proxy affinity!

8. E S T I M A T I O N O F I N F O R M A T I O N G R O U P

S I Z E
It is clear that the information group size m plays a decisive
role in our scheme and is a prerequisite to partition page
clusters. In this section, we propose a method to estimate
the optimal information group size. As we explained in Sec-
tion 3, besides m, the following parameters also participate
in the cost function.

• a: Every time a proxy's cache content changes by c~%,
the proxy will multicast the description of the changes

to other proxies in the information group. We set c~ =
lo%.

• q: the average number of outgoing requests (from a
proxy) which would cause this c~% change..

• t~: the average time for a proxy to generate the de-
scription of its cache changes and send out as a multi-
cast message.

• tn: the average network overhead incurred by trans-
mit t ing this multicast message. Because our scheme
requires a much smaller number (and size) of multicast
messages for updating cache status changes and these
messages are delivered at lower priority, no significant
delay for delivery of other packets will be thereby in-
curred. Thus we will omit it in the cost function (i.e.,
t~ = 0).

• tr: the average time for a proxy to receive this multi-
cast message and update its local information.

• Locating_Cost: the average time to find whether (and
where) an up-to-date copy of the requested web page
exists in the information group.

• w: remote cache hit ratio. It is the probability that
an outgoing request from a proxy will be served by
another proxy in the information group.

• Remote_Cost: the average time to retrieve a cached
web page from another proxy in the information group.

• Server_Cost: the average time to serve a request from
the content server.

Therefore, we need to obtain the value of these parame-
ters in order to calculate the optimal m. Fortunately, all
of them can be easily collected by each proxy and reported
to the central site S together with the proxy profile except
for the first time the web page clusters are constructed. At
the first time, since no information group exists previously,
some parameters have to be estimated from other available
information. Each proxy can still collect the value of q, ts,
tr, and Server_Cost because introducing information group
will not have significant influence to these parameters.

However, the value of Locating_Cost, w, and Remote_Cost
depends heavily on the formation of the information group.
We employ some heuristics to estimate them. For each page

87

o~ • 0.4

0.3

0.2 O t .

• ,~ 0.1

DEC Traces L Traces ClarkNet Traces

3 6 9 12 15 20 40 60 80 100 20 40 60 80 100
m m m

Summary Cache

p=0.005%
~=0.01%

13=o.o5%

3200~

~, 1600-t

o = 800-~

"~ g. 400 7

~ 2 0 0]

F i g u r e 7':

DEC Traces

N u m b e r o f n e t w o r k m e s s a g e s per user r e q u e s t

L Traces ClarkNet Traces

3 6 9 12 15 20 40 60 80 100 20 40 60 80 100
m m m

Summary Cache

- - - 13=0.005%
. ~=0.01%

.................................... 13=o.o5%

F i g u r e 8: A v e r a g e b y t e s o f n e t w o r k m e s s a g e s per user r e q u e s t . N o t e t h e y -ax i s is i n t h e log sca le

A in the proxy profile, each proxy PRi calculates the num-
ber of requests of A from its local clients and the percentage
of time (referred to as pi(A)) PR~ caches a valid copy of A
and sends this information together with the profile to the
central site S. Note that pi (A) is essentially the probability
that PRi is able to serve the request of A for other proxy. In
addition, each proxy also reports the number of requests to
infrequently accessed web pages. All these additional calcu-
lations can be easily done locally by a proxy via a sequential
scan of its local trace log.

At the central site S, a small random sample of web page
URLs are taken from the pool of proxy profiles for the pur-
pose of parameter estimation. The estimation of Locating_Cost
and Remote_Cost are similar. For each web page A in the
sample set, the list of proxies which have an affinity for
A is generated. This proxy list together with their associ-
ated pi (A) are sent to each individual proxy in the list. Ev-
ery proxy then computes the expected Locating_Cost and
Remote_Cost of A from its own prospect and returns back
the S. Finally, the weighted average of values reported by
all queried proxies on all web pages in the sample set is taken
as the estimated value of Locating_Cost and Remote_Cost
where the number of accesses of a web page by a proxy serves
as the weight factor.

A different strategy is used to estimate the remote cache hit
ratio w. For each web page A in the sample set, we calcu-
late the probability p(A) that, at any given time, at least
one proxy caches a valid copy. Without loss of generality, as-
sume that A appears in the profiles of proxies PR1,. . . , PRj
and each proxy's web page request behavior is independent
of each other. We have p(A) = 1 - IIl_<i<_j(1 - p i (A)) . The
value of p(A) is used to approximate the cache hit ratio of
A and the average cache hit ratio w' of web page in the

sample set can be computed by taking a weighted average l°
of all individual cache hit ratios. Note that w' only cap-
tures the cache hit ratio of frequently accessed web pages
(i.e., web pages reported in proxy profiles). Since proxies
do not collaborate on infrequently accessed web pages, all
such requests will go directly to the content server and hence
no remote cache hit will happen. Then the overall remote

cache hit ratio is w = ~ where Nf and Nu are the N y + N u
total number of requests for frequently accessed web pages
and the total number of requests for infrequently accessed
web pages for all proxies n .

Although the above estimation process is complicated and
consumes a certain amount of resources, it only needs to
be performed once - - the first time the cache collaboration
structure is employed. At each consequent page cluster re-
organization, each proxy can collect the local value of these
parameters and send to the central site together with the
profile. The overall value of a parameter can be obtained
by taking the (weighted) average of all local values of this
parameter. It is clear that little overhead is incurred by
such a process. After plugging in these estimated param-
eters, Function 1 in Section 3 becomes a a function with
single variable m. The optimal value of m which minimizes
the function can be obtained by examining the derivative
of Function 1 (with respect to m). In order to accommo-
date the evaluated error during parameter estimation and
provide more flexibility to the formation of an information
group, Imi,~ and I~a~ are used to indicate the range of valid
information group size. These two parameters are set in
such a manner that the value of Function 1 is within an
acceptable distance (e.g., 10%) from the optimal one.

1°The number of accesses to a web page is the weight factor.
nAgain , these two parameters can be easily computed from
the information provided by proxies.

88

2

1.6

0.8

~ 0 . 4

DEC Traces L Traces

"""%%,.%

ClarkNet Traces

3 6 9 12 15
m

20 40 60 80 100 20 40 60 80 100
m m

F i g u r e 9: A v e r a g e l a t e n c y t i m e a cl ient r e q u e s t

Summary Cache

13=o.oo5%
. 1~=o.o~%
................................... 13=o.o5%

9. CONCLUSION
In this paper, we propose a new scheme which employs proxy
affinities to guide the caching structure. Web pages are par-
titioned into clusters dynamically according to proxy ref-
erence patterns. All proxies which frequently access some
page in the same web page cluster form an "information
group" which serves as the infrastructure for caching collab-
oration. The dynamic nature of the caching structure pro-
vides the opportunity to adapt the changes of proxy affinity
efficiently. Trace driven simulation using three web access
trace logs shows that this approach can greatly reduce the
number of messages and other overhead on individual prox-
ies while maintaining a high cache hit rate. Last but not
least, our scheme also provides good scalability with respect
to number of proxies.

10. ACKNOWLEDGMENTS
The authors are thankful to Jia Wang, Scott Michel, and
Andreas Terzis for their invaluable discussion.

11. REFERENCES
[1] C. Alpert, J. Huang, and A. Kahng. Multilevel circuit

partitioning. Proc. of ACM Conf. on Design Automation
Conference, 530-533, 1997.

[2] P. Barford, A. Bestavros, A. Bradley, and M.E.
Crovella. Changes in web client access patterns:
characteristics and caching implications. W W W Special
Issue on Characterization and performance Evaluation,
(2):15-28, 1999.

[3] B. Bloom. Space/time trade-offs in hash coding with
allowable errors. Communications of A CM,
13(7):422-426, 1970.

[4] L. Breslau, P. Cao, L. Fan, G. Phillips and S. Shenker.
Web caching and zipf-like distributions: evidence and
implications. Proc. of 18th Annual Joint Conf. of the
IEEE Computer and Communications Societies.
(INFOCOM), 126-134, 1999.

[5] V. Cardellini, M. Colajanni, and P. Yu. Redirection
algorithms for load sharing in distributed web server
systems. Proc. of 19th IEEE Intern. Conf. on
Distributed Computing Systems (ICDCS), 528-535, 1999.

[6] A. Chankhunthod, P. Danzig, C. Neerdaels, M.
Schwartz, and K. Worrell. A hierarchical Internet object
cache, available http://catarina.usc.edu/danzig/cache.ps

[7] ClarkNet traces, available at
"http:/ /www.acm.org/sigcomm/ITA/index.html"

[8] E. Cohen, B. Krishnamurthy, and Jennifer Rexford.
Improving end-to-end performance of the web using
server volumes and proxy filters. Proc. of ACM Conf. on
Communications Architectures, Protocols and
Applications (SIGCOMM), 241-253, 1998.

[9] P. Danzig, R. Hall, and M. Schwartz. A case for
caching file objects indide Internetworks. Proe: of ACM
Conf. on Communications Architectures, Protocols and
Applications (SIGCOMM), 239-248, 1993.

[10] Digital's web traces, available at
"f tp: / / f tp .digi ta l .com/pub/DEC/traces/proxy/
webtraces.htmr'

[11] L. Fan, P. Cao, J. Almeida, and A. Broder. Summary
cache: a scalable wide-area web cache sharing protocol.
Proc. of ACM Conf. on Communications Architectures,
Protocols and Applications (SIGCOMM), 254-265, 1998.

[12] L. Fan, P. Cao, W. Lin, Q. Jacobson. Web prefetching
between low-bandwidth clients and proxies: potential
and performance. Proc. of ACM SIGMETRICS
Conference, 178-187, 1999.

[13] S. Ramaswamy. Personal communication, 1998.

[14] T. S. Loon and V. Bharghavan. Alleviating the
latency and bandwidth problem in W W W browsing.
Proc. of USENIX Symp. on Internet Technologies and
Systems (USITS), 1997.

[15] J. Marais and K. Bharat. Supporting cooperative and
personal surfing with a desktop assistant. Proc. of lOth
ACM Syrup. on User Interface Software and Technology
(UIST), 129-138, 1997.

[16] S.B. Moon, P. Skelly, and D. Towsley. Estimation and
removal of clock skew from network delay measurements.
Proe. of 18th Annual Joint Conf. of the IEEE Computer
and Communications Societies. (INFOCOM), 227-234,
1999.

[17] V. Parson. On calibrating measurements of packet
transit times. Proc. of ACM SIGMETRICS, 11-21, 1998.

[18] J. Pitkow and M. Recker. A simple yet robust caching
algorithm based on dynamic access patterns, available
h t tp : / /www.vuw.ac .nz/mimi/www/www-
caching/caching.html

[19] L. Zhang, S. Michel, K. Nguyen, A. Rosenstern, S.
Floyd, and V. Jocobson. Adaptive web caching: towards
a new global caching architecture. Proc. of 3rd
International Caching Workshop, 1998.

89

