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ABSTRACT 
TCP star t  times for H T T P  are nonstationaxy. The nonsta- 
t ionari ty occurs because the s tar t  t imes on a link, a point 
process, are a superposition of source traffic point processes, 
and the statistics of superposition changes as the number of 
superposed processes changes. The s tar t  t ime rate  is a mea- 
sure of the number of traffic sources. The univaxiate distri- 
bution of the inter-arrival t imes is approximately  Weibull, 
and as the rate increases, the Weibull shape parameter  goes 
to 1, an exponential distr ibution.  The autocorrelation of 
the log inter-arrival t imes is described by a simple, two- 
parameter  process: white noise plus a long-range persistent 
t ime series. As the rate increases, the variance of the per- 
sistent series tends to zero, so the log t imes tend to white 
noise. A parsimonious stat ist ical  model  for log inter-arrivals 
accounts for the autocorrelation, the Weibull distribution, 
and the nonstat ionari ty in the two with the rate.  The model, 
whose purpose is to provide stochastic input  to a network 
simulator, has the desirable proper ty  tha t  the superposition 
point process is generated as a single stream. The param- 
eters of the model are functions of the rate,  so to generate 
s tar t  times, only the rate is specified. As the rate  increases, 
the model tends to a Poisson process. These results arise 
from theoretical and empirical s tudy based on the concept 
of connection-rate superposition. The theory is the math-  
ematics of superposed point processes, and the empiricism 
is an analysis of 23 million TCP connections organized into 
10704 blocks of approximately 15 minutes each. 
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1. MOTIVATION 

Research on network traffic management  heavily depends 
on simulations and laboratory experiments with synthetic 
traffic as input  [19; 20]. Previous studies [24] on traffic 
modeling suggest that  simple Poisson modeling of network 
traffic does not represent the characteristics of the actual  
aggregate traffic. Many traffic variables are long-range per- 
sistent: autocorrelations are positive and decay slowly [16; 
17; 12; 9]. However, open-loop simulations, tha t  is, without  
feedback, driven by stochastic modeling alone tha t  models 
this dependence, tend to exaggerate the impact  of persis- 
tence. Feedback-based TCP congestion control ameliorates 
to some degree the ill effects of persistence and responds well 
to increased network resources such as capacity and buffer- 
ing [22; 23]. 

We are developing a closed-loop aggregate IP traffic sim- 
ulation system using TCP congestion control. Our goal is 
to make the synthetic output  traffic stochastically similar to 
tha t  from the actual  live wire of an Internet  link. In our sys- 
tem, a TCP simulator is driven by stochastic inputs  and puts  
out packet traffic tha t  interacts with a network environment. 
The simulated TCP, which might spawn hundreds or thou- 
sands of TCP flows, responds to network congestion signaled 
via feedback packets. To mimic the behavior of TCP, we 
take the source code of an actual TCP implementat ion from 
the BSD kernel. Unlike the open-loop approaches which di- 
rectly control the packet arrival times, packets are generated 
by TCP based on the processing of returning acknowledg- 
ment  packets. The simulated network environment models 
propagat ion delays, link capacities, switching, routing, and 
congestion control inside the network. Packets traverse the 
s imulated network and get dropped or arrive at the end host. 
This end host is also modeled by the TCP simulator. 

The stochastic inputs in our simulation system include 
TCP connection s tar t  t imes for different applications, trans- 
ferred file sizes, and the end-to-end connection propagation 
delays. The inputs  are generated by stat ist ical  models  tha t  
are developed based on mathemat ical  theory and on em- 
pirical studies of packet header da ta  collected on Internet  
wires. 

This paper  presents a s tudy of s tar t  t imes under HTTP,  
both  theoretical s tudy and empirical study, which results 
in a stat ist ical  model that  provides stochastic generation of 
s tar ts  for HTTP. Different protocols require different statis- 
t ical models [24; 11], but  the methods we employ to identify 
the H T T P  model can be applied to other applications. 
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2. PREVIOUS RESULTS 
TCP start times have been studied for a number of ap- 

plications including HTTP, FTP, Telnet, and SMTP. Re- 
sults have dealt with the marginal distributions of the inter- 
arrival times, autocorrelation, and cyclic patterns in the 
rates. As expected, the start-time rate has daily and weekly 
patterns because network usage has such patterns [24; 11]. 
However, it has been assumed in these papers that  for one- 
hour intervals, the rate is stable. Inter-arrival times have 
been found to have a univariate distribution that  is either 
exponential or has longer tails than the exponential; for 
HTTP, the distribution has been consistently reported to 
have longer tails [24; 21; 8; 11]. In the latter two papers, 
the distribution is found to be well approximated by the 
Weibull distribution with a shape parameter less than 1. 
The HTTP start times are long-range persistent with an es- 
t imate of the Hurst parameter in the vicinity of 0.75 [11; 10]. 
Feldman [11] explores the performance of an i.i.d. Weibull 
model and finds, even without the autocorrelation, that  it 
does a better job of explaining connection admission block- 
ing probabilities than does a nonstationary Poisson model. 

Several papers contain discussions that  provide an under- 
standing of this behavior of HTTP connection starts [24; 
1; 10; 11]. A single user clicks on Web links through time. 
For HTTP1.0, the dominant version of HTTP, a click results 
in an HTTP connection start for the linked file followed by 
connection starts for the embedded files. Browsers allow si- 
multaneous transfer of files up to a maximum number. The 
times between the starts for these files can be much less 
than the times between clicks. So the end result is a burst 
of start times with small inter-arrival times and then a larger 
time until the next click. The magnitudes of the these small 
times for a single click tend to be related since they tend 
to be transfers from the same or related servers; for a close, 
lightly loaded server they will all tend to be small, but  for a 
distant, heavily loaded server they will all tend to be larger. 
This behavior induces skewness in the marginal distribution 
of the inter-arrival times as well as positive autocorrelation, 
or persistence. 

3. RESULTS OF THIS PAPER 

3.1 Preliminaries 
Let tj for j = 1 to n be a sequence of H T T P  inter-arrival 

times. The inverse of the mean of tj is the rate p whose units 
we will take to be connection/sec, or c/s. The tj can vary 
by several orders of magnitude, and small intervals are as 
important as large ones, so studying the data on a log scale 
is essential; log2, the log base 2, is more convenient than 
base 10 because we often need to consider variation that is 
a fractional power of 10. 

Let gj = log2(tj). The variation in t j  can be decomposed 
into two components: 

ej = t l j  + i v ,  (1) 

where glj is smooth daily and weekly variation, and g2j is 
the remaining variation, whose mean we take to be zero. 

The results of this paper deal with the process g2j. We 
take time intervals for which the variation in gaj is negligible 
compared with the variation in g2j, so we effectively fix glj to 
a specific value that becomes the mean of gj, and the inverse 
of this value is the rate p. We will study how the finite 
sample distributions of the gj change with p, but  we do not 

develop a model for the statistical variation in p; however, in 
Section 8, we discuss how this can be approached, if needed, 
that is, if simulations axe to be run over time intervals for 
which glj changes by a nontrivial amount. 

3.2 Nonstationarity 
The gj are nonstationary. The nonstationarity occurs be- 

cause the start times on a link, a point process, are a su- 
perposition of the source traffic point processes, and the 
statistical characteristics of superposition processes change 
as the number of superposed processes changes. The start 

t i m e  rate p is used as a measure of the number of traffic 
sources. As the number of sources changes, p changes, but  
the finite sample distributions of the gj change in ways much 
more complex than just  the change in p. In particular, the 
univariate distribution and the autocorrelation function of 
the gj change. 

3.3 Univariate Distributions 
The univariate distribution of the inter-arrival times tj 

is Weibull with shape parameter A(p) and scale parameter 
a(p),  which depend on the rate p. From the properties of 
the Weibull [15], 

~(p) ] = us, 

where uj is a unit  exponential, and 

E(tj)  = p-1 = a(p)F(1 + A-a(p)). (2) 

A close approximation to the dependence of the shape pa- 
rameter on p is 

log2(A(p)) = -1.963(1 + 1.275p°'389°) -1. (3) 

As p increases, A(p) increases to 1, so at high rates, the 
inter-arrival distribution is close to exponential. From Equa- 
tions 2 and 3, the dependence of the scale parameter on p 
is 

a(p) = [pr(1 + ,x -1 (p ) ) ] - l .  (4) 

As p increases, pa(p)  tends to 1. 
On the log scale, 

gj = log2(tj) = A-l(p) log2(uj)  + log2(a(p)). (5) 

The gj have an extreme-value distribution with parameters 
A(p) [15] and a(p). The mean of gj is 

i~t(p) = -3,1og2(e)A-l(p) + log2(~(p)) (6) 

where 7 is Euler's constant (0.57722). The variance of gj is 

a~ (p) : ¢r 2 log~ (e)/6A 2 (p). (7) 

3.4 Autocorrelation 
A simple second-order model describes the second-moment 

properties of the gj in the sense that  the power spectrum of 
the model closely fits the power spectrum of the gj estimated 
from the data by periodogram smoothing methods. The 
model is s j + n j .  The nj  are a white noise series with variance 
a~ (p). The sj are the long-range persistent series 

( I  - B)°'25sj = ej + ej-x, (S) 

where B is the backward shift operator, B s j  = s j -1 ,  and ej 
is white noise with variance a~ (p) and is uncorrelated with 
nj .  
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The two parameters of the second-order model are a~ (p) 
and a~(p), which depend on p. The following describes this 
dependency. The variance of sj,  from [14], is 

a~(p)= 8r(1/2)  2 
3r~ (314----5 ° '  (p) (9) 

Since nj  and ej are uncorrelated, nj and s.i are uncorrelated, 
and 

Let 

(10) 

O(p) 2 =a, (p ) /a t (p ) .  (11) 

The functional form for O(p) is well approximated by 

0 ( p ) = l - 2  -l"2sll-o'315°l°s2(p) (12) 

Thus 

a~(p)=O(p)a~(p). (13) 

and 

O" "" 2, ,3 r2(3 /4)  
a~(p) = (1 - (p))at (p) 8 F ~  " (14) 

As p gets large, a~(p) and a~(p) tend to zero, and an2(p) 
tends to r 2 log,(e)/6, so gj tends to white noise. 

The autocorrelation of nj  at lag k, an(k), is zero because 
nj  is white noise. The autocorrelation of sj, from [14], is 

24 - 9k -2 l-~ 4j - 3 
a s ( k )  

1 6 -  9k-2 11  4 j -  1" 
j = l  

a~ (k) decreases with k and as (1) = 5/7. The autocorrelation 
of ~j depends on p, 

at(k, p) ---- (1 - O(p))as(k). 

If p increases from one value to a larger one, at(k, p) drops 
by the same factor at each lag. For p = 1 c/s, 16 c/s, and 
64 c/s, at(1,p) is 0.29392, 0.12272, and 0.07930. 

3.5 Statistical Generation Model 
We built and validated a statistical model for generation 

of ~j that  balances simplicity and, to a good approximation, 
the reproduction of the extreme-value distribution, the au- 
tocorrelation, and the nonstationarity of these two aspects. 

We begin by picking an overall process rate p for the gen- 
eration, so this might be the average busy hour rate or any 
value on a curve that  describes daily variation. This is all 
that  needs to be chosen; the parameters of the statistical 
model are functions of p, as given above. (But see the dis- 
cussion in Section 8 for calibration of p for a specific net- 
work.) There are two target specifications: (1) £j has an 
extreme-value distribution with parameters A(p) and c~(p), 
and (2) ~j has the autocorrelation function at(k,p). The 
model for ~j is 

gj = g.(sj + nj), (15) 

where go, sj, and nj are defined next. 
sj is the series in Equation 8, but  we add to it the property 

that  it is a Gaussian process and the mean is zero; the sj 
depend on the parameter a~ (p). nj is the above white noise 
series with variance a~ (p), but  we add the property that  it is 
i.i.d, with an extreme-value distribution whose parameters 

are chosen so that  the mean is #t(p) and the variance is 

The sj -t-nj have the target autocorrelation, but  can be 
quite far from the target extreme-value distribution. We 
transform the sj -t-nj, producing gj that  have exactly the 
target extreme-value distribution and very nearly the target 
autocorrelation. Let Wp(u) be the cumulative distribution 
function of sj -Jr n j .  Let Qp(f) be the quantile of proba- 
bility f of the target extreme-value distribution. Then the 
transformation that  produces the target extreme value dis- 
tr ibution is the composition function Qp(Wp(u)). We found 
that  this composition is well approximated by the function 

gp(u) = bo(p) + bl(p)u -Jr- b2(p)u 2 (16) 

where 

b0(p) = - e  -°'7°ss-°'°SsSr° (17) 

bl(p) ~ 1 -- e -1"6301-0"06399p ( lS )  

b2(p) = - e  -4"ls96-0'06254p (19) 

nj always has an extreme-value distribution and its mean 
matches that  of the target extreme-value distribution, but  
its variance is smaller than that  of the target. However, as 
p gets large, the variance of sj goes to zero, the variance of 
nj tends to the target variance, the function gp tends to the 
identity transformation, and gj becomes nj. 

This generation model ranges from a Poisson process at 
very high rates, to a long-range persistent process at low 
rates. Thus the model is significantly nonstationary. 

The procedure for generating gj consists of the following 
computational steps: (1) A(p)from Equation 3. (2) a(p) 
from Equation 4. (3) aS(p) from Equation 7. (4) 9(p) from 
Equation 12. (5) a~(p) from Equation 14. (6) a~(p) from 
Equation 13. (7) sj from Equation 8 using methods in [14]. 
(8) /zt from Equation 6. (9) nj  as i.i.d, extreme-value dis- 
t r ibution with mean #t and variance a,~(p). (11) gj from 
Equations 15 to 19. 

4. SUPERPOSITION, DATA, AND THEORY 
In this section we introduce connection-rate superposition, 

and how we use it theoretically to study start-time point 
processes, and how we use it empirically to study start-time 
data. We also describe the data used in the empirical study. 

A single user invoking HTTP on a network link creates a 
user TCP start- t ime point process. The start-t ime process 
for the link is the superposition of many such user processes. 
Furthermore, it is quite reasonable to suppose that  the user 
processes are independent of one another within small time 
intervals provided there is not substantial local congestion 
and provided the users access many different Web servers; 
so we have a superposition of independent single-user pro- 
cesses. 

We will not, however, build a user start-time model, and 
then create superposed user input by stochastic generation 
of many user streams; this approach has been taken by [18; 
1]. Instead, we model the superposed process. This means 
that  if there are 1000 users, in place of 1000 user streams 
we have just  one, a superposition stream. 

We model superposition based on the TCP connection rate, 
p. The basic assumption of this connection-rate superposi- 
tion is that  the statistical point process that  generates the 
TCP starts for rate p~ -- kp~, is the k-fold superposition of 
k independent point processes with rate p~. So long as p~ is 
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Figure 1: Log H T T P  connection rate for 10704 blocks is graphed against time of occurrence of the block. 

large enough to encompass one or more users, we can rea- 
sonably think of the k superposed processes as independent. 

The empirical study in this paper is an analysis of 23 mil- 
lion HTTP start times measured at a single link that  con- 

nec t s  a Bell Labs network of about 3000 client hosts to out- 
side servers that  are widely distributed across the Internet.  
The hosts consist of PCs, multiuser Unix machines, and a 
Web cache. Inside the local campus network, congestion is 
low and round-trip times are negligible. 

The study uses S-Net, a traffic collection and analysis sys- 
tem that begins with packet collection on a network link. 
Packet capture employs tcpdtunp, a 400 MHz PC, time- 
stamping based on GPS clock discipline, and at tention to 
filter drops. The compressed header files are moved to a 
cluster of Linux PCs. Next, just TCP packets are processed; 
an algorithm organizes the header information by TCP con- 
nection flow, that  is, by the source and destination ports 
and IP addresses. These flows are then processed to create 
data objects in S [3], a language and system for organiz- 
ing, visualizing, and analyzing data. Carrying out the data 
analysis in S allows very rapid prototyping of new analysis 
tools tailored to the type of data. Daily monitoring com- 
menced on 11/18/1998, and continues through the time of 
this conference, June 2000. 

The data studied in this paper consist of T C P / I P  packet 

headers for TCP connections under H T T P  for the period 
11/18/98 to 7/10/99. On 12/20/98, a Web cache was in- 
stalled that at first served the whole network but on 1/9/99 
was reduced to just  one third of the hosts. We used data 
just  from hosts other than the cache because it was under 
experimentation during this period. So there are gaps in our 
data resulting from the cache, and also from periods when 
the monitor was down. 

We organized the data into 15-minute blocks. Each block 
consists of the TCP connections whose SYN packets arrived 
during the block. We want the block length to be as large 
as possible subject to the constraint that the smooth daily 
and weekly variation, the component ~lj, is nearly constant. 
Our study of the data led to the conclusion that 15 minutes 
is an appropriate length. Not every block from 11/18/98 
to 7/10/99 appears due to idleness and monitor down time. 
And, we eliminated blocks with less than 95% of the full 15 
minutes, blocks with fewer than 50 flows, and connections 
from certain hosts that  developed problems. The final result 
is data on 23,008,664 TCP connections organized into 10704 
blocks. The number of flows in the blocks ranges from 52 to 
22470; the median is 1149, the upper quartile is 3461, and 
the lower quartile is 548. We assume that  the point process 
of start times is stationary within a block b. 

Let tbj for j = 1 to nb be the inter-arrival times in seconds 
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Figure  2: Log inter-arrival t ime is graphed against s tar t  t ime for two blocks of H T T P  starts.  The connection rate for each panel is 
shown in the strip label at the top of the panel. 

a n d  let  ~bj = log2(tbj)-  Le t  fib b e  t h e  s ample  m e a n  of th i s  
^ -1  

d i s t r ibu t ion .  T h e n  t he  s a m p l e  r a t e  is/~b = /~b F igure  1 
p lo ts  log2(/~b ) aga ins t  t h e  t i m e  of b lock  b. T h e  m a j o r  cy- 
cles in t he  d a t a  are t h e  da i ly  va r i a t i on  w i t h  r e d u c e d  peaks  
on  non-workdays .  The /Sb  va ry  f rom 2 -4.06 = 0.060 c / s  to  
24.o4 = 25.0 c /s .  

Ou r  overal l  s t ra tegy ,  invok ing  c o n n e c t i o n - r a t e  superpos i -  
t ion ,  is to  s t u d y  t h e  s t a t i s t i ca l  p rope r t i e s  of t h e  ~ b j  in each  
b lock  a n d  see how these  p r o p e r t i e s  change  w i t h  t h e  s ample  
r a t e  ~Sb. F igure  2 reveals  c h a n g i n g  proper t i es .  T h e  b o t t o m  
pane l  is an  i n t e r - a r r i v a l  p lo t  or i -a  p lo t  of t h e  2515 s t a r t  
t imes  for one block w i t h  ~Sb ---- 2.80 c/S. O n  t h e  plot ,  t h e  
j t h  log in te r -a r r iva l  t i m e  ~ b j  is p l o t t e d  aga ins t  t he  t i m e  a t  
t h e  b e g i n n i n g  of t he  in te rva l  for j = 1 to  nb. T h e  log on  
t h e  ver t ica l  scale is v i ta l  because ,  as we s t a t e d  earl ier ,  in ter -  
a r r iva l  t imes  can  vary  by  several  orders  of m a g n i t u d e .  T h e  
ho r i zon ta l  scale, however,  conveys  arr ivals  a n d  in te r -a r r iva l s  
on  t he  or iginal  scale. T h e  t o p  pane l  of F igure  2 is an  i-a p lo t  

• for a n o t h e r  15 m i n u t e  b lock  on  t h e  s ame  day. T h e  sample  
c o n n e c t i o n  rate, /~b -- 20.1 c / s ,  is a b o u t  7 t i m e s  g rea te r  t h a n  
t h a t  for t he  first block. 

B o t h  pane l s  show discre teness  on  t h e  ver t ica l  scale, m a n y  
nea r ly  equa l  va lues  of values of ~ b j  pi l ing up  a t  several  lo- 
ca t ions  such  as -141og2  sec. Th i s  is a ne twork  effect, a 
sma l l  delay; each  a c c u m u l a t i o n  po in t  is t h e  log 2 of t h e  t i m e  
i t  t akes  to  process  a packe t  in  t h e  ne twork .  For example ,  
suppose  two SYN packe t s  are back  to  back,  which  h a p p e n s  
a smal l  f r ac t ion  of t h e  t ime.  T h e y  a r r ive  on  t h e  wire, t h e  
first  is t i m e - s t a m p e d  a n d  t h e n  is r e a d  by  t h e  P C  m o n i t o r  
card .  T h e n  t h e  second  is t i m e - s t a m p e d ,  so t h e  in te r -a r r iva l  
t i m e  is t h e  t i m e  it  t akes  to  r ead  t h e  first  packet .  

In  t h e  b o t t o m  pane l  of F igure  2, t h e  d a t a  fo rm d i s t inc t  ver- 
t ical  b a n d s  w i t h  ~bj talking values  in t h e  midd le  of t h e  dis t r i -  
b u t i o n  of values.  T h e s e  are b u r s t s  of connec t i ons  caused  by  
single clicks of i nd iv idua l  users.  T h e  larger  values  of £bj on  
t h e  p lo t  t e n d  to  be  qu iescent  t i m e s  un t i l  t h e  click of some 
user  occurs.  In  t h e  t op  pane l  of F igu re  2, t h e  b u r s t y  be-  
hav io r  a t  t h e  smal l  t i m e  scales ha s  d i sappea red .  Because  
t h e  r a t e  is m u c h  higher ,  t h e  SYNs of more  users  i n t e r m i n -  
gle, a n d  t h e  b e h a v i o r  of i nd iv idua l  users  is b r o k e n  up.  T h e  
plot  shows a n o t h e r  difference b e t w e e n  t h e  two panels ;  t he  
va r i ance  of t h e  ~b~ a t  t h e  lower r a t e  is grea ter .  
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Figure 3: Quantiles of log inter-arrival times are graphed 
against log Weibull quantiles. The vertical lines show the 
1% and 5% quantiles. The oblique line is drawn through 
the two quartile points. 

The theoretical study also invokes connection-rate super- 
position. If we model the start-time point process for a base 
rate p~, then we can derive mathematically the characteris- 
tics of the point process when the rate is p~ = kp~, where k 
is a positive integer, by invoking the mathematical theory of 
point process superposition or by running simulations when 
the math is not tractable. 

The empirical and theoretical study interact in the follow- 
ing way. The empirical study results in a characterization of 
the statistical properties of the ej and how these properties 
change with p. We use these characterizations to specify 
an empirical model for the base rate, p~, and then we de- 
rive the statistical properties for rates p~ = kp~. Finally, 
we compare the empirical results for sample rate ~5b with 
the theoretical results at that  rate. This process provides 
a much more powerful method of investigation of the sta- 
tistical properties than we would have with just  theory or 
just empiricism alone. With the statistical characteristics in 
place, we develop a statistical model for the generation of 
synthetic start times that  reproduce the characteristics. 

5. INTER-ARRIVAL DISTRIBUTION 

In this section we study the distribution of the inter-arrival 
times empirically by analyzing the data described in Sec- 
tion 4. We use a data visualization tool to reveal the struc- 
ture of the distribution• We relate changes in the distribu- 
tion to the sample rate jSb. Then, using mathematical  results 
for the superposition of renewal processes, we build a model 
for the distribution that depends on the rate p, and validate 
this model from the data. 

5.1 Empirical Study 
For each of the 10704 blocks of inter-arrival times we used a 

data visualization tool, a quantile plot [4], to study the em- 
pirical distribution of gbj for j = 1 to rib, the log inter-arrival 
times for block b. Trellis display, a framework for multipanel 
data display, made the task of displaying 10704 plots rela- 
tively easy [2]. The goal is to determine whether the empiri- 
cal distribution is well approximated by some extreme-value 
distribution with parameters ~b and CUb. The quantile plot 
is effective because it shows all of the data and allows us to 
study the approximation in detail across the entire range of 
the data. 

Let gb(j) for j = 1 to nb be the values of gbj, ordered from 
smallest to largest. The empirical quantiles axe defined by 
taking gb(j) to be the quantile with (empirical) probability 
ffj = (j  - 0.5)lab; approximately a fraction fj of the data 
are less than or equal to gb(j). Let H ( u )  be the cumulative 
distribution function of the extreme-value distribution with 
the two parameters equal to 1. Let hj be the quantile of 
order f j  of H; this means that  f j  = H ( h j ) .  o n  the quan- 
tile plot, gb(j) is plotted against hi.  From Equation 5, the 
quantile of order ffj of the extreme-value distribution with 
parameters Ab and c~b is hj /Ab + log2(c~b ). If the pattern on 
the quantile plot is close to a line, then the empirical distri- 
bution of the gbj is well approximated by the extreme-value 
distribution; the slope of the pattern estimates A~-i and the 
intercept estimates log2(o~b ). 

Figure 3 shows extreme-value quantile plots for 9 blocks 
from one day. The strip label at the top of each panel shows 
the sample rate ~b. The oblique line on the plot is drawn 
through the upper and lower quartile points. The two verti- 
cal lines on the plot are drawn at the 0.01 and 0.05 quantiles. 
The pattern of the points on the plot follows the quartile line 
quite well. There are deviations at the low end of the dis- 
tr ibution caused by the discreteness discussed in Section 4. 
This a network artifact, not a reflection of the true start 
times of the client connections; the artifact affects only a 
small fraction of the data, never more than 5%, as the ver- 
tical lines in Figure 3 show. 

We use the maximum likelihood estimate Ab to estimate Ab. 
Figure 4 graphs log2(Ab ) against 1og2(~Sb ). Under an assump- 
tion of independence of the tbj, the variance of log2(Ab ) does 
not depend on Ab, and is asymptotically equal to 1.2654/nb [15]. 
/~b is approximately nb divided by the block length, so ~Sb is 
approximately proportional to the inverse of the variance. 
Thus, in Figure 4, when ~Sb increase by a factor of, say, 2, 
the variance decreases by a factor of approximately 2. 

The smooth curve on the plot was fitted by loess, a non- 
parametric regression curve estimator [5]; the loess smooth- 
ing parameter is 0.4, and the fitting is robust and locally 
linear. The curve was evaluated at 50 equally-spaced points 
from the smallest ~b to the largest, and is plotted by con- 
necting successive points by line segments. 

Figure 4 shows the s t rong dependence of Ab on ~Sb. For 
the smallest sample rate, 2-4"°6c/s = 0.060 c/s, the loess 
fit gives Ab = 2 -1"37 : 0.39. For the largest sample rate, 
24"65c/s = 25.0 c/s, the loess fit gives Ab = 2 -°'2x = 0.86. 
This is a major difference; Weibull distributions with these 
two values of the shape parameter differ markedly from one 
another. Thus the nonstationarity in the HTTP start pro- 
cess is substantial. 

In Figure 4 there are a very small number of values of ~b 
that are large for their particular values of ~b. The errant 
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Figure 4: The log of the maximum likelihood estimate of the 
Weibull shape parameter is graphed against the log sample 
connection rate for the 10704 blocks. The smooth curve on 
the plot was fitted by loess , a regression smoothing method. 

values occur in the range where ~Sb is between - 2  and 2. 
They are caused by clients opening large numbers of con- 
nections at equally-spaced intervals; this tends to push the 
empirical distribution of the tbj toward the uniform, which 
increases the value of Ab- We do not see this effect for very 
small or very large rates ~b. If one of the sources that  gener- 
ates these connections begins, the rate is increased above a 
minimum one. If other H T T P  traffic has a high enough rate, 
the regular interwds are broken up sufficiently that  they do 
not appreciably affect the distribution. We ignore this traf- 
fic in our modeling since it is atypical. Note that  leaving 
the values in our data does not adversely affect the loess 
estimate, which is robust. 

5.2 Theoretical Study 
Section 6 will show that  the start-time point process for 

low rates is correlated. But for the purpose of theoretically 
investigating the univariate distribution of the inter-arrival 
times, we will suppose they are independent, so the start 
times follow a renewal process. The assumption is reason- 
able for our purpose, because the magnitude of the auto- 
correlation is small, and the assumption succeeds in that  it 
yields good predictions for the empirical data just  analyzed. 

Let p~ be a low base rate. Let Sl be a random variable 
whose distribution is that  of the inter-arrival times when the 
rate is p~. The mean of Sl is 1/p~. Suppose we superpose 
k start processes with rate p~. Let sk be a random variable 
whose distribution is that  of the inter-axrival times of the 
superposition process. The rate for sk is p~ = kp~ and the 
mean is 1/p~. Now consider s~ divided by its mean, and to 
help curb the amount of notation, let us switch notational 
meaning and denote this normalized variable by Sk. Let 
Sk(s) be the distribution function of this new sk, and let 
Sk(s) = 1 - S~(s) be the survival function. From standard 
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Figure 5: Log superposition quantiles are graphed against 
the log best-approximating Weibull quantiles for 9 values of 
k, shown in the strip labels at the tops of the panels. The 
vertical lines are drawn at the 0.01, 0.05, 0.95, and 0.99 
quantiles. 

results in the superposition of renewal processes [7], 

Sk(8)  = ~.~l(8/p~) p~Sl(u)du ( 2 0 )  

/pi 

We will take the base rate to be p~ = 0.060 c/s, the mini- 
mum of the sample block rates in the empirical study• Be- 
cause of the results of the empirical study, we will take the 
distribution of sl to be Weibull. We estimate the shape 
parameter of this distribution by a procedure that  will be 
explained later; the resulting value is A~ = 0.40. When 
a Weibull random variable with parameters A and c~ is nor- 
malized by dividing by its mean, the result is a Weibull with 
shape A and scale F(1 + l/A).  Thus the scale parameter for 
sx is a~ = r(1 + 1/A D. 

With  the univariate distribution of Sl specified, we can use 
Equation 20 to derive the distribution of all 8k. We will do 
this for k = 2 to 416. The maximum rate, P~16 = 25.0 c/s, 
is close to the maximum sample block rate in the empirical 
study. Let G(z; 7") be the cumulative distribution function 
of the gamma distribution with shape r and scale 1. Then 

Sk(s) = e -Ca(s) (1 - a(ffk(s); 1/A~)), 

where 

~k(s) = ( s  F(I + I/A~) ) x~ 
k 

Sk(s) is not a Weibull distribution for k > 1, but  we will 
check to see if it is well approximated by a Weibull with a 
mean of 1, shape A~, and scale F ( I+ I /A~) .  We would expect 
this to be the case because the empirical study showed that  
the empirical distribution of the inter-arrival times is well 
approximated by the Weibull. 
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Figure 6: The solid curve is the loess fit displayed in Fig- 
ure 4. The dashed curve is a plot of log shape against log 
connection rate for the Weibull that  best approximates the 
superposition distr ibution at tha t  rate. The scales have been 
chosen to match those of Figure 4 to enhance comparison. 

We will base the approximation on extreme-value quart- 
tiles, just  as we used these quantiles to assess the goodness 
of the approximation of the extreme-value distr ibution to 
the empirical distr ibution of gbj. We proceed in order from 
k = 2 to 416. For each k, we s tar t  with the best  approxi- 
mating normalized Weibull for k - 1, which has parameters  
A~_I and F(1 + A~_x). For k = 2, the star t ing distr ibution 
has shape A~. Let fl = (i - 0.5)/1000 for i = 1 to 1000. Let 
w(i) be the quantile of probabil i ty fi of the start ing Weibull 
distribution. Let gi = Sk(w(i)). The w(i) are quantiles with 
probabilities gl of Sa (s). Suppose the w(i) are approximately 
Weibull quantiles with probabilities gi, shape A~, and scale 
F(1 + 1/A~). Then 

log(w(i)) ~ l og ( - l og (1  - gi))/A~ - log(r(1 + 11.X;)). (21) 

A best approximating value of A~ is found by least squares 
fitting of the left side of approximate Equation 21 to the 
right side. 

The resulting approximating Weibull quantiles provide a 
• good fit to the superposition quantiles for all k. This is il- 

lustrated in Figure 5. For 9 of the above values of k, we plot 
log 2 quantiles of the best approximating Weibull against the 
log 2 quantiles of the superposition distribution. Figure 6 
graphs the loess curve of Figure 4 (solid curve) and graphs 
log2(A~) against log2(pk ) (dashed curve). Clearly the su- 
perposition curve is in agreement with the pa t te rn  in the 
data. 

We use the following optimization method to find A~. We 
select a trial estimate,  and then compute A~ for k = 2 to 
416 by computing the superposition distributions and then 
finding the best approximating Weibulls. Thus we have A~ 
for the rates p~. We next compute shape parameters  for all 
sample rates ~b for b = 1 to 10704 by linearly interpolating 
the 416 (p~,A~) pairs in the rate. Suppose the resulting 
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Figure 7: The log of the shape parameter  of the Weibull that  
best  approximates the superposition distribution at rate p 
is graphed against log p. The two vertical lines show the 
minimum and maximum sample block rates. 

values are Ab. The optimization criterion for the trial value 
of A~ is 

1 0 7 0 4  

E wb(lOg(Ab) -- log(Xb)) 2, 
b = l  

where, as defined above, Ab is the maximum likelihood esti- 
mate of Ab. The weights wb are the product  of the robust- 
ness weights from the loess fit and the variances of log2(Ab), 
1.2654n~-a, under an assumption of independent inter-arrival 
times. We select A~ to minimize this criterion; the resulting 
value is 0.40. 

5.3 Discussion 

The empirical and theoretical results are in close agree- 
ment. The univariate distr ibution of the HTTP star t  t ime 
inter-arrivals is well approximated by the Weibull. Our over- 
all framework, connection-based superposition, has been val- 
idated in the sense that  the theoretical results to which it 
leads fit the empirical results. 

Because the results are grounded on theory, with the em- 
pirical s tudy providing the validation, it  is reasonable to 
apply the theory for rates beyond those of our data. Of 
course, this needs to be checked with da ta  from a high- 
throughput  network link, but  packet capture is not readily 
available at the highest line speeds now in use. Figure 7 
graphs log2(A~) against log2(p~), where p~ is now kp~ for 
k = 1, 22, 32 , . . .  , 5242. The two vertical lines show the max- 
imum and minimum values log2(~Sb); we have gone out be- 
yond the da ta  in our prediction by an amount slightly bigger 
than the range of the data.  At  214 c/s,  the Weibull shape is 
0.97, which is very close to exponential.  Equation 3 results 
from least-squares fitting to these 524 points; the resulting 
fit provides an excellent approximation.  
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Figure 8: The log averaged periodogram is graphed against 
frequency for the data in the bot tom panel of Figure 2. The 
solid curve is the ATS estimate of the log power spectrum 
and the dashed curve is an estimate from the second-order 
model. 

6. AUTOCORRELATION 
In this section we study the second-order properties of the 

£b~ empirically by estimating their power spectrum using pe- 
riodogram smoothing methods, and characterize the depen- 
dence of the spectrum on /~ ,  the sample rates. From this we 
identify, fit, and validate the second-order model presented 
in Section 3.4. Then, we investigate the second-order prop- 
erties theoretically through simulation, studying the results 
by the same mechanism used to study the empirical data, 
estimating the power spectrum. 

6.1 Empirical Study 
We estimate the power spectrum for 500 of the 10704 blocks 

of times, randomly selected but  constrained by the require- 
ment that  the selected/~b rates range from the lowest to the 
highest values of all of the/~b. For convenience of notation, 
we take the selected blocks to be denoted /~b for b = 1 to 
500. Let Pb(f) be the block b power spectrum, that  is, the 
power spectrum of the £b~ for j = 1 to rib. 

Our first step is to estimate Pb(f) by a nonparametric pe- 
riodogram smoothing procedure, a method that  provides a 
very flexible estimate, because it is constrained only by lo- 
cal smoothness. The purpose is to use the estimates for the 
500 blocks to identify a second-order model and study how 
it changes with the sample block rates /~b for b = 1 to 500. 
The estimation is based on ATS methods [6]: (1) subtract 
the sample mean of the data, and compute the periodogram 
Ib(f) at the Fourier frequencies fb/~ = k/nb, for 0 < fbl~ _< 
0.5; (2) average the periodogram in non-overlapping blocks 
of size 5 (dropping the last block if there are fewer than 5 in 
the average), and average the frequencies in the same way 
to form Ib(]bk) at mb equally-spaced frequencies fbk, for k 
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Figure 9: The display method of Figure 8 is used for the 
data in the top panel of Figure 2. 

= 1 to mb; (3) take log base 10 and multiply by 10 (so that  
units are in decibels), yielding zb(fbk) = lOlOglo(Ib(fbk); 
(4) smooth the Zb(fbk) using loess (see Section 5_) to form 
the ATS log power spectrum estimate 10 1Ogl0~b(fb~)). The 
details of the loess smoothing are given later. 

Figures 8 and 9 plot zb(]bk) against ]bk for the two blocks 
of £bj graphed in Figure 2. The solid curve in each figure is 
lOlOglO(ISb(fbk)). The sample rate for Figure 8 is low, /~b = 
2.8 c/s. The sample rate for Figure 9 is higher, jSb ---- 20.1 
C/S. By studying such power spectrum plots we identified 
the model described in Section 3.4. The power spectrum of 
this model is 

I1 + e 2"ill t 2 2 (22) 
Pb(f) = a~, l1 _ e2~ifl2a b + abe. 

The parameters of the model are a~,, a~,, and db; they 
are estimated by fitting Pb(f) to the Zb(]bk); the details of 
the fitting are given later. Let 5~,, b~,, and db be the es- 
timates. We found that  db does not depend on /~b; the me- 
dian of db is 0.26, so we take db = 0.25 in the model (unable 
to resist the increased esthetic value in subsequent formu- 
las) and re-estimate the remaining two parameters. The 
resulting model estimate of the power spectrum, Pb(f), is 
Equation 22 with db = 0.25 and the other two parameters 
replaced by their estimates. 101ogl0(ifb(f)) is graphed in 
Figures 8 and 9 by the dashed curves. 

The second-order model provides an excellent fit in the 
sense that  the power spectrum estimate from the model is 
quite close to the smoothing estimate from loess for most of 
the 500 blocks; for example, the two are close in Figures 8 
and 9. There is, in fact, a minor, but  common departure 
of the loess estimate from the model estimate, a peak with 
a period that  varied between 10 to 20 inter-arrivals; such 
peaks occur in Figures 8 and 9. It is possible that  this is 
caused by bursts of arrivals due to embedded files, with the 
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Figure 10:log2(1 - 0 )  is graphed against logs(p) for the live 
data in the bottom panel and for the simulated data in the 
top panel. The line on both panels is the least squares line 
fitted to the simulated data. 

average number of files in the range 10 to 20. However, we 
did not systematically study this departure from the model 
since the magnitude is small. 

From Equation 9, we estimate a~s by 

^5 st(l /2) ^~ 
O ' b s  - -  3F2(3/4) abe. 

From Equations 10 and 11, we estimate Ob by 

+ 

We study how 0b depends on/~b for the 500 blocks and com- 
pare this dependence with that predicted by the theoreti- 
cal study^to come. The bottom panel of Figure 10 graphs 
log2(1 -Ob) ,  against log 2/~b for the 500 blocks. (The top 
panel will be described later.) The graph shows that 1 - 0b 
tends to zero as ~Sb increases, which means that  ebj tends to 
white noise and the power spectrum approaches a constant. 
We can see this happening in Figures 8 and 9. In Figure 8, 
/~b is low, and the log power spectrum decreases substan- 
tially at all frequencies. In Figure 9, /~b is high, and the 
log power spectrum is closer to a constant in the sense that  
for frequencies above 0.1 cycles/inter-arrival, the log power 
spectrum is nearly constant. 

The above methods employ loess smoothing of zb(fbk) to 
get an estimate of the log spectrum, and least squares fit- 
ting to Zb(fbk) to get estimates of the parameters of the 
model. The term g(f)  = l1 - e2~iff[ in Equation 22 intro- 
duces substantial curvature in Pb(f) near the origin, so to 
cope with this curvature, the Zb (]bk) were smoothed by loess 
as a function of 1ogl0(g(fbk)) and then plotted against fbk; 
this results in a much better fit than smoothing directly as 
a function of fbk. The loess smoothing parameter was 3/4 

and the fitting was locally quadratic. The three model pa- 
rameters were estimated by nonlinear least squares fitting 
of Zb(fbk) to lOglo(Pt,(fbk)). In both these cases we are in- 
voking ATS: average, transform, and then smooth. In the 
first case the smoothing is accomplished by loess, and in the 
second by model fitting. The averaging before taking logs is 
important;  if we proceed without it, as is done in [13], then 
estimates based on the logs are inefficient, that is, they do 
not use full information in the data [6]. We fit on the log 
scale because the large change in the power spectrum due 
to long-range persistence is smoother than on the original 
scale, so estimation methods based on the power spectrum 
perform more reliably. 

6.2 Theoret ical  Study  
Just as for the univariate distribution of £j, connection- 

rate superposition is used to study the autocorrelation of £j 
theoretically. We take as a base point process the model 
in Section 3.5 with the base rate equal to p~ = 0.25 c/s, a 
value that  is close to the minimum jSb. We generate start 
times with this rate, and superpose different numbers of 
them to get processes at higher rates p~ = kp~ for k = 1 to 
100. We then study the results by the same power-spectrum 
methods used to study the empirical data. In particular, we 
estimate 0 in the same way. In the top panel of Figure 10, 
the simulation estimates of log2(1 - 0) are graphed against 
the generation values of log 2 (p). The line on both panels of 
the figure is fitted by least squares to the simulation points 
of the top panel; this fit is the result given in Equation 12. 
The simulation requires a value of 0 for the base process; we 
estimate this value by choosing the one that  results in the 
closest fit of the simulated values in the top panel to the live 
data in the bot tom panel, just  as we formed the estimate A~ 
in the theoretical study of Section 5. The resulting value of 
0 is 0.45. 

6.3 Discuss ion  
The theoretical and empirical results are in very close qual- 

itative agreement. The estimates of the power spectra have 
the same behavior and the same change with the rate. For 
example, the estimates of 1 - 0 decrease with p just as in the 
live data. Figure 10 shows that  for the higher rates, the sim- 
ulated superposed process begins to depart from the pattern 
of the data. Since 1 - 0 is the fraction of the variance due 
to the persistent series sj, the departure means that for the 
simulated data there is more variability due to sj. But in 
both cases, the magnitude of the variability is quite small, 
so the differences are minor. 

7 .  S T A T I S T I C A L  G E N E R A T I O N  M O D E L  

The statistical generation model for £j given in Section 3.5 
is developed to reflect the characteristics of the univariate 
distributions uncovered in Sections 5, and the characteris- 
tics of the autocorrelation uncovered in Section 6. The mean 
and variance of sj + nj match the mean and variance of the 
target extreme-value distribution for ~j, and the autocorre- 
lation function matches the target at(k, p). But the sj + nj  
do not in general have an extreme-value distribution with 
parameters A(p) and a(p). For this reason, we transform the 
sj + n j  so that  the £j have exactly the extreme-value distribu- 
tion. The autocorrelation structure of £j is now not exactly 
at(k, p); but  by generating values of ~j from the model, and 
estimating their spectra is we did in Section 6, we found the 
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Figure 11: Log inter-arrival time is graphed against start time for two blocks of HTTP connection start times generated from 
the statistical model. The rates for these synthetic data are the same as the sample rates for the live data in Figure 2. To 
facilitate comparison of the generated and live data, 82 values of the generated inter-arrivals less than the minimum live time 
of 2 -14 sec have been set to the minimum. 

autocorrelation is close to a ~ ( k , p ) .  Consequently, except for 
the network artifacts discussed in Section 4, the statistical 
characteristics of the live H T T P  start times and the gen- 
erated HTTP start times are in close agreement. This is 
illustrated by comparing Figures 2 and 11. In Figure 11, 
the panels graph generated start times with values of p equal 
to 2.8 c/s and 20.1 c/s, the same as the sample rates of the 
live data in Figure 2. We altered the generated times to add 
a part of the network artifact. The minimum inter-arrival 
time for the live data is 2 -14 sec. There are 82 generated 
inter-arrival times less than the minimum; these values have 
been changed to the minimum in the figure. 

8 .  D I S C U S S I O N  

The results of this paper are given in Section 3. The fol- 
lowing are comments on interesting issues that  need further 
work. 

The empirical study is based on H T T P  requests from one 
specific network, the Bell Labs network. But because the 
theory is not specific to the network, we believe that the 
results and the generation model s tand a good chance of 
holding for other networks. There might be a need for a 
different calibration of p. The calibration might be mul- 
tiplicative: if p* is the rate for another network, then the 
statistics for p* are those for the Bell Labs network with 
rate p = cp* .  A calibration is needed if a connection rate of, 
say, 20 c/s on another network implies a different number of 
traffic sources than on the Bell Labs network. 

The work here applies to time scales for which there is not 
an appreciable effect due to daily and weekly variation, 15 
minutes or less. However, it would be relatively straightfor- 
ward to model such variation. In the notation of Section 3, 
we would model Eli in Equation 1. If the time scale were 
to be a matter  of hours, the model could be a deterministic 
component that  reflected typical change, for example, the 
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change seer/in Figure 1. For longer time scales, say days, 
the model could be a stochastic time series model with pe- 
riodic components. 

The start time generator provides stochastic input to our 
simulation system for HTTP traffic. However, the stochas- 
tic input must encompass more. Accompanying each of the 
start times must be the size of the request file sent from 
the client to the server and the size of the downloaded file. 
The start times are a statistical point process. The times 
together with the sizes form a statistical marked point pro- 
cess. A next step is to build a model for this marked process, 
determining the file size distributions, whether there is time 
correlation in the sizes, and whether the file sizes are corre- 
lated with the inter-arrivals. 

It is possible to couch the development of the model as 
a deconvolution problem. We have three random variables 
gj, sj, and nj. The distribution of ~j has an extreme-value 
distribution with parameters A(p) and c~(p). The sj are a 
Gaussian process with mean 0, variance a~(p), and autocor- 
relation as (k). The nj are i.i.d, with variance an 2 (p). The 
deconvolution problem is to find a distribution for ni so that 
sj + nj has a distribution as close as possible to that  of gj 
and is easy to compute. 
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