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ABSTRACT 

On the vast majority of today's computers, the dominant form of 
computation is GUI-based user interaction. In such an 
environment, the user's perception is the final arbiter of 
performance. Human-factors research shows that a user's 
perception of performance is affected by unexpectedly long delays. 
However, most performance-tuning techniques currently rely on 
throughput-sensitive benchmarks. While these techniques improve 
the average performance of the system, they do little to detect or 
eliminate response-time variabilities--in particular, unexpectedly 
long delays. 

We introduce a measurement infrastructure that allows us to 
improve user-perceived performance by helping us to identify and 
eliminate the causes of the unexpected long response times that 
users find unacceptable. We describe TIPME (The Interactive 
Performance Monitoring Environment), a collection of 
measurement tools that allowed us to quickly and easily diagnose 
interactive performance "bugs" in a mature operating system. We 
present two case studies that demonstrate the effectiveness of our 
measurement infrastructure. Each of the performance problems we 
identify drastically affects variability in response time in a mature 
system, demonstrating that current tuning techniques do not 
address this class of performance problems. 
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1. INTRODUCTION 

In recent years, computer systems have become increasingly 
interactive, usually employing Graphical User Interfaces (GUI) 
such as Microsoft Windows and the X Window system. In these 
systems, users interact with the computer far more frequently than 
in traditional batch or command-oriented computer systems, and 
they expect the system to respond to each user request 
instantaneously. As such, "performance" is determined by the 
user's opinion. This metric, user-perceived performance, differs 
radically from conventional performance metrics in two ways. 
First, it is largely subjective and is a function of the perceptual and 
physical limitations of users. Second, events that affect user- 
perceived performance are on a time scale of hundreds or 
thousands of milliseconds, not the microsecond scale that is often 
the target of detailed performance tuning. 

Users' perceptions of performance are closely related to response 
time and the variability of response timel both of which can be 
quantified with moderate effort, uslng some newer tools and 
techniques [7] [8]. However, to'the best of our knowledge, there are 
no tools available for interpreting a collection of event latencies 
and determining which ones actually irritate users, which is why 
we rely on user input for this function. For example, if an event's 
latency is below the threshold of human perception, that latency 
contributes nothing to user irritation. Once a latency does cross 
over into the realm of perceptibility, there are no guidelines by 
which to assess the impact of the delay, but the relationship 
between delay and irritation is practically guaranteed to be 
nonlinear. Moreover, previous studies have argued that user 
expectation is a critical component of user-perceived performance 
[6][7]. There is a qualitative difference between a five-second 
delay echoing a keystroke and a five-second delay starting up an 
application. Unlike latency, expectation is difficult to quantify 
because of its psychological aspect and because it is partially a 
reflection of the performance characteristics of the system to 
which the user has become accustomed. As users become familiar 
with a system, they become trained to expect certain delays for 
each type of operation. While these delays may not delight users, 
users eventually adjust their behavior to long latencies to minimize 
errors and frustration [13][16][18]. The greatest contributor to 
"bad" user-perceived performance is when an event takes an 
unexpectedly long time to complete, without apparent reason [16]. 
Therefore, the key to improving user-perceived performance is to 
identify such situations, understand why they occur and modify 
systems to eliminate them. 

The Interactive Performance Monitoring Environment (TIPME) is 
a measurement system that collects data that enables system 
experts to identify the cause of user-perceived performance 
problems that have previously been extremely difficult to diagnose. 
Unlike conventional performance-improvement techniques, we do 
not attempt to quantify system performance. Instead, we take 
advantage of user input to determine when performance becomes 
unacceptable. TIPME continuously monitors and records data that 
summarizes the operating system state. When the user experiences 
unacceptable performance, s/he presses a hot-key sequence which 
causes all the data currently stored to be saved for postmortem 
analysis and provides the user with a dialog box in which to enter a 
problem description. By understanding cases in which the user 
indicated that the system exhibited bad performance and 
eliminating their causes, we improve user-perceived performance. 
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The key contributions of this work are a methodology for attacking 
interactive performance problems, the design and implementation 
of a measurement infrastructure capable of capturing such 
problems, two case studies demonstrating the utility of the system, 
and a presentation of concrete examples where throughput-based 
system design decisions are detrimental to user-perceived 
performance. We also use our methodology to show that platforms 
other than our target platform demonstrate problems in similar 
a reas .  

Once we deployed TIPME, users immediately identified latencies 
that were annoying, and we were able to identify the problem and 
deploy simple kernel workarounds within a day or two. This rapid 
turn around was essential, because we found that users were likely 
to report the same problems if they were not resolved. The fact that 
we were able to do this rapidly in a mature operating system 
supports our hypothesis that the latency aspect of operating system 
performance has long been neglected. During operating system 
development, performance "bugs" are frequently introduced into 
the system. Prior to release of a new operating system, systematic 
testing and tuning usually enable the detection and elimination of 
such problems. However, the benchmarks that have been used are 
more sensitive to system throughput than they are to latency or 
latency variability. Therefore, these benchmarks help developers 
remove performance bugs that affect system throughput but do 
little to enable the diagnosis and removal of latency-related 
performance problems. Our measurement technique introduces a 
systematic way to identify and eliminate performance problems 
that affect latency. We suggest using our techniques during the beta 
phase of deployment to remove serious interactive performance 
problems. 

In the next section, we discuss related work in performance and 
measurement methodology and human-computer interaction. We 
describe our measurement methodology in Section 3. Section 4 
presents two case studies, describing how we were able to identify 
and correct interactive performance problems in the BSD/OS 
operating system. In Section 5, we demonstrate that some of the 
problems we identified in BSD/OS also exist in a radically 
different system (Win32), indicating that these techniques are 
applicable across different systems. We conclude in Section 6. 

2. RELATED WORK 

There have been efforts to use response time as the basis for 
system performance tuning. Application Response Measurement 
(ARM) measures response time directly by providing API 
functions that client programs call before and after an operation 
[8]. In earlier work, we inferred response times from CPU activity 
and message exchanges between MS-Windows clients and the 
server [7]. Both of these approaches assist in capturing event 
latencies, but they do not provide any indication of the cause of 
long latencies. This is the significant difference between such 
systems and the one we present here. 

Cota-Robles and Held also use an infrastructure somewhat similar 
to ours to characterize the Windows NT and Windows 98 operating 
systems' ability to handle real-time workloads. They measure how 
quickly and reliably the systems deliver hardware interrupts to 
their corresponding handlers in a loaded system [3]. They find that 

the difference in real-time performance is not adequately 
represented by throughput benchmark results. Although Windows 
NT provided at least an order of magnitude better real-time 
response than Windows 98, throughput-based benchmark scores 
obtained by the Winstone benchmark [21] showed that both 
systems had throughput scores within 20 percent of each other. 

DCPI is a continuous monitoring technique that attempts to 
measure the performance of hardware executing under normal 
conditions by continuously profiling a variety of hardware 
statistics [1]. TIPME also uses continuous monitoring, but the two 
systems are worlds apart in the abstractions with which they 
concern themselves. DCPI captures information about hardware 
resource usage, while TIPME captures information about high- 
level GUI events and transitions in operating system state. The 
difference in abstractions results from the difference in focus of the 
two systems: the main focus of TIPME is to identify and remedy 
operating system impediments to user-perceived performance, 
while DCPI's focus is to understand hardware behavior. 

Although there has been much research in the HC1 community 
evaluating the impact of latency on user performance, the context 
has been limited. Most of the research addresses typing 
performance and data-entry scenarios, concentrating on 
quantifying the relationship between latency and productivity 
issues, such as the error rate and the amount of work completed, 
rather than on the connection between latency and user 
satisfaction. Moreover, most of these studies have been conducted 
on non-GUI platforms, leaving user sensitivities to operations 
unique to GUIs, such as using a mouse to select a menu, 
unresearched [5][13][18]. 

3. METHODOLOGY 

The TIPME system is a measurement infrastructure that relies on 
the interaction of three different agents. First there is the user, upon 
whom we rely to notify the system of a performance problem and 
describe that problem in sufficient detail that the poorly behaved 
application can be identified. Second, there is a collection of log 
processing scripts that we use to extract and process relevant 
information from logs. Third, there is a human system expert who 
interprets the extracted information and makes the ultimate 
diagnosis and suggested correction. 

The main contributions of the system are the identification of the 
necessary information to log, a system for collecting them in an 
unobtrusive and low-overhead way, and an effective partitioning of 
the problem between human expertise and computer automation. 
In an ideal system, we would automate all processing and 
diagnosis, but there is much research to be done before such 
processing can be automated. First, there is no agreement as to the 
magnitude of latencies that begin to irritate users and we know that 
such thresholds are a function of the user's experience. Second, 
there are few techniques for making systems self-tuning, although 
we see this as a fruitful and active research area [15]. 

3.1 Identifying the Source of the Problem 
The goal of our measurement methodology is to determine why 
systems sometimes spend an unexpectedly long time processing a 
transaction that ordinarily completes with acceptable latency. 
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Figure 1. S t ructure  of TIPlVlE. Both the kernel and X Server contain non-paged ring buffer(s). Upon experiencing a problem, the user 
presses a hot-key combination, which is intercepted by the X Server (1). The X Server writes out the contents of its ring buffer to a file (2) 
and informs the kernel that the system is experiencing a problem by making a s y $ c t ; 1  call (3). The kernel sends out SIGI.JSR1 to its helper 
process(es) (4). In response, the user-level helpers read the contents of the in-kernel ring buffers and store the information to files (5, 6). 

TIPME is a measurement infrastructure that enables us to collect 
information to determine the cause(s) of unexpected latency. Since 
the long latency events we are interested in occur unexpectedly, we 
use continuous monitoring to gather data about the system state, 
saving the data to disk only when the user indicates that a problem 
has occurred, and we then perform postmortem analysis to 
diagnose the problem. 

The task of improving user-perceived performance is inherently 
iterative. Severe performance problems tend to mask smaller ones. 
As a result, users tend to report major problems repeatedly before 
reporting smaller ones, and different users tend to report the same 
problems. Therefore, we need to dispatch fixes as soon as users 
detect performance problems, so that they will uncover new 
problems As a result, the fixes we describe in our case studies are 
quick workarounds that let us deploy solutions rapidly. All three of 
the problems we identify in our case studies are research problems 
in their own right and warrant individual attention. 

3.2 Data Collection 
TIPME records process state (whether the process is running, 
runnable, or blocked, and if blocked, the event upon which it is 
blocked), context switch information, how and when events pass 
through the X Window server, and the owners of highly contested 
kernel resources. This information is stored in a collection of  in- 
memory, non-paged ring buffers. These ring buffers are sized to 
hold 30 to 40 seconds worth of  data to give the user enough time to 
indicate that there was a performance problem (on our system, that 
requires approximately 32MB of additional memory; on a faster 
machine, more memory will probably be needed). The user 
notifies TIPME of a problem by typing the hot-key combination, 
C t r l - A l t - M ± n u s ,  at which point, TIPME writes the statistics 
held in the ring buffers to disk. The overall structure of TIPME and 
how it writes data to disk in response to the hot-key combination 
are shown in Figure 1. 

We implemented TIPME on BSD/OS 3.0 and X Free86 R6.3 
running on Intel Pentium- or Pentium Pro-based personal 
computers. We chose the hardware platform for its popularity and 
the software platform for its popularity in our environment and the 
availability of the source code. The CPU cycle counter, available in 
both Pentium and Pentium Pro processors, provides cycle-accurate 
timestamps on all of the records that TIPME generates [9]. These 

timestamps are used to merge and order the records generated by 
the system. 

TIPME collects data for two major purposes. The first is to identify 
the time interval during which the user encountered a perceived 
performance problem, and the second is to determine exactly what 
was happening in the system during that problem-interval. The 
next two sections describe how the data we collect accomplishes 
both purposes. 

3.3 Determining the Problem Interval 
Our first challenge is to identify the start and end times of the 
system's handling of  the problematic user request. At first blush, it 
seems that the obvious solution is to have the X client generate a 
record before and after processing a request initiated by the user. 
While X client assistance is desirable, it is neither necessary nor 
sufficient to identify the problem interval. The latency the user 
experiences includes not only the time the client spends processing 
the request, but also the time the kernel spends delivering user- 
generated events--such as keystrokes and mouse movements-- to 
the X Server, and the time the X Server spends processing and 
passing the events to the corresponding client. The measurements 
taken by a client do not capture the entire processing path. 
Additionally, client-side measurements do not capture all of the 
time that the X Server spends processing requests generated by the 
client in response to the input event. Figure 2 illustrates a typical 
interaction that occurs as a result of a user input, such as typing a 
character in a word processing program. 

In order to identify the time interval during which the user was 
waiting for the system to respond, we must determine when the 
user initiated the problematic transaction by generating a keyboard 
or mouse interrupt and when the X Server provided the visual 
feedback that signals the end of the transaction. To do so, we 
monitor when user input enters the system and how this input is 
transformed into one or more X events, what request(s) the client 
generates in response, and when the X Server finishes handling the 
resulting request(s). From the event log, we automatically extract 
the keyboard and mouse events and then manually match the 
appropriate request to the description supplied by the user. In our 
experience, this manual matching has been nearly instantaneous; it 
takes only a few seconds' glance at the log to find the triggering 
event. We also extract messages that reflect the updating of the 
graphic display so we can identify the end of the user event(i.e., 
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Figure 2. X message exchange. When the user types a key or engages the mouse, the hardware generates an interrupt handled by the 
kernel (1). The kernel sends a message to the X Server (2) which dispatches the event to the proper client, via the kernel (3, 4). The client 
then processes the request and sends a message back to the X Server (5, 6), and the X Server updates the display (7). 

Figure 3. Process Scheduling Model. This simple state diagram depicts the model most frequently used in operating system scheduling. 
The process currently executing is in the Running state. When the scheduler decides to stop running this process, it traverses the state 
change depicted by A and enters the Runnable state which represents processes that are ready to run, but not currently scheduled. When 
those processes are rescheduled, they traverse edge B to re-enter the Running state. When a process cannot make forward progress due to 
I/O or a request for an unavailable resource, it traverses edge C and enters the Blocked state. Each process in this state is associated with a 
wait channel that corresponds to the event on which the process is waiting. Transition D represents the resource being made available, 
allowing the process to become runnable. At such a time, the scheduler may choose to immediately let it run, in which case it traverses 
edges D and B. 

the message that updates the screen telling the user that the action 
has completed). Once again, we found that identifying the correct 
event is trivial. With this information in hand, we know the interval 
during which the delayed event took place. We have also identified 
the process responsible for this event. Our next task is to determine 
the cause of the unusually long delay. 

3.4 Determining the Source of the Problem 
In order to identify the cause of a specific delay, we need to 
understand the possible causes for all delays. If we consider the 
simple process scheduling model shown in Figure 3, then we can 
characterize the causes of unexpectedly long delays to be one or a 
combination of: 

1. A change in the amount of CPU time required to 
complete the transaction (spending more time in the 
running state). 

2. A change in the amount of time that the program spends 
waiting for I/O operations and/or the availability of 
resources (spending more time in the blocked state). 

3. A change in process scheduling decisions (spending 
more time in the ready state). 

The first source of variability in response time is the change in the 
amount of the CPU time that the application and operating system 
require to complete a transaction. Note that we are more interested 
in the change, not the absolute amount of CPU time that the 
operation requires. Users learn to expect average response times. 

Our techniques are designed to capture unexpected delays in which 
the response time deviates significantly from the norm. 

Changes in the amount of CPU time that a transaction requires can 
occur for some operations, because the amount of computation 
required is variable and depends on the tasks previously 
performed. For example, the cost to search for an item on a linked 
list is highly dependent on where the target item is located on the 
list, which depends on the order of past insert operations. Both the 
application and the operating system perform operations with such 
variability and therefore, can change the amount of computation 
that they require to complete a transaction. The change in the 
amount of CPU time that the operation requires is easily detectable 
using profiling information. 

Other than the changes in the amount of CPU work required to 
complete a transaction, the only remaining software causes for 
perceptible response time variability are 1) the program not being 
runnable while it is waiting for the completion of I/O or for the 
availability of a resource or 2) the operating system deciding to 
execute other programs. These correspond exactly to the 
scheduling states that any active, non-running process can have in 
the operating system. Therefore, to assist in diagnosing the causes 
of unexpected latency, we record context switches and changes in 
process scheduling state. Table 1 describes the information we 
collect and the following paragraphs elaborate on the collection 
process. 

At every other timer interrupt (every 20 ms under BSD/OS), we 
collect the status of all the processes in the system. We record 
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which processes are running, which are runnable, and which are 
blocked and for what reason. This information provides an 
overview of the system. We also record every context switch, 
sleep, and wake-up. This completely captures the system's 
scheduling decisionsl Using this information, we can determine 
not only which process was running at what time, but also how 
long it took the system to schedule a critical process once it 
became runnable due', to an external event, such as a keystroke. 

The kernel records resource ownership by process ID (PID), so we 
need data that will enable us to construct the proper association 
between user commands and the PIDs in the system. In order to 
provide this data, we record the output ofps(1) when monitoring is 
initiated. Henceforth, we record the command line and the 
environment variables of each e x e c .  Unlike the other information 
collected by TIPME, we cannot discard e x e c  records in a simple 
FIFO manner, because process lifetimes can far exceed the 30-40 
seconds of buffer space we maintain. Instead, we retain exec 
information for 10 minutes past the process lifetime (i.e., 10 
minutes after the process has exited), so that we can diagnose 
problems in processes that have terminated before the user is able 
to report the problem. 

When we receive TIPME output from a problem event, we identify 
the problem interval as described in Section 3.3. In the process of  
determining the interval, we also identify the process that was 
delayed. We then automatically extract the information that shows 
the amount of time the particular process spent in each scheduling 
state. Using this intbrmation, we manually determine the exact 
cause of the unexpected delay. If the source of the variability is a 
change in the amount of work that the transaction performs, we use 
profiling information to determine where the extra time is being 
spent and make algorithmic changes. If the problem is a 
scheduling decision, we examine the set of scheduling decisions 
and determine what prevented the process from being scheduled in 
a timely fashion. Finally, if  the source is a resource wait, we study 
how this highly-contested resource is being used. In all the cases 
we uncovered to date, it took us only a few (5-10) minutes of 
manual processing to either identify the problem or decide what 
additional data were needed. 

3.5 Implementation Details 
There are three major components in TIPME-- the  kernel 
component, the X Server component, and the user-level helper. 
The kernel component collects the operating system statistics 
described in Section 3.4; the X Server component records X Server 
statistics and the message exchanges between the kernel and the X 
Server and between the X Server and X clients (Section 3.3); the 
user-level helper ties the other TIPME components together and 
provides the interface to control TIPME and extract the 
information collected. In order to keep the measurement system 
tractable, we do not require any instrumentation of client 
programs. The following subsections explain each of  these 
components in detail. 

3.5.1 Kernel Components 

The kernel portion of TIPME consumes 24MB of physical 
memory. TIPME uses its own memory allocator to manage this 
memory. Whenever possible, we perform allocation and 
initialization during system start-up, so that we avoid the overhead 
of  dynamic memory management. The only time we are required 
to allocate space dynamically is when recording e x e c  
information, because the length of the command-line arguments 
and the size of the environment is variable. 

We modified the console driver to trap the following key 
sequences. C t r l - A l t - P l u s  causes TIPME to start the 
monitoring system. C t r l - A l t - H i n u s  notifies TIPME that the 
user has experienced unacceptable performance. The kernel sends 
the user-level helper a SIGUSR1 that instructs it to retrieve and 
save the contents of the TIPME buffer. C t r l - A l t - 0  and C t r l -  
A l t - 1  disable and enable the keyboard logging portion of 
TIPME, so that users can prevent TIPME from recording sensitive 
keystrokes, such as passwords. 

3.5.2 X Server Modifications 

The X Server portion of TIPME uses 6MB of nonpageable 
(locked) memory for its ring buffer. Events such as the arrival of a 
character from the keyboard, an X event structure sent to a client, 

Description Use 

Process Status For all processes, record the state (mn- 
ning/mnnable/blocked) and priority. 

Context Switch When processes acquire/release the CPU. 
Information 

Resource Usage How and when highly contested resources 
are requested and acquired. 

Exec Information A mapping of program name to PID. 

By examining process states over time, we can identify which 
state contributed most significantly during a particular interval. 

This allows precise tracking of when processes are running. 

Once we have identified resource contention as the cause of a 
delay, this data lets us determine why the contention arose, 
e.g., due to repeated requests or an inadvertently long wait. 

We use this to map a user's problem description to one or more 
processes in the system. 

Table 1: Information Collected 
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and an X request structure received from a client are recorded in 
this ring buffer. 

Ordinarily, the X Server has no information about the process ID 
(PID) of the clients with which it is interacting. This is 
understandable since the X Windows protocol allows clients 
running on one host to connect to an X Server running on another 
host. In such an environment, the client's PID is of little use as an 

• identifier. However, since most of the clients connected to the X 
Server are running locally in our environment, the PID of the client 
can often serve as a useful identifier. Knowing the PID of the client 
allows us to correlate information collected by the X Server 
portion of TIPME with information collected by the kernel portion 
of TIPME. 

In order to allow the X Server to associate clients with PIDs, we 
made a small modification to the X library so that the client passes 
its PID in an unused pad field of a connection setup packet. This 
modification required that we relink the standard suite of X clients, 
including x t e r n a  and twin, distributed with the XFree86. 

When the console is executing the X Server, console input is 
passed to the X Server in raw format where each keystroke is 
reported, not as a character, but in the form of key-down and key- 
up events. During the execution of the X Server, we no longer trap 
various hot-key combinations in the kernel. Instead, we modified 
the X Server to trap and process the four hot-key combinations 
described in the previous section. Upon trapping a hot-key 
combination, the X Server portion of TIPME notifies the kernel 
portion that the hot-key combination has been pressed by calling 
s y s c t l .  The kernel portion responds to the s y s c t l  call as if a 
corresponding hot-key combination had been pressed. Unlike the 
kernel portion of TIPME, which relies on the user-level helpers to 
write the buffer contents to disk, the X Server portion of TIPME 
writes its own buffer contents. 

3.5.3 The User-Level Helper 

The user-level helper is a simple process that spends most of its 
lifetime sleeping, waiting for the SIGUSR1 signal that gets sent on 
TIPME shutdown. When the user-level helper is awakened, it uses 
the kxrm(2) interface to copy data from the in-kernel buffer to user 
space. The helper then writes this data to disk. 

We perform postmortem analysis using several perl scripts linked 
with the Berkeley DB package [17]. These scripts process the raw 
data, generating human-readable output. 

3.6 Overhead of TIPME 
As mentioned in Section 3.5, TIPME consumes a large amount of 
memory (30MB). The kernel portion of  TIPME consumes 24 MB 
of physical memory, which is allocated at system bootup. The X 
Server portion of TIPME consumes 6 MB of nonpageable memory 
acquired via the mJ.ock(2) interface. In order to isolate the effects 
of consuming such a large amount of memory from the 
performance our users observe, we equip our machines with an 
extra 32MB of memory before installing TIPME. While such 
memory consumption may seem excessive, the incremental cost of 
memory is trivial (e.g., approximately $20 for an extra 32 MB). 

Event 

Event Latency TIPME %-age TIPME 
(incl. overhead 

overhead 
overhead) 

Moving a mouse pointer 0.3 m s  80 u s  27% 

Typing a character in a 2.0 m s  340 u s  17% 
Xterm Window 

Displaying the file menu 470.0 m s  5100 u s  1.1% 
in Netscape 3.0 

Tab le  2: Latency and T I P M E  o v e r h e a d s .  These  latencies 
were  measured  using the Pen t ium cycle  counter, which 
introduces  little m e a s u r e m e n t  overhead.  

The kernel and the X Server code expansion are miriimal at 9KB 
and 22KB, respectively. 

The mntime overhead of TIPME is low and reasonably constant. 
Table 2 shows the typical cost of generating each type of TIPME 
record. A more important and useful overhead statistic is how 
much of the latency that the user experiences is due to the TIPME 
overhead. To determine this, we label each TIPME record with the 
time it took to create the record. During the postmortem analysis, 
we add up the cost of generating all the records between the 
beginning and the end of the latency that the user experienced. 
Table 2 shows some typical latencies and TIPME overhead for 
common events measured using a 100 MHz Pentium PC with 64 
MB of memory. As can be seen from Table 2, the TIPME run-time 
overhead can be a significant percentage of an event's latency 
when the event is sufficiently short. However the overhead is 
negligible when compared to the limits of human perception, 
which are on the order of tens of milliseconds [16]. 

3.7 Limitations 
TIPME was designed to be used in an environment where all users 
have their own machines and perform most of their dally 
computation on those machines. Therefore, TIPME measures 
latency experienced by the console user. While it is possible to use 
TIPME output to determine the source of problems experienced by 
remote users, TIPME cannot account for the communication delay 
between the measured machine and the console at which the 
remote user is located. 

Our methodology concentrates on diagnosing the sources of user- 
perceivable delays, which are typically at least several tens of 
milliseconds and often as long as several seconds. The data we 
collect have sufficient detail to diagnose events with these 
latencies, but they are sometimes too coarse to diagnose sub- 
millisecond delays. Fortunately, sub-millisecond delays do not 
impact user-perceived performance. 

There is also a limit to how much understanding we can gain about 
the source of the delay. We treat some sources of delay as black 
boxes--some to make the problem simpler and others because it is 
necessary. We assume that application programs do not schedule 
their own threads. We also treat network-related delays as a black 
box. Consider a client-server architecture with our measurement 

245 



infrastructure deployed on the client machine. Typically, the client 
program will perform a network I/O waiting for a response from 
the server. The measurement infrastructure will recognize this 
deIay only as network I/O delay although such latency is a 
combination of network transfer latency and the latency with 
which the server provides response, which can be further broken 
down into CPU time and wait time, in the same way we have 
broken down the response time of the client machine. Since such a 
diagnosis requires us to deploy our infrastructure on both client 
and server machines and coordinate their activity, we have left it 
for future work. 

We are also unable to determine the cause of device (e.g., disk) 
misbehavior. Intelligent disk drives can sometimes exhibit 
unexpected behavior, such as taking several seconds to complete 
an I/O request for no apparent reason. Our infrastructure will 
identify when such a device is the cause of long latency, but it 
cannot determine why the device behaved in such a manner. 

Finally, our methodology sometimes requires us to re-instrument 
the system and re-measure the problem. The basic set of data we 
collect is sufficient to diagnose all detectable performance 
problems except for resource contention problems. The data allows 
us to determine on which resource the latency-critical process is 
blocked, but in order to correct a resource contention problem, we 
not only need to understand which resource is contested but also 
how the resource is being consumed. This requires that we collect 
additional information about how the resource is allocated and 
freed. Currently, we have adopted a delayed-instrumentation 
strategy of adding instrumentation points as new contested 
resources are identified. In a commercial system, we envision 
including full resource accounting that can be enabled optionally 
on a per-resource basis. Thus, once resource contention is 
identified, it would be a simple matter to enable collection of the 
necessary resource information. 

4. CASE STUDIES 

In this section, we demonstrate TIPME's utility in identifying 
system problems that lead to poor user-perceived performance. We 
deployed TIPME on two workstations, one with a 133-MHz 
Pentium PC processor and a second with a 200-MHz Pentium Pro 
processor. We asked the users to signal unacceptable performance 
using TIPME's hot-key combination and then waited to receive 
data. The typical tasks performed on these machines are editing, 
compiling, and web browsing. We used a third machine (the 100- 
MHz Pentium PC mentioned earlier) as a microbenchmarking and 
test machine. In the remainder of this section, we demonstrate how 
TIPME helped us to identify problems with the scheduling 
algorithm and to determine highly contested resources and their 
u s e .  

4.1 Multi-second Console Pause 
The first problem that a user reported was that the console became 
completely unresponsive for several seconds. This problem was 
observed when heavy jobs with frequent disk I/O, such as a kernel 
build, were running in addition to the interactive foreground 
process. A quick manual inspection of  the TIPME logs 
immediately revealed that the X Server process was blocked 

during the problematic interval waiting on the swpgiobuf wait 
channel. This made the console unresponsive to user input. 

We searched the system sources for the s w p g i o b u f  wait channel 
and learned that when the VM system initiates a page- in or page- 
out request, it acquires a b u r  structure, which is used to describe 
the specifics of the I/O. BSD/OS' VM system maintains a pool that 
contains a fixed number of  these structures 1. When there is a 
shortage of b u f  structures, processes go to sleep on the walt 
channel s w p g i o b u £  waiting for a buffer to become available. 
During the problem interval, the TIPME output reported that the X 
Server was blocked on this wait channel as follows: 

62007.6920 sec cost 141.9 us 

pid: 207 is blocked on fOl19610(swpgiobuf) 

The first line shows the time at which the record was collected and 
the time required to generate the record. The second line shows 
that process 207 (the X Server) is blocked on the wait channel at 
address 0xf0119610 and that the name of the wait channel is 
swpgiobuf. 

In order to understand how such contention arose, we modified 
TIPME to record the usage of  these structures. We redeployed 
TIPME and waited for the problem to reappear. Another quick 
inspection of the TIPME output indicated that during the 
problematic interval, the page-out daemon was monopolizing all of 
the available buf structures to initiate page-out requests. Since no 
b u f  structures were available to initiate the page-in request on 
behalf of the X Server, it was blocked, rendering the entire console 
unresponsive to user input. 

4.1.1 Reproducing the problem using 
microbenchmarks 

While these problems occur infrequently during actual use, once 
we understand their cause we can create a microbenchmark that 
reproduces the exact behavior. We constructed a microbenchmark 
that created enough memory pressure to cause the page-out 
daemon to monopolize all the VM b u f  structures, and we verified 
that the same problems arose by examining TIPME output during 
the microbenchmark. The benchmark consists of a timing process 
and a number of child processes. The timing process sleeps for 100 
ms, reads a word from a 4MB buffer, and records a timestamp by 
reading the CPU's  cycle counter [9]. The buffer is referenced 
cyclically with a 4KB stride, which is equal to the page size used 
by the Pentium and Pentium Pro processors. The child processes 
generate memory pressure by continuously writing a single word 
to their own 12MB buffer, also using a 4KB stride. 

This benchmark measures how promptly the system processes an 
event that involves a potentially faulting memory reference while 
the system is experiencing heavy memory pressure. Ideally, the 
time stamps generated by the timing thread will be approximately 
100 ms apart. Any delay in handling them will lengthen the 

1. The number of preallocated b u £  structures is determined 
by the amount of physical memory in the system. Our two 
machines pre-allocated 64 and 50 such buffers, respectively. 
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Figure 4. Latency Distributions Before and After System Modification. The left graph shows the latency distribution we observed on the 
unmodified system using our microbenchmark. The maximum observed latency was over 8 seconds and we had two data points in excess of 
a second. The right graph shows the latency distribution after changing the buffer allocation and disk scheduling strategies. After the 
changes, the maximum observed latency is approximately 0.37 seconds. 

interval between two timestamps. (The 100-ms delay was selected 
to model the inter-arrival time of fairly rapid keyboard input.) We 
ran these benchmarks with the test machine running in single-user 
mode and disconnected from the network. We believe this artificial 
environment is justified, since we are trying to reproduce a specific 
problem that we observed under normal use, and eliminating 
unexpected external interference allows us to isolate the problem. 

We varied the number of child processes from one to eight. When 
the number of children reached four, the system began to exhibit 
the problem we were trying to reproduce. The intervals between 
two time stamps recorded by the benchmark program often grew 
longer than one second. In some cases, the interval was nearly 
eight seconds. We used TIPME to examine the state of the system 
during such problems and confirmed that the cause of the delay 
was the timing thread blocked on the swpgiobu£ .  

4.1.2 Finding a Remedy 

Diagnosis of the problem motivates and enables the creation of 
better perf0itrning algorithms, which can be evaluated using the 
microbenchmark we created. Although devising a complete 
solution to this problem is not the goal of this work, it was 
necessary to devise a simple workaround so that we could uncover 
other (unrelated) problems. If we did not remove this performance 
problem, users would have kept reporting the same problem. 

We made ten of the b u f  structures unavailable to the page-out 
daemon. This is sufficient to allow the measurement thread and all 
the load-generating child processes to make forward progress, 
even under heavy page-out traffic. We reran the microbenchmark, 
but were disappointed that we did not observe any significant 
improvement in the system's behavior. 

We turned to TIPME to help us identify the new problem. 
Inspection of the TIPME logs revealed that our change did prevent 
the page-out daemon from monopolizing b u f  structures, but 
fixing that problem revealed a second problem. The measurement 
thread was now waiting for paging I/O to complete on the 
swpgio  wait channel. By examining the use of the swpg io  wait 
channel, we observed that the page-out daemon had initiated 30- 

40 page-out requests and that they were being queued ahead of the 
I/O request that was issued in response to the timing thread's page 
fault. BSD/OS uses the CSCAN [12] algorithm for disk 
scheduling. CSCAN is designed to improve disk throughput by 
ordering disk requests to minimize seeks, but does so at the 
expense of individual request latency. The system stalled for 
several seconds handling a page fault, because it was queued 
behind the paging requests. 

To temporarily work around this problem, we changed the disk 
request ordering algorithm into FIFO with skip ahead. Under this 
simple algorithm, all requests except page-faults are queued in a 
FIFO manner. The page-fault requests are placed ahead of other 
requests in the disk queue (i.e., "skipped ahead") as long as the 
following conditions are met: (1) page-fault requests do not skip 
ahead of other page-fault requests, and (2) when skipping over 
page-out requests, there must be at least three page-out requests 
ahead in the queue. The goal of this algorithm is to handle page- 
faults quickly and, at the same time, allow the page-out daemon to 
maintain a large enough pool of free physical pages in the system. 
We determined the value of three experimentally by examining the 
TIPME output, making sure that threads were not blocked on the 
e h r d _ s  walt channel, which indicates a shortage of free pages. 

Figure 4 shows the results of the microbenchmark before and after 
our modifications. The microbenchmark collects 10000 time 
stamps from a single trial. The data shown are in histogram format 
using 10-ms buckets. The results show that our changes greatly 
reduce the severity of the problem. The maximum response time 
drops from eight seconds to approximately 0.4 second. 

We expected the disk queueing algorithm to reduce system 
throughput, but the time to build the BSD/OS kernel actually 
improved from 861.2 seconds to 839.3 seconds 2. This result was 
unexpected, but we hypothesize, that because kernel builds are 
single-threaded, faster page-fault handling is more important than 
potentially lower disk throughput. Though we have not been able 
to demonstrate the negative impact of our changes to system 
throughput, we expect that these changes will worsen system 

2. These figures are the mean of five runs. The standard 
deviation was less than 0.2% of the mean. 
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F i g u r e  5.  P r o c e s s  p r i o r i t y  a n d  C P U  u s a g e :  These graphs show the priority level (a) of the relevant processes and how they consumed 
CPU (b) during the problematic time interval. These graphs were derived from the TIPME output which showed that the system spent 
most of its time executing compiler processes instead of the X Server because the compiler processes were able to attain higher priorities 
than the X Server. 

throughput in some cases, However, we have shown that the 
throughput-centric disk scheduling algorithm actually does cause a 
very real and user-perceptible performance problem, and that a 
different and "worse" (with respect to throughput) disk scheduling 
algorithm improves user-perceived performance. Although it is 
beyond the scope of this paper, we believe we can design a better 
scheduling algorithm that will provide a compromise between 
throughput and latency, or perhaps, a correct solution may be to 
employ a different disk scheduling algorithm depending on the 
specific needs of the system (e.g., using different scheduling 
algorithms for workstations and servers). 

Another point worth noting is that our use of microbenchmarking 
allowed us to discover and fix both first and second order problems 
at once. Without our microbenchmarking effort, we would have 
declared victory once we fixed the buffer allocation problem and 
would have needed ,'mother user's dissatisfaction to alert us to the 
disk scheduling problem. 

4.2 Sluggish mouse pointer movement 
The second performance problem we captured was described by 
the user as, "Sluggish mouse pointer movement when there was a 
compile job running in the system." During the problem interval, 
the system spent up to a second updating the mouse pointer in 
response to the user's movement. Operations such as mouse 
pointer movement are designed to provide an illusion of physical 
connection between the input device and what appears on the 
screen. These continuous operations are more latency critical than 
discrete operations such as the echoing of keystrokes. MacKenzie 
and Ware showed that the speed and accuracy of mouse pointer 
movement does not change in a significant manner when the 
latency of mouse pointer update changes from 8.3 ms to 25 ms but 

that both speed and accuracy worsen in a measurable way when 
latency is increased to 75 ms [11]. This result suggests that the 
threshold for acceptable mouse pointer update latency is 
somewhere between 25 and 75 ms. 

The data we collected using TIPME showed that during the 
problematic interval, the process scheduler favored compilation 
jobs over the X Server, which handles the task of mouse pointer 
update. As a result, it took 850 ms for the system to process mouse 
input. This finding is surprising because BSD/OS UNIX uses a 
priority-based scheduler that favors interactive processes over 
CPU-intensive processes such as compilation. This scheme does so 
by monitoring each process' CPU usage and lowering the priority 
of processes that frequently consume their full scheduling 
quantum. In this particular instance, the scheduling algorithm was 
not working as designed. 

Figure 5(a) shows the change in the processes' priorities during the 
problem interval. Under BSD/OS UNIX, a numerically smaller 
priority indicates a higher priority. Each process executing user- 
code is given a priority level (numerically) larger than or equal to 
50. The system divides all the processes into one of 32 priority 
classes by putting processes with similar priority levels into one 
priority class. Processes in a lower priority class are executed only 
when there are no runnable processes in any of the higher priority 
classes. Processes within the same priority class are executed in a 
round-robin fashion. 

Figure 5(b) shows how processes consumed CPU time during the 
problem interval. The solid horizontal lines indicate that the 
corresponding process on the Y-axis was executing during the 
depicted time interval. The graph also shows the process state 
changes that affect scheduling decisions such as birth(fork), 
death(exit), sleep, and wakeup. From this graph, we can observe 
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when the X Server is awakened in response to mouse input and 
when it went back to sleep after handling the mouse input. The 
graph shows that during the problem interval, the system spent 
most of its time executing compile jobs, CPP (C preprocessor) and 
CC1 (C compiler), instead of the X Server. 

Although the X Server is an interactive process, the priority of the 
X Server (58) is lower than expected. Most of the other interactive 
processes such as command-line shells usually show the highest 
possible user priority of 50. The X Server's lower priority reflects 
the fact that the X Server has been performing computation 
including previous mouse pointer updates and updates of an 
x t e r r a  window in which the compile job is executing. Although 
the latter task was performed on behalf of an X client, the X Server 
is charged for the computation, and as a result, its priority is 
lowered. 

In comparison, each compile job is initially given a higher priority 
level than that of the X Server. Although newly created processes 
initially inherit their priority from the parent, the scheduler soon 
recalculates their priorities based on their past CPU usage history. 
The initial rise of CCI's priority observed around time index 0.34 
is due to this recalculation. As CC1 has little or no past CPU usage 
history, the scheduler assigns high priority to the compute-bound 
CC1 process. The lack of CPU usage information causes the 
scheduler to assign a high priority to newly created processes 
regardless of the processes' true CPU usage characteristics. 

As a result of this oversight, a newly spawned compile job initially 
attains a high priority despite being compute-bound. It takes 
several hundred milliseconds for the scheduler to build up enough 
CPU usage history to adjust the compile job's priority to be lower 
than that of the X Server. In some cases, such processes terminate 
before the scheduler accumulates enough information to make 
effective scheduling decisions. This several hundred millisecond 
delay in adjustment is sufficient to starve the X Server, resulting in 
perceivable, sluggish mouse pointer movement. The symptom is 
especially bad in situations in which many compute-bound child 
processes are created repeatedly, such as during a build. Each child 
can hinder the progress of a latency-critical process for several 
hundred milliseconds. 

4.2.1 Reproducing the problem using 
microbenchmarks 

The cause of the problem is the scheduler granting newly-created 
processes high priority regardless of the processes' true CPU usage 
characteristics. Newly-created, compute-bound processes are 
allowed to use up more than their appropriate share of the 
processor until the scheduler collects enough data to adjust the 
priorities accordingly. This problem is magnified when a stream of 
new processes is introduced into the system. By continuously 
introducing compute-bound jobs with high initial priority into the 
system, a parent process tricks the scheduler into allocating more 
CPU time to its compute-bound children, starving other processes, 
including latency-critical ones. 

The microbenchmark we constructed consists of a measurement 
thread and one or more load generating threads. The measurement 
thread executes a loop that performs a computation that takes 

approximately 10 ms of CPU time followed by 50 ms of sleep 
time. We selected the duration of the computation and sleep 
intervals such that the priority of the measurement process would 
stay around 58 to approximate the priority level of the X Server 
when the system experienced the performance problem. At the end 
of the each loop iteration, this thread records a timestamp. In our 
benchmark run, we set the number of loop iterations to generate 
10000 intervals between timestamps. 

If the measurement process is the only process in the system, the 
timestamps that the process generates should be spaced at about 50 
+ 10 = 60 ms. A small deviation in this value is expected when 
other processes are present in the system. However, an excessive 
(several hundred milliseconds or more) deviation is an indication 
that the CPU scheduler made a bad decision. 

To ensure that the source of the problem is the creation of 
compute-bound processes and not simply their existence, we run 
the test under two different load conditions. The first load 
condition involves one CPU-bound process that executes an 
infinite loop. The second load condition involves a thread that 
forks a compute-bound child once every two seconds. The parent 
thread sleeps between fork operations. The child executes an 
infinite loop, but the parent always terminates the child process 
before forking a new one so that there is at most one child present 
in the system at any time. The time interval is selected to model a 
job such as a build that repeatedly spawns compute-bound 
processes. 

We ran this benchmark on our test machine. With a single, long- 
running compute-bound process, all the timestamps reported the 
expected 60 ms latency. However, with a series of short-lived 
compute-bound processes, the results were scattered; the recorded 
intervals ranged between 60 and 600 milliseconds with a 
significant number of them (nearly 10%) over 150 milliseconds 
and seven iterations requiring 561 milliseconds to complete. Using 
TIPME during the benchmark run, we verified that we had 
recreated the exact problem our users saw in practice. 

These benchmarks demonstrate that the source of the performance 
problem is not the existence of compute-bound processes in the 
system but the frequent creation of compute-bound processes. The 
scheduling algorithm treats a newly created process as if it is I/O 
bound until the process accumulates sufficient CPU usage 
information. This allows these young processes to delay the 
execution of other processes in the system. 

4.2.2 Finding a remedy 

There are two underlying factors to the sluggish mouse movement 
problem. The first is the way that the scheduler calculates the 
priority of newly created processes, and the second is the 
fundamental way in which the scheduler performs CPU-usage 
calculation. The system charges all the CPU time a process 
consumes to the process that performed the computation regardless 
of the beneficiary of the computation. In this particular problem, 
the X Server was penalized for the computation it performed on 
behalf of the X client, which is an xterm program, that was 
displaying the output generated by the build process. 
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Figure 6. Latency Distribution under Windows 95 and Windows NT 4.0. We executed the microbenchmark described in Section 4.1.1 
under Windows 95 and Windows NT 4.0. The left graph shows the latency distribution under Windows NT; the right graph shows the 
latency distribution under Windows 95. Although the longest latency observed is not as long as those observed under our target platform, 
the latencies are well above the limits of human perception. 

Correcting the above problems completely requires an extensive 
redesign of the system's scheduler. We believe ideas such as lottery 
scheduling [20] and resource containers [2] can be used effectively 
to tackle this problem. Although finding such solutions is not the 
target of this study, we still must prevent this problem from 
occurring in order to find other problems. As a temporary 
workaround, we modified the kernel so that the priority of the X 
Server is fixed at 49, one level higher than the highest possible user 
priority. This change has kept the problem from reappearing and 
made the response of the mouse perceptibly better, even when the 
system experiences a high rate of process creation. 

5. GENERALITY OF TIPME 

In this section, we discuss the challenges to overcome in order to 
use TIPME in other environments and then use the 
microbenchmarks devised in the previous section to determine if 
other systems experience performance problems under similar load 
conditions. 

Obtaining the information we needed required instrumenting the 
X-Server. Unfortunately, such instrnmentation must be part of the 
main event loop, so the code is not easily extracted for use with a 
different window system. However, the changes are quite 
localized, and as such, could be applied to other window systems 
without much difficulty. The kernel changes are, for the most part, 
more modular. The kernel sampling and ring buffer management 
code are fully encapsulated as their own small subsystems. 
Unfortunately, there are hooks into these subsystems from memory 
management, process handling, and console management. 
Additionally, the system is tightly integrated with the memory 
management and process structure of BSD/OS. Fortunately, the 
total number of lines of code is approximately 2000, which means 
that porting the system to an entirely new operating system is not 
an unwieldy task. 

Even without porting TIPME, we can assess its generality at 
finding interactive problems by running the microbenchmarks 
developed for BSD/OS on other platforms. We ported the 
microbenchmarks to the Win32 programming environment [14] 
and ran them on Microsoft Windows 95 and Windows NT 4.0. 

The first microbenchmark tested how consistently the system 
performed a short task introduced every 100 ms when memory- 

intensive tasks were present in the system. Figure 6 shows the 
results for Windows 95 and Windows NT 4.0. Although the 
longest latency is not as long as those we observed under BSD/OS, 
there are still cases in which the system does not handle the task in 
a timely manner. In both the Windows 95 and Windows NT 
measurements, there are cases in which the system spends nearly a 
second completing the task. Such latency is well above the human 
perceptual threshold for simple interactive tasks such as echoing 
keystrokes. 

We also ran the benchmark we used in Section 4.2.1 under 
Windows 95 and Windows NT 4.0. The benchmark results show 
that neither system experiences the problem, reliably scheduling 
the measurement process within 60 ms of the process becoming 
runnable. Custer states that the Windows NT scheduler increases a 
thread's priority when the thread is unblocked [4], and according 
to King [10], the Windows 95 scheduler uses a similar policy, 
boosting the priority of threads when they become runnable. These 
policies are designed to provide good response time to interactive 
processes that have a tendency to block frequently. This is in stark 
contrast to BSD/OS's scheduling policy, in which the processes 
can only receive an increase in priority indirectly by not 
consuming the CPU 3. We believe this policy difference is the 
reason that both Windows NT and Windows 95 performed better 
than our target system. 

Although only one of the two problems we discussed manifests 
itself in the Win32 systems, personal experience indicates that 
these systems also suffer from variable and unacceptably long 
delays. We believe that the experience we gained in understanding 
what and how to instrument BSD/OS is directly applicable to these 
other environments, and that an implementation of TIPME on 
Windows 95 or NT would help identify and correct problems in 
those systems. 

3. The BSD/OS process scheduler temporarily raises 'the 
priority of unblocked processes, but its effect is limited to the 
time that the thread is executing inside the kernel. The 
purpose of this priority manipulation is to allow threads that 
can hold critical kernel locks to exit the kernel quickly--not 
to improve interactive response time. 
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6. CONCLUSIONS 

The definition of performance is unique under interactive systems 
in that it is based on users' perceptions, not on easily quantifiable 
metrics. User-perceived performance is affected by latency. In 
particular, it is greatly affected by unexpected latencies. In this 
paper, we have described TIPME and demonstrated how it can be 
used to identify and help us remedy such long latencies. The 
causes of the performance problems we discussed here were 
inappropriate scheduling decisions, resource contention, and a disk 
scheduling algorithm that favors throughput over latency. 
Although our simple workarounds are not sophisticated enough to 
be complete solutions, we have shown that we can reduce both the 
frequency and the severity of such problems. 

The research and commercial communities have been relying 
heavily on throughput-based benchmarks, tuning systems to 
improve throughput. These techniques are still useful aids to 
improving average-case performance. However, the popularity of 
single-user, interactive systems, such as those based on GUIs, has 
made user-perceived performance more important than ever. We 
must recognize that uncommon cases with little effect on overall 
system throughput or average-case performance are important 
determinants of user-perceived performance, and we must begin 
using infrastructures such as TIPME to eliminate the infrequent 
performance problems that irritate users. 

There are a number of ways in which we can improve the 
sophistication of TIPME. The first is to remove the human user 
from the evaluation cycle, permitting a much quicker and more 
extensive evaluation. We are in the process of characterizing user 
profiles and deriving models of users' tolerances for latency that 
will enable us to automatically detect "unacceptable" performance. 
When this work is complete, we can automate much of our system 
testing and, ideally, produce many more cases of bad system 
performance. We expect that the diagnosis and correction of these 
problems will remain a manual process for the foreseeable future, 
however, ongoing work in self-tuning systems holds promise as a 
means for automating this process as well. 
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