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Motivated by diverse applications in sharing economy and online marketplaces, we consider optimal pricing

and matching control in a two-sided queueing system. We assume that heterogeneous customers and servers

arrive to the system with price-dependent arrival rates. The compatibility between servers and customers

is specified by a bipartite graph. Once a pair of customer and server are matched, they depart from the

system instantaneously. The objective is to maximize long-run average profits of the system while minimizing

average waiting time. We first propose a static pricing and max-weight matching policy, which achieves

O(
√

η) optimality rate when all of the arrival rates are scaled by η. We further show that a dynamic pricing

and modified max-weight matching policy achieves an improved O(η1/3) optimality rate. Under a broad

class of pricing policies, we prove that any matching policy has an optimality rate that is lower bounded by

Ω(η1/3). Thus, the dynamic pricing policy and modified max-weight matching policy achieves the optimal

rate. In addition, we propose a constraint generation algorithm that solves an approximation of the MDP

and demonstrate strong numerical performance of this algorithm.

Key words : queueing, dynamic pricing, max-weight matching, Markov decision process

1. Introduction

In two-sided queues, customers and servers both arrive to the system and then wait to be matched.

Many emerging applications and rapidly growing marketplaces can be modeled as such systems:

e.g., Uber and Lyft where passengers are matched with drivers, Grubhub and DoorDash where

customers are matched with meal delivery couriers, and crowdsouring platforms where tasks are

matched to contributors. Most of these platforms use both dynamic pricing and dynamic matching

as levers to facilitate market profitability and efficiency.

In this paper, we consider a canonical model of two-sided queues with multiple types of servers

and multiple types of customers. Each type of customer is allowed to be matched with only a subset

of server types. For example, in the case of ride-hailing marketplace, the types of servers (drivers)

and customers are determined by their respective geographical locations — only customers and

servers which are nearby will be compatible to be matched to each other — as well as other factors

such as number of seats needed, vehicle type, and vehicle capacity. In the case of crowdsouring

platforms, the types are determined by the nature of tasks and the expertise of contributors.

We assume that at each point in time, the system operator sets a price for each type of customer

and server. Then, customers who are willing to pay and servers who are willing to serve for the
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quoted prices enter the system. They each wait in separate queues, until they are matched to a

compatible counterpart. Once a pair is matched to each other, they will leave the system immedi-

ately in order to complete the service. The system operator earns a profit, which is equal to the

difference between the price charged to the customer and the price quoted to the server.

We formulate the above system as an Markov decision process (MDP) in infinite horizon. The

operator can vary the price for each type of customer and server, as well as decide when to match

and which customer-server pair to match. The objective is to maximize the profits obtained by the

system operator, while accounting for the queuing delay experienced by the customers and servers.

We are especially interested in the behavior of systems with large traffic, where all of the arrival

rates are scaled by a factor η→∞. Under this scaling regime, any policy that is within o(η) of the

optimal objective is asymptotically optimal.

The main challenge in this problem is the curse of dimensionality in solving the MDP. As the

number of customer or server types increases, the dimension of the state space increases exponen-

tially, even when the buffer size of the queue for each type is bounded by a constant. Thus, it is

intractable to solve the exact MDP for large scale systems with multiple types, which are often

encountered in practice. In this paper, we propose approximation technique to obtain near optimal

solutions for the MDP.

The contributions of the paper are the following. We model a bipartite two-sided queuing network

with stochastic arrivals as a Markov decision process (Section 2). In some special cases, we are able

to show structural properties of the optimal dynamic pricing policy (Section 3). We then analyze

a fluid model (Section 4). The revenue obtained by solving the fluid model is an upper bound

on the achievable revenue under any policy. We propose a fluid pricing and max-weight matching

policy, and show that the profit loss from the fluid revenue is O(
√
η); thus, it is asymptotically

optimal. A noticeable feature of this policy is that it does not use the static optimal matching

solution from the fluid model. Instead, this policy applies max-weight matching (motivated by

Tassiulas and Ephremides (1992)) which is adaptive to queue lengths. We also propose a two-price

and modified max-weight matching policy, and show that the profit loss from the fluid revenue

is reduced to O(η1/3) (Section 5). Under a broad class of pricing policies, we further show that

any matching policy will have a profit loss from the fluid revenue is lower bounded by Ω(η1/3)

(Section 6). Finally, we present an LP-based approximation technique and a constraint generation

algorithm to solve the MDP efficiently (Section 7).

1.1. Literature Review

Dynamic Matching. Dynamic matching markets have widespread applications, for exam-

ple, in ride sharing (Banerjee et al. 2017), online marketplaces like Amazon.com or Ebay, kidney
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exchange (Roth et al. 2007, Anderson et al. 2017), payment processing networks (Sivaraman et al.

2018) among others. Now, we will discuss few previous work involving dynamic matching in the

context of two sided queues.

Caldentey et al. (2009) and Adan and Weiss (2012) consider bipartite matching for two-sided

queues on a first-come-first-served basis: each arriving customer is matched to a compatible server

who has the earliest arrival time and has not been matched. Under this matching rule, they

analyzed limiting results of matching rates between certain customer and server types. Furthermore,

they deduced the necessary conditions on the frequency of arrivals for stability of the system and

also derived the stationary distribution. Gurvich and Ward (2014) analyze a general multi-sided

queuing system, where more than two sides may be present. The objective is to minimize finite

time cost incurred due to queuing. They presented a matching algorithm and showed asymptotic

optimality with rate of convergence O(
√
η) where arrivals are scaled by η.

Hu and Zhou (2018) studied a two-sided matching system similar to ours. The goal is to maxi-

mize the discounted reward obtained by matching customers and servers in a finite horizon, while

accounting for the holding costs. They study conditions such that a priority rule is optimal. In

addition, they present a matching algorithm based on fluid approximation and show that it is

asymptotically optimal. The main distinction of Hu and Zhou (2018) with our paper is that they

do not consider dynamic pricing. In addition, while they use fluid approximation to generate static

matching decisions, we use max-weight algorithm to generate matching decisions that are adap-

tive to queue lengths (see discussion on max-weight algorithm below). Chen and Hu (2019) study

dynamic pricing and matching for a single product/service with strategic customers and servers.

Different than ours, their matching policy does not necessarily comply with first-come-first-served

basis. Our model also allows different types of service.

Dynamic matching problems were also studied in the context of kidney exchanges albeit in a

non-two-sided setting in Anderson et al. (2017), Akbarpour et al. (2019). Due to existing laws,

pricing is usually not allowed in kidney exchanges. These papers study the value of “batching”,

i.e., holding compatible matching pairs in hope that better matching will arrive in future. However,

both papers find that batching in general does not provide significant benefit.

Dynamic Pricing for Queues. Dynamic pricing is a common mechanism for increasing

revenue. First we discuss the literature involving dynamic pricing in the context of single sided

queue and later also present some papers involving two sided queues.

Low (1974a) is one of the earlier works studying dynamic pricing in a single sided queue. The

paper considered price dependent customer arrivals with a finite buffer; the rewards include the pay-

ment by customers and holding costs incurred by the operator. Monotonicity of the optimal pricing
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policy is showed. It was later extended to infinite buffer capacity in Low (1974b). Chen and Frank

(2001) considered a queuing model with customers who are sensitive to both waiting time and price.

They presented structural properties on optimal pricing decisions and monotonicity of optimal

bias function. In the context of network services like call centers, Paschalidis and Tsitsiklis (2000)

considered a system with finite total resource. They consider different types of price dependent

customers arrivals which requests for a fraction of the resource. The objective is to find a pricing

policy to maximize the revenue. They show multiple structural properties like concavity of value

function and monotonicity of optimal policy.

Kim and Randhawa (2017) considers a single server queuing system and studies the benefit of

dynamic pricing over static pricing. They consider that the customers are delay sensitive and

consider similar objective as ours, which is to maximize the revenue. They present asymptotically

optimal dynamic pricing policy and a two-price policy and also provide the rate of convergence

of these policies. The main distinction of Kim and Randhawa (2017) with our paper is that they

consider a single server queue, whereas we consider a network of two-sided queues where matching

decisions are required.

A two-sided queueing model with both customer and server arrivals is studied by

Nguyen and Stolyar (2018). They consider server arrival by invitation which is analogous to pric-

ing for the servers. The customers and servers are allowed to abandon, which ensures stability.

However, the focus in Nguyen and Stolyar (2018) was to establish process level convergence, while

the objective in our model is to maximize the profit of the system.

Several recent papers have studied dynamic pricing in the context of ride hailing systems

(Korolko et al. 2018, Besbes et al. 2018, Hu et al. 2019). Banerjee et al. (2017, 2018) study a closed

queuing network, where the number of cars in the system is a constant and the customers aban-

don the system if they are not matched immediately. Banerjee et al. (2017) provides a state-

independent pricing policy and prove the approximation ratio with respect to optimal pricing

policy. (Banerjee et al. 2016) provides a state-dependent pricing policy and argue that the benefit

of dynamic pricing is in the robustness of the performance of the system.

Dynamic pricing mechanisms have also been extensively studied in revenue management liter-

ature (Talluri and Van Ryzin 2006). In our model, we use dynamic pricing as a lever to increase

system operator’s profit while making the system stable. Note that dynamic pricing subsumes

external control like admission control of customers and on-demand servers (rejection is equivalent

to increasing prices to infinity).

Max-Weight Algorithm. In this work, we propose a max-weight matching algorithm for a

two-sided queuing problem. This algorithm was first proposed by Tassiulas and Ephremides (1992)
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in the context of communication networks. After that, the max-weight algorithm and the backpres-

sure algorithm, which is a generalization of the max-weight algorithm, are studied intensively in the

literature. The book by Srikant and Ying (2014) provides an excellent summary. The performance

of max-weight algorithm in the context of a switch operating in heavy traffic has been studied

by Maguluri and Srikant (2016). The backpressure algorithm was used in the context of online ad

matching in (Tan and Srikant 2012) and in the context of ride hailing in (Kanoria and Qian 2019).

1.2. Notation

Throughout the paper, vectors are boldfaced. We use 〈., .〉 to denote dot product between two

vectors. All the functions applied on a vector is component wise, e.g. F (λ) is defined to be

(F (λ1), . . . , F (λm)). Moreover, a≤ b means that all the components of a is less than or equal to

corresponding components of b. We use i and superscript (1) to denote a server type and j and

superscript (2) to denote a customer type. In addition, we define the vector e
(2)
j and e

(1)
i as a vector

with all zeros except a one for type j customer and type i server respectively.

We define E[.] for expected value of a random variable and the conditional expectation E[.|x]
is written as Ex[.] for the ease of notation. We denote the set {1,2, . . . , n} by [n]. We denote the

vector with all 1’s as 1n with size n; we will sometimes omit the subscript if the size of the vector

is clear from the context wherever it is used. In addition, we define 0n as the vector with all 0’s of

size n and we omit the subscript if the size of the vector is clear from the context. For the vectors

x ∈Rn and y ∈Rm, we denote the concatenated vector of n+m dimension by (x,y). If x and y

are of the same dimension, we denote the component wise product by x ◦y.

2. Model

We model the multiple types of customers and servers by a bipartite graph G(N1 ∪N2,E), where

N1 is the set of server types with |N1| = n and N2 is the set of customers type with |N2| = m.

Here, E is the set of edges in the bipartite graph between customer and server types which are

compatible with each other. In other words, (i, j) ∈ E if type j customer can be served by type

i server, as illustrated in Figure 1. Each node in the bipartite graph is a queue of customers or

servers waiting to be matched with any one of the compatible counterpart. Our convention is to

refer the incoming customers as demand and incoming servers as supply.

At each point in time, the system operator posts a price for each type of customers and servers.

Customers willing to pay the quoted price, as well as servers who are willing to provide their service

for the quoted price, are admitted to the system. Thus, the system operator can vary the prices

of the customers and servers to vary their arrival rate. Once they are in the system, they wait

in queues until they are picked and matched. First-come-first-serve (FCFS) discipline is employed
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Figure 1 A bipartite graph for two-sided queues.
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for each queue separately. Note that, FCFS may not hold among different types of customers and

servers (unlike Adan and Weiss 2012, Caldentey et al. 2009); it will rather depend on the matching

policy used. Once the customer is matched with a compatible server, we assume that they depart

from the system instantaneously to complete the transaction. Our objective is to find a joint pricing

and matching policy under which the system is stable (positive recurrent) and the long-run average

profit is maximized.

Next, we present some notation and assumptions on the pricing decisions and the matching

decisions. We assume that customers and servers arrive according to Poisson processes with rate

λ ∈ Rm
+ and µ ∈ Rn

+ respectively. For each customer type j ∈ [m], there exists a demand curve

Fj : λj → p
(2)
j , such that if the system operator sets a price p

(2)
j , the resulting arrival rate is λj .

Similarly, for each server type i ∈ [n], the system operator can set a price denoted by p
(1)
i , which

results in a server arrival rate µi determined by the respective supply curve Gi : µi→ p
(1)
i . We make

the following assumption on the supply and demand curve.

Assumption 1. The supply curves, Gi, ∀i ∈ [n] are strictly increasing and twice continuously

differentiable. The demand curves, Fj, ∀j ∈ [m] are strictly decreasing and twice continuously dif-

ferentiable.

The above assumption states that offering higher price to the servers will result in higher server

arrival rate, offering the service for lower prices will result in higher customer arrival rate, and all

curves are smooth.

In addition, we define the revenue and cost functions as r
(2)
j (λj)

∆
= λjFj(λj) for all j ∈ [m] and

r
(1)
i (µi)

∆
= µiGi(µi) for all i ∈ [n]. We make the following assumption on the revenue and cost

functions.

Assumption 2. The revenue function r
(2)
j (λj) is concave ∀j ∈ [m]. The cost function r

(1)
i (µi) is

convex ∀i∈ [n].

The assumption on revenue function follows from the law of diminishing marginal return: as

we increase the customer arrival rate, the marginal revenue dr(2)j (λj)/dλj decreases, which implies
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that the revenue function r
(2)
j (λj) is concave. Similar assumption is often assumed in the revenue

management and queueing literature (see e.g. (Kim and Randhawa 2017)). As for the servers, we

assume the marginal cost dr(1)i (µi)/dµi increases with µi, since it becomes harder to recruit servers

when we try to increase server arrival rate. This implies that the cost function r
(1)
i is convex.

Besides setting prices, the system operator also uses matching to govern the process of the

queueing system. At any given time, suppose q
(2)
j is the number of type j customers waiting in the

queue and q(1)i is the number of type i servers. We denote by xij the number of type i servers to be

matched to type j customers. The number of matchings should be bounded by both the number

servers and the number of customers currently waiting in the queue, so we have

x
(2)
j =

n∑

i=1

xij ≤ q
(2)
j , ∀j ∈ [m] (1a)

x
(1)
i =

m∑

j=1

xij ≤ q
(1)
i , ∀i∈ [n] (1b)

xij =0, ∀(i, j) /∈E. (1c)

The set of matches that satisfies (1a)–(1c) is denoted by X(q). When a pair of customer and server

is matched by the system, they both depart from the system. Since a customer is only compatible

to a subset of server types, the system operator may have an incentive for batching, i.e., holding

some customers or servers in queue in order to achieve better matches in future.

Example: Ride Hailing. An application of the two-sided queueing model is the ride hailing sys-

tem. In this system, the customer and server (drivers) types, as well as the matching compatibility

graph, are determined by their geographical location. A simple example with three regions is shown

in Figure 2. (Here, we ignore issues such as vehicle capacity and number of seats requested by

customers, which may lead to additional customer and server types.) Based on the price quoted

to customers, only a fraction of them who open the app will book a ride, which determines the

customer arrival rate. Similarly, based on the price quoted to the drivers, they will choose whether

or not to provide service. Thus, the arrival rate of customer and drivers are price dependent and

is governed by the demand and supply curve of each region. Once a customer confirms the price

and books a ride, the system operator can determine which driver (from what region) should be

matched to the customer. If the driver accepts the ride request, then it immediately becomes

unavailable for any other ride requests (departing from the system). After the ride is complete, the

car becomes available again, possibly in a different region. A simplifying assumption in our model

is that we treat a driver who completes the service and re-enters the system the same as a new

arrival.
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Figure 2 A ride hailing system with three regions.
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(b) Bipartite graph

We assume that riders can only be matched to cars in their own region or any neighboring
regions. The two sided system generated from the map is shown in subfigure (b).

2.1. CTMDP Formulation

We now formally define the system operator’s decision process as a continuous time Markov decision

process (CTMDP), including its states, actions, rewards, and objective.

With every customer arrival, the system operator earns a reward equal to the price set for that

customer type; similarly, the system operator pays a cost with each server arrival equal to the price

set for that server type. Additionally, the system operator incurs a holding cost proportional to

the number of customers and servers waiting in the system per unit time. The state is represented

by the queue lengths of all customer and server types, q ∈ Z
n+m
+ . We denote the state space by

S. By Assumption 1, prices and arrival rates have a one-one correspondence. Thus, rather than

using price as the action, we equivalently use arrival rates λ(q), µ(q) for all q ∈ S as the action.

The arrival rates much satisfy λj ∈ dom(Fj) for all j ∈ [m] and µi ∈ dom(Gi) for all i ∈ [n]. Here,

dom(F ) is the domain of the function F . In addition, the matching decisions x(q)∈X(q) are also

in the action space (see Eq (1a)–(1c)). Thus, action is a tuple (λ,µ,x)∈R2(m+n). The objective is

to find a pricing and matching policy such that the long run average profit earned by the system

operator is maximized. We are only interested in the pricing policies under which make the system

stable in the long run. The following definition of stability will be used.

Definition 1. A joint pricing and matching policy is said to be stable, if the continuous-time

Markov chain (CTMC) induced from this policy has a positive recurrent communicating class that

contains the state q= 0.

The MDP advances as follows: Upon each customer or server arrival, we match customers and

servers by setting x ∈X(q). We allow x= 0m+n, i.e., none of the customer-server pairs are matched,

even when there exists feasible matching. Immediately after the arrival, we may change the prices

for any customer and server type. Based on the prices set, future type j customers arrive following

Poisson(λj) for all j ∈ [m], and type i servers arrive following Poisson(µi) for all i ∈ [n].
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Remark 1 (Discussion of waiting costs). Our model assumes all customers and servers are

patient, and the system operator pays a penalty cost proportional to their waiting time. As an

alternative approach, Kim and Randhawa (2017) considered a queuing model without such waiting

cost penalty — instead, they assume customers are strategic and will not joint the queue if their

valuation of the service is less than their expected waiting cost. Compared to our model, the

assumption by Kim and Randhawa (2017) may be more appropriate for some applications of two-

sided queues such as ride hailing. Nevertheless, Kim and Randhawa (2017) point out that their

assumption of strategic customers is essentially equivalent to a model with patient customers by

explicitly accounting for waiting cost, i.e., our approach. We refer readers to Kim and Randhawa

(2017), Section 6.1 for more details.

2.2. Uniformization

Instead of working with the CTMDP, we use the well-known uniformization technique (Puterman

1994) to obtain an equivalent discrete-time Markov Decision Process chain (DTMDP), which will

simplify our analysis. The uniformized process is as follows. We first choose a uniformization

parameter c defined below.

Definition 2. Suppose there exists λmax and µmax such that for any price vector p we have,

λ(p)≤ λmax,

µ(p)≤µmax.

Let c be any constant such that

c≥ 〈1m,λmax〉+ 〈1n,µmax〉 . (2)

The uniformized DTMDP is endowed with the same states and actions as the CTMDP defined

in Section 2.1. All the rewards and costs will be scaled by 1/c. In each period, there is at most one

customer or server arrival. Let p be price vector. The probability that a type j customer arrives

in one period is λj(p)/c. The probability that a type i server arrives in one period is µi(p)/c.

Otherwise, no arrival happens in this period. The decision maker is allowed to make any number

of matchings as long as they satisfy constraints (1a)–(1c).

Bellman equation. To find the optimal pricing and matching policy, we start by writing the

Bellman equation for the uniformized DTMDP. Let Z(q) = [0,λmax]∪ [0,µmax]∪x(q) be the set of
feasible prices and matchings for queue length q. We use z to denote a joint action vector, which

includes pricing decisions λ,µ and matching decisions x∈X(q).
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The Bellman equation can be written as

h(q)+
γ

c
= max

z∈Z(q)

{R(q,z)
c

+Eq,z[V (h,q,z)]

}

, ∀q∈ S, (3)

where

R(q,z) = 〈F (λ),λ〉− 〈G(µ),µ〉− s 〈1,q〉 , (4)

Eq,z[V (h,q,z)] =
m∑

j=1

λj

c
h(q+ e

(2)
j −x)+

n∑

i=1

µi

c
h(q+ e

(1)
i −x)

+ (1−
m∑

j=1

λj

c
−

n∑

i=1

µi

c
)h(q), (5)

The solution γ to the above equations is the optimal average profit in the infinite horizon. The

value h(q) is the bias function, which can be interpreted as a bias function associated with state q

(Bertsekas 2007). Note that the Bellman equation holds because our assumption of stable policies

(see Definition 1).

In the Bellman equation,R(q,z) is the expected revenue for the state q and action z. The revenue

term is the net of what the customer pays and server gets along with a penalty proportional to the

sum of the queue lengths. The term Eq,z[V (h,q,z)] is the expectation of the bias function function

h after one transition in the uniformized process where q is the queue length, z is the chosen action

at the current decision epoch. The expectation is taken with respect to arrival probabilities of the

uniformized DTMDP.

3. Monotonicity of the Optimal Prices (Single Link Two-Sided Queue)

In this section, we consider the special case of our model with n= 1 and m= 1, i.e., a single link

two-sided queue given in Fig. 3. The goal of this section is to establish structural properties of the

optimal pricing policy by analyzing this simple system, which will motivate our pricing policies for

more complex systems.

Figure 3 A single link two sided queue.

Customer Server

In a single link system, there is no incentive for the system operator to hold customers or servers:

Whenever possible, we should match the incoming arrival immediately. Thus, at any point of time,

there can only be either customers or servers waiting in the system. This enables up to reduce the

state space by letting q = q(2) − q(1), the difference between the number of customers and servers
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waiting in the system. Note that, q can be either positive or negative. Using q as the system state,

the Bellman equation (3) becomes

h(q) = max
µ≥0,λ≥0

[
F (λ)λ−G(µ)µ

c
− s|q|

c
− γ

c
+

λ

c
h(q+1)+

(

1− µ+λ

c

)

h(q)+
µ

c
h(q− 1)

]

,∀q ∈ S
(6)

where c is a uniformization parameter (see Definition 2). In the equation above, as we have n=

m= 1, we omit the subscripts for different type of customers and servers for the ease of notation.

We now present the monotonicity result below.

Proposition 1. For a single link two-sided queue, there exists an optimal pricing policy p(q) =

(p(1)(q), p(2)(q)), where both the server price p(1)(q) and the customer price p(2)(q) increases mono-

tonically with the system state q.

To prove this result, we first show that the difference of bias functions h(q)− h(q − 1) is mono-

tonically decreasing in q by an inductive argument on the iterates of the relative value iteration

algorithm. Then we use the optimality conditions on the Bellman equation to show that the opti-

mal pricing policy is monotonic. The complete proof can be found in Appendix B. This result

motivates us to search for the optimal pricing policy in the restricted space of monotonic pricing

policies, which will be presented in Section 7.

4. Asymptotic Optimality of Fluid Solution

In this section, we consider fluid approximation of the queueing system where random arrivals

are replaced by their expectations. Based on the fluid model, we propose a static pricing and

max-weight matching policy and show that it is asymptotically optimal.

4.1. Fluid Model

We consider a deterministic optimization problem to maximize the average long run revenue defined

as follows. Let λ̃ = E[λ(q)] and µ̃ = E[µ(q)] be the average arrival rate of the customers and

servers, respectively, where the expectation is taken with respect to the stationary distribution

under any policy. Similarly, let χij =E[xij(q)] be the average rate of type i server matched to the

type j customer for all (i, j)∈E. The fluid model is defined as

π∗ = max
(λ̃,µ̃,χ)

〈

F (λ̃), λ̃
〉

−〈G(µ̃), µ̃〉 (7a)

subject to λ̃j =
n∑

i=1

χij , ∀j ∈ [m], (7b)

µ̃i =
m∑

j=1

χij , ∀i∈ [n], (7c)

χij = 0, ∀(i, j) /∈E, χij ≥ 0, ∀(i, j)∈E. (7d)
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Here, Eqs (7b) and (7c) are the balance equations for the number of customers and servers matched.

Eq (7d) specifies that matching is only allowed among compatible customer-server pairs. Intuitively,

it is easy to see that these constraints are necessary, because if Eqs (7b)–(7d) do not hold, then

some customer or server types will keep accumulating over time. Thus, if we solve the optimization

program (7) to maximize the revenue, we will get an upper bound on the achievable revenue under

any pricing and matching policy which makes the system stable. This is formally shown in the

following proposition.

Proposition 2. The optimal value of the fluid problem (7) is an upper bound on the long run

expected profit rate under any pricing and matching policy that makes the system stable.

Sketch Proof. We first show that under any pricing and matching policy, the constraints in the

fluid problem are necessary but not sufficient conditions. Intuitively, the average arrival rates of

customers and servers should be able to balance each other out. Next, we show that the average

revenue obtained under any pricing and matching policy is less than equal to the fluid objective

function. These two conditions together implies that fluid problem will give us an upper bound on

the revenue obtained under any pricing and matching policy. The complete proof can be found in

Appendix C. �

4.2. Fluid Pricing Policy

In this section, we study the system in an asymptotic regime where the arrival rates of all customer

and server types are scaled by a factor of η.

Definition 3 (Asymptotic Regime). Consider a family of two-sided queueing systems associ-

ated with the same bipartitle graph G(N1 ∪N2,E) parametrized by η ∈ N. For the ηth system,

the demand and supply curves satisfy F η(ηλ) = F (λ) for all λ ∈ Rm
+ and Gη(ηµ) =G(µ) for all

µ∈Rn
+. The asymptotic regime is defined as η→∞.

Definition 4 (Profit Loss). The profit loss of a policy, denoted by Lη, is the difference between

the optimal value of the fluid model, denoted by πη
∗ , and the long run average profit (including the

penalty incurred due to waiting) under that policy.

According to Definition 3, it is easily verified that the fluid solution to the ηth system is given

by ηλ∗ and ηµ∗, where λ∗ and µ∗ is the optimal solution of the fluid model (7). The optimal value

of the ηth fluid model is πη
∗ = ηπ∗. Therefore, if the profit loss of a policy is sublinear in η, namely

Lη = o(η), we say the policy is asymptotically optimal in our asymptotic regime.
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Now, we use the fluid model to define a fluid pricing policy, which we will prove to be asymptot-

ically optimal. Recall that the optimal solution of (7) by λ∗, µ∗. We consider the following pricing

policy:

λj(q) =

{

λ∗
j , if q

(2)
j < qηmax,

0 otherwise,
∀j ∈ [m], (8)

µi(q) =

{

µ∗
i , if q

(1)
i < qηmax,

0 otherwise,
∀i∈ [n].

Here, qηmax denotes the maximum queue length; it is a parameter that depends on η, which will be

specified later.

We now define the max-weight matching policy (Algorithm 1). Whenever there is either a cus-

tomer or a server arrival, if any of the compatible counterparts of the arrival is waiting in the

queue, then we match it to the type with most number of customers/servers waiting in that queue.

On the other hand, if all the compatible counterparts’ queues are empty, then that arrival will

then wait in the queue. More specifically, let k be the index of arrivals to the system, which is our

decision epoch. We denote the arrival vector by a(k)∈ {0,1}m+n. That is, a(k) has one component

equal to one, which corresponds to the arrival type, and all the other components are zero. We

define y
(1)
ij (k) ∈ {0,1} to be the decision of matching a type j customer to a type i server at the

arrival of a type i server. Similarly, we also define y
(2)
ij (k)∈ {0,1} to be decision of matching a type

i server to type j customer at the arrival of type j customer.

Algorithm 1 Max-Weight Matching Policy

input: current queue length q(k), new arrival a(k) # k is a decision epoch

2: initialization: y(1)(k) = 0n, y
(2)(k) = 0m

for i∈ [n] do
4: if a

(1)
i (k) = 1 and maxj:(i,j)∈E q

(2)
j > 0 then

let j∗ =argmaxj:(i,j)∈E q
(2)
j

6: set y
(1)
ij∗ (k) = 1

end if

8: end for

for j ∈ [m] do

10: if a
(2)
j (k) = 1 and maxi:(i,j)∈E q

(1)
i > 0 then

let i∗ = argmaxi:(i,j)∈E q
(1)
i

12: set y
(2)
i∗j(k) = 1

end if

14: end for

output: matching decision y(1)(k), y(2)(k)

The main intuition of the fluid pricing policy is the following. We note that the profit rate of the

fluid pricing policy is equal to ηπ∗ when all queues are below their maximum buffer capacity qη.
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If the capacity of any customer queue is full, namely q
(2)
j = qηmax, then all future arrivals to queue

j will be rejected until at least one customer waiting in queue j is matched. Thus, we will lose

a fraction of revenue due to rejections. More specially, let πη be the expected profit of the fluid

pricing policy. Let I(1)(qηmax) be a (vector) indicator function representing whether server queues are

at the maximum capacity, and let I(2)(qηmax) be a (vector) indicator function representing whether

customer queues are at the maximum capacity. Then, it holds that

Lη = πη
∗ − (πη− s 〈1m+n,E[q]〉)

= η
(
〈F (λ∗),λ∗〉− 〈G(µ∗),µ∗〉

)
−
〈
F (λ∗), ηλ∗ ◦ (1−E[I(2)(qηmax)])

〉

− η
〈
G(µ∗),µ∗ ◦ (1−E[I(1)(qηmax)])

〉
+ s 〈1m+n,E[q]〉

= η
(〈
F (λ∗), (λ∗ ◦E[I(2)(qηmax)])

〉
−
〈
G(µ∗), (µ∗ ◦E[I(1)(qηmax)]

〉)
+ s 〈1m+n,E[q]〉 , (9)

where the first equality follows from Definition 4, and the second equality uses the definition of

the fluid pricing policy. As a result, Eq (9) shows that the profit loss of the fluid pricing policy

depends on critically the design parameter qηmax. If we increase the buffer capacity qηmax, then

the probability of dropping customers/servers will reduce, i.e. E[I(qη
max)] will decrease. However,

increasing the buffer capacity will lead to increasing in the expected queue lengths, which will

increase the penalty incurred due to waiting. Thus, we choose buffer capacity to balance the trade-

off in order to minimize the overall profit loss. Precisely, we will see that choosing qηmax ∼
√
η will

result in E[I(qη
max)]∼ η−1/2 and E[〈1m+n,q〉]∼

√
η, which attains the optimal profit loss.

Theorem 1. Suppose a family of two-sided queues is given by the bipartite graph G(N1

⋃
N2,E)

parameterized by η. The profit loss Lη under the fluid pricing (Eq (8)) and max-weight matching

(Algorithm 1) is O(
√
η), where qηmax = γ

√
η for any positive constant γ.

Sketch Proof. We apply Eq (9) to bound of the profit loss Lη. By our choice of qηmax and the

definition of the fluid pricing policy defined in (8), it is easily verified that the expected queue

length E [〈1m+n,q〉] =O(
√
η). In order to bound the probability of dropping a customer or a server,

we consider a quadratic Lyapunov function on the queue length vector q. Using the moment bound

theorem (Hajek 2006), we can show that the probability of rejection is O(1/
√
η). The proof details

are deferred to Appendix D. �

In addition, it can be shown that the O(
√
η) profit loss rate cannot be improved using the fluid

pricing policy, even for a single link two-sided queue (see Figure 3). More specifically, we have the

following result.

Proposition 3. For a family of single link two-sided queue parametrized by η, any fluid pricing

policy will have a profit loss Lη that is at least Ω(
√
η). The choice of qηmax = γ

√
η for any positive

constant γ provides the optimal profit loss rate Θ(
√
η).

The proof of the proposition is presented in Appendix E.
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5. Asymptotic Optimality of Two-Price Policy

A main drawback of the fluid pricing policy is that the prices are fixed at those given by the fluid

solution. This motivates us to consider a generalization of the fluid pricing policy, which leads

to a “two-price” policy. Here, we introduce additional parameters θ ∈Rm
+ , φ ∈Rn

+ and ση, which

governs the arrival rates of the customers and servers respectively when the queue length is greater

than a certain threshold τη
max. The two-price policy is defined as follows:

λη
j =

{

ηλ∗
j if q

(2)
j ≤ τη

max,

ηλ∗
j − θjσ

η otherwise
∀j ∈ [m], (10)

µη
i =

{

ηµ∗
i if q

(1)
i ≤ τη

max,

ηµ∗
i −φiσ

η otherwise
∀i∈ [n], (11)

where we assume ση/η→ 0 as η→∞ as it is favourable to get closer to the fluid solution. In this

policy, we set a threshold τη
max for all customer and server types; we use the fluid arrival rates until

this threshold, and then reduce the arrival rates by θjσ
η outside this threshold for type j customer.

Similarly, we reduce the server arrival rates outside a threshold by φiσ
η for type i server. Here,

τη
max, σ

η, θ and φ are parameters that will be specified later. Our convention is to use superscript

η to denote any parameter or quantity that is associated with the ηth system. Intuitively, for any

type of customer/server, if we increase ση, the queue length will have a larger negative drift when

it exceeds the threshold τη
max, so the expected queue length E[〈1m+n,q〉] will be smaller. However,

if ση are too large, the arrival rates outside the threshold τη
max will be far from the optimal fluid

arrival rates, which will result in a larger profit loss. Thus, there is a trade-off between the expected

queue length and profit loss. For the matching algorithm associated with the two-price policy, we

propose a modification on the max-weight policy. Let (λ∗,µ∗,χ∗) be the optimal solution to the

fluid problem (7). Let E∗ = {(i, j) ∈E : χ∗
ij > 0} be the support of χ∗. We consider a max-weight

algorithm analogous to Algorithm 1, except that we restrict matchings to the subset of edges

E∗. This matching algorithm is defined in Algorithm 2, which will be referred to as the modified

max-weight policy.

The following theorem provides a bound on the asymptotic performance of the two-price policy

as η tends to infinity.

Theorem 2. Suppose a family of two-sided queues is given by the bipartite graph G(N1

⋃
N2,E)

parametrized by η. The profit loss Lη under the two-price policy (Eq (10),(11)) and the modified

max-weight matching (Algorithm 2) is O(η1/3), where τη
max = T1η

1/3, ση = η2/3 and θ> 0m, φ> 0n.

The profit loss for the two-price policy is O(η1/3), which is better than the O(
√
η) loss in the fluid

pricing policy in Section 4.
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Algorithm 2 Modified Max-Weight Matching Policy

input: current queue length q(k), new arrival a(k), a subset of edges E∗ # k is a decision epoch
2: initialization: y(1)(k) = 0n, y

(2)(k) = 0m

for i∈ [n] do
4: if a

(1)
i (k) = 1 and maxj:(i,j)∈E∗ q

(2)
j > 0 then

let j∗ =argmaxj:(i,j)∈E∗ q
(2)
j

6: set y
(1)
ij∗ (k) = 1

end if
8: end for

for j ∈ [m] do
10: if a

(2)
j (k) = 1 and maxi:(i,j)∈E∗ q

(1)
i > 0 then

let i∗ = argmaxi:(i,j)∈E∗ q
(1)
i

12: set y
(2)
i∗j(k) = 1

end if
14: end for

output: matching decision y(1)(k), y(2)(k)

We present two lemmas that will help us prove Theorem 2. The first lemma shows that the con-

tinuous time Markov chain associated with two-price policy is positive recurrent, and furthermore

gives a bound on the expected queue length.

Lemma 1. For a system of two-sided queues operating under the two-price policy and the modified

max-weight matching algorithm parameterized by η, the system is positive recurrent for any θ> 0m,

φ> 0n, σ
η > 0 and τη

max > 0. The expected queue lengths are bounded by

E
[〈
θ,q(2)

〉]
+E

[〈
φ,q(1)

〉]
≤τη

max

(
m∑

j=1

θjP[q
(2)
j > τη

max] +
n∑

i=1

φiP[q
(1)
i > τη

max]

)

+
η

ση
(〈1n,µ

∗〉+ 〈1m,λ
∗〉) .

Sketch Proof of Lemma 1. The complete proof of the lemma is presented in the Appendix F.

We present a brief idea of the proof here. Since θ, φ and ση are greater than zero, when the queue

length of a certain customer or server type is greater than its threshold, i.e. τη
max, the reduced arrival

rate of that type leads to a drift towards 0, so we expect that the system is positive recurrent. This

intuition is proved rigorously using the Foster-Lyapunov Theorem (see e.g. Srikant and Ying 2014).

We consider a quadratic Lyapunov function in the queue lengths, and show that the one-step drift

is negative outside a finite set of states. We then use the moment bound theorem (Hajek 2006) to

upper bound the expected queue length. �

Now we know that under the two-price policy, all the members in the family of CTMCs are

positive recurrent. This is only possible when the arrival rates satisfies the constraints in the fluid

optimization problem (7b) (7c) (7d). Below, we will present another lemma that will be later used

to eliminate terms in the profit loss.
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Lemma 2. For a system of two-sided queues operating under two-price policy and max-weight

matching policy, for any θ> 0m, φ> 0n and τη
max > 0, we have

∑

j∈[m]

(
F ′

j(λ
∗
j)λ

∗
j +Fj(λ

∗
j)
)
θjP[q

(2)
j > τη

max] =
∑

i∈[n]

(G′
i(µ

∗
i )µ

∗
i +Gi(µ

∗
i ))φiP[q

(1)
i > τη

max].

The proof of the lemma is deferred to Appendix G due to space constraints. We will present a brief

sketch of the proof here for better understanding of the reader.

Sketch Proof. We will use the fact that (λ∗,µ∗) is the optimal solution of the Fluid optimiza-

tion problem. To prove this lemma, we will use the first order optimality condition on the fluid

optimization problem which says that the directional derivative of the objective function along a

feasible direction is zero. We will use the arrival rates of the two-price policy as another feasible

point to find a feasible direction. Equating directional derivative to zero gives us the lemma. �

We will now present the idea for the proof of Theorem 2 and defer the details to Appendix H.

Idea of the Proof of Theorem 2 We will first upper bound the profit loss defined in (9), for the

two-price policy using Taylor series expansion. We will then use Lemma 2 to eliminate first order

terms from the profit loss and use Lemma 1 to bound the expected queue length. Finally, we will

substitute τη
max and ση in terms of η to get the result. �

From the previous two sections, we can see that even a simple two-price dynamic pricing policy

has a much better performance than a static (fluid) pricing policy. It is also practically easy to

implement the two-price policy. This shows the advantage of dynamic price over static price.

6. Lower Bound

In this section, we will obtain lower bounds on the profit loss under a broad family of policies,

and thus establish that the rates we obtain from two-price policy in Theorem 2 are optimal. In

particular, we consider a family of pricing policies that have the following form:

λj = ηλ∗
j + fj

(
q

ηα

)

ηβ ∀j ∈ [m], (12)

µi = ηµ∗
i + gi

(
q

ηα

)

ηβ ∀i∈ [n]. (13)

The motivation for this choice is as follows. The first term in Eqs (12) and (13) (i.e., ηλ∗
j and ηµ∗

i )

is static and is the solution of the fluid model; the second term accounts for dynamic adjustment as

queue length changes. We assume the adjustment term can be further decomposed into two terms:

a function that scales the queue length, fj(·) or gi(·), and a term that determines the scaling of

price adjustments, ηβ, for some 1> β > 0. Moreover, as the arrival rates are scaled up, the queue

length will be asymptotically large. Thus, we also scale the queue length in function fj(·) and gi(·)
for all i ∈ [n] and j ∈ [m] by ηα for some 1≥ α≥ 0. Note that a similar family of pricing policies

was studied by Kim and Randhawa (2017).

In addition, we require the pricing policy to satisfy the following conditions.
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Condition 1. (a) There exists M ∈Rm
+ and N∈Rn

+ such that |fj
(

q

ηα

)

| ≤Mj for all j ∈ [m] and

|gi
(

q

ηα

)

| ≤Ni for all i∈ [n] for all q∈ S and for all η≥ 1.

(b) 0<α+β ≤ 1.

(c) There exists K > 0 and δ > 0 such that for all j ∈ [m], if
q
(2)
j

ηα
>K, then either fj

(
q

ηα

)

<−δ

or there exists i : (i, j)∈E such that gi

(
q

ηα

)

> δ for all η. Similarly for all i∈ [n], if q
(1)
i
ηα

>K,

then either gi

(
q

ηα

)

<−δ or there exists j : (i, j)∈E such that fj

(
q

ηα

)

> δ for all η.

Condition 1(a) requires the dynamic price adjustment term to be bounded (after appropriate

scaling); this a technical assumption required for our analysis. Condition 1(b) states that the rate

of scaling of the system state should be less than the rate of pricing policy converging to the fluid

rates. (In the special case of single link operating under the two-price policy, this assumption is not

needed; the result is presented later in this section.) Condition 1(c) states that if queue length for

type j customer is large, we should either decrease the arrival rate of type j customers or increase

the arrival rate of any servers that can serve type j customers. These conditions are fairly general,

because the pricing function can depend on the complete system state (q), and we do not make

any strong assumptions such as monotonicity, continuity or differentiablity on functions fj(·) and
gi(·). Also, note that we do not require any assumption on the matching policy.

The two-price policy satisfies the above condition with

fj(q) =−θj1q
(2)
j >τmax

(∀j ∈ [m]), gi(q) =−φi1q
(1)
i >τmax

(∀i∈ [n]), β = 2/3. (14)

Now we present the result on the lower bound.

Theorem 3. For a two-sided queue defined by a graph G(N1∪N2,E) operating under any pricing

policy of the form (12) and (13) that satisfies Condition 1, if the resulting system is stable, there

exists a constant K(F,G,f, g) such that

Lη ≥ Kη1/3.

The details of the proof are deferred to Appendix I. Although, we present a brief idea of the proof

here for better understanding of the reader.

Idea of the Proof. First we define a variable which quantifies the imbalance between the number

of customers and servers in the system, which is crucial in our analysis. Mathematically, we define

z =
〈
1m,q

(2)
〉
−
〈
1n,q

(1)
〉
. (15)

An important observation is that the transition of z conditioned on q is independent of the matching

policy. We use this fact to couple our system with a birth and death process to lower bound E[|z|],
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which can be used to further lower bound the expected queue length E[〈1m+n,q〉]. We also use this

coupling to lower bound E[
∑n

i=1 g
2
i (.)+

∑m

j=1 f
2
j (.)] which is a proxy for the loss of profit.

Next, we use the lower bound on E[〈1m+n,q〉] and E[
∑n

i=1 g
2
i (.)+

∑m

j=1 f
2
j (.)] to lower bound the

profit loss. In particular, we use Taylor’s expansion and Claim 2 from the fluid model to analyze

the first order terms. The dominating terms in the lower bounds are given by η2β−1 (loss in the

profit) and η1−β (expected queue length). The choice of β trades-off between the queue length and

the loss in profit. By picking β = 2/3, we get the best over all profit loss, which gives the lower

bound. �

We can further relax Condition 1(b) in the special case of single link operating under the two-

price policy. The result is stated below.

Proposition 4. For a family of single link two-sided queue parametrized by η, any two pricing

policy given by (10) (11) with ση = ηβ for some β < 1 and τη
max = ηα for some α ∈R+, will have a

profit loss Lη at least Ω(η1/3). The choice of τη
max = η1/3 and ση = η2/3 and any positive constants

θ and φ provides the optimal profit loss Θ(η1/3).

The proof of Proposition 4 has been deferred to Appendix.

7. LP-based Approximation Algorithm

The Bellman equation for the MDP defined in the Section 2 can be rewritten as an optimization

problem (see e.g. Bertsekas 2007):

min
(γ,h)

γ (16)

subject to γ ≥R(q,z)+ cEq,z[V (h,q,z)]− ch(q) ∀q,z∈ S×Z(q), (17)

where R(., .) represents the revenue rate and is defined in Eq (4), and Eq,z[V (h,q,z)] is defined in

Eq (5).

It is difficult to solve this problem computationally, as we have one constraint associated with

each state-action pair in (17). Due to the curse of dimensionality, the state space S will increase

exponentially with the customer and server types. Moreover, the action space Z(q) contains con-

tinuous prices, so the action space is uncountable. Of course, one can discretize the action space,

but a fine discretization may be needed to ensure numerical accuracy, which also increases the

computation burden.

Our proposed approach is to reduce the number of decision variables in the optimization problem

by restricting the bias function h(q) to some parametric form. This will lead to an optimization

where the number of decision variables is polynomial in customer/server types. We can also use

the original action space, so the discretization step for the action space is not needed.

Throughout this section, we assume the queue length is bounded, that is, S ⊆{q : q≤ 1m+nqmax}
for some qmax <∞.
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7.1. Polynomial Approximation

Now, we will present the approximation of the bias function.

Proposition 5. Approximating the bias h(q) with a polynomial in q of degree r given by

h(q) =
r∑

l=1

(
n∑

i=1

b
(1)
l1
(q

(1)
i )l +

m∑

j=1

b
(2)
l1
(q

(2)
j )l

)

∆
=

r∑

l=1

〈
bl,q

l
〉
, (18)

for some finite r ∈Z+ and solving the optimization problem (16), (17) gives an upper bound on the

average revenue g. Here, bl is the defined as the vector (b
(1)
l1
, . . . , b

(1)
ln
, b

(2)
l1
, . . . , b

(2)
lm
) for all l ∈ [r].

The proof is based on the analysis of the minimization problem to solve the MDP. It uses the idea

that if we minimize over a subset of the feasible region, then it will lead to higher values of the

optimal objective function value and is deferred to Appendix K.

By approximating the bias by a polynomial of the queue length of degree r, we have reduced

the number of variables in the optimization problem from qm+n
max to just (m+n)× r which is linear

in m and n if r is a constant. We will later see that this approximation reduces the computational

time drastically.

Also, as the degree of the polynomial increases, we consider a more general case, and thus the

upper bound we obtain on the average revenue will be tighter as r increases. The system operator

can choose this r to balance the trade-off between accuracy of the solution and the computational

time.

Another useful feature of this approximation is that, if we fix a stationary matching policy x(q),

then we can use the optimality equations for the Bellman equation (3) to compute the closed form

expression of the approximated pricing policy by solving the following differential equations:

(F (λj)λj)
′ +h(q+ e

(2)
j −x)−h(q) = 0 ∀j ∈ [m],

(G(µi)µi)
′ +h(q+ e

(1)
i −x)−h(q) = 0 ∀i∈ [n].

These optimality equations are only valid when we are strictly in the interior of the feasible region

of the optimization problem, i.e. λ > 0m and µ > 0n. Although, if there exists a q
(2)
j0

for which

λj(q
(2)
j0

) = 0 then we can restrict our state space to q
(2)
j ≤ q

(2)
j0

as the arrival rate of that type of

customer for q
(2)
j0

is 0 and thus, it is not possible to have q
(2)
j > q

(2)
j0

.

Note on Optimal Matching Policy: We will fix the pricing policy to the fluid pricing policy

introduced in section 4 and focus on optimal matching policy. We can rewrite the Bellman equation

as follows:

γ

c
=
R(q,λ∗,µ∗)

c
+ max

x∈X(q)
{Eq,z [V (h,q,z)]−h(q)} , ∀q∈ S ∩{q : q≤ qmax1n+m}.
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The corresponding optimization problem to find the optimal matching policy becomes

x∗(q) = argmax
x∈X(q)

{Eq,z [V (h,q,z)]−h(q)}∀q∈ S ∩{q : q≤ qmax1n+m}.

Here, we are greedily maximizing the expected difference of the bias function before and after

(one step drift) one matching. Thus, the optimal matching policy is “max-weight” policy if the

bias function prescribes weight to each state. The policy is optimal as the long term behaviour is

captured by the bias function.

Now, if we approximate this bias function by some linear combination of basis vectors (e.g.

polynomial function of q), then we will get an approximately optimal matching policy. In particular,

if we approximate the bias function by linear function of queue length, given by h(q) = 〈b,q〉 for
some constant b, then we get an open loop matching policy. This can be easily seen as follows:

x∗(q) = argmax
x∈X(q)

{Eq,z [V (h,q,z)]−h(q)}

=argmax
x∈X(q)

{
m∑

j=1

λ∗
j

(

h(q+ e
(2)
j −x)−h(q)

)

+
n∑

i=1

µ∗
i

(

h(q+ e
(1)
i −x)−h(q)

)
}

=argmax
x∈X(q)

{〈−b,x〉} .

Thus, it translates into max-weight with the weights being −b for the customers and servers. As

these weights are independent of the state, it is an open loop policy.

Similarly, if we approximate the bias function by a quadratic function of queue lengths given by

h(q) =−
m∑

j=1

(q
(2)
j )2−

n∑

i=1

(q
(1)
i )2

then we get a policy similar to max-weight matching policy given in Algorithm 1. We have

x∗(q) = argmax
x∈X(q)

{
m∑

j=1

λ∗
j

(

h(q+ e
(2)
j −x)−h(q)

)

+
n∑

i=1

µ∗
i

(

h(q+ e
(1)
i −x)−h(q)

)
}

= argmax
x∈X(q)






−

m∑

j=1

λ∗
j





m∑

j′=1

(

x
(2)

j′

)2

+2
m∑

j′=1

q
(2)

j′ x
(2)

j′ +2x
(2)
j



+

n∑

i=1

µ∗
i

(

−
n∑

i′=1

(

x
(1)

i′

)2

+2
n∑

i′=1

q
(1)

i′ x
(1)

i′ +2x
(1)
i

)}

∗
= argmax

x∈X(q)

{

−
m∑

j=1

(

x
(2)
j

)2

−
n∑

i=1

(

x
(1)
i

)2

+2

(
m∑

j=1

(

q
(2)
j +

λ∗
j

〈1,λ∗〉

)

x
(2)
j

+
n∑

i=1

(

q(1)i +
µ∗
i

〈1,µ∗〉

)

x(1)
i

)}

(19)

∗∗
= argmax

x∈X(q)

{(
m∑

j=1

(

q
(2)
j +

λ∗
j

〈1,λ∗〉

)

x
(2)
j +

n∑

i=1

(

q
(1)
i +

µ∗
i

〈1,µ∗〉

)

x
(1)
i

)}

≈ argmax
x∈X(q)

{〈q,x〉} ,
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where, (∗) follows as 〈1m,λ
∗〉= 〈1n,µ

∗〉 and (∗∗) follows as the objective function (19) is strictly

positive for some x ∈X(q) but it is zero for x = 0. Thus, it is always better to match instanta-

neously. So, with no batching, we have 〈1n+m,x
2〉 is either 2 or 0 as in each decision epoch, there

is one arrival and we always match if we can. Finally, the last approximation is motivated by the

fact that it is difficult to accurately estimate the arrival rates of the customers and servers. Thus,

we omit the dependency of the arrival rates from our policy. c

7.2. Constraint Generation Algorithm

In this section, we present the constraint generation technique to solve the optimization problem

(16)-(17) after we have approximated the bias by a polynomial function in q. The constraint

generation algorithm is as follows:

Algorithm 3 Constraint Generation with Bias Function Approximation

Initialization: b0
l = 0, ∀l ∈ [r], γ0 =−∞, k=0, ǫ= 10−4, M ≫ 0

2: Initialize LP: minγ, constraints={M1n+m≥ bl ≥−M1n+m ∀l ∈ [1, r]} Master Problem: (LP 0)

while error > ǫ do

4: T k(q,z) = R(q,z)+ cEq,z [
∑r

l=1 〈bk
l , V (ql,z)〉] −c∑r

l=1 〈bk
l ,q

l〉
δk(q) =maxq,z∈Z(q) T

k(q,z) # Sub-Problem

6: if δk(q)≤ γk then

continue

8: else

qk,zk =argmaxq,z T
k(q,z)

10: Add γ ≥ T k(qk,zk) to constraints (LP k)

end if

12: (γk+1,bk+1
l ∀l ∈ [r]) = solve(LP k) # Master-Problem

k← k+1

14: error = sup(γk+1− γk,bk+1
l −bk

l , ∀l ∈ [r])
end while

16: Output: γ,bl, ∀l ∈ [r]

We initialize the variables {bl, l ∈ [r]}, which are the coefficients of the polynomial approximation

of the bias function and the master LP with objective function “minγ” and add an upper and lower

bound on the decision variables bl ∀l ∈ [1, r] in the constraints. This will make sure the iterates

bk
l are finite for all k ∈Z+. In each iteration, we find the most violating constraint by solving the

following sub-problem

max
q≤qmax1m+nz∈Z(q)

R(q,z)+ cEq,z

[
r∑

l=1

〈
bk
l , V (ql,z)

〉

]

− c
r∑

l=1

〈
bk
l ,q

l
〉
. (20)
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We then add these most violating constraints to the master-problem. We then solve the master-

problem to get the updated values of bl ∀l ∈ [r] and γ. This process is repeated until the following

criterion is met:

sup(γk+1− γk,bk+1
l −bk

l ∀l ∈ [r])≤ ǫ,

where k and k+1 are successive iterates obtained by repeating the constraint generation algorithm

and ǫ is the allowable tolerance.

Sub-Problem The optimization problem can be solved employing the projected gradient

descent or any similar method. A fixed number (K) of iterations are performed for each sub-problem

and that will give us a sub-optimal solution. If the constraint generated by this solution is feasible,

then double the iterations (2K) of the projected gradient descent and continue. Otherwise, add this

constraint generated to the master problem and solve the resultant LP to get updated parameters

of the bias function. Now, we illustrate the sub-problem obtained by different approximations of

the bias functions.

The linear approximation of the bias function results in the following optimization problem:

max
q,z

{

R(q,z)+
〈

λ,b
(2)
1

〉

+
〈

µ,b
(1)
1

〉

− (〈1m,λ〉+ 〈1n,µ〉) 〈b1,x〉
}

subject to (1).

We have a bi-linear term in λ+µ and x. Although, using the constraint (1), we can lower bound

〈b1,x〉 in terms of b1 and q. This lower bound will hold tightly as we are maximizing with respect

to x. Let the lower bound be l(b1,q). We have

max
q,z

{

R(q,z)+
〈

λ,b
(2)
1

〉

+
〈

µ,b
(1)
1

〉

− (〈1m,λ〉+ 〈1n,µ〉) l(b1,q)
}

.

Thus, we have an unconstrained maximization problem of sum of a concave function and a

bi-linear term.

In addition, the x which achieves this lower bound for a given q corresponds to the max-weight

matching with weights −b for the customers and servers. This can be easily seen as follows:

l(b1,q) =max
x
〈−b1,x〉 subject to (1).

Thus, by solving the bellman equation with linear approximation will lead to max-weight matching

policy and the output of the solution of the bellman equation is the weights of the max-weight

matching.
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8. Simulation

In this section, we will present simulation results to verify the theorems presented before and to

show the structural properties of the optimal pricing policies. We will only discuss the simulation

results for a single link two-sided queue since it is easy to present the pricing policies for this case.

We have also performed extensive tests for multi-link systems and found that they show similar

insights, so we omit test results for multi-link systems.

For most of the results presented in this section, we use a supply curve given by p1 = λ0.5 and a

demand curve given by p2 = 4µ−0.5. Solving the fluid solution, we get the fluid optimal revenue of

3.08, when λ= µ= 4
3
and p1 = 1.15 and p2 = 3.46. For most of the results, we cap the maximum

queue length at 100 for both customers and servers as experiments pointed out that the expected

queue length under optimal pricing policies is one order less than that.

8.1. Optimal Pricing Policy

We present the optimal pricing policy obtained by solving the Average Reward, Continuous Time

Markov Decision Process using the Relative Value Iteration which gives us ǫ optimal solution where

we specify the tolerance to be 10−4. The system is simulated for different values of the penalty

coefficient of the waiting customers and servers. Fig. 4 show the optimal pricing policy for three

different values of the penalty coefficient (s). Note that, as s increases queue length is penalized

more and so the price increases more steeply as the number of customers and servers waiting in

the system increases. Also note that the customer price is always above the server price and both

of them are monotonic so that the platform makes a profit on an average. It verifies Proposition 1.

Also note that, when the system is empty, the customer and server price matches the fluid prices as

there is no penalty due to the waiting and the revenue maximization problem is the fluid problem.

As the system has more customers, the customer price is increased to reduce the inflow of the

customers and server price is increased to increase the inflow of servers to balance out the waiting

customers in the system. As s increases, more weight is given to the penalty due to the waiting

which leads to higher price in order to reduce the average number of waiting customers and servers.

The average revenue under the optimal pricing policies for different values of s values is presented

in Fig. 5. The average revenue decreases with the increase of s as more penalty is imposed for each

waiting customer and server. Fig. 4 and Fig. 6 show that as s increases, the optimal pricing policy

becomes steeper and the stationary distribution of the queue length is more concentrated around

0.
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Figure 4 Optimal pricing policies under different

values of penalty coefficients.
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Figure 5 Optimal average profit obtained under dif-

ferent values of penalty coefficients.
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Figure 6 Stationary distribution of queue length

under different penalty coefficients.
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Figure 7 Comparison of pricing policies with bias

approximation (penalty coefficient = 0.01).
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8.2. Linear Approximation

Now, we will present the results obtained by approximating the bias function by a polynomial in the

queue length and solving the approximate Markov Decision Process using constraint generation.

We would like to point out that the implementation of the approximate MDP using constraint

generation takes 2 orders of time less than solving the MDP using relative value iteration. Among

the multiple experiments conducted, relative value iteration took 5 minutes on an average. On the

other hand, approximated MDP was solved under 10 seconds.

We will now compare the pricing policy obtained by linear and quadratic approximation of the

bias function with that of the optimal pricing policy. As seen in Fig. 7 and 8, for different values of

s, the approximate pricing policy is a good first order approximation to the optimal pricing policy

and with increasing the order of the polynomial, it results in a better fit. The linear approximation
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Figure 8 Comparison of pricing policies with bias

approximation (penalty coefficient = 0.05).
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Figure 9 Performance of two-price policy and fluid

pricing policy compared to the exact solu-

tion.
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itself results in a way better fit than the fluid solution which gives only a static policy. We would also

like to point out that by approximating the bias function and solving for the unknown coefficients,

results in a closed form expression of the pricing policy. Although, the shape of the approximate

policy is sensitive to the function used to approximate the bias function and the fit with the optimal

pricing policy depends on the system parameters.

We compare the approximation of the bias function by a linear function in queue length with

the exact bias function approximated as a linear function using regression. The comparison is sum-

marized in Table 1. The bias function departs from a linear function to a more non linear function

with increasing s which leads to increasing mismatch between the exact and approximated bias

function. Thus, the percentage error between the intercept and slope increases with the increasing

value of s.

Moreover, we also compare the two by considering linear supply and demand curve. In particular,

we consider the supply curve to be p1 = µ and p2 =5−λ. The comparison is summarized in Table

2. Observe that the percentage error is less in the case of linear supply and demand curve, which

shows that the quality of the fit depends on the system parameters.

In both the cases, we can also see that the average revenue (g) obtained by solving the approxi-

mated MDP results in an upper bound on the revenue obtained by solving the exact MDP. This

verifies Proposition 5.

8.3. Asymptotic Analysis

We compute the profit loss under the fluid pricing policy and two-price policy and compare it

with the theoretical result presented before and also with the exact solution obtained by solving
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Table 1 Comparison of constraint generation solution with the
optimal solution with log-log supply and demand curves.

s
Cons. Generation Value Iteration+Fit % Error
c0 c1 γ c0 c1 γ c0 c1

0.01 -1.73 -0.007 3.07 -1.69 -0.008 3.03 2% 10%
0.02 -1.73 -0.010 3.07 -1.80 -0.013 3.03 4% 25%
0.05 -1.73 -0.013 3.06 -1.89 -0.019 3.03 9% 34%
0.1 -1.73 -0.014 3.06 -2.05 -0.025 2.95 16% 43%
0.2 -1.73 -0.016 3.06 -2.59 -0.034 2.8 24% 53%
0.5 -1.73 -0.017 3.06 -2.59 -0.051 2.48 33% 67%

Table 2 Comparison of constraint generation solution with the
solution with linear supply and demand curves.

s
Cons. Generation Value Iteration+Fit % Error
c0 c1 γ c0 c1 γ c0 c1

0.01 -0.014 -2.49 3.11 -0.016 -2.51 3.06 12% 1%
0.02 -0.020 -2.49 3.10 -0.023 -2.51 3.02 13% 1%
0.05 -0.032 -2.48 3.09 -0.037 -2.52 2.93 14% 1%
0.1 -0.048 -2.48 3.07 -0.054 -2.53 2.81 12% 2%
0.2 -0.071 -2.46 3.04 -0.081 -2.55 2.63 12% 3%
0.5 -0.121 -2.44 2.98 -0.144 -2.58 2.24 16% 5%

the MDP. The profit loss under the fluid pricing policy has an order of
√
η and that under the

two-price policy has an order of η1/3, verifying Theorem 1 and Theorem 2. Also observe that the

profit loss under the two-price policy is not much different from that of the optimal profit loss,

demonstrating the effectiveness of a two-price policy.

9. Conclusion

In this paper, we present a model of dynamic pricing and matching for two-sided queueing systems.

The system is formulated as a continuous time Markov decision process, and a fluid approximation

model is considered. We presented a fluid pricing and max-weight matching policy and showed that

it achieves O(
√
η) optimality rate. Furthermore, we proposed a dynamic pricing and modified max-

weight policy, which achieves O(η1/3) optimality rate. We also show that this scaling of O(η1/3)

matches the lower bound for a broad family of policies. In addition, we presented an LP-based

approximation framework and constraint generation algorithm. Our simulation results verify the

theoretical findings and provide additional insights into the optimal policy structure.
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Appendix

A. Uniformized Discrete Time MDP

We define an arrival and matching process for the UDT-MDP. Let a(k)∈ {0,1}m+n be an arrival

process, which represents the arrival of the customers and servers as we have one transition in the

uniformized process. In each period of UDT-MDP, there is at most one customer or server arrival.

The arriving probability is given by

As the probability of having multiple arrivals at the same time for a continuous time process is

zero, at most one component of a(k) will be non zero. Thus, the arrival process has the following

distribution:

a(k) =







e
(2)
j w.p.

λj(q(k))

c
, ∀j ∈ [m]

e
(1)
i w.p. µi(q(k))

c
, ∀i∈ [n]

0m+n w.p. 1− 〈1m,λ(q(k))〉+〈1n,µ(q(k))〉

c
.

Every time the system state changes, the operator is allowed to match customers and servers. Thus,

we define the service process x̃ as follows:

x̃(k) =

{

x(q(k)+a(k)) if a(k) 6= 0m+n

0 if a(k) = 0m+n,

where q(k) is queue length of the system just after we perform matching for the (k− 1)th decision

epoch. With an abuse of notation, we use x(k) to represent x(q(k)+ a(k)). Now we have defined

an arrival process and a service process ( matching decisions) of the two-sided queuing system. For

the ease of notation, we define vectors of the queue lengths, arrival and service process as

q=

















q
(1)
1

q
(1)
2
...

q(1)n

q
(2)
1

q
(2)
2
...

q(2)m
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a
(1)
1

a
(1)
2
...

a(1)
n

a
(2)
1

a
(2)
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...

a(2)
m
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x̃
(1)
1

x̃
(1)
2
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x̃(1)
n

x̃
(2)
1

x̃
(2)
2
...

x̃(2)
m

















. (21)

The queue length advancement equation is the relation between the queue length before a tran-

sition q(k) and the queue length after a transition q(k+1) in the UDT-MDP. We have

q(k+1)= q(k)− x̃(k)+a(k). (22)

Rather than keeping track of the trajectory of the queue length of the continuous process, it suffices

to keep track of the queue length for the uniformized discrete time process. We will work with this

discrete time process in the following sections.
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B. Proof of Proposition 1

The optimal customer and server pricing policy is obtained by solving the Bellman equation given

by (6).

We will first show that the difference of the optimal bias function, ∆h(q) = h(q)− h(q − 1) is

monotonically decreasing in q. We will use the relative value iteration algorithm to compute the bias

function and show that in every iteration, the bias function is monotonic where the bias function

at the end of kth iteration is denoted by hk(q). The relative value iteration does the following

computation for all q ∈ S:

hk+1(q) = max
µ≥0,λ≥0

[
F (λ)λ−G(µ)µ

c
− s|q|

c
− γ

c
+

λ

c
hk(q+1)+

(

1− µ+λ

c

)

hk(q)

+
µ

c
hk(q− 1)

]

−hk(q̃)

for some q̃ ∈ S. Also, the Bellman equation can be rewritten using ∆h(q) as follows:

γ = max
µ≥0,λ≥0

[F (λ)λ−G(µ)µ− s|q|+λ∆h(q+1)−µ∆h(q)] ∀q ∈ S.

Now we will first present a lemma which is essential to prove Proposition 1.

Lemma 3. The optimal difference of bias function ∆h∗(q) is monotonically decreasing in q.

Proof The proof by induction is presented below.

Base Case: As we can start with any initial bias function to implement relative value iteration

algorithm, we pick a monotonically decreasing difference of bias function ∆h0(q) in q.

Induction Hypothesis: Assume that ∆hk(q) is monotonically decreasing in q.

Induction Step: We will now calculate ∆hk+1(q+2)−∆hk+1(q+1) and show that it is always

non negative. We have,

c∆hk+1(q+2)− c∆hk+1(q+1)

= c (hk+1(q+2)− 2hk+1(q+1)+hk+1(q))

∗
= c∆hk(q+2)− c∆hk(q+1)

+ {λ∗(q+2)∆hk(q+3)−µ∗(q+2)∆hk(q+2)+R(µ∗(q+2), λ∗(q+2))}

− 2{λ∗(q+1)∆hk(q+2)−µ∗(q+1)∆hk(q+1)+R(µ∗(q+1), λ∗(q+1))}

+ {λ∗(q)∆hk(q+1)−µ∗(q)∆hk(q)+R(µ∗(q), λ∗(q))} , (23)

where (∗) follows from the Bellman equation where R(µ∗(q), λ∗(q)) is the reward given by F (λ)λ−
G(µ)µ−s|q| and (λ∗(q0), µ

∗(q0)) maximizes the Bellman equation (6) for q= q0. As (λ
∗(q0), µ

∗(q0))

maximizes (6) for q= q0, we have

R(µ∗(q+1),λ∗(q+1))+λ∗(q+1)∆hk(q+2)−µ∗(q+1)∆hk(q+1)≥R(µ∗(q+ i), λ∗(q+ i))

+λ∗(q+ i)∆hk(q+2)−µ∗(q+ i)∆hk(q+1) ∀i∈ {0,2}. (24)
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Using, (24) to simplify (23) we get,

c∆hk+1(q+2)− c∆hk+1(q+1)≤ λ∗(q+2)
(
∆hk(q+3)−∆hk(q+2)

)
+(c−µ∗(q+2)−λ∗(q))×

(
∆hk(q+2)−∆hk(q+1)

)
+µ∗(q)

(
∆hk(q+1)−∆hk(q)

) ∗

≤ 0 ∀q ∈ S (25)

As c = λmax + µmax, we have c − µ∗(q + 2) − λ∗(q) ≥ 0 for all q and by Induction hypothesis,

∆hk(q+1)−∆hk(q)≤ 0 for all q. Thus, (∗) follows. This proves the lemma as relative value iteration

preserves the monotonic behaviour of the bias function and it converges to the optimal value and

as the point-wise limit of monotonically decreasing functions is monotonically decreasing, ∆h(q)

is monotonically decreasing and so h(q) is concave. �

Proof of Proposition 1 By Assumption 2, the domain of F is [0, λmax] and the domain of G

is [0, µmax] and by Assumption 1, the equation we are maximizing in (6) is continuous and by

Assumption 2 is it concave. Thus, we are maximizing a continuous concave function over a compact

set. Thus, the maximizer exists and any point is a maximizer if and only if it satisfies the first

order necessary condition.

First we will show that if λ∗(q0) = 0 then λ∗(q) = 0 for all q > q0 is an optimal decision rule. If

λ∗(q0) = 0, then we have

F (λ)λ+∆h∗(q0)λ≤ 0 ∀λ∈ [0, λmax]

F (λ)λ+∆h∗(q0)λ+(∆h∗(q0 + k)−∆h∗(q0))λ≤ (∆h∗(q0 + k)−∆h∗(q0))λ

F (λ)λ+∆h∗(q0 + k)λ
∗

≤ 0 ∀λ∈ [0, λmax] ∀k≥ 1

where (∗) follows as ∆h∗ is monotonically decreasing in q. The above inequality says that maximum

value of F (λ)λ+∆h∗(q0 + k)λ is zero for all k ≥ 1, thus, λ= 0 is an optimizer for that. Now we

will similarly show that if λ(q0) = λmax then λ(q) = λmax for all q < q0 is an optimal decision rule.

We have,

F (λ)λ+∆h∗(q0)λ≤F (λmax)λmax +∆h∗(q0)λmax ∀λ∈ [0, λmax].

Now, adding (∆h∗(q0− k)−∆h∗(q0))λ for some k > 0, for all λ∈ [0, λmax] and k≥ 1, we get

F (λ)λ+∆h∗(q0− k)λ≤ F (λmax)λmax+∆h∗(q0)λmax +(∆h∗(q0− k)−∆h∗(q0))λ

∗⇒ F (λ)λ+∆h∗(q0− k)λ≤ F (λmax)λmax+∆h∗(q0− k)λmax,

where (∗) follows as λmax ≥ λ and ∆h∗(q0−k)−∆h∗(q0)≥ 0. Thus, λ(q) = λmax will be an optimal

decision rule for all q < q0. Thus, once the customer rate reaches it’s maximum or minimum value,

in the maximization problem (6), it’ll stay constantly that throughout.
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Similarly, we can show that if µ∗(q0) = µmax then µ(q) = µmax for all q≥ q0 is an optimal pricing

policy and if µ∗(q0) = 0 then µ(q) = 0 for all q ≤ q0 is an optimal pricing policy. As it is quite

repetitive, we omit the details here.

Now, we will use the optimality condition for the optimization problem given by (6) when the

optimal arrival rates are strictly in the interior of the constraint region, i.e. λmax > λ∗(q)> 0 and

µmax >µ∗(q)> 0. We have,

[F (λ∗(q))λ∗(q)]′ +∆h∗(q+1)= 0 (26)

[G(µ∗(q))µ∗(q)]′ +∆h∗(q) = 0, (27)

where the gradient of the LHS is taken with respect to λ and µ respectively, which in turn depends

on q. The gradient is well defined as F and G are continuous differentiable functions by Assumption

1. As ∆h∗(q) is monotonically decreasing in q by Lemma 3, we have that [F (λ∗(q))λ∗(q)]′ and

[G(µ∗(q))µ∗(q)]′ are monotonically increasing. By Assumption 2, F (λ∗(q))λ∗(q) is concave in λ∗

and G(µ∗(q))µ∗(q) is convex in µ∗. Thus, λ∗ should be monotonically decreasing in q and µ∗ should

be monotonically increasing in q when λmax >λ∗ > 0 and µmax >µ∗ > 0 respectively.

Combining everything, λ∗(q) will be monotonically decreasing for all q and as the demand curve

is monotonically decreasing by Assumption 1, the customer price (p(2))∗(q) will be monotonically

increasing. Also, µ∗(q) will be monotonically increasing for all q and as the supply curve is mono-

tonically increasing by Assumption 1, the server price (p(1))∗(q) will be monotonically increasing.

�

C. Proof of Proposition 2

First note that, under a given pricing and matching policy, if E[q(k)j ] =∞ for some k, j ∈ {1}× [m]∪
{2} × [n], then R(q,z) =−∞ and the theorem is trivially true as the optimal objective function

value (7a) is greater than or equal to 0 as λ̃= 0m and µ̃= 0n is a trivial feasible solution of the

fluid optimization problem.

We will now show the following claim holds true and then prove the theorem.

Claim 1. For any stationary pricing and matching policy under which the system is stable and

E[q
(k)
j ]<∞ for all k, j ∈ {1} × [m] ∪ {2} × [n], the constraints in the fluid LP (7b) (7c) (7d) are

necessary but not sufficient conditions.

Proof Recall that we are interested in policies under which our CTMC is irreducible containing

the state zero. Thus, if under a pricing and matching policy the system is stable, then we can use

stationarity to write:

E[q(k+1)] =E[q(k)]
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where the expectation is with respect to the stationary distribution of the CTMC or equivalently

the uniformized DTMC. Now, using (22), we can simplify the above equation to write:

E[a(k)] =E[x̃(k)]. (28)

We have cE[a(k)] = cE
[
Eq(k)[a(k)]

]
=E[(λ(q),µ(q))] = (λ̃, µ̃), where λ(q) and µ(q) are the arrival

rates under the given pricing policy. By (1a) (1b) and (1c), there exists xij(k)≥ 0 for all i ∈ [n]

and j ∈ [m] and k ∈ Z+ such that,

x̃
(2)
j (k) =

n∑

i=1

x̃ij(k)≤ q
(2)
j (k) ∀j ∈ [m],

x̃
(1)
i (k) =

m∑

j=1

x̃ij(k)≤ q
(1)
i (k) ∀i∈ [n],

x̃ij(k) = 0 ∀(i, j) /∈E,

where x̃ij = xij if a(k) 6= 0m+n and 0 otherwise. Note that since the matching policy is stationary,

the expectation of the matching decision will not depend on k. Taking expectation on both sides

with respect to the stationary distribution and defining E[x̃ij(k)] = χij , we have

E

[

x̃(2)
j (k)

]

=
n∑

i=1

χij(k)≤E

[

q(2)j (k)
]

<∞ ∀j ∈ [m],

E

[

x̃
(1)
i (k)

]

=
m∑

j=1

χij(k)≤E

[

q
(1)
i (k)

]

<∞ ∀i∈ [n],

χij(k) = 0 ∀(i, j) /∈E.

Now substituting a and x̃ in (28), we get (7b) (7c) and (7d). Thus, for any pricing and matching

policy under which the system is stable, the constraints in the fluid LP are necessary but not

sufficient. �

Proof of Proposition 2 Now, by ergodic theorem for Markov chains, the long run average reward

converges to E[R(q,z)]. Note that the Uniformized DTMC is aperiodic as we will always have tran-

sition from a state back to itself because of uniformization. Also, we have E[R(q,z)]≤ E[〈F (λ),λ〉−
〈G(µ),µ〉] ≤

〈

F (λ̃), λ̃
〉

− 〈G(µ̃), µ̃〉 for any pricing and matching policy, where the last inequal-

ity follows from Jensen’s Inequality and Assumption 2. Thus, the optimal fluid objective function

value provides an upper bound for the average revenue under any stationary pricing and matching

policy. Now, from the MDP theory, we know that there exists an optimal stationary policy and

the fluid problem provides an upper bound for any stationary policy. Thus, fluid problem provides

an upper bound for any arbitrary pricing and matching policy. Thus, the theorem follows. �
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D. Proof of Theorem 1

We first define the following set for the ease of notation.

C
E =

{

λ,µ : ∃χ∈Rn×m
+ λj =

n∑

i=1

χij, ∀j ∈ [m], µi =
m∑

j=1

χij,∀i∈ [n], χij = 0, ∀(i, j) /∈E
}

. (29)

Note that these constraints are the same as the constraints in the fluid optimization problem (7b)

(7c) (7d). We now present the proof of the theorem below.

Proof of Theorem 1 We will bound each of the terms in the profit-loss (Lη) (9). In order to

bound the first term, define a function of queue lengths V (q) =
∑m

j=1(q
(2)
j )2. Now, we will calculate

QηV (q) where Qη is the transition rate matrix of the ηth CTMC operating under the Fluid pricing

policy and max-weight matching policy.

QηV (q)

=
m∑

j=1

ηλ∗
j




∑

j′∈[m]/j

(

q
(2)

j′

)2

+

(

q
(2)
j +

(

1−
m∑

i=1

y
(2)
ij

)

1

{

q
(2)
j

<qηmax

}

)2


+
m∑

i=1

ηµ∗
i

[
m∑

j=1

(

q
(2)
j − y

(1)
ij

)2
]

−
[

m∑

i=1

ηµ∗
i +

m∑

j=1

ηλ∗
j

]
m∑

j=1

(

q
(2)
j

)2

(a)
=

m∑

j=1

ηλ∗
j

(

1−
n∑

i=1

y
(2)
ij

)
(

1+2q
(2)
j

)

1

{

q
(2)
j <q

η
max

} +
n∑

i=1

ηµ∗
i

m∑

j=1

y
(1)
ij

(

1− 2q
(2)
j

)

(b)

≤
n∑

i=1

ηµ∗
i +

m∑

j=1

ηλ∗
j +2

[
m∑

j=1

ηλ∗
jq

(2)
j

(

1−
n∑

i=1

y
(2)
ij

)

1

{

q
(2)
j <q

η
max

}−
n∑

i=1

ηµ∗
i

m∑

j=1

q
(2)
j y

(1)
ij

]

(c)
=

n∑

i=1

ηµ∗
i +

m∑

j=1

ηλ∗
j +2

[
m∑

j=1

ηλ∗
jq

(2)
j 1

{

q
(2)
j <q

η
max

}

1

{

maxi′:(i′,j)∈E q
(1)

i′
=0

}−
n∑

i=1

ηµ∗
i

(

max
j′:(i,j′)∈E

q
(2)

j′

)]

(d)
= 2

∑

(i,j)∈E

ηχ∗
ij

[

1+ q
(2)
j 1

{

q
(2)
j

<qηmax

}

1

{

maxi′:(i′,j)∈E q
(1)

i′
=0

}− max
j′:(i,j′)∈E

q
(2)

j′

]

,

where (a) follows as (y
(1)
ij )2 = y

(1)
ij as y

(1)
ij ∈ {0,1}. Also, (1−

∑n

i=1 y
(2)
ij )2 = 1−∑n

i=1 y
(2)
ij as

∑n

i=1 y
(2)
ij ∈

{0,1}. Next, (b) follows from the fact that (1 −∑n

i=1 y
(2)
ij ) ≤ 1 for all j ∈ [m] and

∑m

j=1 y
(1)
ij ≤ 1

for all i ∈ [n] which is because there can be at most one arrival between two successive decision

epochs and we only match the arriving customers and servers, i.e. we only match at most one pair

in each time epoch. Now, (c) follows from the max-weight matching algorithm 1 and (d) follows

as λ∗,µ∗ ∈C, there exists a χ=χ∗ such that λ∗,µ∗,χ∗ satisfies (7b)–(7d). As q≤ 1qηmax, V (q) is

finite for all permissible values of q. Moreover, E[V (q)] is finite and so the family of CTMC for

all η are positive recurrent. Suppose q(∞) denotes the steady state queue length vector. Taking

expectation with respect to the steady state distribution of q, we have E[QV (q(∞))] = 0. So, we

have

0≤
∑

(i,j)∈E

χ∗
ij

[

1+E

[

q
(2)
j (∞)1{

q
(2)
j

(∞)<qηmax

}

1

{

maxi′:(i′,j)∈E q
(1)

i′
(∞)=0

}

]

−E

[

max
j′ :(i,j′)∈E

q
(2)

j′ (∞)

]]
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∗

≤
∑

(i,j)∈E

χ∗
ij

[

1+E

[

q
(2)
j (∞)

]

−E

[

I
(2)
j (qηmax)

]

qηmax−E

[

max
j′:(i,j′)∈E

q
(2)

j′ (∞)

]]

∗∗

≤
∑

(i,j)∈E

χ∗
ij

[

1−
[

I
(2)
j (qηmax)

]

qηmax

]

=
m∑

j=1

λ∗
j − qηmax

m∑

j=1

λ∗
j

[

I
(2)
j (qηmax)

]

. (30)

where (∗) follows from the inequality 1
maxi′∈N(j) q

(1)

i′
(∞)=0

≤ 1 for all q(∞) and (∗∗) follows from the

inequality maxj′∈N(i) q
(2)

j′ (∞)≥ q
(2)
j (∞) for all j such that (i, j)∈E. By substituting qηmax = γ

√
η in

(30) for an arbitrary positive constant γ, we get

γ
√
η

m∑

j=1

λ∗
jE

[

I
(2)
j (qηmax)

]

≤
m∑

j=1

λ∗
j ,

⇒
m∑

j=1

Fj(λ
∗
j)λ

∗
jE

[

I
(2)
j (qηmax)

]

≤ 1

γ
√
η
max
j∈[m]

Fj(λ
∗
j)

m∑

j=1

λ∗
j . (31)

Thus, we have
〈
F (λ∗),λ∗ ◦E

[
I(2)(qηmax)

]〉
is O(1/

√
η). Now we will bound the penalty term due

to the expected queue length below:

The state space of the CTMC is such that for any state q, we have q≤ qηmax. Thus, it is trivially

true that 〈1m+n,E[q]〉 ≤ (m+ n)qηmax = (m+n)γ
√
η. Thus we can upper bound the profit loss Lη

by using (9) as follows:

Lη ≤√η
(

max
j∈[m]

Fj(λ
∗
j)

γ

m∑

j=1

λ∗
j +(m+n)γ

)

=O(
√
η) � (32)

E. Proof of Proposition 3

Proof of Proposition 3 In this proof, we omitted the subscript for the type of customer/server

as we are working with a single link two sided queue. Under the fluid pricing policy, the steady

state distribution of q = q(2)− q(1) is uniform as it behaves like a symmetric simple random walk.

Thus, the expected value of the sum of queue length (q(1)+ q(2)) can be computed in terms of the

buffer capacity qηmax as follows:

E[q(1)(k)+ q(2)(k)] =E[|q(1)(k)− q(2)(k)|] (33)

=
qηmax(q

η
max +1)

2qηmax +1
(34)

∗≈ qηmax/2 (35)

where (∗) is an approximation at large values of qηmax. We can also write the steady state probability

of q(1) = qηmax and q(2) = qηmax by using the fact that the steady state queue length distribution is

uniform across the state.

P[q(1) = qηmax] =
1

2qηmax+1
(36)
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P[q(2) = qηmax] =
1

2qηmax+1
(37)

Now, we can evaluate the profit loss by using (9) as follows:

Lη =
F (λ∗)λ∗−G(µ∗)µ∗

2qηmax+1
η+ s

qηmax(q
η
max+1)

2qηmax+1
(38)

Clearly, by (38), the asymptotic profit loss is optimal when the buffer is scaled as qηmax = γ
√
η for

some positive constant γ. To expound, if qηmax = γη0.5+ǫ for some ǫ > 0, then due to the second

term, Lη = Θ(η0.5+ǫ). On the other hand if φη
max = γη0.5−ǫ for some ǫ > 0, then due to the first

term, Lη =Θ(η0.5+ǫ).

As (38) holds with equality, the optimal profit loss is Θ(
√
η). The proposition follows. �

F. Proof of Lemma 1

We first present a definitions before proving the lemmas and theorem. We define the following set:

C
E
+ =

{

λ,µ : ∃χ∈Rn×m
+ , λj =

n∑

i=1

χij ∀j ∈ [m], µi =
m∑

j=1

χij ∀i∈ [n],

χij = 0 ∀(i, j) /∈E,χij > 0 ∀(i, j)∈E
}

.

Unlike CE, in CE
+ we need χij to be non zero for all (i, j)∈E. Note that, CE

+ ⊆CE, so if λ∗, µ∗ ∈CE
+

then λ∗, µ∗ ∈CE but the converse may not be true. Also note that CE′ ⊆CE if E′ ⊆E. Now we

present the proof of the lemma below.

Proof of Lemma 1 We start by defining two Lyapunov Functions as,

V (1)(q) =
〈
1n, (q

(1))2
〉
and V (2)(q) =

〈
1m, (q

(2))2
〉
.

Now, we will calculate the drift of V (2)(.) for the ηth CTMC as follows:

QηV (2)(q)

=
m∑

j=1

(

ηλ∗
j − θjσ

η
1

{

q
(2)
j >τ

η
max

}

)




(

q
(2)
j +1−

n∑

i=1

y
(2)
ij

)2

−
(

q
(2)
j

)2





+

n∑

i=1

(

ηµ∗
i −φiσ

η
1

{

q
(1)
i >τ

η
max

}

) m∑

j=1

((

q
(2)
j − y

(1)
ij

)2

−
(

q
(2)
j

)2
)

(a)
=

m∑

j=1

(

ηλ∗
j − θjσ

η
1

{

q
(2)
j >τ

η
max

}

)(

1−
n∑

i=1

y
(2)
ij

)
(

1+2q
(2)
j

)

+
n∑

i=1

(

ηµ∗
i −φiσ

η
1

{

q
(1)
i >τ

η
max

}

) m∑

j=1

y(1)
ij

(

1− 2q(2)j

)

(b)

≤ η 〈1m,λ
∗〉+ η 〈1n,µ

∗〉+2
m∑

j=1

ηλ∗
j

(

1−
n∑

i=1

y
(2)
ij

)

q
(2)
j − 2

n∑

i=1

ηµ∗
i

m∑

j=1

y
(1)
ij q

(2)
j
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− 2ση

m∑

j=1

θj

(

1−
n∑

i=1

y
(2)
ij

)

q
(2)
j 1

{

q
(2)
j >τ

η
max

} +2ση

n∑

i=1

φi

m∑

j=1

y
(1)
ij q

(2)
j 1

{

q
(1)
i >τ

η
max

}

(c)
= η 〈1m,λ

∗〉+ η 〈1n,µ
∗〉+2

m∑

j=1

ηλ∗
jq

(2)
j 1

{

maxi′:(i′,j)∈E∗ q
(1)

i′
=0

}− 2
n∑

i=1

ηµ∗
i max
j′:(i,j′)∈E∗

q(2)j′

− 2ση

m∑

j=1

θjq
(2)
j 1

{

q
(2)
j >τ

η
max

}

1

{

maxi′:(i′,j)∈E∗ q
(1)

i′
=0

} +2ση

n∑

i=1

φi max
j′:(i,j′)∈E∗

q
(2)

j′ 1
{

q
(1)
i >τ

η
max

} (39)

(d)
= η 〈1m,λ

∗〉+ η 〈1n,µ
∗〉+2η

∑

i,j∈E∗

χ∗
ij

(

q
(2)
j 1

{

maxi′:(i′,j)∈E∗ q
(1)

i′
=0

}− max
j′:(i,j′)∈E∗

q
(2)

j′

)

− 2ση

m∑

j=1

θjq
(2)
j 1

{

q
(2)
j >τ

η
max

}

(e)

≤ η 〈1m,λ
∗〉+ η 〈1n,µ

∗〉− 2ση

m∑

j=1

θjq
(2)
j 1

{

q
(2)
j >τ

η
max

}. (40)

Under the modified max-weight matching policy, if any of the compatible counterparts’ queue

(according to E∗) of the arrival is non empty, we match it with the type with most number of

waiting customers/ servers. Thus, we will have
∑n

i=1 y
(2)
ij and y

(1)
ij for all j to be either 1 or 0. Thus,

we will have (1−∑n

i=1 y
(2)
ij )2 = 1−∑n

i=1 y
(2)
ij and (y

(1)
ij )2 = y

(1)
ij . Thus, ((a)) follows.

We have ηλ∗
j − θjσ

η
1

{

q
(2)
j

>τηmax

} < ηλ∗
j as θjσ

η > 0 and 1 −∑n

i=1 y
(2)
ij ≤ 1. We also have that

ηµ∗
i −φiσ

η
1

{

q
(1)
i >τ

η
max

} < ηµ∗
i as φiσ

η > 0 and
∑m

j=1 y
(1)
ij ≤ 1. Using these inequalities, ((b)) follows.

Now, ((c)) follows from the Algorithm 1, as we match whenever any of the compatible counter-

parts’ queue in the minimal capacity serving graph is empty and we match it to the queue with

maximum number of customers/servers waiting.

We can have q
(1)
i > τη

max > 0, if and only if the queues of all the compatible counterparts of i in

minimal capacity serving graphs are empty as we match immediately whenever there is an arrival.

Thus, the last term in (39) is 0 and thus, ((d)) follows. We also use the definition of the capacity

region and the fact that λ∗,µ∗ ∈CE∗

+ in this step.

Lastly, (e) follows as the last term is zero when χ∗
ij = 0 and we have j : (i, j) ∈E∗ when χ∗

ij > 0

and thus, q
(2)
j ≤maxj′:(i,j′)∈E∗ q

(2)

j′ . Now, we can similarly upper bound the drift of V (1)(q). We have

QηV (1)(q)≤ η 〈1m,λ
∗〉+ η 〈1n,µ

∗〉− 2ση

n∑

i=1

φiq
(1)
i 1

{

q
(1)
i

>τηmax

}. (41)

Now, if we add (40) and (41), we will have an upper bound on the drift of the Lyapunov function

V (q) = V (1)(q)+V (2)(q) to be:

QηV (q)≤B− 2ση

n∑

i=1

φiq
(1)
i 1

{

q
(1)
i

>τηmax

}− 2ση

m∑

j=1

θjq
(2)
j 1

{

q
(2)
j

>τηmax

},
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Where, B = 2η 〈1m,λ
∗〉+2η 〈1n,µ

∗〉. Now consider the following set:

Bη =

{

q : q
(1)
i ≤max

{
B

φiση
, τη

max

}

, q
(2)
j ≤max

{
B

θjση
, τη

max

}

∀i∈ [n], j ∈ [m]

}

.

Outside the finite set Bη, the drift of the Lyapunov function V (q) is strictly less than zero. We

have

QηV (1)(q)+QηV (2)(q)≤−B < 0 ∀q∈ (Bη)
c
.

Thus, the system is positive recurrent for any η and the first part of the lemma follows. Now,

we will use the moment bound theorem to upper bound the expectation of the sum of the queue

lengths to get the desired inequality. We have,

ση
E

[
n∑

i=1

φiq
(1)
i 1

{

q
(1)
i >τ

η
max

} +
m∑

j=1

θjq
(2)
j 1

{

q
(2)
j >τ

η
max

}

]

≤ B

2
.

By substituting 1{

q
(1)
i >τ

η
max

} =1−1{

q
(1)
i ≤τ

η
max

} and then bounding the RHS by using the inequality

E[q
(1)
i 1

{

q
(1)
i ≤τ

η
max

}]≤ τη
max, we get the lemma. �

G. Proof of Lemma 2

Before proving the lemma, we first prove the following claim:

Claim 2. Consider a pricing and matching policy and assume the following:

• The multiple link two sided queue is positive recurrent

• E[〈1m+n,q〉]<∞ under the given policy

• The pricing policy is of the following form:

λ̃j = ηλ∗
j + f̃j(q, η) ∀j ∈ [m] (42)

µ̃i = ηµ∗
i + g̃i(q, η) ∀i∈ [n], (43)

Then we have

∑

j∈[m]

(
F ′

j(λ
∗
j)λ

∗
j +Fj(λ

∗
j)
)
E[f̃j(q, η)]≤

∑

i∈[n]

(G′
i(µ

∗
i )µ

∗
i +Gi(µ

∗
i ))E[g̃i(q, η)].

If in addition, the matching policy only uses edges E∗ from the minimal capacity serving graph to

match, then we have

∑

j∈[m]

(
F ′

j(λ
∗
j)λ

∗
j +Fj(λ

∗
j)
)
E[f̃j(q, η)] =

∑

i∈[n]

(G′
i(µ

∗
i )µ

∗
i +Gi(µ

∗
i ))E[g̃i(q, η)].
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Proof of the Claim First, we will define a vector χ̄ of dimension R(mn)×1 given a matrix χ of

dimension Rn×m as follows:

χ̄k =χij where i= ⌈ k
m
⌉ j = k%(m+1) ∀k ∈ [mn],

where ⌈x⌉ is the smallest integer greater than or equal to x and x%(n+1) is the reminder obtained

by dividing x ∈ Z+ by (n+ 1). In other words, χ̄ is a vector obtained by stacking all the rows of

the χ matrix next to each other.

By the hypothesis of the claim, the system is positive recurrent. Also, by the Claim 1, we know

that the constraints (7b) (7c) (7d) are necessarily satisfied for the pricing and matching policy

under which the system is positive recurrent and E[〈1m+n,q〉]<∞. Thus, for the arrival rate vector

(λ̃, µ̃), there exists a corresponding average rate assignment vector χ̄p corresponding to the rate

assignment matrix χp such that the constraints which define the set CE, which is the same as the

constraints (7b) (7c) (7d) is satisfied.

Now we restate the fluid problem originally defined in (7a) (7c) (7b) (7d) below:

max f(λ,µ, χ̄) = 〈F (λ),λ〉− 〈G(µ),µ〉

subject to,

h
(2)
j (λ,µ, χ̄) = λj −

∑

k:k%(m+1)=j

χ̄k =0 ∀j ∈ [m],

h
(1)
i (λ,µ, χ̄) = µi−

∑

k:⌈k/m⌉=i

χ̄k = 0 ∀i∈ [n],

χ̄k =0 ∀(⌈k/m⌉, k%(m+1)) /∈E, χ̄k ≥ 0 ∀(⌈k/m⌉, k%(m+1))∈E.

As (λ̃, µ̃) ∈ CE, there exists a corresponding average rate assignment vector χ̄p ∈ R
n×m
+ corre-

sponding to the average rate assignment matrix χp, that comes from the given pricing policy (42),

(43) and matching policy such that χp
ij = 0 ∀(i, j) /∈ E and h(λ̃, µ̃,χp) = 0m+n. Here we define

h :Rm+n+mn→Rm+n as

h(.) = (h
(2)
1 (.), h

(2)
2 (.), . . . h(2)

m , h
(1)
1 (.), . . . h(1)

n (.))

which is the concatenation all the equality constraints.

To prove the claim, we will use the optimality condition for the fluid problem (7a) (7c) (7b) (7d)

as (λ∗,µ∗,χ∗) is an optimal solution to this problem. We will do the following steps:

• First we will argue that the optimal point (λ∗,µ∗,χ∗) is regular, i.e. the constraints tight at

the optimal point are linearly independent.

• Then we will use the arrival rates of the given price policy to find a feasible direction for the

fluid problem
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• Finally, we will use the first order KKT optimality conditions

The gradients of the active constraints at the optimal point of the fluid problem (λ∗,µ∗,χ∗) are

linearly independent as the constraints h(λ,µ,χ) and the non negativity constraints are linear and

it can be easily verified that the normal vectors to the hyper planes and half spaces corresponding

to these constraints are linearly independent.

So, the optimal point is regular and thus, there exists unique Lagrangian multipliers (κ∗,ξ∗) ∈
Rm+n×R

m×n
+ such that,

∇f(λ∗,µ∗, χ̄∗)+∇h(λ∗,µ∗, χ̄∗)κ∗ +
∑

k:(⌈k/m⌉,k%(m+1))∈E

ξ∗kek+n+m1χ̄∗
k
=0 +

∑

k:(⌈k/m⌉,k%(m+1))/∈E

ξ∗kek+n+m = 0m+n+mn,

(44)

where f(λ∗,µ∗,χ∗)∈Rm+n+mn is given by

∇f(λ∗,µ∗,χ∗) = (F ′(λ∗)λ∗ +F (λ∗),−G′(µ∗)µ∗−G(µ∗),0nm).

Also, as h :Rm+n+mn→Rm+n, the gradient ∇h(λ∗,µ∗, χ̄∗) is a matrix in R(m+n+mn)×(m+n) where

each column corresponds to the the gradient of the equality constraints h
(2)
j for all j ∈ [m] and h

(1)
i

for all i ∈ [n]. Finally, we define ek+n+m ∈ Rm+n+mn as a vector with all components zero except

the (k+ n+m)th component. Now we define a vector d ∈ Rn+m+mn which is a feasible direction

for the optimization problem, given by

d= (λ∗,µ∗, χ̄∗)− (λ̃, µ̃, χ̄p)

⇒ dk =







E[f̃j(q, η)], ∀k ∈ [m]

E[g̃i(q, η)], ∀j ∈m+ [n]

χ̄∗
k− χ̄p

k, ∀k ∈m+n+ [mn].

Now we have,

〈

d,∇h(2)
j

〉

= h
(2)
j (λ∗,µ∗,χ∗)−h

(2)
j (λ̃, µ̃, χ̄p) = 0, ∀j ∈[m] (45)

〈

d,∇h(1)
i

〉

= h
(1)
i (λ∗,µ∗,χ∗)−h

(1)
i (E[λ̃, µ̃, χ̄p) = 0, ∀i∈[n] (46)

∑

k:(⌈k/m⌉,k%(m+1))∈E

ξ̄k(χ̄
∗
k− χ̄p

k)1χ̄∗
k
=0 +

∑

k:(⌈k/m⌉,k%(m+1))/∈E

ξk(χ̄
∗
k− χ̄p

k)
∗

≤ 0, (47)

where (∗) follows from the from the fact that χp
ij = 0 and χ∗

ij = 0 for all (i, j) /∈ E Thus, by

taking the inner product on both the side by d in (44) and using (45), (46) and (47) we get

〈d,∇f(λ∗,µ∗, χ̄∗)〉 ≤ 0. Now, by expanding 〈d,∇f(λ∗,µ∗, χ̄∗)〉, we have the first part of the claim.

If in addition, if we use edges only from E∗, then we will have χp
ij = 0 and χ∗

ij =0 for all (i, j) /∈E∗

and χ∗
ij > 0 for all (i, j)∈E∗. As E∗ ⊆E by definition, we have

∑

k:(⌈k/m⌉,k%(m+1))∈E

ξ̄k(χ̄
∗
k− χ̄p

k)1χ̄∗
k
=0 +

∑

k:(⌈k/m⌉,k%(m+1))/∈E

ξk(χ̄
∗
k− χ̄p

k) = 0
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Thus, we will have 〈d,∇f(λ∗,µ∗, χ̄∗)〉= 0. Now, by equating 〈d,∇f(λ∗,µ∗, χ̄∗)〉 to zero, we have

the claim. �

Proof of Lemma 2 Under the two-price policy, we will first calculate the rate of arrival of

requests. We have

E[a(2)
j ] =E

[
a(2)
j |q(2)j ≤ τη

max

]
P[q(2)j ≤ τη

max] +E
[
a(2)
j |q(2)j > τη

max

]
P[q(2)j > τη

max]

= λ∗
j − θjσ

η
P[q(2)j > τη

max] ∀j ∈ [m],

Similarly, we also have:

E[a
(1)
i ] = µ∗

i −φiσ
η
P[q

(1)
i > τη

max] ∀i∈ [n].

Now we define a vector d ∈ Rn+m+mn which is a feasible direction for the optimization problem,

given by

d= (λ∗,µ∗, χ̄∗)− (E[a], χ̄TP )

⇒ dk =







θkσ
ηP[q

(2)
k > τη

max], ∀k ∈ [m]

φkσ
ηP[q

(1)
k > τη

max], ∀j ∈m+ [n]

χ̄∗
k− χ̄TP

k , ∀k ∈m+n+ [mn].

where χ̄TP ∈ Rmn
+ is the rate assignment vector for the two-price policy, analogous to χ̄p for a

general pricing policy. By Lemma 1, the system is positive recurrent under the two-price policy for

any θη > 0m, φ
η > 0n and ση with E[〈1m+n,q〉]<∞. Next, as we are using modified max weight

policy, we only match using edges in E∗. Finally, the two-price policy falls under the form given in

(42) and (43). Thus, by Claim 2, we have 〈d,∇f(λ∗,µ∗, χ̄∗)〉= 0. Thus, the lemma follows. �

H. Proof of Theorem 2

Proof of Theorem 2 We will first calculate the profit loss given by (9) as follows:

Lη (48)

= πη
∗ − (πη− s 〈1n+m,E[q]〉)

= η 〈F (λ∗),λ∗〉− η 〈G(µ∗),µ∗〉− η




∑

j∈[m]

Fj(λ
∗
j)λ

∗
jP[q

(2)
j ≤ τη

max]+

∑

j∈[m]

Fj

(

λ∗
j −

θjσ
η

η

)(

λ∗
j −

θjσ
η

η

)

P[q
(2)
j > τη

max]−
∑

i∈[n]

Gi(µ
∗
i )µ

∗
iP[q

(1)
i ≤ τη

max]

−
∑

i∈[n]

Gi

(

µ∗
i −

φiσ
η

η

)(

µ∗
i −

φiσ
η

η

)

P[q(1)i > τη
max]



+ s 〈1m+n,E[q]〉 .

= η
∑

j∈[m]

(

Fj(λ
∗
j)λ

∗
j −Fj

(

λ∗
j −

θjσ
η

η

)(

λ∗
j −

θjσ
η

η

))

P[q
(2)
j > τη

max]
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− η
∑

i∈[n]

(

Gi(µ
∗
i )µ

∗
i −Gi

(

µ∗
i −

φiσ
η

η

)(

µ∗
i −

φiσ
η

η

))

P[q
(1)
i > τη

max] + s 〈1m+n,E[q]〉 .

∗
=
∑

j∈[m]

(
F ′

j(λ
∗
j)λ

∗
j +Fj(λ

∗
j)
)
θjσ

η
P[q

(2)
j > τη

max] + s 〈1m+n,E[q]〉−
∑

i∈[n]

(G′
i(µ

∗
i )µ

∗
i +Gi(µ

∗
i ))φiσ

η
P[q

(1)
i > τη

max] +O(η1/3),

where (∗) follows from the Taylor series expansion of the terms F (λ∗−θση/η) and G(µ∗−φση/η)

component wise and using ση = η2/3. To expound, for type j customer, we can obtain (∗) by the

following steps:

ηFj(λ
∗
j)λ

∗
j − ηFj

(

λ∗
j −

θjσ
η

η

)(

λ∗
j −

θjσ
η

η

)

= ηFj(λ
∗
j)λ

∗
j − η

(

Fj(λ
∗
j)−

θjσ
η

η
F ′

j(λ
∗
j)+

(
θjσ

η

η

)2

F ′′
j (λ

∗
j)+O(η−2/3)

)(

λ∗
j −

θjσ
η

η

)

=
(
Fj(λ

∗
j)+F ′

j(λ
∗
j)λ

∗
j

)
θjσ

η −
(
F ′′

j (λ
∗
j)λ

∗
j +F ′

j(λ
∗
j)
) (θση)2

η
+O(η1/3)

=
(
Fj(λ

∗
j)+F ′

j(λ
∗
j)λ

∗
j

)
θjσ

η +O(η1/3).

By using Lemma 2, we can simplify the profit loss for the ηth system by eliminating the first order

terms to get:

Lη ≤O(η1/3)+ s 〈1m+n,E[q]〉 (49)

Now, using Lemma 1, we can upper bound the expected queue length as follows:

E
[〈
θ,q(2)

〉]
+E

[〈
φ,q(1)

〉]
≤ τη

max

(
m∑

j=1

θjP[q
(2)
j > τη

max] +
n∑

i=1

φiP[q
(1)
i > τη

max]

)

+
η

ση
(〈1n,µ

∗〉+ 〈1m,λ
∗〉)

⇒min{(θ,φ)}E[〈1m+n,q〉]≤ τη
max

(
m∑

j=1

θj +
n∑

i=1

φi

)

+
η

ση
(〈1n,µ

∗〉+ 〈1m,λ
∗〉)

⇒min{(θ,φ)}E[〈1m+n,q〉] ∗
=O(η1/3)⇒E[〈1m+n,q〉] ∗

=O(η1/3) (50)

where (∗) follows by substituting τη
max = T1η

1/3, ση = η2/3 and noting that min{(θ,φ)}> 0. Finally

by substituting (50) in (49) we have the theorem. �

I. Proof of Theorem 3

First, we will present a lemma in which, we will lower bound the expected value of the sum of the

queue length E [〈1n+m,q〉].
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Figure 10 Coupled Birth and Death Process
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Lemma 4. If Condition 1 (a) is satisfied, then

E[〈1n+m,q〉]≥
η1−β 〈1m,λ

∗〉
2 (〈1n,N〉+ 〈1m,M〉)

− 0.5. (51)

In addition, if Condition 1 (b) and (c) are satisfied, then there exists ǫ > 0 andM> 0 such that

m∑

j=1

E

[

f 2
j

(
q

ηα

)]

+
n∑

i=1

E

[

g2i

(
q

ηα

)]

≥ ǫ ∀η >M (52)

Proof of Lemma 4 First, recall that we denote the imbalance for a CTMC by z which is defined

in (15). Now, we will define a new DTMC {z̃η(k) : k ∈ Z+} and couple it with the Uniformized

DTMC {qη(k), zη(k) : k ∈ Z+} with uniformization constant c such that |zη(k)| ≥ z̃η(k) for all

k ∈Z+ for all η ≥ 1 if z(0) = z̃(0).

The state space of {z̃η(k) : k ∈ Z+} is Z+ and the transition matrix is given by

P̃ η
ij =







P̃ η
10

∆
= (〈1n,µ

∗〉+(〈1n,N〉+ 〈1m,M〉)ηβ−1)/c if j = i− 1∀j ∈ Z+,∀i > 0

P̃ η
12

∆
= (〈1m,λ

∗〉− (〈1n,N〉+ 〈1m,M〉)ηβ−1)/c if j = i+1 ∀j ∈Z+,∀i > 0

P̃ η
11

∆
= 1− (〈1n,µ

∗〉+ 〈1m,λ
∗〉)/c if j = i ∀j ∈Z+,∀i > 0

(〈1m,λ
∗〉− (〈1n,N〉+ 〈1m,M〉)ηβ−1)/c if j =1, i= 0

1− (〈1m,λ
∗〉− (〈1n,N〉+ 〈1m,M〉)ηβ−1)/c if j = i= 0

0 otherwise.

where c is the uniformization constant given by (2). Note that, under condition 1 (a) we have

P̃ η
ij ≥ P [|z(k+ 1)|= j||z(k)|= i,q(k) = q̄] for all q̄ ∈ S if j < i and P̃ η

ij ≤ P [|z(k + 1)|= j||z(k)|=
i,q(k) = q̄] for all q̄ ∈ S if j > i for all η > 0. Thus, we can couple these system using a common

source of randomness, such that z̃(k) ≤ |z(k)| for all k ∈ Z+ sample path wise. Thus, we have

P[z̃(k)≤K]≥ P[z(k)≤K] for all k ≥ 1 and K ∈R Thus, in the limit as k→∞, we have P[z̃(∞)≤
K]≥ P[z(∞)≤K] where, z̃(∞) and z(∞) denotes a random variable with distribution same as the

stationary distribution of {z̃(k) : k≥ 1} and {z(k) : k≥ 1} respectively and so, we have

E [z̃(∞)]≤ E [|z(∞)|] , (53)
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Next, the stationary distribution of {z̃(k) : k≥ 1} is given by

πi = π0

(

P̃ η
12

P̃ η
10

)i

∀i > 0

∞∑

i=−∞

πi = 1,

Solving for πi, we get

πi =

(

1− P̃ η
12

P̃ η
10

)(

P̃ η
12

P̃ η
10

)i

∀i∈Z+.

Thus, we have

E[z̃(∞)] =
P̃ η

12

P̃ η
10− P̃ η

12

(54)

∗
=

η1−β 〈1m,λ
∗〉

2 (〈1n,N〉+ 〈1m,M〉)
− 0.5. (55)

where, 〈1n,µ
∗〉 = 〈1m,λ

∗〉 is used to conclude (∗) which holds as we have (λ∗,µ∗) ∈ C. Finally,

note that |z| ≤ 〈1n+m,q〉. Thus, we have

E[〈1n+m,q〉]≥ E[|z(∞)|]
(53)

≥ E[z̃(∞)]
(55)
=

η1−β 〈1m,λ
∗〉

2 (〈1n,N〉+ 〈1m,M〉)
− 0.5,

which completes the first part of the proof. Next, as z̃(∞)≤ |z(∞)| almost surely, for any K, we
have

P[|z(∞)|>K]≥ P[z̃(∞)>K] =
∞∑

i=K+1

πi =

(

P̃ η
12

P̃ η
10

)K+1

=

(〈1m,λ
∗〉− (〈1n,N〉+ 〈1m,M〉)ηβ−1

〈1n,µ∗〉+(〈1n,N〉+ 〈1m,M〉)ηβ−1

)K+1

Now, for K= (n+m)Kηα first note that when α= 0, we have

lim
η→∞

(〈1m,λ
∗〉− (〈1n,N〉+ 〈1m,M〉)ηβ−1

〈1n,µ∗〉+(〈1n,N〉+ 〈1m,M〉)ηβ−1

)(n+m)K+1

= 1(n+m)K+1 = 1.

Now, for α> 0, we have

lim
η→∞

(〈1m,λ
∗〉− (〈1n,N〉+ 〈1m,M〉)ηβ−1

〈1n,µ∗〉+(〈1n,N〉+ 〈1m,M〉)ηβ−1

)(n+m)Kηα

= lim
η→∞





(

1− 2 (〈1n,N〉+ 〈1m,M〉)
〈1m,µ∗〉η1−β +(〈1n,N〉+ 〈1m,M〉)

) 〈1n,µ∗〉η1−β

3(〈1n,N〉+〈1m,M〉)





3K(n+m)(〈1n,N〉+〈1m,M〉)
〈1n,µ∗〉

ηα+β−1

∗

≥ lim
η→∞

(

1− 2

3+ 3(〈1n,N〉+〈1m,M〉)

〈1n,µ∗〉
ηβ−1

) 3K(n+m)(〈1n,N〉+〈1m,M〉)
〈1n,µ∗〉

ηα+β−1

=

{

(1/3)0 = 1 if α+β− 1< 0

b
∆
=
(
1
3

) 3K(n+m)(〈1n,N〉+〈1m,M〉)
〈1n,µ∗〉 if α+β =1
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where (∗) follows from the Bernoulli’s inequality which says that (1 + x)r ≥ 1+ rx if x≥−2 and

thus, the inequality follows by comparison theorem for sequences. Thus, we have

lim
η→∞

(〈1m,λ
∗〉− (〈1n,N〉+ 〈1m,M〉)ηβ−1

〈1n,µ∗〉+(〈1n,N〉+ 〈1m,M〉)ηβ−1

)(n+m)Kηα+1

∗
= lim

η→∞

(〈1m,λ
∗〉− (〈1n,N〉+ 〈1m,M〉)ηβ−1

〈1n,µ∗〉+(〈1n,N〉+ 〈1m,M〉)ηβ−1

)(n+m)Kηα

× lim
η→∞

(〈1m,λ
∗〉− (〈1n,N〉+ 〈1m,M〉)ηβ−1

〈1n,µ∗〉+(〈1n,N〉+ 〈1m,M〉)ηβ−1

)

=

{

1 if α+β− 1< 0

b if α+β = 1

where (∗) follows as the limit of product of two sequences is the product of limit of the two

sequences. Thus, when Condition 1 (b) is satisfied, that is α+β ≤ 1, for all bδ2 > ǫ> 0 there exists

anM such that for all η >M, we have

P [|z(∞)|> (n+m)Kηα]≥ ǫ

δ2
.

Also note that, by the definition of z, we have

{|z|> (n+m)Kηα} ⊂ {||q||∞ >Kηα} .

Also, by Condition 1 (b), we have

m∑

j=1

f 2
j

(
q

ηα

)

+
n∑

i=1

g2i

(
q

ηα

)

≥ δ2 ∀q : ||q||∞ > kηα

Thus for all η >M, we have

m∑

j=1

E

[

f 2
j

(
q

ηα

)]

+
n∑

i=1

E

[

g2i

(
q

ηα

)]

≥ δ2P [|z(∞)|> (n+m)Kηα]

≥ δ2
ǫ

δ2

= ǫ.

�

We will now prove Theorem 3.

Proof of Theorem 3 Without loss of generality, we can assume that

E[〈1n+m,q〉]<∞ (56)

since, otherwise, it will result in infinite profit loss. Now we will calculate the profit loss and use

the queue length bound given by Lemma 4 to lower bound it. We have

Lη
c
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= η 〈F (λ∗),λ∗〉− η 〈G(µ∗),µ∗〉−E[〈F η(λη),λη〉− 〈Gη(µη),µη〉− s 〈1n+m,q〉]
(a)
= η 〈F (λ∗),λ∗〉− η 〈G(µ∗),µ∗〉−E

[
m∑

j=1

(

λ∗
j + fj

(
q

ηα
ηβ−1

))

Fj

(

λ∗
j + fj

(
q

ηα
ηβ−1

))

−
n∑

i=1

(

µ∗
i + gi

(
q

ηα

)

ηβ−1

)

Gi

(

µ∗
i + gi

(
q

ηα

)

ηβ−1

)

− s 〈1n+m,q〉
]

, (57)

where (a) follows from the definition of asymptotic regime (Definition 3). Now, we will use Taylor’s

Theorem for each function Fj and Gi individually. For example, we have

E

[(

ηλ∗
j + fj

(
q

ηα

)

ηβ

)

Fj

(

λ∗
j + fj

(
q

ηα

)
ηβ

η

)]

(b)
= E

[(

ηλ∗
j + fj

(
q

ηα

)

ηβ

)(

Fj

(
λ∗
j

)
+ fj

(
q

ηα

)

ηβ−1F ′
j(λ

∗
j)+ f 2

j

(
q

ηα

)
η2β−2

2
F ′′

j

(

λ̃j(q)
))]

= ηλ∗
jFj(λ

∗
j)+

(
F ′

j(λ
∗
j)λ

∗
j +Fj(λ

∗
j)
)
E

[

fj

(
q

ηα

)]

ηβ +F ′
j(λ

∗
j)E

[

f 2
j

(
q

ηα

)]

η2β−1

+λ∗
jE

[

f 2
j

(
q

ηα

)

F ′′
j

(

λ̃j(q)
)] η2β−1

2
+E

[

f 3
j

(
q

ηα

)

F ′′
j

(

λ̃j(q)
)] η3β−2

2
,

where (b) follows from Taylor’s theorem and λ̃j(q) ∈ [λ∗
j , λ

∗
j + fj

(
q

ηα

)

ηβ−1]. Similarly, using the

Taylor’s theorem for all Fj and Gi in (57), for some λ̃j(q) ∈ [λ∗
j , λ

∗
j + fj

(
q

ηα

)

ηβ−1] for all j ∈ [m]

and µ̃i(q)∈ [µ∗
i , µ

∗
i + gi

(
q

ηα

)

ηβ−1] for all i∈ [n], we have

Lη =
n∑

i=1

E

[

gi

(
q

ηα

)

ηβ

]
(
µ∗
iG

′
i(µ

∗
i )+Gi(µ

∗
i ))
)
−

m∑

j=1

E

[

fj

(
q

ηα

)

ηβ

]
(
λ∗
jF

′
j(λ

∗
j)+Fj(λ

∗
j))
)

︸ ︷︷ ︸

A1

−η2β−1

(
m∑

j=1

F ′
j(λ

∗
j)E

[

f 2
j

(
q

ηα

)]

+
m∑

j=1

λ∗
j

2
E

[

F ′′
j (λ̃j(q))f

2
j

(
q

ηα

)])

︸ ︷︷ ︸

A
(2)
2

+η2β−1

(
n∑

i=1

G′
i(µ

∗
i )E

[

g2i

(
q

ηα

)]

+
n∑

i=1

µ∗
i

2
E

[

G′′
i (µ̃(q))g

2
i

(
q

ηα

)])

︸ ︷︷ ︸

A
(1)
2

−η3β−2

2

(
m∑

j=1

E

[

F ′′
j (λ̃j(q))f

3
j

(
q

ηα

)]

−
n∑

i=1

E

[

G′′
i (µ̃i(q))g

3
i

(
q

ηα

)])

︸ ︷︷ ︸

A3

+ sE[〈1n+m,q〉]
︸ ︷︷ ︸

A4

(58)

Now, we will lower bound each of these terms individually. Firstly, we have A1 ≥ 0 by Claim 2 and

(56). Next, A(1)
2 and A(2)

2 can be simplified using the following claim:

Claim 3. We have

Aj
∆
=−F ′

j(λ
∗
j)−

1

2
λ∗
jF

′′
j (λ

∗
j)> 0, ∀j ∈ [m]

Bi
∆
=G′

i(µ
∗
i )+

1

2
µ∗
iG

′′
i (µ

∗
i )> 0 ∀i∈ [n].
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Also, there exists M′ > 0 such that for all η >M′ and c̃
∆
=minj∈[m],i∈[n]

{
Aj

λ∗
j
, Bi
µ∗
i

}

, we have

sup
q∈S

|F ′′
j (λ̃j(q))−F ′′

j (λ
∗
j)|< c̃. ∀j ∈ [m]

sup
q∈S

|G′′
i (µ̃i(q))−G′′

j (µ
∗
i )|< c̃. ∀i∈ [n]

The proof is deferred to the end of this section. Using Claim 3, we have

A(2)
2 +A(1)

2 ≥ η2β−1

(
m∑

j=1

(

Aj −
λ∗
j c̃

2

)

E

[

f 2
j

(
q

ηα

)]

+
n∑

i=1

(

Bi−
µ∗
i c̃

2

)

E

[

g2i

(
q

ηα

)])

≥ η2β−1

(
m∑

j=1

Aj

2
E

[

f 2
j

(
q

ηα

)]

+
n∑

i=1

Bi

2
E

[

g2i

(
q

ηα

)])

(Definition of c̃)

Next, we have

A3 =−
η3β−2

2

(
m∑

j=1

E

[

F ′′
j (λ̃j(q))f

3
j

(
q

ηα

)]

−
n∑

i=1

E

[

G′′
i (µ̃i(q))g

3
i

(
q

ηα

)])

≥−η3β−2 〈1m, |F ′′(λ∗)|〉+ 〈1n, |G′′(µ∗)|〉+2c̃

2

(

E

[∣
∣
∣
∣
f 3(

q

ηα
)

∣
∣
∣
∣

]

+E

[∣
∣
∣
∣
g3(

q

ηα
)

∣
∣
∣
∣

])

Next, as β < 1, for all ǫ′′ > 0 there existsM′′ > 0 such that for all η >M′′, we have

A3

η2β−1
>−ǫ′′

(
m∑

j=1

E

[∣
∣
∣
∣
f 3
j (

q

ηα
)

∣
∣
∣
∣

]

+

n∑

i=1

E

[∣
∣
∣
∣
g3i (

q

ηα
)

∣
∣
∣
∣

])

.

Finally, A4 can be lower bounded using Lemma 4. Combining everything, for all η >M ∆
=

max{M′,M′′}, we have

Lη ≥ η2β−1

(
m∑

j=1

Aj

2
E

[

f 2
j

(
q

ηα

)]

+
n∑

i=1

Bi

2
E

[

g2i

(
q

ηα

)])

− η2β−1ǫ′′

(
m∑

j=1

E

[∣
∣
∣
∣
f 3
j (

q

ηα
)

∣
∣
∣
∣

]

+
n∑

i=1

E

[∣
∣
∣
∣
g3i (

q

ηα
)

∣
∣
∣
∣

])

+ sE [〈1n+m,q〉] (59)

Now, pick ǫ′′ =
mini,j{Aj ,Bi}ǫ

4(M3+N3)
and using Lemma 4 and Condition 1 (a) we get

Lη ≥ η2β−1

(
mini,j {Aj,Bi} ǫ

2
− mini,j {Aj,Bi} ǫ

4

)

+
sη1−β 〈1m,λ

∗〉
2 (〈1n,N〉+ 〈1m,M〉)

− 0.5s

(d)

≥ inf
β<1

{

η2β−1mini,j {Aj ,Bi} ǫ
4

+
sη1−β 〈1m,λ

∗〉
2 (〈1n,N〉+ 〈1m,M〉)

− 0.5s

}
(d)
= Ω(η1/3)

where (d) follows as the coefficient of the terms η2β−1 and η1−β are strictly positive and the minimum

is achieved when 2β− 1 = 1−β. �
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Proof of the Claim 3 Recall that

Aj
∆
=−F ′

j(λ
∗
j)−

1

2
λ∗
jF

′′
j (λ

∗
j), ∀j ∈ [m]

Bi
∆
=G′

i(µ
∗
i )+

1

2
µ∗
iG

′′
i (µ

∗
i ) ∀i∈ [n].

As Fj(λj)λj for all j ∈ [m] and −Gi(µi)µi for all i∈ [n] are concave by Assumption 2, we have

d2

dλ2
j

(Fj(λj)λj) =Aj > 0 ∀j ∈ [m],
d2

dµ2
i

(Gi(µi)µi) =Bi > 0 ∀i∈ [n].

The strict inequality holds true as Fj and Gi for all j ∈ [m] and i ∈ [n] are strictly increasing by

Assumption 1. Thus, the double derivative of λjFj(λj) for any j ∈ [m] and µiGi(µi) for any i∈ [n]
cannot be zero anywhere.

Now, as F ′′
j (.) is continuous, thus given c̃=mini,j{Aj

λ∗
j
, Bi
µ∗
i
}> 0, there exists δ′ > 0 such that for

l ∈ [λ∗
j − δ′, λ∗

j + δ′] we have

|F ′′
j (l)−F ′′

j (λ
∗
j)|< c̃.

As β < 1, we have ηβ−1 → 0. Consider M′ such that for all η > M′ we have |ηβ−1| <
δ′/maxj∈[m],i∈[n]{Mj,Ni} which implies that λ̃j(q)∈ [λ∗

j − δ′, λ∗
j + δ′] for all q. Thus,

sup
q∈S
|F ′′

j (λ̃j(q))−F ′′
j (λ

∗
j)|< c̃.

Similarly, G′′
i (µ̃i(q)) for all i∈ [n] converges uniformly to G′′

i (µ
∗
i ) respectively. �

J. Proof of Proposition 4

We will first present a lemma for this case analogous to the Lemma 4.

Lemma 5. Under the hypothesis of Proposition 4, and in addition if α+β > 1, there exists c̃1 > 0,

c̃2 > 0 such that for all η ≥ 1 we have

E[q(1) + q(2)]≥max

{
1

2
ηα,

η1−βλ∗

2(θ+φ)
− 0.5

}

(60)

E

[

f 2

(
q

ηα

)

+ g2
(

q

ηα

)]

≥ c̃1η
1−α−β (61)

E

[∣
∣
∣
∣
f 3

(
q

ηα

)∣
∣
∣
∣
+

∣
∣
∣
∣
g3
(

q

ηα

)∣
∣
∣
∣

]

≤ c̃2η
1−α−β (62)

where f(q/ηα) =−θ1{q(2)≥ηα} and g(q/ηα) =−φ1{q(1)≥ηα}.

Proof Recall that the two-price policy for a single link two sided queue is of the form

λη(q) =

{

ηλ∗ if q ≤ ⌈ηα⌉
ηλ∗− θηβ otherwise.

µη(q) =

{

ηµ∗ if q ≥−⌈ηα⌉
ηµ∗−φηβ otherwise,
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where q = q(2) − q(1) and also recall that as it is a single link two sided queue, we have

min{q(2), q(1)} = 0. Now, consider a birth and death process denoted by {q̃(t) : t ≥ 0} with state

space Z and only one communicating class {q :−τη
max≤ q ≤ τη

max} and transition rates given by

λ̃η(q) =

{

ηλ∗ if q≤ ⌈ηα⌉
0 otherwise.

µ̃η(q) =

{

ηµ∗ if q≥−⌈ηα⌉
0 otherwise.

As, we have λ̃(q) ≤ λ(q) and µ̃(q) ≥ µ(q) for all q ≥ 0 and λ̃(q) ≥ λ(q) and µ̃(q) ≤ µ(q) for all

q ≥ 0, thus, using a common source of randomness, we can couple the two systems such that

|q̃(t)| ≤ |q(t)| for all t≥ 1. Thus, we have P[|q(t)| ≤K]≤ P[|q̃(t)| ≤K] for all t∈ Z+. As {q(t) : t≥ 0}
is irreducible and positive recurrent by assumption and {q̃(t) : t≥ 0} has only one irreducible and

positive recurrent class by construction, thus the stationary distribution exists for both q and q̃.

Thus, we have

P[|q(∞)| ≤K]≤ P[|q̃(∞)| ≤ K] ∀K ∈R ⇒E[|q(∞)|]≥E[|q̃(∞)|],

where q(∞) and q̃(∞) are random variables with distribution same as the stationary distribution

of {q(t) : t≥ 0} and {q̃(t) : t≥ 0} respectively. It is easy to see that E[|q̃(∞)|] = ⌈ηα⌉/2. Thus, we
have

E[|q(1)(∞)+ q(2)(∞)]
∗
=E[|q(∞)|]≥E[|q̃(∞)|]≥ ηα

2

Also, by (14), the two-price policy satisfies Condition 1 (a) and (c). Thus, by Lemma 4, we have

E[|q(∞)|] ∗
=E[q(1)(∞)+ q(2)(∞)]≥ η1−βλ∗

2(θ+φ)
− 0.5.

where (q(1)(∞), q(2)(∞)) denote random variable with distribution same as the stationary distri-

bution of {q(1)(t), q(2)(t) : t ≥ 0}. Now, (∗) follows as |q(t)|= q(1)(t) + q(2)(t) sample path wise as

min{q(1)(t), q(2)(t)}= 0. Thus, we have (60).

Now, we will lower bound P[|q| ≥ ηα] for a given two-price policy. First, the stationary distribution

under a given two-price policy denoted by {πi}i∈Z is given by

πk =







π0 ∀k≤ ⌈ηα⌉, k≥−⌈ηα⌉
π0

(

1− θηβ

ηµ∗

)k−⌈ηα⌉

∀k > ⌈ηα⌉

π0

(

1− φηβ

ηλ∗

)−k+⌈ηα⌉

∀k <−⌈ηα⌉,

where we used that λ∗ = µ∗ which follows as (λ∗, µ∗)∈C. This, gives us

P[|q(∞)| ≥ ηα] =
η1−β(µ∗/θ+λ∗/φ)

η1−β(µ∗/θ+λ∗/φ)+ 2⌈ηα⌉− 1
∗

≥ (µ∗/θ+λ∗/φ)

(µ∗/θ+λ∗/φ)+ 3
η1−α−β ∆

=
c̃1

min{θ2, φ2}η
1−α−β ∀η≥ 1
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where (∗) follows as 1−α−β < 0. Now, we have

E

[

f 2

(
q

ηα

)]

+E

[

g2
(

q

ηα

)]

= θ2P
[
q(2)(∞)≥ ηα

]
+φ2

P
[
q(1)(∞)≥ ηα

]

≥min{θ2, φ2}P [|q(∞)| ≥ ηα]≥ c̃1η
1−α−β

Thus, we have (61). Similarly, we have

P[|q(∞)| ≥ ηα]≤ η1−α−β(µ∗/θ+λ∗/φ)

η1−α−β(µ∗/θ+λ∗/φ)+ 2− η−α
(Replace ⌈ηα⌉ by ηα)

∗

≤ (µ∗/θ+λ∗/φ)η1−α−β ∆
=

c̃2
max{θ3, φ3}η

1−α−β ∀η≥ 1,

where (∗) follows as α≥ 0 and 1−α−β < 0. Thus, we have

E

[∣
∣
∣
∣
f 3

(
q

ηα

)∣
∣
∣
∣

]

+E

[∣
∣
∣
∣
g3
(

q

ηα

)∣
∣
∣
∣

]

= θ3P
[
q(2)(∞)≥ ηα

]
+φ3

P
[
q(1)(∞)≥ ηα

]

≤max{θ3, φ3}P [|q(∞)| ≥ ηα]≤ c̃2η
1−α−β.

This completes the proof of the lemma. �

Proof of Proposition 4 First note that if α + β ≤ 1, then by Theorem 3 we know that Lη ≥
Kη1/3. So, we will only prove Proposition 4 when α+ β > 1. As two price policy is a special case

of the general pricing policy given by (12) (13), thus, by (59), we have

Lη ≥ η2β−1

(
A

2
E

[

f 2

(
q

ηα

)]

+
B

2
E

[

g2
(

q

ηα

)])

− η2β−1ǫ′′
(

E

[∣
∣
∣
∣
f 3(

q

ηα
)

∣
∣
∣
∣

]

+E

[∣
∣
∣
∣
g3(

q

ηα
)

∣
∣
∣
∣

])

+ sE [〈1n+m,q〉]

≥ ηβ−α

(

min{A,B} c̃1
2
− c̃2ǫ

′′

)

+ smax

{
1

2
ηα,

η1−βλ∗

2(θ+φ)
− 0.5

}

Pick ǫ′′ =min{A,B} c̃1
4c̃2

and optimize over all possible values of α and β to get

Lη ≥ inf
α≥0,β<1:α+β>1

{

ηβ−αmin{A,B} ǫ
4
+ smax

{
1

2
ηα,

η1−βλ∗

2(θ+φ)
− 0.5

}}
∗
=Ω(η1/3),

where (∗) follows as the minimum is achieved when β−α=α= 1−β. �

K. Proof of Proposition 5

Proof of Proposition 5 Rewriting the Bellman equation using the approximation of the bias

function gives us the following optimization problem with finite variables and infinite constraints.

min
(γ,bl ∀l∈[r])

γ

subject to,

γ ≥R(q,z)+ cEq,z

[
r∑

l=1

〈
bl, V (ql,z)

〉

]

− c
r∑

l=1

〈
bl,q

l
〉
∀q,z∈ S×Z(q),
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The decision variables in the above optimization problem are g and bl ∀l ∈ [r]. By approximation, we

have projected our original space of variables h∈Rbm+n

+ to a lower dimensional space b∈R(m+n)×r
+ .

Let the optimal solution to the above optimization problem be (b∗
l ∀l ∈ [r], g∗). Now define

h(q) =
r∑

l=1

〈
b∗
l ,q

l
〉
∀q∈ S.

The above defined h(q) along with γ∗ will be a feasible solution to the optimization problem (16)

(17). Thus, the optimal value of (16) (17) will be less than or equal to γ∗. Thus, the proposition

follows. �
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