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ABSTRACT
Ad and tracking blocking extensions are popular tools for improv-
ing web performance, privacy and aesthetics. Content blocking
extensions generally rely on �lter lists to decide whether a web
request is associated with tracking or advertising, and so should
be blocked. Millions of web users rely on �lter lists to protect their
privacy and improve their browsing experience.

Despite their importance, the growth and health of �lter lists are
poorly understood. Filter lists are maintained by a small number of
contributors who use undocumented heuristics and intuitions to
determine what rules should be included. Lists quickly accumulate
rules, and rules are rarely removed. As a result, users’ browsing
experiences are degraded as the number of stale, dead or otherwise
not useful rules increasingly dwarf the number of useful rules, with
no a�enuating bene�t. An accumulation of “dead weight” rules
also makes it di�cult to apply �lter lists on resource-limited mobile
devices.

�is paper improves the understanding of crowdsourced �lter
lists by studying EasyList, the most popular �lter list. We measure
how EasyList a�ects web browsing by applying EasyList to a sample
of 10,000 websites. We �nd that 90.16% of the resource blocking
rules in EasyList provide no bene�t to users in common browsing
scenarios. We use our measurements of rule application rates to
taxonomies ways advertisers evade EasyList rules. Finally, we
propose optimizations for popular ad-blocking tools that (i) allow
EasyList to be applied on performance constrained mobile devices
and (ii) improve desktop performance by 62.5%, while preserving
over 99% of blocking coverage. We expect these optimizations
to be most useful for users in non-English locals, who rely on
supplemental �lter lists for e�ective blocking and protections.
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1 INTRODUCTION
As the web has become more popular as a platform for information
and application delivery, users have looked for ways to improve the
privacy and performance of their browsing. Such e�orts include
popup blockers, hosts.txt �les that blackhole suspect domains,
and privacy-preserving proxies (like Privoxy 1) that �lter unwanted
content. Currently, the most popular �ltering tools are ad-blocking
browser extensions, which determine whether to fetch a web re-
source based on its URL. �e most popular ad-blocking extensions
are Adblock Plus 2, uBlock Origin 3 and Ghostery 4, all of which
use �lter lists to block unwanted web resources.

Filter lists play a large and growing role in making the web pleas-
ant and useful. Studies have estimated that �lter lists save users
between 13 and 34% of network data, decreasing the time and re-
sources needed to load websites [3, 17]. Others, such as Merzdovnik
et al. [15] and Gervais et al. [4], have shown that �lter lists are im-
portant for protecting users’ privacy and security online. Users
rely on these tools to protect themselves from coin mining a�acks,
drive-by-downloads [11, 24] and click-jacking a�acks, among many
others.

�ough �lter lists are important to the modern web, their con-
struction is largely ad hoc and unstructured. �e most popular
�lter lists—EasyList, EasyPrivacy, and Fanboy’s Annoyance List—
are maintained by either a small number of privacy activists, or
crowdsourced over a large number of the same. �e success of
these lists is clear and demonstrated by their popularity. Intuitively,
more contributors adding more �lter rules to these lists provide
be�er coverage to users.

However, the dramatic growth of �lter lists carries a downside in
the form of requiring ever greater resources for enforcement. Cur-
rently, the size and trajectory of this cost are not well understood.
We �nd that new rules are added to popular �lter lists 1.7 times
more o�en than old rules are removed. �is suggests the possibility
that lists accumulate “dead” rules over time, either as advertisers
adapt to avoid being blocked, or site popularity shi�s and new sites
come to users’ a�ention. As a result, the cost of enforcing such lists
grows over time, while the usefulness of the lists may be constant
or negatively trending. Understanding the trajectories of both the
costs and bene�ts of these crowdsourced lists is therefore important
to maintain their usefulness to web privacy, security and e�ciency.

1h�p://www.privoxy.org/
2h�ps://adblockplus.org/
3h�ps://github.com/gorhill/uBlock
4h�ps://www.ghostery.com
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�is work improves the understanding of the e�ciency and
trajectory of crowdsourced �lter lists through an empirical, longitu-
dinal study. Our methodology allows us to identify which rules are
useful, and which are “dead weight” in common browsing scenarios.
We also demonstrate two practical applications of these �ndings:
�rst in optimally shrinking �lter lists so that they can be deployed
on resource-constrained mobile devices, and second, with a novel
method for applying �lter list rules on desktops, which performs
62.5% faster than the current, most popular �ltering tool, while
providing nearly identical protections to users.

1.1 Research questions
For two months, we applied every day an up-to-date version of
EasyList to 10,000 websites, comprising both the 5K most popular
sites on the web and a sampling of the less-popular tail. We aimed
to answer the following research questions:

(1) What is the growth rate of EasyList, measured by the num-
ber of rules?

(2) What is the change in the number of active rules (and rule
“matches”) in EasyList?

(3) Does the utility of a rule decrease over time?
(4) What proportion of rules are useful in common browsing

scenarios?
(5) Do websites try to stealthily bypass new ad-blocking rules,

and if so, how?
(6) What is the performance cost of ”stale” �lter rules to users

of popular ad-blocking tools?

1.2 Contributions
In answering these questions, we make the following primary con-
tributions:

(1) EasyList over time: we present a 9-year historical anal-
ysis of EasyList to understand the lifetime, insertion and
deletion pa�erns of new rules in the list.

(2) EasyList applied to the web: we present an analysis of
the usefulness of each rule in EasyList by applying EasyList
to 10,000 websites every day for over two months.

(3) Advertiser reactions: we document how frequently ad-
vertisers change URLs to evade EasyList rules in our dataset
and provide a taxonomy of evasion strategies.

(4) Faster blocking strategies: we propose optimizations,
based on the above �ndings, to make applying EasyList
performant on mobile devices, and 62.5% faster on desktop
environments, while maintaining over 99% of coverage.

1.3 Paper organization
�e remainder of this paper is organized as follows. Sections 2
and 7 provides a brief background about tracking and ad-blockers
as well as a discussion of the related work. Section 3 presents a
9-year analysis of EasyList’s evolution. Section 4 presents how
EasyList rules are applied on websites. Section 5 studies how our
�ndings can improve ad-blocking applications on iOS and proposes
two new blocking strategies to process requests faster. Finally, in
Section 6 we present the limitations, and we conclude the paper in
Section 8.

2 BACKGROUND
2.1 Online tracking
Tracking is the act of third parties viewing, or being able to learn
about, a users’ �rst-party interactions. Prior work [2, 10, 23] has
shown that the number of third-party resources included in typical
websites has been increasing for a long time. Websites include these
resources for many reasons, including monetizing their website
with advertising scripts, analyzing the behavior of their users using
analytics services such as Google analytics or Hotjar, and increasing
their audience with social widgets such as the Facebook share
bu�on or Twi�er retweet bu�on.

While third-party resources may bene�t the site operator, they
o�en work against the interest of web users. �ird-party resources
can harm users’ online privacy, both accidentally and intentionally.
�is is particularly true regarding tracking scripts. Advertisers
use such tracking tools as part of behavioral advertising strate-
gies to collect as much information as possible about the kinds
of pages users visit, user locations, and other highly identifying
characteristics.

2.2 Defenses against tracking
Web users, privacy activists, and researchers have responded to
tracking and advertising concerns by developing ad and tracker
blocking tools. Most popularly these take the form of browser
extensions, such as Ghostery or Privacy badger.5 �ese tools share
the goal of blocking web resources that are not useful to users, but
di�er in the type of resources they target. Some block advertising,
others block trackers, malware or phishing. �ese tools are popular
and growing in adoption [14]. A report by Mozilla stated that in
September 2018, four out of the 10 most popular browser extensions
on Firefox were either ad-blockers or tracker blockers. Adblock
Plus, the most popular of all browser extension, was used by 9% of
all Firefox users 6.

Ad and tracking blockers operate at di�erent parts of the web
stack.

• DNS blocking relies on a hosts �les containing addresses
of domains or sub-domains to block, or similar information
from DNS. �is approach can block requests with domain
or sub-domain granularity, but cannot block speci�c URLs.
Examples of domain-blocking tools include Peter Lowe’s
list 7, MVPS hosts 8 or the Pi-Hole project 9.

• Privacy proxies protect users by standing between the
client and the rest of the internet, and �ltering out unde-
sirable content before it reaches the client. Privoxy is a
popular example of an intercepting proxy.

• Web browsers can a�empt to prevent tracking, either through
browser extensions or as part of the browser directly. �ese
tools examine network requests and page renderings, and
use a variety of strategies to identify unwanted resources.
Some tools, such as Privacy Badger use a learning-based

5h�ps://www.e�.org/fr/node/99095
6h�ps://data.�refox.com/dashboard/usage-behavior
7h�p://pgl.yoyo.org/adservers/
8h�p://winhelp2002.mvps.org/hosts.htm
9h�ps://pi-hole.net/
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approach, while most others use �lter lists like EasyList 10
or EasyPrivacy 11.

2.3 EasyList
EasyList, the most popular �lter list for blocking advertising, was
created in 2005 by Rick Petnel. It has been maintained on Github 12

since November 2009. EasyList is primarily used in ad-blocking
extensions such as Adblock Plus, uBlock origin and Adblock, and
has been integrated into privacy oriented web browsers13. Tools
also exist to convert EasyList formats to other privacy tools, like
Privoxy 14,

EasyList consists of tens-of-thousands of rules describing web
resources that should be blocked or hidden during display. �e
format also includes syntax for describing exceptions to more gen-
eral rules. EasyList uses a syntax similar to regular expressions,
allowing authors to generalize on pa�erns used in URLs.

EasyList provides two categories of bene�t to users. First, Ea-
syList describes URLs that should be blocked, or never fetched,
in the browser. Blocking resources at the network layer provides
both performance bene�ts (e.g. reduced network and processing
costs) and privacy improvements (e.g. reduction in number of par-
ties communicated with or removal of �ngerprinting script code).
Second, EasyList describes page elements that should be hidden
at rendering time. �ese rules are useful when blocking at the
network layer is not possible.

Element hiding rules can improve the user experience by hiding
unwanted page contents, but cannot provide the performance and
privacy improvements that network layer blocking provides.

�ere are three types of rules in EasyList:
(1) Network rules, that identify URLs of requests that should

be blocked.
(2) Element rules, that indicate HTML elements that should

be hidden.
(3) Exception rules, that contradict network rules by ex-

plicitly specifying URLs that should not be blocked, even
though they match a network rule.

Figure 1 shows the constitution of EasyList in February 2019. Of
the 71,217 rules making up EasyList, 33,703 (47.3%) were network
rules, 6,125 (8.6%) were exception rules, and 31,389 (44.1%) were
element rules.

3 COMPOSITION OF EASYLIST OVER TIME
�is section measures how EasyList has evolved over its 9-year
history, through an analysis of project’s public commit history. �e
section proceeds by �rst detailing our measurement methodology,
along with our �ndings that EasyList has grown to comprise nearly
70,000 rules and that it is primarily maintained by a very small
number of people. �e section concludes by showing that most
rules stay more than 3.8 years in EasyList before they are removed,
suggesting a huge accumulation of unused rules.

10h�ps://easylist.to/pages/about.html
11h�ps://easylist.to/easylist/easyprivacy.txt
12h�ps://github.com/easylist/easylist
13h�ps://brave.com/
14h�ps://projects.zubr.me/wiki/adblock2privoxy

Element rules
44.1%

Exception rules

8.6%

Network rules

47.3%

Figure 1: Distribution of rules by type in EasyList.

3.1 Methodology
EasyList is maintained in a public repository onGitHub. We useGit-
Python 15, a popular Python library, to measure commit pa�erns
and authors in the EasyList repository over the project’s 10-year
history.

3.1.1 Measurement frequency. For every commit in the EasyList
repository, we record the author and the type and number of rules
modi�ed in the commit.

First we grouped commits by day. We then checkout each day
commits and measure which rules have been added and removed
since the previous day. We use this per-day batching technique to
avoid artifacts introduced by git diff, which we found causes
over-estimations of the number of rules changed between commits.

3.1.2 Accounting for changes in repository structure. �e struc-
ture of the EasyList repository has changed several times over the
project’s history. At di�erent times, the list has been maintained
in one �le or several �les. �e repository has also included other
distinct-but-related projects, such as EasyPrivacy. We use the fol-
lowing heuristics to a�ribute rules in the repository to EasyList.

When the repository consists of a single easylist.txt �le, we
check to see if the �le either contains references (e.g. URLs or �le
paths) to lists hosted elsewhere, or contains only �lter rules. When
the easylist.txt �le contains references to other lists, we treat
EasyList as the union of all rules in all referenced external lists.
When easylist.txt contains only �lter rules, we treat EasyList
as the content of the easylist.txt �le.

When the repository consists of anything other than a single
easylist.txt �le, we consider EasyList to be the content of all the
�les matching the following regular expression ’easylist *.txt’
and that are located in the main directory or in a directory called
easylist.

15h�ps://gitpython.readthedocs.io/en/stable/index.html
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Figure 2: Evolution of the number of rules in EasyList. Over
a 10-year period, EasyList grew by more than 70,000 rules.

3.2 Results
3.2.1 Rules inserted and removed. Figure 2 presents the change

in the size of EasyList over time. It shows the cumulative number
of rules inserted, removed, and present in the list over nine years.
Rules are added to the list faster than they are removed, causing
EasyList to grow larger over time. Over a 9-year period, 124,615
rules were inserted and 52,146 removed, resulting in an increase
of 72,469 rules. EasyList’s growth is mostly linear. One exception
is the sharp change in 2013, when “Fanboy’s list”, another popular
�lter list, was merged into EasyList.

3.2.2 Modification frequency. We analyzed the distribution of
the time between two commits in EasyList and observed that Ea-
syList is frequently modi�ed, with a median time between commits
of 1.12 hours, and a mean time of 20.0 hours.

3.2.3 EasyList contributors. Contributors add rules to EasyList
in two ways. First, potential contributors propose changes in the
EasyList forum.16 Second, contributors can post issues on the
EasyList Github repository.

�ough more than 6,000 members are registered on the EasyList
forum, we �nd that only a small number of individuals decide
what is added to the project. �e �ve most active contributors are
responsible for 72,149 of the 93,858 (76.87%) commits and changes.
65.3% of contributors made less than 100 commits.

3.2.4 Lifetime of EasyList rules. Figure 3 presents the distribu-
tion of the lifetime of rules in EasyList. �e �gure considers only
rules that were removed during the project’s history. Put di�er-
ently, the �gure shows how much time passed between when a rule
was added to EasyList, and when it was removed, for the subset
of rules that have been removed. We observe that 50% of the rules
stayed more than 3.8 years (45.5 months) in EasyList before being
removed.

16h�ps://forums.lanik.us/
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Figure 3: Cumulative distribution function of the lifetime
of the rules in EasyList. Half of the rules stay more than 3.8
years in EasyList.

4 EASYLIST APPLIED TO THEWEB
�is section quanti�es which EasyList rules are triggered in com-
mon browsing pa�erns. We conducted this measurement by ap-
plying EasyList to 10,000 websites every day for two months, and
recording which rules were triggered, and how o�en.

�is section �rst presents the methodology of a longitudinal,
online study of a large number of websites. We then present the
results of this measurement. We �nd that over 90% of rules in
EasyList are never used. We also show that on average, 29.8 rules
were added to the list every day, but that these new rules tend to
be less used than rules that have been in EasyList for a long time.

�e section concludes by categorizing and counting the ways
advertisers react to new EasyList rules. We detect more than 2,000
situations where URLs are changed to evade rules and present a
taxonomy of observed evasion strategies.

4.1 Omitting element rules
�e results presented in this section describe how o�en, and under
what conditions, network and exception rules apply to the web.
However, as discussed in Section 2.3, EasyList contains three types
of rules: network rules that block network requests, exception rules
that prevent the application of certain network rules, and element
rules that describe parts of websites that should be hidden from the
user for cosmetic reasons.

We omit element rules from our measurement for three reasons.
First, our primary concern is to understand how the growth and
changes in EasyList a�ect the privacy and security ofWeb browsing,
and element rules have no e�ect on privacy or security. In all
modern browsers, hiding page elements has no a�ect on whether
those elements are fetched from the network and, in the case if
<iframe> elements, rendered in memory 17. In all but uncommon
17In fact, many Web applications use this quirk of hidden iframes to create simpli�ed,
early versions of server-push communication, an approach called “long polling”. Simi-
larly, tracking scripts like Google Analytics use never-rendered, never-visible images
for client-server communication.
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Measurement Counts

# days 74
# domains 10,000
# non-responsive domains 400
Avg # pages per day 29,776
Avg # pages per domain per day 3.74
Total # pages measured 3,260,479

Table 1: Statistics of the number of domains and sites mea-
sured during online EasyList measurement.

edge cases, relating mostly to memory availability, hidden elements
are still fetched from network, though possibly with a lower priority.

Second, we omit element rules from the study because their
application is highly variable, and would add a not-useful amount
of dimensionality to the data. Element rules apply di�erently de-
pending on how users interact with the page, since page layouts
can change in response to user interaction and timer events. �is is
especially true in highly dynamic, client-side web applications, like
those wri�en in JavaScript frameworks like React 18 and Angular 19,
since client-side pagemodi�cations can changewhich element rules
apply. Network rules, in contrast, have far less (though not zero)
variability over the life-cycle of a page 20.

�ird, though least signi�cantly, we omit element rules from
consideration because there are common uses of EasyList where
element rules are not applied, lessening the value of measuring
this portion of the list. �e most common examples of such uses
are privacy-preserving network proxies (e.g. Privoxy 21 and Squid-
Guard 22).

4.2 Methodology
�is subsection discusses how we measured how EasyList e�ects
typical web browsing, including what sites were measured, the
instrumentation used tool take the measurements, and what in-
formation was collected. �e following subsection describes the
results of executing this methodology.

4.2.1 Crawl description. To understand the usefulness of rules
in EasyList, we applied EasyList to 10,000 websites every day for
over two months (74 days). We selected these 10,000 websites from
two groups:

(1) Popular websites: Websites from the top 5K Alexa, a
ranking of sites online by popularity.

(2) Unpopular websites: 5,000 websites randomly selected
from the top Alexa one-million, but not present in the set
of popular websites. (i.e. rank 5,001–1 million)

We crawled the web using an instrumented version of Chromium
to measure which �lter rules were applicable when browsing a
large number of websites in an anonymous browsing scenario. �e
18h�ps://reactjs.org/
19h�ps://angularjs.org/
20�ere are exceptions here, such as analytic scripts that initiate network requests to
recorder, server side, user behaviors. However, note that these are relativity uncommon,
since the initial analytic script is generally blocked.
21h�ps://www.privoxy.org/
22h�p://www.squidguard.org/index.html

crawls were launched from AWS Lambda instances located in the
us-east-1 region.

For each day of the experiment, we �rst visit the landing page
of each URL in the popular and unpopular sets. We then randomly
selected up to three URLs referenced in anchor tags, pointing to
pages on the eTLD+1 domain, and visit these URLs. �is resulted in
between 10,000 and 40,000 pages being measured every day. Table
1 provides high level statistics of these measurements.

We use the Chrome devtools protocol 23 to record the follow-
ing information about each network request made during page
execution:

• Time of the request
• URL of the request
• URL of the domain that initiated the request
• Type of resource fetched (e.g. image, script, sub-documents)
• Hash of the response
• Size of the response

To avoid introducing side e�ects, we did not block any requests
during our measurements. We instead �rst recorded all HTTP re-
quests made when interacting with each site. Next, we applied
EasyList o�ine using Brave’s ad-blocker NodeJS module 24. We
determine if each request would have been blocked, excepted, or
allowed. A “blocked” request is one that matches an EasyList net-
work rule, indicating that the resource should not be fetched. An
“excepted” request is one that matches a blocking rule, but also
matches a “excepting” rule, indicating that the resource should be
fetched anyway. An “allowed” request matches no EasyList rules.

4.2.2 Description of the dataset. Our dataset comprises every
network request made during our crawl of 10,000 websites, for 74
days between July 24th, 2018 and October 5th, 2018. Among the
10,000 websites crawled daily, 400 (4.0%) never responded during
the experiment. We a�ribute this to a mix of websites becoming
inactive (common among unpopular websites [18]) and websites
blocking IP addresses belonging to AWS to deter crawlers. �e
existence of such AWS-including IP blacklists has been documented
in other work [6]. We discuss possible limitations to our study more
in Section 6.

4.3 Results
4.3.1 Proportion of EasyList rules used. We consider a rule as

used during a crawl if the rule matched at least one network request
made during the crawl. We measure the proportion of network and
exception rules used during our crawls. As noted above, wemeasure
network and exception rules, but not element (e.g. cosmetic) rules
because network rules impact performance and privacy.

We �nd that the vast majority of network and exception rules
are never used. Only 9.84% (4, 038) of rules were used even once
during our measurements.

An even smaller number of network and exception rules are
frequently used. On average, only 5.14% of EasyList network and
exception rules were used at least once per day (Research�es-
tion 4). We also observed that the number of active rules is stable
over time (Research�estion 2).

23h�ps://chromedevtools.github.io/devtools-protocol/
24h�ps://github.com/brave/ad-block
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Figure 4: Distribution of the number of times rules were
used during the 74days of the experiment, on popular (Alexa
rank 1–5k) and unpopular (Alexa rank 5,001–1m).

Figure 4 shows the cumulative distribution function of how o�en
�lter rules were used during the 74 days of the experiment. �e
distribution is skewed; the majority of rules are either not used
(90.16%), or were used between 1 and 100 times (4.45%). Only 3.56%
of the rules were used between 100 and 1,000 times, and 1.83% more
than 1000 times.

4.3.2 Usefulness of EasyList additions. During the experiment,
2, 202 network and exception rules were added to EasyList, an
average of 29.8 new rules per day (Research �estion 1). We
refer to rules added to EasyList during our measurement campaign
as new; we call rules old if they existed in EasyList at the start of
the measurement period.

�e vast majority of rules, new and old, were not used during
our measurements. Of the 2, 202 rules added during the study
period, 208 (9.45%) were used at least once. �ose measurements are
roughly similar for old rules (9.84%). However, when considering
only rules that were used at least once, we found that new rules were
used nearly an order of magnitude less than old rules. �is suggests
a declining marginal usefulness per rule as EasyList accumulates
more rules, possibly because the most troublesome resources are
already blocked. If a new rule was used during the study, it was
used an average of 0.65 times per day. Old rules were applied much
more frequently, 6.14 times a day on average.

4.3.3 Impact of the age of rules. We also measure whether the
age of a rule impacts its use. We �nd that the age of a rule signif-
icantly impacts the number of times rules are used. We present
these �ndings in two ways: graphically and statistically.

Figure 5 presents the distribution of the age of the rules present
in EasyList, as well as the average number of uses depending on
the age of a rule. �e distribution of the age of the rules (black bars)
shows that there are rules from all ages in EasyList. �e important
number of 5-year-old rules is explained by the merge of the ”Fan-
boy’s list”, another popular �lter list, with EasyList in 2013. If we
observe the average number of times rules are used in a day (grey
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Figure 5: �e black bars represent the distribution of the age
of the rules present in EasyList. �e grey bars represent the
average time a rule is used per day against the time it has
been added to EasyList.

bars), we see that the most useful rules are old. �is is caused by
generic rules blocking URLs that contained keywords such as ”ads”
or popular domains such as doubleclick.net. For example, the rule
.com/ads/$image,object,subdocument was added to EasyList
in September 2010 and was triggered 748, 330 times during the
experiment. We did not observe a linear relationship between the
average use of a rule and its age.

Besides the graphical analysis, we also conduct statistic tests
to determine whether the age of a rule impact its use. We use
the Kolmogorov-Smirnov test to compare the distribution of the
number of times rules are used depending on the duration they
have been present in EasyList. For each year yi between 1 and 8,
we compare the distribution of the number of times rules that have
been present yi years in EasyList have been used with:

(1) the distribution of the number of times rules that have
been present less than one year,

(2) the distribution of the number of times rules that have
been present between yi−1 and yi years.

For all the tests, we obtain p-values less than 10−5, which indi-
cates that there are signi�cant di�erences in the way rules are used
depending on their age (Research�estion 3).

4.4 Advertiser Reactions
EasyList helps users avoid online advertising. Advertisers and
websites that rely on advertising for their income do not want their
content to be blocked and may try to circumvent rules in EasyList.
�ere are several ways an advertiser may do this. One option is
to try to detect the use of an adblocking tool [7]. Alternatively,
the advertiser may manipulate the URLs that serve their content,
to prevent matching �lter rules. In this section, we measure how
o�en, and in which ways, advertisers responded to EasyList rules.
We do not observe a statistically signi�cant reaction by advertisers
in general but we note common pa�erns in avoidance strategies
among a subset of advertisers (Research�estion 5).

doubleclick.net
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Figure 6: Number of times resources are blocked or allowed
a�er a rule is added to EasyList

We measured advertiser reactions to EasyList rules through the
following intuition: if a resource changed URL more frequently
a�er being blocked by EasyList than before, it suggests an advertiser
trying to evade EasyList. Similarly, if the number of times a resource
was blocked spiked a�er the EasyList addition, and then reverted to
its pre-rule block-rate, that would also suggest advertiser evasion.

We used this intuition through the following steps. First, we
considered only rules that were added during the measurement
period, and which remained in EasyList for at least 14 days. Second,
we identi�ed resources that were blocked by these new rules and
looked to see if the same resource (as determined by the content’s
hash), was served by di�erent URLs during the study. �ird, we
�ltered out resources that were less than 50KB, to avoid resources
that were trivially identical, like common logos and tracking pixels.
Fourth, we measured whether the number of URLs a resource was
served from changed signi�cantly before and a�er being blocked
by EasyList.

Figure 6 presents the block and allow rates for resources a�ected
by new rules. We did not �nd any population-wide trends of ad-
vertisers modifying URLs to avoid EasyList. If advertisers were,
in general, successfully evading EasyList, we would observe a de-
crease in blocking over time. Block rates did not though, in general,
revert to pre-rule levels over time.

4.5 Evasion Strategies
In this subsection, we present a partial taxonomy of the strategies
used by advertisers to avoid EasyList rules. Figure 7 presents the
number of times each evasion strategy was observed.

4.5.1 Changing Domains. Many advertisers changed the do-
mains their resources were served from, either by subtly modifying
the domain names or by completely changing them through domain
generation algorithm style techniques. �is happened 1,612 times
and does not take into account resources that weremoved to the �rst
party. For example, the URL h�ps://c.betrad.com/geo/ba.js?r170201
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Figure 7: Number of times each strategy has been used dur-
ing the experiment.

was blocked by the rule ||betrad.comˆ$third-party. �e re-
source was moved to a new domain, c.evidon.com, to avoid being
blocked.

In total, resources were moved from 100 distinct domains to 157
distinct domains, representing a total of 195 distinct combinations
of domains. �e two most frequent transitions are resources moved
from pagead2.googlesyndication.com to google.com and from cs03.
etcodes.com to cs03.et-cod.com. �e former occurred 499 times and
the la�er 185 times. We observe that the advertiser changed the
domain that served the resources so that it looks the same when
observed by a human but that does not match the �lter anymore.

4.5.2 Moving Resources to the First Party. Advertisers avoided
EasyList rules by moving resources from third-party domains to the
�rst party. It happened 84 times, among which 23 times resources
were moved to another sub-domain of the �rst party. For example,
we observed the domain cnn.com including resources from ssl.cdn.
turner.com, which was blocked by the rule ||turner.comˆ*/ads/.
We then observed the same resource being served from cdn.cnn.
com directly, which prevented the resource from matching the
||turner.com domain in the �lter rule.

4.5.3 Removing Ad Keywords from URLs. Keywords such as
‘ads’ or ‘ad’ trigger �lter rules. We observed 73 URLs where these
keywords were simply removed. For example, the URL h�ps://
etherscan.io/images/ad/ubex-20.pngwas blocked by the rule /images/ad/*.
To bypass the �lter rule, the URL was changed to h�ps://etherscan.
io/images/gen/ubex-20.png.

4.5.4 Removing Image Dimensions from URLs. Some URLs con-
tain parameters to specify the dimension of the ad banners. �ese
parameters also trigger �lter rules. Advertisers can evade these
rules by removing matching parameters from URLs. We observed
176 Evasions of this kind. For example, h�ps://s0.2mdn.net/dfp/…/
lo�o kumulacja 160x600 009/images/lo�o swoosh.pngwas blocked
by the rule 160x600 . We observed an advertiser removing the
dimension parameter from their URLs to avoid being blocked.

https://c.betrad.com/geo/ba.js?r170201
c.evidon.com
pagead2.googlesyndication.com
google.com
cs03.etcodes.com
cs03.etcodes.com
cs03.et-cod.com
cnn.com
ssl.cdn.turner.com
ssl.cdn.turner.com
cdn.cnn.com
cdn.cnn.com
https://etherscan.io/images/ad/ubex-20.png
https://etherscan.io/images/ad/ubex-20.png
https://etherscan.io/images/gen/ubex-20.png
https://etherscan.io/images/gen/ubex-20.png
https://s0.2mdn.net/dfp/.../lotto_kumulacja_160x600_009/images/lotto_swoosh.png
https://s0.2mdn.net/dfp/.../lotto_kumulacja_160x600_009/images/lotto_swoosh.png
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5 APPLICATIONS
In this section, we present two practical applications of the previous
sections’ �ndings: �rst, an optimized, reduced EasyList on resource
constrained iOS devices, and second, a novel EasyList-based �l-
tering strategy targeting desktop extensions, that provides nearly
all of the blocking bene�ts of full EasyList, but with signi�cantly
improved performance.

5.1 Improving Content Blocking on iOS
We �rst present how content blocking in iOS di�ers from con-
tent blocking in other platforms. �en, we run a benchmark that
measures how the size of a �lter list impacts the time to launch a
content-blocking application on iOS, and how our �ndings could
help to decrease this time.

5.1.1 Overview of Content Blocking on iOS. iOS and Safari use
a di�erent strategy for content blocking than other browsers 25.
On most platforms, ad-blocking tools receive information about
each request, such as the request URL, the expected resource type,
etc. �e extension can then apply whatever logic is desired to de-
termine whether the request should be blocked. In most content
blocking systems, this results in a large number of regular expres-
sions (or similar text pa�erns) applied to the URL, along with some
optimization to limit the number of rules that need to be considered.

iOS and Safari (alongwithGoogle’s proposedManifest v3 changes26)
use a di�erent approach, where extensions declare a static set URL
pa�erns that should be blocked but do not execute the rule applica-
tion logic. �is protects the user from malicious extensions (since
extensions cannot modify requests with malicious code), at the cost
of requiring all rules be expressed in a format that is less expressive
than the EasyList format. �e result is that EasyList is generally
expanded from EasyList’s compact rule format to a larger number
of iOS-compatible rules.
Limitations. �ere are two relevant limitations in iOS’s blocking
approach. First, iOS enforces a limit of 50K rules. �is limit is not
in Apple’s documentation, but the main ad-blocking applications
report it 27, and we observe the same during testing. Since Easylist
alone contains 40K network rules, li�le room is le� for either other
popular lists (e.g. EasyPrivacy) or region speci�c EasyList supple-
ments (e.g. EasyList China). iOS’s restrictions thus limit the amount
of protection users can deploy.

�is limit on the number of rules is particularly harmful to non-
English speaking users, who o�en need to rely on supplemental,
region or language speci�c �lter lists, that are applied in addition
to EasyList. As EasyList itself is large enough to consume the iOS
limit on �lter rules, non-English users cannot use EasyList with
their regional list, resulting in reduced protections [19].

Second, iOS compiles �lter rules into a binary format each time
rules are updated. As we show in the benchmark we conduct, users
may have to wait for 14 seconds or more when a list composed
of 40K rules is compiled. �is is particularly unacceptable when

25h�ps://developer.apple.com/documentation/safariservices/creating a content blocker
26h�ps://docs.google.com/document/d/1nPu6Wy4LWR66EFLeYInl3NzzhHzc-
qnk4w4PX-0XMw8/edit
27h�ps://help.getadblock.com/support/solutions/articles/6000099239-what-is-safari-
content-blocking-, h�ps://www.ublock.org/blog/introducing-ublock-safari-12/
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Figure 8: Average time to compile a �lter list depending on
device and size of the list.

launching an app for the �rst time when tricks like background
compilation cannot be used to hide the cost from users.

5.1.2 Benchmark.

Approach. We use the �ndings of this work to decrease rule com-
pilation cost (and increase the ability of users to include other lists
of rules) on iOS devices by only compiling �lter rules that are likely
to be useful, instead of the full set of 40k rules. We show that
reducing EasyList to only its useful rules provides a dramatically
improved initial launch experience for users, and gives users more
�exibility to apply additional �lter lists. �e primary bene�ciaries
of this optimization are non-English speakers, and those on reduced
capability mobile devices.
Evaluation Methodology. We �rst measure the costs of compil-
ing di�erent sizes of �lter lists on di�erent popular iOS devices. We
generate lists that contain between 1,000 and 40,000 rules randomly
selected from the set of network and exception rules in EasyList.
For each of the lists, we use a fork of the “ab2cb” library 28 to con-
vert the rules from the Adblock Plus format to the iOS JSON format.
�en, for each device and each list, we compile each iOS �lter list 5
times and report the average compilation time.
Results. Figure 8 shows the average compilation time for each
device and each selected list size. �e compilation times grows
linearly with respect to the number of rules. While on average it
takes 0.24 second to compile a list composed of 1,000 rules on an
iPhone X, it grows to 7.4 seconds for a list composed of 40,000 rules.

Device kind also impacts compilation time. Compiling 40k rules
on an iPhone 6s takes on average 11.62s, 4.2 seconds longer than
on an iPhone X.

�us, keeping only active rules has two main bene�ts in the
case of ad-blockers running on iOS and Safari. First, it allows
users to enjoy the bene�ts of EasyList while remaining well under
the platform’s 50K rule-limit. Second, it dramatically decreases

28h�ps://github.com/brave/ab2cb
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the required compilation time for the �rst time the application is
launched.

5.2 Improving ad-blocking performance
We also propose an optimized strategy for applying EasyList that
provides nearly all of the bene�ts of traditional ad-blockers while
improving �lter list application speed. We describe our technique
in three steps. First, we describe how current tools use EasyList for
blocking (using AdBlock Plus, the most popular of such tools 29, as
a representative example). Second, we present a “straw” blocking
strategy that considers only frequently used �lter rules. �ird, we
propose a novel hybrid strategy that achieves nearly the accuracy
of existing techniques with the performance improvements of the
“straw” strategy.

Our hybrid approach achieves over 99% of the coverage of the
current most popular EasyList tool, but performs 62.5% faster. Be-
cause of the nature of the optimizations in this hybrid strategy, we
expect it could be applied to other EasyList consuming tools to
achieve similar performance improvements. �is hybrid approach
achieves this performance improvement at the cost of some user
privacy, since resources blocked by infrequently used EasyList rules
would still be loaded once. We note that this privacy “cost” is only
paid once, while the performance improvement is ongoing, and so
might be an appealing trade o� to even privacy-sensitive users.
Strategy One: Synchronous Full EasyList. Most EasyList tools
decide whether a network request should be blocked as follows:

(1) Use hardcoded heuristics, such as not blocking top-level
documents or requests coming from non-web protocols. If
any of these heuristics match, allow the request.

(2) Check the requested URL against the small number “ex-
ception” rules in EasyList. If any “exception” rules match,
allow the request.

(3) See if the requested URL matches any of the “network”
rules in EasyList. If any “network” rule matches, block the
request.

(4) Otherwise, allow the request.
We note two performance impacting aspects of this strategy.

First, it performs a large number of unnecessary computation, since
every “exception” and “network” rule in EasyList is applied to
outgoing request, even though the vast majority (over 90.16%)
are very unlikely to be useful (again, based on the measurements
described in Section 4). Second, this wasteful computation adds
delay to a time-sensitive part of the system. �ese �lter checks are
conducted synchronously, blocking all outgoing network requests
until all EasyList rules are considered.
Strategy Two: Synchronous Reduced List. Next, we describe
a straw-man strategy, that improves performance by only consid-
ering the 9.84% of rules expected to be useful. �is strategy is
otherwise identical to strategy one and di�ers only in the number
of EasyList rules considered. Instead of applying all of EasyList’s
38,710 “network” and “exception” rules, this strategy only eval-
uates the 4, 038 rules observed during the online measurements
discussed in Section 4. �e expected trade-o� here is performance

29h�ps://data.�refox.com/dashboard/usage-behavior

for coverage since resources that match rarely used �lters will be
allowed.
Strategy �ree: Synchronous Reduced List, Asynchronous
Complementary List. Finally, we present our proposed blocking
strategy, a hybrid strategy that achieves nearly the coverage that full
EasyList provides while achieving the performance improvements
of the reduced list. Figure 9 outlines this hybrid strategy.

�is strategy uses two steps:
(1) A synchronous, request-time matcher, that operates be-

fore each request is issued, but with a reduced version of
EasyList.

(2) An asynchronous background matcher, that applies the
uncommon tail of EasyList, but only when a request has
been allowed by the previous step.

�e �rst step is identical to strategy two. Every outgoing network
request is intercepted and blocked until the frequently-used subset
of EasyList rules is considered. �e step’s goal is to minimize how
long network requests are blocked, by minimizing the amount of
synchronous work. �e result is that benign network requests
complete more quickly than current blocking tools.

�e second step applies the remaining, long-tail of EasyList
rules, but at a less performance-sensitive moment. If a network
request is allowed by the �rst step, the request is issued, but the
browser continues checking the now-issued URL against the rest
of EasyList. �is continued checking is done asynchronously so
that it has minimal e�ect on the load time of the page.

If the asynchronous checker �nds any rules that match the URL
of the now-issued request, that rule is added to the set of rules ap-
plied by the synchronous matcher so that it will be quickly blocked
in the future.

�e result of this hybrid strategy is that commonly blocked re-
quests are blocked quicker (because the synchronous blocking step
is considering a smaller rule set), benign requests complete faster
(again, because of the reduced rule list used in the synchronous
blocker), and rare-but-undesirable URLs are adjusted to (because
the asynchronous matcher moves matching �lter rules into the
synchronously-applied set).

5.2.1 Evaluation Methodology. We evaluated the performance
of each strategy by implementing them inAdBlock Plus for Chrome 30.
In all strategies, we instrumented AdBlock Plus to measure the time
needed to evaluate each outgoing network request against EasyList
(or the relevant subset of EasyList). For the hybrid approach, we
also added timing measurements to the asynchronous step.

We evaluated each of the three blocking strategies against the
same selection of popular and unpopular websites discussed in
Section 4. We conduct the crawl on an AWS T2 medium instance
with 2 virtual CPUs and 4GB of RAM. Since Chromium does not
support extensions in headless mode, 31 we use stock Chromium
rendered with XVFB, and automated the system with the Puppeteer
library 32. All experiments were conducted with caching disabled.

For each strategy we visited each of the 10K websites in our
sample. We allowed each website �ve seconds to respond and then
allowed each website to execute for two seconds. �e extension
30h�ps://github.com/adblockplus/adblockpluschrome
31h�ps://bugs.chromium.org/p/chromium/issues/detail?id=706008
32h�ps://github.com/GoogleChrome/puppeteer
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Figure 9: Overview of the proposed hybrid strategy.

measures the time taken by AdBlock Plus (modi�ed or stock) to
decide whether to block each network request on each page.

5.2.2 Performance of Blocking Strategies. Table 2 presents the
results of applying the above evaluation methodology against each
of the three blocking strategies.

�e �rst row presents measurements for the stock AdBlock Plus
implementation, which uses a synchronous blocking strategy for
all of EasyList. Unsurprisingly, this strategy takes the longest time
to determine whether to block a network request. We note that this
time is spent blocking each network request, which greatly impacts
page load time.

�e second row shows the performance of the second strategy;
reducing EasyList to its most frequently used rules, and applying
that reduced list synchronously. �e result is faster performance,
at the cost of an increased false positive false negative rate. �e
number of network requests blocked goes up because of “exception”
pruned from EasyList. Privacy is also harmed, as nearly 18,000
more third-parties are contacted during the evaluation, a result of
some “network” rules missing in the reduced EasyList.

�e remaining rows present the evaluation of the hybrid strategy.
Rows four and �ve describe the synchronous and asynchronous
modules of the hybrid strategy separately, while row three presents
the combined e�ect. �e most signi�cant results of our evaluation
are the following.

First, the synchronous module takes 0.21 ms on average to pro-
cess a request. Perceived blocking time is reduced (compared to
stock AdBlock Plus) by 62.5% (Research �estion 6). Second,
the hybrid strategy provides blocking coverage nearly identical to
stock AdBlock Plus (> 99%), with only 138 false negatives on 10, 000
websites visited. �e 48 “exception” rule errors do not impact the
user since the rules that would have been excepted were not added
to EasyList. �ird, the evaluation shows the adaptive bene�t of
the hybrid model. �e hybrid approach initially applied 3,259 rules

synchronously, but a�er the 10,000 site evaluation, 186 rules from
the uncommon async set were added to the synchronous set.

Second, we note the asynchronous portion of the hybrid ap-
proach applies its 35K rules faster than the reduced-list synchronous
approach, which considers only 3,259 rules. �is surprising obser-
vation is due to the synchronous portion of the hybrid approach
doing some work (e.g. what kind of resource is being fetched) that
can be reused in the asynchronous step.

Overall, we �nd that the hybrid approach is a successful, per-
formant strategy. �e hybrid strategy considers only the subset
of EasyList that is likely to be useful in the performance critical
path, and defers evaluating the less-likely-to-be-useful rules to a
less critical decision point. �e hybrid approach achieves these
improvements with a minimal e�ect on blocking accuracy, and at
a small (though not zero) privacy cost, on the order of one non-
blocked resource per uncommonly used �lter list rule.

Finally, we note that there are potential further performance im-
provements that might be achieved by pushing the hybrid approach
further, and starting each user with an empty set of �lter rules. �is
would increase the privacy cost of the hybrid approach, since a
larger number of would-be-blocked resources would be fetched,
but would result in an even smaller, further optimized set of rules
that tightly matched each users’ browsing pa�erns.

6 LIMITATIONS AND DISCUSSION
6.1 Web site selection generalizability
�e �ndings in this study depend on having a sample of the web
that generalizes to the types of websites users visit and spend time
on. We treat the Alexa 5K, along with a sampling of less popular
websites, as representative of typical browsing pa�erns. While
we expect this set to be a good representative of the web as a
whole (largely because the highly skewed distribution of website
popularity means the most popular sites represent the majority of
most user’s browsing time), we note it here as a limitation, and that
extending this work’s measurements beyond the Alexa 5k would
be valuable future work.

Additionally, this work considers each site’s landing page, and
up to three sub-pages linked to from the site’s landing page, as
representative of the site’s content overall. If this is not the case, and
deeply nested pages have di�erent kinds and amounts of resources
than higher-level pages, it would reduce the generalizability of this
work’s �ndings. We note this as an area for future work.

6.2 Web region and language generalizability
�is work applies EasyList globally popular sites, as determined by
the Alexa global rankings. �is choice was made because EasyList
itself targets English and ”global” sites. Other lists target others
languages and regions on the web. Some of these lists are main-
tained by the EasyList project 33, others lists are created by other
�ltering tools 34 or crowdsource e�orts 35. It would be interesting
future work to understand how EasyList performs on other regions
of the web (as compared to English and “global” sites), and how

33h�ps://easylist.to/pages/other-supplementary-�lter-lists-and-easylist-
variants.html
34e.g. h�ps://kb.adguard.com/en/general/adguard-ad-�lters
35e.g. h�ps://�lterlists.com/
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Strategy Num rules
start

Num rules
end

Median eval time
per request (ms)

90th time
per request (ms)

Num requests
blocked

Num requests
exceptioned

Num 3rd parties
contacted

Num total
requests

(1) Easylist sync 39,132 39,132 0.30 0.50 30,149 11,905 322,604 748,237
(2) Reduced list sync 3,259 3,259 0.10 0.30 30,611 2,508 340,301 774,473
(3) Hybrid combined 39,132 39,132 0.30 0.60 31,584 14,444 338,841 770,729
(3.1) Hybrid sync 3,259 3,445 0.20 0.30 31,446 14,396 - -
(3.2) Hybrid async 35,873 35,687 0.20 0.30 138 48 - -

Table 2: Performance and coverage comparison for three EasyList application strategies.

EasyList’s performance compares to region-and-language-speci�c
lists.

6.3 Automated measurement generalizability
All of our results were generated from automated crawls, which
also may have a�ected how generalizable our results are. It is pos-
sible that di�erent kinds of resources are fetched and so di�erent
parts of EasyList are used, when users interact with websites in par-
ticular ways, such as logging in or using web-app like functionality.
How generalizable automated crawl results are to the browsing
experiences of real users is a frequently acknowledged issue in
measurement studies (e.g. [20]), and one we hope the community
can address with future work.

Additionally, all crawling done in this work was carried out
from well known AWS IP addresses. �is means that the results
may be a�ected by the kinds of anti-crawling techniques some-
times deployed against Amazon IP addresses. �is, in turn, could
have a�ected the number and distribution of ads observed during
measurement. While this is a common limitation of this kind of
web-scale measurement, we note it as another limitation.

6.4 Relationship to �lter list evasion
Many websites prefer for their included resources not be blocked
by �lter lists, for reasons ranging from monetization to anti-fraud
e�orts. Some sites and advertisers a�empt to evade �lter lists (and
other blocking tools). Some of these techniques are presented in
Section 4.4, and others have been detailed in other research and
discussed in Section 7.4.

While, if e�ective, these evasion e�orts would would reduce the
usefulness of �lter-list based blocking, evasion e�orts are unlikely
to be e�ective in the common case. First, advertisers and trackers
are constrained in their ability to evade �lter lists because frequently
changing URLs would break existing sites that have hard coded
references to well known URLs. Second, frequently changing URLs
imposes a non-zero cost on advertisers and trackers by making
caching di�cult, and so increasing serving costs. Finally, though
trackers may consider evading �lter lists with more expensive
techniques (e.g. domain generation algorithms, resource inlining,
etc), many may be hesitant to do so because, in the long term, more
sophisticated e�orts will likely be defeated too, since the client has
the ultimate ability to choose what content to fetch and render, for
reasons described by Storey et. al. [21].

6.5 Varying resource blocking importance
Finally, our results consider every blocking action as equally useful.
In our measurements, a rule that blocks ten resources is implicitly
ten times more useful than a rule that only blocks one request. It
is possible, though, that a less frequently used rule may be more
bene�cial to the user than a frequently used rule if the infrequently
blocked rule is blocking a very malicious or performance harm-
ing resource. While we expect the most severe, security harming
resources are most commonly dealt with through other blocking
tools, such as SafeBrowsing 36, we acknowledge this limitation, but
treat the more general question of “how bene�cial is it to the user
to block a given resource” beyond the scope of this work.

7 RELATEDWORK
7.1 Online tracking
Recent studies document a growth of third-party tracking on the
web [2, 10]. Yu et al. [23] found an increase in analytics services
and social widgets. Englehardt et al [2] showed tracking code
on more than 10% of the websites of the top Alexa 1M. Libert
et al [12] showed that 180k pages of the top 1M Alexa websites
had cookies spawned by the DoubleClick domain, a behavioral
advertising company.

7.2 Defenses against tracking
�e NoScript extension 37 enables to prevent JavaScript execution.
While this approach blocks trackers, it also breaks websites that use
JavaScript for legitimate purposes. �is trade-o� between privacy
and usability is important. Yu et al. [23] �nd that privacy tools
that break legitimate websites may lead to users deactivating such
tools, harming user privacy. �e most popular kind of tracking
protection is browser extensions such as Ghostery, Disconnect or
uBlock origin, as well as browsers such as Brave or Safari that
enable to block third-party requests.

A variety of strategies have been proposed for identifying un-
wanted web resources. Privacy Badger uses a learning-based ap-
proach. Iqbal et al. [8] also proposed a machine learning approach
that considers features extracted from HTML elements, HTTP re-
quests, and JavaScript to determine if a request should be blocked.
Storey et al. [21] propose a visual recognition approach targeting
legally mandated advertising identi�ers. Yu et al [23] proposed
a crowdsourced approach where users collectively identify data

36h�ps://safebrowsing.google.com/
37h�ps://noscript.net/
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elements that could be used to uniquely identify users. �emajority
of anti-tracking and ad-blocking tools rely on �lter lists.

Di�erent studies [17] show that tracker blockers and ad-blockers
are popular among the general population. Malloy et al [13] showed
that depending on the country, between 16% and 37% of the Internet
users had an ad-blocker installed. Mathur et al [14] found that most
users of anti-tracking tools use the tools to avoid advertising.

7.3 E�ectiveness of anti-tracking tools
Gervais et al. [4] quanti�ed the privacy provided by the main ad-
blockers. �ey show that on average, using an ad-blocker with the
default con�guration reduce the number of third parties loaded
by 40%. Merzdovnik et al. [15] showed that rule-based approaches
can outperform Privacy Badger’s learning-based approach. �ey
also show that extensions that rely on community-based lists are
less e�ective than extensions based on proprietary lists such as
Disconnect or Ghostery when used with the correct se�ings. �eir
study demonstrates that besides blocking trackers, most of these
extensions have a negligible CPU overhead. In some cases, it even
leads to a decrease in the overall CPU usage of the browser.

7.4 Maintaining �lter lists
In order to keep up with new domains creating and domains chang-
ing their behavior, it is crucial to maintain �lter lists. Because it is
a cumbersome task and it needs to be done carefully not to break
websites, Gugelmann et al. [5] proposed an automated approach
that relies on a set of web tra�c features to identify privacy invasive
services and thus help developers maintaining �lter lists.

Alrizah et al. [1] studied the related problem of how �lter lists
maintainers detect and address blocking errors, and how advertisers
a�empt circumvent �lter lists. �ey �nd that popular lists have
non-trivial false positive and false negative rates, and that these
errors are exploited by a�ackers (i.e. advertisers).

Other researchers have also documented strategies advertisers
use to evade blocking. Wang et al [22] found advertisers random-
izing HTML identi�ers and structure. Facebook has applied this
technique too 38. Adversity has also been discussed by recent stud-
ies on anti-ad-blockers [7, 16, 25], i.e. scripts whose purpose is to
detect and block ad-blockers to deliver advertising to more users.
Iqbal et al. [7] conducted a retrospective measurement study of anti
ad-block �lter lists using the Wayback machine, and found that
8.7% of popular sites have at one time used anti-adblocking scripts.

8 CONCLUSION
�is paper studies EasyList, the most popular �lter list used for
blocking advertising and tracking related content on the web. We
�nd that the vast majority of rules in EasyList are rarely, if ever,
used in common browsing scenarios. We measure the number
of these “dead weight” rules, and e�ect on browser performance,
through comparison with alternative, data-driven EasyList appli-
cation strategies. We �nd that by separating the wheat from the
cha�, and identifying the small subset of EasyList �lter rules that
provide common bene�t for users, EasyList’s bene�ts can be e�-
ciently enjoyed on performance constrained mobile devices. We
also use these �ndings to propose an alternate blocking strategy
38h�ps://newsroom.�.com/news/2016/08/a-new-way-to-control-the-ads-you-see-on-facebook-and-an-update-on-ad-blocking/

on desktops that improves performance by 62.5%, while capturing
over > 99% of the bene�t of EasyList.

More broadly, we hope this work will inform how similar crowd-
sourced security and privacy tools are developed and maintained.
As previous work [9] has identi�ed, such lists tend to accumulate
cru� as they accumulate new rules. Over time, the bene�t of such
tools risks being outweighed by the amount of dead weight pulled
with them. We hope the �ndings in this work highlight the need
for regular pruning of these lists, to keep them lean and as helpful
to users as possible.
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