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ABSTRACT 

The human voice conveys unique characteristics of an individual, 

making voice biometrics a key technology for verifying identities 

in various industries. Despite the impressive progress of speaker 

recognition systems in terms of accuracy, a number of ethical and 

legal concerns has been raised, specifically relating to the fairness 

of such systems. In this paper, we aim to explore the disparity in 

performance achieved by state-of-the-art deep speaker recognition 

systems when different groups of individuals characterized by a 

common sensitive attribute (e.g., gender) are considered. In order 

to mitigate the unfairness we uncovered by means of an exploratory 

study, we investigate whether balancing the representation of the 

different groups of individuals in the training set can lead to a more 

equal treatment of these demographic groups. Experiments on two 

state-of-the-art neural architectures and a large-scale public dataset 

show that models trained with demographically-balanced training 

sets exhibit a fairer behavior on different groups, while still being 

accurate. Our study is expected to provide a solid basis for instilling 

beyond-accuracy objectives (e.g., fairness) in speaker recognition.  
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1. INTRODUCTION 
Speaker recognition systems aim to automatically recognize the 

identity of an individual from a recording of their voice or speech 

utterance. These systems have been improved over recent years and 

have become inexpensive and reliable for person identification and 

verification [1]. Research in the field of speaker recognition has 

now spanned several decades and has showed fruitful applications, 

despite all the different covariates that influence an utterance (e.g., 

languages, genders, ages, timbres, accents, and background noises). 

Current successful applications include scanning passengers during 

border controls, checking identities for bank transactions, forensics 

analysis, and remote access to computers (e.g., online exams) [2].  

When consequential decisions are made about individuals on the 

basis of the outputs of speaker recognition systems, concerns about 

discrimination and fairness inevitably arise. Indeed, it may happen 

that the system’s outputs result in decisions systematically biased 

against individuals with certain protected characteristics like race, 

gender or age. Underlying patterns of discrimination in the real-

world data can be likely picked up in the learning process of the 

model. This behavior may result in certain groups being unfairly 

denied access to a platform or being more vulnerable to attackers, 

with both usability and security issues, respectively. Cognisant of 

this problem, a timely research paradigm of fair machine learning 

emerged, attempting to mitigate this unfairness [3,4,5,6]. However, 

several questions connected to how much unfairness issues affect 

speaker recognition systems still remain unanswered.  

This paper is hence organized around this direction. Our study here 

aims to raise awareness on the current state of speaker recognition 

fairness, under an identity verification task. First, we manipulated 

a dataset of voices coming from a range of different demographic 

groups, identified based on the language (English and Spanish), the 

gender (male and female), and the age (younger and older than 40 

years old). Then, we conducted an exploratory analysis focused on 

uncovering inequalities exposed by speaker recognition systems to 

the demographic groups, in terms of both false acceptance and false 

reject. As a possible countermeasure to the uncovered disparities, 

we adopted a pre-processing strategy that controls how much each 

demographic group is represented in the training set. Specifically, 

the main contribution of this paper is threefold: 

• we design a multi-architecture framework which makes 

it possible to train, evaluate, and inspect multiple speaker 

recognition systems by means of automated pipelines; 

• we provide a fairness-benchmarking protocol composed 

by pre-defined training sets and trial recognition pairs for 

assessing how much speaker recognition systems are fair, 

based on accuracy disparity among demographic groups; 

• we performed an extensive analysis of state-of-the-art 

speaker recognition systems under a setting with eight 

demographic groups, to investigate on how biases lead to 

unfairness during the learning process of these systems.  

Our experiments allow to better understand how to design speaker 

recognition systems fairer among protected demographic groups.  

This paper is organized as follows. Section 2 describes the related 

work. Section 3 presents our framework and Section 4 depicts the 

performed experiments and the more insightful results, showing 

how balancing the training dataset affects bias mitigation and, by 

extension, unfairness. Finally, Section 5 summarizes our findings 

and describes possible future directions. 

 



2. RELATED WORK 
Machine-learning models have penetrated every aspect of our daily 

life. Their widespread application has recently raised several social 

and ethical concerns. One of these concerns is associated with the 

model’s tendency of systematically and repeatedly discriminating 

an individual or group based on inherent or acquired characteristics 

(e.g., gender, ethnicity, sexual orientation). Hence, an unfair model 

is one whose decisions are skewed toward a certain group of people 

[7]. These ethical aspects have a solid ground in legal frameworks. 

For instance, explicit mentions are provided in Art. 21 of the EU 

Charter of Fundamental Rights, Art. 14 of European Convention on 

Human Rights, where all protected groups are identified, and in 

Artt. 18-25 of the Treaty on the Functioning of the European Union 

[8]. Legal definitions of fairness are presented, defining concepts, 

such as direct and indirect discrimination. Our work finds its core 

motivation in the latter concept, which is provided in the context of 

algorithmic decision making. Specifically, indirect discrimination 

occurs when an apparently neutral rule leads to different outcomes 

based on a person membership to a protected class [7]. 

Recently, different studies have evaluated the influence of different 

factors in the learning process of neural networks and calculated 

disparities in treatment amongst protected groups [6]. Instilling 

equality in the outcomes of machine-learning models has gained a 

lot of attention, especially in the field of face biometrics [9, 10, 11], 

whereas the literature revealed that there is limited awareness on 

how unfairness issues affect voice biometrics and, by extension, the 

resulting speaker recognition systems. Our study here builds upon 

the preliminary research findings exposed in [5], where the authors 

uncovered that a deep-learning model exposes different equal error 

rates among individuals, based on their language, gender, and age. 

However, their study covered only one type of neural architecture 

and few demographic groups. Moreover, it has been not considered 

how changing the representation of the diverse demographic groups 

in the dataset impacts on the training process as a whole and on the 

disparities among protected groups. Our work thus aims to provide 

a better and more general understanding on such primary points.  

In general, the literature has showed that one of the main causes of 

biased results is that models are trained on datasets which do not 

equally represent the entire population and its demographic groups. 

Hence, the learning process ends up focusing only on optimizing 

overall accuracy, performing better only on the groups with high 

representation in the data. To mitigate this effect, in the context of 

face biometrics, the authors in [11] have proposed a strategy that 

aims to use balanced and heterogeneous data to train and evaluate 

the models. Their results show that training with balanced datasets 

can partially reduce unfairness. Other countermeasures consist in 

modifying the objective function used for training the model, to 

guide learning process into a fairer feature space [9, 10]. This latter 

strategy is often computationally expensive, and its benefits end up 

being model dependent. Hence, our preliminary study in this paper 

aims to mitigate the disparity among protected groups by balancing 

the dataset for training and testing the models. We believe that such 

a countermeasure is a primary first step in investigating unfairness 

in an under-explored domain as speaker recognition systems.  

3. FRAMEWORK 
In this section, we describe the framework we propose in this paper 

to benchmark and treating unfairness issues in speaker recognition, 

including the process, its steps, and the main activities (Fig. 1). We 

pre-process the voice-based dataset. Then, we formalize protocols 

for splitting data in training and testing sets and propose rules to 

create trial pairs of utterances that simulate real-world recognition 

process, under identity verification tasks. Models are subsequently 

trained on the split data. Finally, we define the fairness-benchmark 

protocol, the disparity metrics, and how to compute them. 

3.1 Data Organization and Pre-Processing  
Our study is carried out on the FairVoice dataset proposed in [5], 

which includes voice data collected under an open source project 

founded by Mozilla. We selected this dataset since it covers a wide 

range of demographic groups identified by their language, gender, 

and age, and the labels which describe such sensitive attributes are 

available for each individual user. However, not all the languages 

provided by FairVoice include enough female users in order to set 

balanced datasets that are sufficiently larger to train state-of-the-art 

deep speaker recognition systems. Specifically, among the specific-

language datasets of English, Spanish, French, German speakers, 

only the first two languages embrace enough utterances for each 

demographic group. Thus, we did not consider French and German.  

Then, the pre-selected dataset has been filtered by the number of 

utterances per user. Specifically, only the users who have provided 

at least five samples were taken into consideration in our analyses. 

This step is essential because we require to create trial verification 

pairs with both utterances coming from the same user in order to 

simulate cases when the authorized user wants to be authenticated. 

Hence, if a user does not provide a minimum number of utterances, 

we cannot create enough trial pairs. This filtering step led to a total 

of 6,321 English speakers and 1,298 Spanish speakers.  

In Table 1, we report the number of speakers for the gender- and 

aged-based demographic groups we considered for each language, 

after applying the above filtering steps. In our preliminary study, 

we analysed disparities conveyed by speaker recognition systems 

on four demographic groups per language, based on their gender 

(female, male) and their age (users younger and older than 40 years 

old). We selected 40 as a splitting age, since it allows us to better 

balance the representation of the resulting two age groups, while 

maintaining a reasonable size of the training dataset. The balancing 

process in the next steps will be based on the less represented group. 

For instance, when balancing the Spanish dataset on the number of 

users per group, we can observe that young females are the less 

represented, with 180 users. Hence, we filter only 180 users of each 

group to perfectly balance data across these groups. 

Figure 1. The fairness-benchmarking framework for speaker 

recognition systems proposed in this paper.  



Language Group Speakers 

English 

Old females 425 

Young females 743 

Old males 1118 

Young males 3960 

Spanish 

Old females 306 

Young females 180 

Old males 376 

Young males 418 

3.2 Training and Testing Data Preparation 
In this step, we are interested in describing the methodologies we 

used to (i) split data in training and testing sets, (ii) create the trial 

verification pairs considered to test speaker recognition systems, 

and (iii) compare their outcomes for the different users’ groups.  

The utterances belonging to each language included into FairVoice 

are organized into hierarchical folders, i.e., one folder per language 

and one subfolder per user in each language folder. Each user’s 

folder contains all the audio samples of that user in a wav format, 

and each user has a different number of utterances. Each language 

folder is accompanied by a CSV file that lists, for each user, his/her 

sensitive attributes (e.g., gender, age, accent) and other statistics.   

First, we describe the methodologies we adopted to create testing 

sets tailored for benchmarking unfairness in speaker recognition. 

Our methodologies consider selecting a specific number of users 

for each demographic group and the resulting testing sets contain a 

range of utterances balanced based on the target sensitive attribute. 

More precisely, for each language, we selected 100 users, i.e., 25 

young females, 25 old females, 25 young males, 25 old males, by 

randomly sampling them from the corresponding demographic 

group. We set 100 as the number of testing users in order to include 

enough users to significantly assess the unfairness of the considered 

models, and we sampled the same number of users for each group 

in order to equally cover each group in the testing procedure. Then, 

for each language, three testing files were created, each with the 

same amount of trial verification pairs. Each pair includes the 

references to two utterances in order to simulate a recognition 

attempt. For each testing file, for each user in the testing set, we 

created 64 pairs where both the utterances come from the current 

user (same-user pairs) and 64 utterances where the first utterance 

comes from the current user and the second one comes from another 

user (different-user pair). Hence, the three testing files for a given 

language differ based on the way we selected the another user in 

the different-user pairs, as follows:  

• Test-1: the another user belongs to the same age group 

of the current user under consideration.   

• Test-2: the another user has the same gender of the 

current user under consideration.   

• Test-3: the another user is randomly selected.  

Finally, we obtain three testing files for each language. We created 

different testing files to uncover whether the unfairness of a model 

arises when we compare users belonging to the same demographic 

group. These files were used to test each model. Note that we repeat 

these procedures in a multi-fold setting to assess significance. 

To organise the balanced training sets, we use the same number of 

users for each demographic group. For instance, considering the 

gender, this means having an equal number of male and female 

users, while considering the age, it means an equal number of old 

and young users. Combining gender and age, we obtain four groups 

(i.e., old females, young females, old males, young males) equally 

distributed in a dataset. In this way models can be trained on more 

balanced datasets, one of the key strategies used in the state-of-the-

art fairness-aware machine learning to reduce unfairness. The audio 

files used for training included only those of the users who are not 

considered within the testing set. Based on the learning setup, we 

chose to train several models, each one with training files having 

different group-balancing setups, to understand how the training set 

affects models. Seven training files were created as follows: 

• Train-1 (3 files): for each language configuration, we 

randomly sampled the same number of users for each of 

the four demographic groups, obtained combining gender 

and age membership. 

• Train-2 (3 files): for each language configuration, we 

consider the full dataset of utterances without any type of 

balancing, i.e., fully unbalanced dataset. 

• Train-3 (1 file): we randomly sampled the same number 

of utterances for each demographic group, obtained 

combining gender and age membership. 

Under each setup, we controlled that the same number of users and 

of utterances was included across languages, for fair comparison of 

the results across languages as well. In fact, our study in this paper 

is interested in evaluating whether the language may be a covariate 

that leads to unfair performance of a model. This point can promote 

a more comprehensive understanding of how a speaker recognition 

model fairly performs in the real world. Thus, we balanced users 

based on their language, even in the case we trained models with 

utterances of only a single language. 

3.3 Speaker Recognition Model Training 
Once the list of training utterances was designed by means of the 

activities described in the previous section, we move to train the 

speaker recognition models. Specifically, we considered two deep-

learning architectures that obtained impressive accuracy results and 

represent the state-of-the-art in speaker recognition, namely Thin-

ResNet [12] and X-Vector [13]. Note that we decided to select these 

two architectures due to their different nature. The first one receives 

audio spectrograms in input and is based on stacked convolutional 

neural networks, while the second one digests audio filterbanks and 

is composed by time-delay neural networks. Hence, they give us 

the opportunity to understand under which circumstances models 

can lead to a more or less discriminating behavior. Each model was 

trained for speaker classification in a supervised manner.   

By leveraging the training files previously arranged, we were able 

to train several speaker recognition models under different setups. 

Finally, 7 model instances were trained for each of the two deep-

learning architectures, leading to a total of 14 trained models. For 

the sake of clarity, we considered the same model parameters and 

the same training parameters described by the authors of each deep-

learning architecture. Even the parameters for acoustic extraction 

(i.e., spectrogram or filterbank computation) were kept consistent 

with respect to the original papers [12,13]. Our framework allows 

to setup the parameters of a training process, e.g., the architecture 

type (either Thin-ResNet or X-Vector), the number of epochs, the 

batch size, the learning rate, the optimizer, and so on.  

3.4 Fairness Benchmarking 
In this latter phase, we focused on testing the trained models and 

analysing how they lead to disparities among demographic groups. 

Table 1. Utterances per demographic group embraced into  

English and Spanish languages considered in our analyses.  



To this end, each trained model was tested with all the three testing 

files whose creation is described in Section 3.2. Specifically, given 

a trained model and a testing file, we parsed each trial verification 

pair, and extracted the acoustic representations (spectrogram or 

filterbank) from each of the two audio files in the pair. Then, we 

computed the two corresponding deep speaker embeddings (i.e., 

the unique numerical representation associated to each audio file) 

by giving each acoustic representation in input to the model and 

extracting the embedding from the specific layer of the model. 

Finally, we get the cosine similarity between the two speaker 

embeddings. The process was repeated for each trial pair in the 

testing file, and the results were saved in a CSV that included, in 

each line, the type of trial pair (0: different-user pair, 1: same-user 

pair) and the cosine similarity obtained for that trial pair. For each 

testing results file, we calculated the following set of metrics:  

• Equal Error Rate (EER): this score represents the error 

obtained at the threshold where the False Acceptance 

Rate (FAR) and the False Rejection Rate (FRR) are 

equal. We computed both the overall EER achieved by a 

specific model and the EERs achieved by considering 

only trial pairs coming from a single demographic group.  

• Disparity Score (DS): this score represents the absolute 

value of the difference between two EERs, associated 

with two different demographic groups, e.g., male users’ 

EER and female users’ EER or old users’ EER and young 

users’ EER. In this way, we can measure disparities in 

performance based on the EERs. Precisely, a disparity in 

EERs among groups means that, for that model, can be 

easier/harder to recognize users within certain groups. 

• False Acceptance Rate (FAR): this score measures the 

chance that the speaker recognition system incorrectly 

accepts an access attempt by an impostor. FAR results as 

dividing the number of false acceptances by the number 

of impostor attempts, and it is associated to the security 

of the system. The lower the FAR the higher the security. 

• False Rejection Rate: this score measures the chance the 

model incorrectly fails to authenticate a legitimate user. 

FRR is calculated as the ratio between the number of false 

rejects and the number of genuine attempts, and it is 

associated to the usability of the system. The lower the 

FRR, the higher the usability. 

The benchmarking phase of all the 14 trained models led to a total 

of 60 results files.  

4. EXPERIMENTS 
Our study aims to answer to questions on how the decisions of a 

speaker recognition system, under an identity verification task 

result in systematically discriminating individuals with protected 

characteristics like language (assumed here as a proxy of ethnicity), 

gender, and age. Moreover, we aim to understand how changing the 

characteristics of the training dataset can reduce the inequality 

among demographic groups in speaker recognition. Specifically, 

we will answer to the following four research questions:  

• RQ1: How much is the balancing of the dataset important 

for mitigating disparities between demographic groups? 

• RQ2: Is it possible to decrease the model unfairness by 

leveraging multi-language balanced training datasets? 

• RQ3: To what extent is the unfairness propagated by the 

model during the training process? 

 

1 https://mirkomarras.github.io/fair-voice/ 

• RQ4: It there any difference in disparity among groups, 

when different neural architectures are considered? 

Given the large amount of comparisons, we will report only the key 

and most insightful results and findings that can help to understand 

how the composition of a training set can be relevant to achieve fair 

treatments. Note that, in some cases, due to the space constraints, 

we will not report the results on certain settings, if the uncovered 

patterns are similar to already-presented ones. The experiments 

were coded in Python on top of TensorFlow and run on a GPU1.    

4.1 RQ1: Influence of Data Balancing 
In this first experiment, we trained the two neural architectures 

using two levels of data balancing in the training set, namely Train-

1 and Train-2. Then, we tested each trained model on the three test 

file, namely Test-1, Test-2, and Test-3. The goal of this experiment 

is to compare the results obtained based on the metrics we described 

above and assess whether balancing the number of users per group 

helps to improve the fairness of the speaker recognition system.  

Table 2 and Table 3 report the training accuracy, the overall EER, 

the EERs for each demographic group, and the disparities achieved 

for gender- and age-based groups by the Thin-ResNet and the X-

Vector models, respectively. For the sake of clarity, we discuss the 

results for each deep-learning architecture independently, leaving a 

comparison among them to the last research question RQ4. From 

the results, we can observe the following patterns:  

• X-Vector: Table 3 shows that slight but not-statistically 

significant improvements (paired Student t-test, p=0.05) 

were achieved with the English balanced model (Train-

1), when the disparity between ages is considered. Under 

Spanish, it can be noticed that balancing the number of 

users per group led to worse results than the unbalanced 

model.  

• Thin-ResNet: Table 2 highlights that there is again no 

significant improvement, both for English and Spanish 

models, given by the user-balanced dataset. Surprisingly, 

it seems that the unbalanced dataset gave better results. 

These first results point out that a user-balancing strategy is not 

actually enough to improve the fairness of the pre-trained models. 

Comparing results across languages, models trained and tested on 

the Spanish utterances led to a score of disparity significantly lower 

than the models trained and tested on English utterances, when the 

same test set is considered. Our experiments expose a situation 

where, under the English setup, the most discriminated categories 

were males and young people; under the Spanish setup, a more 

homogeneous distribution of accuracy across groups was observed. 

Even though due to the space constraints we have not reported the 

corresponding tables, we also examined model’s behaviour with 

respect to the FAR and the FRR achieved for the unbalanced and 

the user-balanced training set. We observed that X-Vector and the 

Thin-ResNet prove to be positively influenced by the balancing of 

the dataset, achieving a significant reduction in the disparity of the 

FAR and the FRR between males and females and young and old 

in several cases. Hence, we can conclude that, balancing the dataset 

made it possible to achieve a fairer treatment of groups with respect  
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Language Train File Test File Acc. EER EER O EER Y EER F EER M DS Y/O DS M/F 

English 

ENGLISH TRAIN 1 
ENGLISH TEST 1 

87.7% 6,71 5,80 7,75 4,48 8,75 1,95 4,27 

ENGLISH TRAIN 2 71.4% 7,68 4,89 10,47 5,48 8,69 5,58 3,21 

ENGLISH TRAIN 1 
ENGLISH TEST 2 

88.3% 10,71 8,05 12,66 10,77 10,23 4,61 0,54 

ENGLISH TRAIN 2 72.6% 10,66 8,66 12,12 10,09 8,91 3,46 1,18 

ENGLISH TRAIN 1 
ENGLISH TEST 3 

87.7% 7,24 6,17 8,05 5,61 9,02 1,88 3,41 

ENGLISH TRAIN 2 71.4% 7,91 7,75 8,25 6,89 7,66 0,50 0,77 

Spanish 

SPANISH TRAIN 1 
SPANISH TEST 1 

92.2% 6,56 7,17 5,88 6,02 7,11 1,29 1,09 

SPANISH TRAIN 2 89.2% 6,04 6,58 5,40 6,00 5,71 1,18 0,29 

SPANISH TRAIN 1 
SPANISH TEST 2 

92.2% 8,66 7,48 9,81 9,35 7,70 2,33 1,65 

SPANISH TRAIN 2 89.6% 8,34 7,24 9,42 9,03 7,70 2,18 1,33 

SPANISH TRAIN 1 
SPANISH TEST 3 

91.7% 6,61 7,26 6,01 4,69 7,90 1,25 3,21 

SPANISH TRAIN 2 89.6% 5,89 6,95 4,54 5,21 6,44 2,41 1,23 

Language Train File Test File Acc. EER EER O EER Y EER F EER M DS Y/O DS M/F 

English 

ENGLISH TRAIN 1 
ENGLISH TEST 1 

99,1% 8,17 4,69 11,66 5,64 10,50 6,97 4,86 

ENGLISH TRAIN 2 96,2% 8,20 4,70 11,69 6,06 10,38 6,99 4,32 

ENGLISH TRAIN 1 
ENGLISH TEST 2 

96,9% 10,55 7,94 13,17 8,91 12,05 5,23 3,14 

ENGLISH TRAIN 2 98,7% 10,51 7,67 13,09 8,36 10,20 5,42 1,84 

ENGLISH TRAIN 1 
ENGLISH TEST 3 

96,9% 8,66 7,50 9,86 6,69 10,19 2,36 3,50 

ENGLISH TRAIN 2 96,2% 8,74 7,14 9,95 7,14 9,42 2,81 2,28 

Spanish 

SPANISH TRAIN 1 
SPANISH TEST 1 

98,6% 6,39 6,98 5,91 5,88 6,97 1,07 1,09 

SPANISH TRAIN 2 98,6% 6,39 6,70 5,75 5,98 6,52 0,95 0,54 

SPANISH TRAIN 1 
SPANISH TEST 2 

98,6% 8,46 8,06 8,63 7,81 8,75 0,57 0,94 

SPANISH TRAIN 2 97,9% 8,44 7,88 8,55 8,19 8,06 0,67 0,13 

SPANISH TRAIN 1 
SPANISH TEST 3 

98,6% 6,44 8,12 4,71 4,78 8,06 3,41 3,28 

SPANISH TRAIN 2 97,9% 6,13 7,53 4,60 5,05 6,93 2,93 1,88 

to the security and usability of the system (demonstrated by the 

more similar FAR and FRR), but it did not help the models achieve 

a more equal performance on recognizing users of some groups. 

4.2 RQ2: Balanced Multi-Language Training 
In this second experiment, we aim to understand whether using a 

larger dataset that combines both Spanish and English speakers, we 

can better mitigate disparities between demographic groups. To this 

end, we merge the training files corresponding to the two languages 

(e.g., English Train-1 and Spanish Train-1 were fused to obtain a 

multi-language Train-1 file). Then, each trained model was tested 

on all the six testing files, three per language, separately.  

Table 4 and Table 5 show the training accuracy, the overall EER, 

the EERs for each demographic group, and the disparities under the 

above setup. As previously done, we present and discuss our results 

separately for each neural architecture: 

• X-Vector: Table 4 shows that the variations in disparity 

between the various tests on the models is minimal. 

However, both under the Spanish and English languages, 

distinguishing users from the same age (Test-1) is more 

challenging than distinguishing those belonging to the 

same gender group (Test-2). It can be also observed that, 

for the young-old disparity scores, the best results are 

reported on the models trained on balanced datasets. 

Concerning the male-female disparity scores, no clear 

pattern was highlighted, except that the Train-3 setting 

performed worse than the others in the balanced test for 

male-female users (Test-2).  

• Thin-ResNet: Table 5 reports that there is little evidence 

of an improvement in terms of disparity by means of the 

balanced dataset (Train-1/3). Overall, the disparity scores 

are higher than those seen for the X-Vector architecture. 

The fairest results in terms of balance are mostly reported 

in the disparity score between male-female users.  

Combining the findings on the first two research questions, it can 

be observed that there is not enough evidence in order to confirm 

significant improvements in the disparity score due to the balance 

of the dataset, even when a model is trained on the same amount of 

utterances per demographic group. Overall, it is important to note 

that our findings uncover that these exists less disparity in the 

Spanish language than in the English language. Considering the 

protected groups were most discriminated against, we note that the 

English language exhibits a greater discrimination against males 

than females and against young than elderly users. On the Spanish 

language, there is no particular trend of disparities against a specific 

demographic group according to the tests. This leads us to conclude 

that, in English, the disparities are more marked and systematically  

Table 2. RQ1 Thin-ResNet’s Disparity Scores (lowest scores under each testing set are highlighted) 

Table 3. RQ1 X-Vector’s Disparity Scores (lowest scores under each testing set are highlighted) 



 

 

affect the same protected groups, while the Spanish language do 

not show a systematic behavior against a specific group.  

To answer to our question, the use of a multi-language and balanced 

training dataset led to improvements in the decrease of the disparity 

between sensitive categories in more than half of the experiments 

compared to the single-language trained models. However, this 

behavior can depend on the diversity of the dataset or on the greater  

 

 

number of samples within the dataset. Our results also uncover that 

the evaluation protocol has a key impact on assessing disparities.  

Even under this research question, we analysed both FAR and FRR 

of all multi-language models, without reporting the results due to 

space constraints. It was observed that both X-Vector and Thin-

ResNet were positively influenced by the multi-language balanced 

training set. In fact, the fully balanced model (Train-3) achieved the 

lowest disparity in FAR among demographic groups in the Spanish 

Train File Test File Acc. EER EER O EER Y EER F EER M DS Y/O DS M/F 

ENGLISH-SPANISH TRAIN 1 

ENGLISH TEST 1 

99,2% 7,67 4,50 10,50 5,67 9,09 6,00 3,42 

ENGLISH-SPANISH TRAIN 2 98,6% 7,70 4,53 10,67 5,30 9,33 6,14 4,03 

ENGLISH-SPANISH TRAIN 3 98,0% 7,36 4,09 10,62 5,81 9,03 6,53 3,22 

ENGLISH-SPANISH TRAIN 1 

ENGLISH TEST 2 

99,2% 9,44 6,97 11,91 8,31 9,91 4,94 1,60 

ENGLISH-SPANISH TRAIN 2 98,6% 9,42 6,34 12,50 8,30 9,83 6,16 1,53 

ENGLISH-SPANISH TRAIN 3 98,0% 9,55 6,17 12,91 8,70 10,36 6,74 1,66 

ENGLISH-SPANISH TRAIN 1 

ENGLISH TEST 3 

99,2% 8,35 6,55 9,48 6,16 9,48 2,93 3,32 

ENGLISH-SPANISH TRAIN 2 98,6% 7,96 6,59 9,14 6,11 8,81 2,55 2,70 

ENGLISH-SPANISH TRAIN 3 98,0% 8,08 6,64 9,06 6,06 9,48 2,42 3,42 

ENGLISH-SPANISH TRAIN 1 

SPANISH TEST 1 

98,2% 5,91 5,97 5,62 5,45 5,81 0,35 0,36 

ENGLISH-SPANISH TRAIN 2 98,6% 5,50 5,11 6,02 5,19 5,62 0,91 0,43 

ENGLISH-SPANISH TRAIN 3 98,7% 5,51 5,69 5,26 5,44 5,31 0,43 0,13 

ENGLISH-SPANISH TRAIN 1 

SPANISH TEST 2 

99,2% 8,18 7,70 8,52 7,63 7,94 0,82 0,31 

ENGLISH-SPANISH TRAIN 2 97,8% 8,28 7,65 8,54 8,05 7,52 0,89 0,53 

ENGLISH-SPANISH TRAIN 3 99,3% 7,85 7,93 7,59 7,46 8,61 0,34 1,15 

ENGLISH-SPANISH TRAIN 1 

SPANISH TEST 3 

99,2% 5,80 7,21 4,00 4,14 7,15 3,21 3,01 

ENGLISH-SPANISH TRAIN 2 97,8% 5,61 7,29 3,79 3,94 6,31 3,50 2,37 

ENGLISH-SPANISH TRAIN 3 98,0% 5,59 7,21 4,00 4,19 6,52 3,21 2,33 

Train File Test File Acc. EER EER O EER Y EER F EER M DS Y/O DS M/F 

ENGLISH-SPANISH TRAIN 1 

ENGLISH TEST 1 

92,0% 6,66 5,23 7,55 4,53 8,19 2,32 3,66 

ENGLISH-SPANISH TRAIN 2 91,2% 7,27 5,44 8,70 5,56 7,52 3,26 1,96 

ENGLISH-SPANISH TRAIN 3 86,4% 7,11 6,03 7,23 5,08 8,86 1,20 3,78 

ENGLISH-SPANISH TRAIN 1 

ENGLISH TEST 2 

92,0% 9,22 7,17 11,27 7,98 9,69 4,10 1,71 

ENGLISH-SPANISH TRAIN 2 90,4% 9,84 8,42 11,27 9,22 7,94 2,85 1,28 

ENGLISH-SPANISH TRAIN 3 87,0% 9,21 7,59 10,83 9,08 8,98 3,24 0,10 

ENGLISH-SPANISH TRAIN 1 

ENGLISH TEST 3 

91,2% 7,02 5,61 8,12 6,09 7,80 2,51 1,71 

ENGLISH-SPANISH TRAIN 2 91,1% 7,46 6,83 8,28 6,53 7,97 1,45 1,44 

ENGLISH-SPANISH TRAIN 3 87,0% 7,05 5,91 8,20 5,31 7,72 2,29 2,41 

ENGLISH-SPANISH TRAIN 1 

SPANISH TEST 1 

92,0% 5,76 5,84 5,66 6,13 5,23 0,18 0,90 

ENGLISH-SPANISH TRAIN 2 91,1% 5,23 5,34 5,10 4,78 5,12 0,24 0,34 

ENGLISH-SPANISH TRAIN 3 86,4% 6,67 7,34 5,91 6,72 6,47 1,43 0,25 

ENGLISH-SPANISH TRAIN 1 

SPANISH TEST 2 

92,0% 8,67 7,04 11,05 10,78 6,52 4,01 4,26 

ENGLISH-SPANISH TRAIN 2 90,4% 8,34 5,76 11,25 10,33 5,97 5,49 4,36 

ENGLISH-SPANISH TRAIN 3 87,0% 9,21 7,52 11,62 10,81 7,64 4,10 3,17 

ENGLISH-SPANISH TRAIN 1 

SPANISH TEST 3 

92,0% 5,88 6,72 4,97 4,54 6,66 1,75 2,12 

ENGLISH-SPANISH TRAIN 2 91,1% 5,36 5,55 5,13 4,54 5,75 0,42 1,21 

ENGLISH-SPANISH TRAIN 3 85,8% 6,30 6,90 5,60 5,68 7,10 1,30 1,42 

Table 4. RQ2 X-Vector’s Disparity Scores (lowest scores under each testing set are highlighted) 

Table 5. RQ2 Thin-ResNet’s Disparity Scores (lowest scores under each testing set are highlighted) 



language. Similar patterns were observed for FRR. Interestingly, 

X-Vector achieved good fairness only in young-old disparity, while 

Thin-ResNet performed well also on the male-female disparity. To 

conclude, the multi-language balanced datasets encouraged a 

mitigation of the disparities on the FARs and FRRs. 

4.3 RQ3: Disparity Propagation during Training 
In this experiment, we aim to understand if and how the disparity 

in treatment among demographic groups is propagated during the  

training of a speaker recognition model. For the sake of clarity, we 

focus our discussion on the multi-language balanced model (Train-

3), described in the previous section. Similar patterns were obtained 

for the other model instances. Specifically, we are interested in 

studying how the disparity score evolves during training, so we 

saved a copy of the model after each training epoch and computed 

the metric scores it achieves on the various testing files. This allows 

us to analyse in more detail the behaviour of the two architectures 

and the differences between the tested languages. Due to the space 

constraints, we will focus our attention on two testing setups: the 

gender-balanced test (Test-2) and the unbalanced test (Test-3). 

 

Figure 2 and Figure 3 present the EERs achieved by the models 

after each training epoch, for each demographic group, under the 

X-Vector and Thin-ResNet architectures.  

• X-Vector: it can be observed that, epoch by epoch, both 

for the English language and the Spanish language, the 

young-old disparity score in the gender balanced tests 

(Test-2) decreases compared to the early epochs (Figure 

2a and 2c). Clear patterns appear on the results from the 

unbalanced test (Test-3), where the disparities increase 

with the progress of the epochs, becoming larger with 

respect to the early epochs (Figure 2b and 2d). 

• Thin-ResNet: in these experiments, we have noticed that 

balancing the tests does not produce a change of trend in 

unfairness during training. In the English language, there 

is a very low initial disparity, which tends then to increase 

during the epochs, even in the young-old balanced test 

(Figure 3a and 3b). In Spanish, epoch by epoch, the 

disparities between ages increase compared with the 

initial value, while for unfairness across gender groups, 

there is a constant decrease during epochs (Figure 3c and 

3d). 

To sum up, under the Spanish setup, models have the least disparity 

between groups compared with English.  

4.4 RQ4: Comparison across Architectures 
Based on the experiments previously performed, we aim to uncover 

whether the two different neural architectures, X-Vector and Thin-

ResNet, show a consistently different behavior. This allows us to 

understand whether one architecture is more inclined to unfairness. 

Considering the disparity scores collected during the experiments, 

it can be observed that Thin-ResNet exhibits a fairer behavior than 

X-Vector, though Thin-ResNet has a slower convergence in the 

learning process than the X-vector. Furthermore, the experiments 

presented in Section 4.4 show how X-Vector has a more stable 

performance in EER for each demographic group compared to 

Thin-ResNet. By comparing the unfairness behaviour resulting 

from the two architectures on the balanced testing files, X-Vector 

was more sensitive to variations in the testing set balance, and the 

lower disparity is registered for balanced training sets, showing 

large improvements compared to what observed for Thin-ResNet. 

It follows that X-Vector requires that the testing set is balanced to 

achieve fair results. Conversely, Thin-ResNet is fairer as more 

training samples are fed into it, no matter of the demographic group.  

With both architectures, training-balanced models led to similar 

FARs/FRRs among groups, meaning that different demographic 

groups experience comparable security and usability level in the 

underlying platform. In Spanish, X-Vector presented the lowest 

male-female disparity, while Thin-ResNet achieved a lower young-

old disparity score. In English, Thin-ResNet is the architecture that 

presents the fairest behavior, especially in the fully balanced model.  

Figure 2. X-Vector EER variation over epochs 



5. CONCLUSIONS 
In this paper, we studied to what extent state-of-the-art speaker 

recognition models systematically expose unfair decisions across 

demographic groups. Then, we investigated whether it is possible 

to mitigate their unfair behavior by controlling the representation 

of demographic groups in the training set. Based on our results:  

• Larger and more demographically balanced datasets help 

to decrease the disparity in EER among protected groups.  

• Balancing the training makes it possible to reduce the 

differences in FARs and FRRs among protected groups, 

otherwise present under unbalanced training conditions.   

• On average, compared to X-Vector, Thin-ResNet leads 

to a lower disparity among groups and is less sensitive to 

changes in the balance level of the training set. 

• In the English language, models tend to systematically 

discriminate certain demographic groups, while spurious 

disparities were noted in the Spanish language. 

Future works will enrich our analyses with more languages and 

demographic groups. Moreover, we will devise novel architectures 

and optimization approaches to reduce the uncovered unfairness.   
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Figure 3. Thin-ResNet EER variation over epochs 


