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ABSTRACT
Video object detection is a tough task due to the deteriorated quality
of video sequences captured under complex environments. Cur-
rently, this area is dominated by a series of feature enhancement
based methods, which distill beneficial semantic information from
multiple frames and generate enhanced features through fusing
the distilled information. However, the distillation and fusion op-
erations are usually performed at either frame level or instance
level with external guidance using additional information, such as
optical flow and feature memory. In this work, we propose a dual
semantic fusion network (abbreviated as DSFNet) to fully exploit
both frame-level and instance-level semantics in a unified fusion
framework without external guidance. Moreover, we introduce a
geometric similarity measure into the fusion process to alleviate the
influence of information distortion caused by noise. As a result, the
proposed DSFNet can generate more robust features through the
multi-granularity fusion and avoid being affected by the instability
of external guidance. To evaluate the proposed DSFNet, we conduct
extensive experiments on the ImageNet VID dataset. Notably, the
proposed dual semantic fusion network achieves, to the best of our
knowledge, the best performance of 84.1% mAP among the current
state-of-the-art video object detectors with ResNet-101 and 85.4%
mAP with ResNeXt-101 without using any post-processing steps.
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1 INTRODUCTION
Video object detection aims to detect objects of interest on con-
secutive video frames, which is a vital task in the multimedia area.
Despite the great success achieved by still image detection works,
video object detection is still challenging due to the deteriorated
video quality caused by motion blur, video defocus, pose variation
and occlusion (see Figure 1 for some examples). However, along
with these challenges, videos inherently contain much richer con-
text information in the spatio-temporal domain compared with
individual images, which gives a clear direction of exploiting the
rich information in video sequences to improve the performance of
video object detection.

Based on the success of single-frame detectors, cutting-edge
video object detection works (such as [9, 19, 53, 59]) tend to con-
sider more than one frame as support frames to leverage the context
information of video sequences. Specifically, these works distill use-
ful information from the support frames and then fuse the distilled
information into the deteriorated frames to generate enhanced fea-
tures for robust detection. The distillation and fusion operations are
usually performed on either frame-level or instance-level features
with external guidance, such as optical flow [58, 59] or global/local
feature memory [7]. The external guidance is used to measure the
similarities among pixels or instances, which are employed to guide
the following fusion process. Since the external guidance is usually
implemented by using additional deep neural networks, the per-
formance of the guidance based object detection methods cannot
be assured by themselves and they may suffer from the instability
of the external guidance. In particular, false positive estimations
introduced by the external guidance are fatal for the guidance based
methods and they are more likely to cause the failure of detection.
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Figure 1: Some examples of deteriorated video sequences.
From the top row to the bottom row, the corresponding chal-
lenges are motion blur, video defocus, pose variation and oc-
clusion, respectively.

Considering that there are frame-level and instance-level seman-
tic information that can be extracted by the dominated two-stage
detection framework before and after the region proposal network
(RPN), there is a natural desire to perform the distillation and fusion
operations at both levels. Consequently, in this paper, we present
a Dual Semantic Fusion Network (called DSFNet) to exploit both
frame-level and instance-level semantic information in video se-
quences. Moreover, we propose a geometric similarity measure to
measure the geometric similarities among object instances. Then,
the geometric similarities are used to cooperate with its correspond-
ing appearance information to mitigate the information distortion
problem caused by noise during the dual semantic fusion proce-
dure. Compared with the current one-stage feature enhancement
methods, the proposed DSFNet can generate more robust features
through the multi-granularity fusion.

Different from the existing guidance based methods, we argue
that the proposed dual semantic fusion network can be learned
through a unified framework in a fully end-to-end manner, even if
there is no external guidance for the fusion. The reason is that the
frame-level fusion in DSFNet can provide rich but object-agnostic
information, which consists of relatively low-level semantics. On
the contrary, the instance-level fusion in DSFNet can distill object-
specific but limited information, which includes relatively high-
level semantics, as the complementary cue. Through the combi-
nation of the frame-level and instance-level semantic fusions, the
distilled information from one level becomes the internal guid-
ance of the other level in DSFNet. In addition, since we do not
use any external guidance in our network, the proposed DSFNet
is self-contained and it does not need to rely on the precision and
reliability of the corresponding external guidance.

In summary, we make the following contributions in this paper:

• We present a dual semantic fusion network, which performs
a multi-granularity semantic fusion at both frame level and

instance level in a unified framework and then generates
enhanced features for video object detection.

• We introduce a geometric similarity measure into the pro-
posed dual semantic fusion network along with the widely
used appearance similarity measure to alleviate the informa-
tion distortion caused by noise during the fusion process.

• We explain the video object detection process from a novel
information theory perspective and then give a detailed anal-
ysis to show the effectiveness of the proposed dual semantic
fusion network.

We evaluate the proposed DSFNet on the large scale ImageNet
VID dataset [41]. The experimental results demonstrate the supe-
riority of our DSFNet over several state-of-the-art methods. Espe-
cially, DSFNet outperforms its baseline detector by a large margin
of 9.4% mAP and achieves, to the best of our knowledge, the high-
est mAP of 84.1%/85.4% with ResNet-101/ResNeXt-101 when it is
compared with the published state-of-the-art video object detection
methods without using additional post-processing steps.

2 RELATEDWORK
In this section, we briefly review several representative still image
object detectors and video object detectors.

Still Image Object Detectors. Object detection in still images
is one of the fundamental tasks in the multimedia and computer
vision communities with a variety of applications (e.g., [4, 5, 17,
18, 29, 36, 37, 44, 57]). State-of-the-art still image object detectors
can be roughly classified into two types: two-stage detectors (such
as [3, 10, 13, 16, 27, 28, 38, 46, 47]), and one-stage detectors (e.g.,
[2, 15, 23, 25, 30, 39, 56]).

As one of the most representative two-stage detectors, Faster
R-CNN [40] proposes to generate region proposals by using CNNs,
and then classifies and refines the generated proposals for object
detection. FPN [30] improves Faster R-CNN by designing a fea-
ture pyramid network for detecting objects at different scales. [22]
proposes to model the similarities among instances to capture the
contextual information in a whole image, which yields promising
performance on the object detection task.

In contrast, the one-stage detectors directly make predictions
with a single detection network. For example, SSD [34] and Reti-
naNet [31] place some pre-designed anchor boxes densely over
feature maps, and directly classify and refine each anchor box.
CenterNet [12] and FCOS [48] propose to detect objects in images
without designing a set of anchor boxes, and they achieve better
performance than most of the anchor based one-stage detectors.

Different from detecting objects in still images, a video sequence
contains much richer spatio-temporal information for detection.
The rich information can be leveraged to solve the challenging sit-
uations (such as occlusion, motion blur, rare poses) when detecting
objects in videos. Therefore, in this paper, we propose to exploit the
spatio-temporal information in video frames to improve the video
object detection performance. Similar to most of the state-of-the-art
video object detectors, our proposed DSFNet is also built upon the
effective Faster R-CNN framework.

Video Object Detectors. For the task of video object detection,
one of themain challenges is how to improve single-frame detection
performance by exploring temporal information of videos. One
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Figure 2: The pipeline of the proposed DSFNet. Given a test frame and several support frames, we first extract their frame-level
features. The features marked in orange/blue are the features of the test/support frames. Then, these features are enhanced
by fusing them according to their appearance similarities (Eq. (2)). We apply RPN on the enhanced frame-level features to get
instance-level features. After that, the instance-level features are enhanced based on their appearance and geometric similar-
ities (Eq. (5)). Finally, the enhanced instance-level features of the test frame are fed into the detection head for final detection.

common solution is to apply post-processing techniques to the
predicted bounding boxes obtained by still image detectors [20,
24, 26, 45]. For example, SeqNMS [20] conducts a sequence-level
NMS on the detected bounding boxes, and it uses high-scoring
detection results to boost the scores of weaker detection results.
T-CNN [24] adopts optical flow to propagate the predicted detection
results to neighboring frames and re-scores the detection results by
incorporating an additional object tracker. These post-processing
methods can improve the performance of still image object detectors
when they are applied to videos. However, the performance of these
methods highly relies on their associated image object detectors,
and it is difficult for them to correct the errors produced by the
associated image object detectors. In contrast, our DSFNet focuses
on using the temporal information at feature level rather than at
the final bounding box level, and it can be trained in an end-to-end
manner without using any post-processing steps.

Recently, state-of-the-art video object detectors tend to fuse
features extracted from multiple frames in a video sequence to
boost the detection performance. There are mainly two ways to fuse
features: frame-level fusion [19, 32, 33, 35, 54, 58] and instance-level
fusion [9, 42, 53]. For the frame-level fusion based methods, they
propose to fuse the features extracted frommultiple frames at frame
level. For example, FGFA [59] proposes to warp the features from
adjacent frames and fuse them to the reference frame according to
the optical flow generated by [11]. THP [58] also uses optical flow to
propagate the extracted features from keyframes to non-keyframes.
STSN [1] adopts deformable convolution to align and aggregate
features between frames without using optical flow information.

For the instance-level fusion based methods, they fuse the fea-
tures extracted from object instances for detection. For example,
SELSA [53] introduces a semantics aggregation module to fuse the
features extracted from object instances and produce enhanced fea-
tures for detection. RDN [9] designs relation distillation networks
to measure the relation among object instances and then aggregates
them to augment the features of instances for detection. The work
in [42] modifies the non-local block in [51] to learn the appearance

similarities between the target proposals and the proposals gener-
ated from multiple support frames to enrich the target proposal
features, which boosts its detection performance. Different from
the above-mentioned methods, we propose a dual semantic fusion
network, which fuses features on both frame level and instance
level. By doing this, the features from both levels are fused to gener-
ate enhanced features by utilizing the spatial-temporal information
in videos, leading to a better video object detection performance.

3 METHOD
In this section, we first provide an overview of the proposed DSFNet.
Then, we introduce the proposed dual semantic fusion network,
which generates enhanced features to perform robust video ob-
ject detection. Finally, we analyze the proposed DSFNet from an
information theory viewpoint.

3.1 Overview
The overall video object detection pipeline of the proposed DSFNet
is illustrated in Figure 2. Given a test frame of a video sequence, we
first sample a set of support frames from the video sequence and
extract the frame-level features of these frames by using the back-
bone feature extractor. Then, we apply the proposed frame-level
semantic fusion module on these features to obtain the correspond-
ing enhanced frame-level features. These enhanced features are fed
into the Region Proposal Network (RPN) to generate a set of object
instances. We further enhance the features of these instances by
using the proposed instance-level semantic fusion module. Finally,
we feed the enhanced instance-level features into the detection
head for object classification and bounding box regression.

3.2 Dual Semantic Fusion
Considering that there are usually deteriorated video frames oc-
curring in the task of video object detection, the main challenge of
accurately detecting objects in videos lies in how to leverage the
rich information in videos. In this subsection, we describe the pro-
posed dual semantic fusion network, which consists of a frame-level



MM ’20, October 12–16, 2020, Seattle, WA, USA Lijian Lin, Haosheng Chen, Honglun Zhang, Jun Liang, Yu Li, Ying Shan, and Hanzi Wang

fusion module and an instance-level fusion module. Both fusion
modules can enhance the features extracted from individual frames
by fusing the rich information in videos.

Frame-level Semantic Fusion. Given a test frame in a video
sequence, we first sample n − 1 support frames from the rest of the
video sequence. With the n frames, we extract a series of frame-
level features F = {F1, F2, ..., Fn }, where Fi ∈ F indicates the
frame-level feature extracted from the i-th input frame. Since each
of the frame-level features in F has d channels, we split the frame-
level features in F into n ∗d separated channel-wise features Fc =

{Fc1 , F
c
2 , ..., F

c
n∗d }. During the frame-level semantic fusion, inspired

by the non-local network in [51], we calculate a similarity matrix SF
ofFc to represent the appearance similarities among the features in
Fc . Then, for the i-th feature Fci inFc , we fuse all the features inFc

into Fci based on SF to generate the corresponding i-th enhanced
feature F ei . Here, we denote the generated enhanced features as
Fe = {F e1 , F

e
2 , ..., F

e
n∗d }. Specifically, the i-th enhanced feature

F ei ∈ Fe is calculated by the following equation:

F ei = Fci +
n∗d∑
j=1

SFi, j · θ (F
c
j ), i = 1, 2, 3, ...,n ∗ d (1)

where θ (·) denotes a general transformation function parameterized
by fully connected layers. SFi, j ∈ SF means the appearance similarity
between Fci and Fcj , which is calculated as follows:

SFi, j =
exp(ai, j )∑n∗d

u=1 exp(ai,u )
(2)

where ai, j is the cross product between Fci and Fcj , and it is formu-
lated as follows:

ai, j =< ϕ(Fci ),φ(F
c
j ) > (3)

ϕ(·) and φ(·) are two general transformation functions, which are
similar to θ (·). After the fusion, the information contained in the
i-th feature Fci ∈ Fc is propagated to the other features in Fc . As a
result, each of the enhanced featuresFe can distill rich information
from the frame-level features of the other frames.

Instance-level Semantic Fusion. For the instance-level seman-
tic fusion, the enhanced features Fe generated by the frame-level
semantic fusion module are fed into RPN to generate a set of object
instances with the associated bounding boxesB = {B1,B2, ...,Bm }.
Herem is the number of the generated instances. Each bounding
box in B contains the spatial location and the scale information of
an instance. Then, a RoI layer is applied on the bounding boxes inB
and the enhanced frame-level features in Fe to generate the corre-
sponding RoI featuresQ = {Q1,Q2, ...,Qm } of the instances. After
the instance-level semantic fusion, the final enhanced instance-level
featuresQe = {Qe

1 ,Q
e
2 , ...,Q

e
m } are generated by fusing all the RoI

features in Q, which is written as follows:

Qe
k = Qk +

m∑
l=1

S Ik,l · γ (Ql ),k = 1, 2, 3, ...,m (4)

where γ (·) is a general transformation function and S Ik,l indicates
the instance-level similarity betweenQk andQl .

Since geometric information plays an important role in repre-
senting an object as well as the appearance information, for the
instance-level fusion, we propose to measure the similarities among

the instances not only based on the appearance information con-
tained inQ, but also based on the geometric information contained
in B, which is

S Ik,l =
exp(zk,l + rk,l )∑m

v=1 exp(zk,v + rk,v )
(5)

where zk,l is the appearance similarity betweenQk andQl . rk,l in-
dicates the geometric similarity between the k-th and l-th bounding
boxes Bk and Bl in B. Specifically, zk,l is formulated as:

zk,l =< ξ (Qk ), ζ (Ql ) > (6)

where ξ (·) and ζ (·) are two general transformation functions param-
eterized by fully connected layers. Since different objects may have
similar spatial locations in different frames, the scale information
(i.e., the widthw and the height h) contained in B is more reliable
in measuring the geometric similarity than the spatial information.
Therefore, we propose to measure the geometric similarity rk,l
between Bk and Bl , as follows:

rk,l = ψ (ϱ(loд(
wk
wl

), loд(hk
hl

), loд(|wk
hk

− wl
hl

|))) (7)

ψ (·) indicates a general transformation function, which plays a sim-
ilar role as ξ (·) and ζ (·). ϱ(·) is the embedding function used in [22],
which embeds the primitive low-dimensional geometric similarity
rk,l into a high-dimensional representation for the proposed deep
detection network. By exploiting the geometric information and
the appearance information, our DSFNet can alleviate the informa-
tion distortion problem caused by noise during the fusion process.
Finally, the enhanced features in Qe that correspond to the test
frame are fed to the detection head for the final object detection.

3.3 An Information Theory Viewpoint
As described in the pioneering study [43], the learning process of a
deep neural network based object detector can be mathematically
analyzed from the perspective of information bottleneck (IB) theory
[49], as shown in the state-of-the-art still image object detection
work [52]. Similarly, from the IB perspective, learning a deep video
object detection network can be considered as a Markov process
with a concise Markov chain:

V → F → O (8)

whereV is the input variable (i.e., the input video sequence tensor),
F means the intermediate variable, which is related to the frame-
level features extracted by the backbone network, and O stands
for the output variable, which consists of the final predicted object
labels and locations. Then, the goal of learning the whole detection
network is to minimize the mutual information between the input
video tensor V and the frame-level features F , and to maximize the
mutual information between F and O , which is formulated as:

min
ωb ,ωd

{I (V ; F ) − βI (F ;O)} (9)

where ωb and ωd are the learnable parameters of the backbone and
the detection head, respectively. β is a Lagrange multiplier. I (X ,Y )
is the mutual information between X and Y , which is defined as:

I (X ;Y ) = Ex∼p(x )Ey∼p(y |x ) log
p(y |x)
p(y) (10)
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where x and y are respectively a specific instance in X and the
corresponding instance in Y . p(·) is the prior distribution, and E
refers to the expectation function. In Eq. (9), I (V ; F ) is minimized
to distill the useful information for the video object detection task
from the input variable V , while I (F ;O) is maximized to preserve
more distilled information for the final detection.

According to the data processing inequality concept in infor-
mation theory, there is no post-processing that can increase the
information contained in the input variable V . Specifically, the in-
formation contained in the input variable V can not be increased
through the given Markov chain, which can be formulated as:

I (V ; F ) ⩾ I (V ;O) (11)

The equality of Eq. (11) can be achieved if and only if F and O
contain the same information about V , which is impractical due to
the high compression in Eq. (9). As a consequence, the information
contained in V is gradually decreased during the learning process.

Since most of the state-of-the-art video object detectors and the
proposed DSFNet have two stages (i.e., RPN based object proposal
generation and RCNN based final prediction) between F andO , the
Markov chain in Eq. (8) can be rewritten as:

V → F → P → O (12)

where P represents the instance-level features generated by the RoI
layer. As a result, following the afore-mentioned data processing
inequality rule, we can rewrite Eq. (11) as:

I (V ; F ) ⩾ I (V ; P) ⩾ I (V ;O) (13)

According to the IB principle in Eq. (9), I (F ;O) should be maxi-
mized to preserve more distilled information. Different from still
image object detection, for video object detection, the information
contained in the support frames of a video sequence can boost the
performance of detection on the test frame of the video sequence.
Since the information contained in F is gradually decreased in Eq.
(13), and the final prediction is solely based on the information con-
tained in the test frame, the information contained in the support
frames should be distilled and fused into the enhanced features of
the test frame before and after the RoI layer.

In the proposed DSFNet, the first frame-level fusion is employed
before the RoI layer to distill frame-level information from support
frames. The distilled frame-level information is then fused into the
frame-level features of the test frame. Then, the second fusion is
performed at the instance level after the RoI layer. The instance-
level fusion, which is a high-level semantic fusion, is based on
the object-level similarity. By doing the dual semantic fusion, the
information distilled at both the frame level and the instance level
is fused into the RoI features of the test video frame for the final
object detection. As a result, compared with the current single
fusion based methods, the proposed DSFNet can preserve more
beneficial information contained in F to perform more accurate
video object detection.

4 EXPERIMENTS
In this section, we first introduce the dataset and evaluation pro-
tocols for the video object detection task. Then, we present the
implementation details of the proposed DSFNet. We also carry out
several ablation studies on the ImageNet VID validation set [41]

to verify the effectiveness of the proposed dual semantic fusion
network. Finally, we compare DSFNet with several other state-of-
the-art video object detection methods.

4.1 Dataset and Evaluation Protocols
We conduct the experiments on the ImageNet VID dataset [41],
which is a large scale benchmark for video object detection. The
ImageNet VID dataset contains 4,417 video snippets for training and
validation. There are 3,862 video snippets in the training set. And
the validation set consists of 555 video snippets. The frames in these
snippets are fully annotated over 30 object categories with bound-
ing boxes. Following the widely adopted protocols in video object
detection [1, 9, 24, 53, 54, 59], we evaluate the proposed DSFNet on
the ImageNet VID validation set and use the mAP@IoU=0.5 scores
as the evaluation metric. Moreover, as in [42, 53, 59], all the ob-
jects in the ImageNet VID validation set are categorized into three
groups (i.e., the slow, medium and fast motion groups), according
to their motion speed. We evaluate DSFNet on the objects with
different motion groups for better analysis.

Although there are more than a million frames in the ImageNet
VID training set, some of these frames are redundant. Thus, the
appearance diversity of the objects in the ImageNet VID training set
is limited, whichmakes the training process less effective. Therefore,
as in the previous works [1, 9, 24, 53, 54, 59], we train the proposed
DSFNet on the intersection of the ImageNet VID and DET datasets
[41]. The ImageNet DET dataset is a still image detection dataset.

4.2 Implementation Details
Next, we will discuss the implementation details of the proposed
DSFNet from four aspects, including feature extractor, detection
network, dual semantic fusion, and training/inference details.

Feature Extractor. We use ResNet-101 [21] or ResNeXt-101-
32×4d [55] as our backbone feature extractor. Following the work
in [9, 50, 53, 59], we modify the convolutional stride of the last block
of the last stage (i.e, conv5 for both ResNet-101 and ResNeXt-101)
from 2 to 1. As a result, the total stride of conv5 is changed from 32
to 16, which increases the resolution of the extracted feature maps.
In addition, we set the dilation rate to 2 in those convolutional
layers in conv5, where their kernel size is larger than 1, to retain
the receptive field of the backbone feature extractor.

Detection Network. We adopt Faster R-CNN [40] as our base-
line detection network. RPN is applied to the output of conv4. To
reduce redundancy, a non-maximum suppression (NMS) with a IoU
threshold of 0.7 is adopted and 300 candidate boxes are generated
in each frame during both training and inference phases. A RoI
pooling layer is applied to the output of conv5 with the generated
candidate boxes to extract a series of RoI-pooled features for these
boxes. Then, these RoI-pooled features are fed into the detection
head for object classification and bounding box regression.

Dual Semantic Fusion.We apply the frame-level fusion mod-
ule to the output of conv4 to generate enhanced frame-level features.
These enhanced features are then fed into RPN to get a series of
object instances. For the instance-level fusion module, we insert it
after the RoI pooling layer twice to generate enhanced instance-
level features for final detection.



MM ’20, October 12–16, 2020, Seattle, WA, USA Lijian Lin, Haosheng Chen, Honglun Zhang, Jun Liang, Yu Li, Ying Shan, and Hanzi Wang

5 9 13 17 21 23
79.0
79.5
80.0
80.5
81.0
81.5
82.0
82.5
83.0
83.5
84.0
84.5
85.0

m
AP

(%
)

(a) number of test frames
1 2 4 6 8 10 20

79.0
79.5
80.0
80.5
81.0
81.5
82.0
82.5
83.0
83.5
84.0
84.5
85.0

(b) sampling strides
5 9 13 17 21 23

79.0
79.5
80.0
80.5
81.0
81.5
82.0
82.5
83.0
83.5
84.0
84.5
85.0

(c) number of shuffled test frames

Figure 3: The test performance on the ImageNet validation set obtained by the proposed DSFNet with (a) different numbers of
test frames, (b) different sampling strides, and (c) different numbers of shuffled test frames.

Training and Inference Details. For both training and infer-
ence, the input images are resized to have a shorter side of 600
pixels. During training, the backbone feature extraction network
(i.e., ResNet-101 or ResNeXt-101) is initialized with the weights that
were pre-trained on the ImageNet classification dataset [8]. The
whole network is trained on 8 GPUs using SGD with cross-entropy
loss. The total batch size is 8 with each GPU holding one sample.
During training, a sample contains 3 frames: One is the current
frame for training and the other two are the support frames that
provide temporal information. For the ImageNet VID dataset, the
two support frames are randomly sampled in the current video se-
quence. And for the ImageNet DET dataset, the three frames from
the dataset (i.e., the still image dataset) are identical. We train the
proposed network for a total of 247k iterations. The initial learning
rate is set to 2.5 × 10−4 and it is respectively dropped by a factor of
10 at the 109k and 219k iterations. In addition, we adopt the same
data augmentation strategy as in [53]. During inference, we sample
n frames in a video for the proposed DSFNet. The influence of the
parameter n will be discussed in the next subsection.

4.3 Frame Sampling Strategies
Frame sampling is an essential part of feature enhancement based
video object detection methods. This has been reported by the pre-
vious works (e.g., [53, 59]). Therefore, it is worth investigating the
effectiveness of DSFNet under different frame sampling strategies.

Here, we evaluate the performance of the proposed DSFNet
using a fixed interval sampling strategy with different numbers
of test frames and various sampling strides. Moreover, we also
use a stochastic sampling strategy to evaluate DSFNet. Let n be the
number of the test frames. Then test frames consist of the evaluated
frame and the n − 1 sampled support frames.

Firstly, we evaluate the proposed DSFNet with different numbers
of test frames using a fixed interval sampling strategy. During the
evaluation, the n − 1 adjacent frames are sampled as the support
frameswith a fixed sampling stride of 1. By increasing the number of
the test frames from 5 to 23, the performance of DSFNet is improved
from 79.7% to 81.2% mAP (+1.5%), as shown in Figure 3(a). From the
figure, it is clear that the performance of DSFNet can be improved
with the increasing number of the test frames. However, more test

frames require more computing resources. Therefore, more choices
of the sampling stride should be considered before the value of n
(i.e., the number of test frames) is determined.

Then, we examine the influence of different sampling strides on
the performance of DSFNet. Let s be the sampling stride. The n − 1
support frames are uniformly sampled at every s frames. We fix
the n value to 21 but use various sampling strides on DSFNet. The
experimental results are reported in Figure 3(b). As we can see, the
performance of DSFNet can be improved with the increasing of the
sampling stride. In particular, DSFNet achieves the highest mAP of
83.4% with the largest stride of 20, which is large enough to traverse
most of the test video sequences in the ImageNet VID set. Actually,
the current fixed interval sampling strategy can be considered as a
special case of the stochastic sampling strategy, which randomly
samples the support frames from the whole test video sequence.

Finally, we replace the fixed interval sampling strategy with the
stochastic sampling strategy to further improve the performance
of our DSFNet. The test frames are shuffled at the beginning. After
that, we adjust the number of the shuffled test frames from 5 to 23 to
evaluate the performance of DSFNet. The obtained results are given
in Figure 3(c), from which we can see that by leveraging the rich
context information in the temporal domain, DSFNet achieves the
highest mAP of 84.1% when the number of the shuffled test frames
is set to 21. Moreover, the performance of DSFNet is saturated when
the number of the shuffled test frames is more than 21, as illustrated
in Figure 3(c). Consequently, we choose the stochastic sampling
strategy to sample the test frames and fix the value of n to 21 in
the proposed DSFNet for all the following experiments, which is a
good trade-off between effectiveness and efficiency.

4.4 Ablation Study
We perform several ablation studies on the ImageNet VID validation
set to evaluate the effectiveness of the proposed DSFNet. Table 1
reports the quantitative results obtained by four variants of DSFNet,
which are respectively: (a) the baseline, (b) the baseline with the
proposed frame-level fusion module, (c) the baseline with the pro-
posed instance-level fusion module, and (d) the proposed DSFNet.
All the results in Table 1 are based on the ResNet-101 backbone. In
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(a)
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(b)

Frame-level
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Figure 4: Qualitative results obtained by four variants of our DSFNet. The results include object labels and the corresponding
confidence scores in brackets. The four variants of DSFNet are listed at the left of this figure. The detection results are marked
in different colors according to their predicted labels. Those frameswith false positive results are highlighted by red rectangles.

Table 1: Ablation study on the ImageNet VID validation set.
The results are obtained by four variants ofDSFNet. The best
results are highlighted by bold.

(a) (b) (c) (d)

Variants Baseline
Frame-
Level
Fusion

Instance-
Level
Fusion

DSFNet

mAP (%) 74.7 77.0 83.3 84.1↑9.4
mAP (%) (slow) 83.3 85.7 89.6 90.0↑6.7

mAP (%) (medium) 72.3 74.8 81.4 82.6↑10.3
mAP (%) (fast) 52.3 54.0 66.2 67.0↑14.7

particular, Table 1(a) provides the results obtained by the baseline
detector (i.e., Faster R-CNN).

Frame-level Fusion. From the results in Table 1(b), we can
see that introducing the proposed frame-level fusion module into
the baseline detector leads to +2.3% gain in terms of mAP. This is
because that the proposed frame-level fusion module is capable of
producing enhanced features by fusing the frame-level information.
As a result, the frame-level fusion module can effectively propagate
the beneficial semantic information across frames, by which it
boosts the performance of the baseline detector.

Instance-level Fusion. Table 1(c) shows the results obtained
by applying the proposed instance-level feature fusion module
to the baseline detector. Compared with the baseline detector, a
significant +8.6% gain on mAP is achieved. This performance gain
can be attributed to the improvement of fusing the rich semantic
context information across instances and leveraging the proposed

geometric similarity measure. The rich instance-level information
makes the detector robust against object appearance variations
(such as motion blur, occlusion, and deformation) in videos.

The overall performance of leveraging the above two fusion
modules is presented in Table 1(d). Jointly applying both of the
proposed frame-level and instance-level feature fusion modules to
the baseline detector leads to a considerable gain of +9.4% mAP
on the test dataset. Moreover, as shown in Table 1, DSFNet can
significantly improve the detection performance of the baseline
detector on all the three types of motion groups in [59]. Specifically,
DSFNet achieves +6.7%, +10.3%, and +14.7% mAP gains for the
object detection on the slow, medium, and fast motion groups, re-
spectively. The most significant improvement of +14.7% is achieved
by DSFNet on the fast motion group. This is because that DSFNet
can effectively enhance the deteriorated features of fast moving
objects by fusing the features among frames and instances. Thus,
the enhanced features contain beneficial semantic information from
other high-quality frames and instances, whichmakes DSFNet more
robust in dealing with the fast moving objects. Overall, the results
in Table 1 show the effectiveness of combining both the frame-level
and instance-level fusions in the proposed DSFNet within a unified
framework for detecting objects in videos.

Qualitative Detection Results. Besides the quantitative re-
sults, we also provide some qualitative detection results obtained
by these variants in Figure 4. The video sequence in Figure 4 is very
challenging due to the deteriorated appearance of the cat caused by
serious occlusions and significant pose variations. As shown in Fig-
ure 4(a), the baseline detector tends to classify the detected objects
into incorrect categories. The frame-level fusion module utilizes
the features from more than one frame and achieves much better
results than the baseline detector using the features from a single
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Table 2: Comparison with state-of-the-art competitors on
the ImageNet VID validation set. * indicates the methods
with post-processing steps. The best results are highlighted
by bold.

Methods Backbone mAP (%)
FGFA [59] ResNet-101 76.3
MANet [50] ResNet-101 78.1
THP [58] ResNet-101 78.6
STSN [1] ResNet-101 78.9
LRTR [42] ResNet-101 81.0
RDN [9] ResNet-101 81.8

SELSA [53] ResNet-101 82.7
FGFA* [59] ResNet-101 78.4

ST-Lattice* [6] ResNet-101 79.6
D&T* [14] ResNet-101 79.8
MANet* [50] ResNet-101 80.3
STSN* [1] ResNet-101 80.4
STMN* [54] ResNet-101 80.5
RDN* [9] ResNet-101 83.8

DSFNet (ours) ResNet-101 84.1

RDN [9] ResNeXt-101 83.2
LRTR [42] ResNeXt-101 84.1
SELSA [53] ResNext-101 84.3

FGFA* [59] Inception-ResNet 80.1
D&T* [14] Inception-v4 82.1
RDN* [9] ResNeXt-101 84.7

DSFNet (ours) ResNeXt-101 85.4

frame. However, it fails in some hard cases (see the most left frame
in Figure 4(b)). Meanwhile, the detector with only the proposed
instance-level fusion module can correctly detect those objects
affected by occlusions and pose variations with relatively low confi-
dence scores and less accurate bounding boxes, as shown in Figure
4(c). Finally, by leveraging both the frame-level and instance-level
fusion modules, the proposed DSFNet yields the best performance
among those variants, which shows the effectiveness of DSFNet.

4.5 Comparison with State-of-the-art Methods
We compare the proposed DSFNet with several state-of-the-art
video object detection methods, including MANet [50], FGFA [59],
THP [58], ST-Lattice [6], D&T [14], STSN [1], STMN [54], RDN [9],
SELSA [53], and LRTR [42]. Table 2 summarizes the results obtained
by the proposed DSFNet and the other state-of-the-art methods on
the ImageNet VID validation set. As shown in Table 2, the proposed
DSFNet with ResNet-101 obtains 84.1% mAP, outperforming all the
other competing video object detectors.

Among these detectors, FGFA and THP propose to improve per-
frame features by fusing the features across frames with external
guidance using optical flow information estimated by [11]. Thus,
these two detectors may suffer from the instability of their guid-
ance. In contrast, the proposed DSFNet aims to enhance the features
for video object detection in a unified framework without using
any external guidance, which yields much better performance than

FGFA (+7.8% mAP) and THP (+5.5% mAP). In addition, STSN and
STMN only use the aggregated frame-level features to perform ro-
bust video object detection. Compared with them, DSFNet achieves
better results by fusing the frame-level and instance-level features,
outperforming these two methods by +5.2% and +3.6% mAP, re-
spectively. Meanwhile, SELSA is a newly proposed video object
detection method that utilizes the appearance similarities among
instances to perform instance-level semantic fusion. Compared
with SELSA, DSFNet adopts both appearance similarity and geo-
metric similarity in the instance-level semantic fusion module to
mitigate the information distortion problem. As a result, DSFNet
achieves the highest mAP of 84.1%, which outperforms SELSA by
+1.4% mAP. RDN also aggregates the instance-level features across
frames to generate the enhanced instance-level features for robust
detection, and it achieves a satisfying performance of 81.8% mAP.
Moreover, RDN employs additional post-processing techniques to
boost its performance from 81.8% to 83.8% mAP. Nevertheless, the
performance of RDN is still inferior to that of the proposed DSFNet,
which does not use any post-processing techniques.

Moreover, by changing the backbone feature extractor from
ResNet-101 to a stronger backbone feature extractor ResNeXt-101,
our DSFNet achieves a better performance of 85.4% mAP without
using any post-processing steps. This result still outperforms the
reported results from the current state-of-the-art video object de-
tection methods that use stronger backbone networks, as shown
in Table 2. The +1.3% performance gain on mAP achieved by the
ResNeXt version of DSFNet can be ascribed to the more powerful
features extracted by the stronger backbone network. As a result,
the fused features in the ResNeXt version of DSFNet contain more
beneficial semantic information, which makes it more robust in
handling the aforementioned challenges in video object detection.

5 CONCLUSION
In this paper, we present a novel dual semantic fusion network
(named DSFNet) for video object detection. In DSFNet, both frame-
level and instance-level semantics contained in input videos are
distilled and fused to generate enhanced features for robust video
object detection. Different from the existing one-stage feature en-
hancement methods that perform the feature fusion at either frame
level or instance level with external guidance, DSFNet combines
both frame-level and instance-level feature fusions, which can be
learned in a unified fusion framework without any external guid-
ance. In addition, we also introduce a new geometric similarity
measure to mitigate the information distortion caused by noise
during the fusion process. Extensive experiments on the large scale
ImageNet VID dataset demonstrate the effectiveness and superiority
of the proposed DSFNet. In particular, compared with several other
cutting-edge methods, DSFNet has achieved the best performance
of 84.1% mAP with ResNet-101 and 85.4% mAP with ResNeXt-101
without using any post-processing steps. Moreover, the proposed
two-stage semantic fusion scheme in DSFNet is generic for video
object detection, which can inspire more future works.
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