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ABSTRACT
Video scene detection is the task of dividing videos into tempo-
ral semantic chapters. This is an important preliminary step be-
fore attempting to analyze heterogeneous video content. Recently,
Optimal Sequential Grouping (OSG) was proposed as a powerful
unsupervised solution to solve a formulation of the video scene
detection problem. In this work, we extend the capabilities of OSG
to the learning regime. By giving the capability to both learn from
examples and leverage a robust optimization formulation, we can
boost performance and enhance the versatility of the technology.
We present a comprehensive analysis of incorporating OSG into
deep learning neural networks under various configurations. These
configurations include learning an embedding in a straight-forward
manner, a tailored loss designed to guide the solution of OSG, and
an integrated model where the learning is performed through the
OSG pipeline. With thorough evaluation and analysis, we assess
the benefits and behavior of the various configurations, and show
that our learnable OSG approach exhibits desirable behavior and
enhanced performance compared to the state of the art.
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1 INTRODUCTION
With video content rapidly growing in quantity and availability, it
becomes crucial to develop the relevant technologies to analyze,
classify, and understand the content in videos. However, one of the
biggest issues when dealing with videos is analyzing the tempo-
ral aspect. When dealing with heterogeneous video content, it is
crucial to be able to partition a video into semantic scenes before
performing any sort of algorithmic analysis. Besides contextual
analysis, division to scenes can facilitate automatic construction of
a table of contents, video summarization, chapter skimming, and
more [12, 18, 19, 31].

Video scenes are an ingrained part of the hierarchical structure
of videos. At the finest level of division, a video is composed of a
series of images called frames. A sequence of frames captured from
the same camera at the same time is called a shot. Identifying the
shot transitions is considered somewhat a solved problem due to
the relative uniformity of the frames in a shot [33], and established
methods can be used off-the-shelf with impressive performance
[1, 5]. A group of shots relating a specific event or narrative is called
a scene. A formal definition of a scene is given by [29], as a sequence
of semantically related and temporally adjacent shots depicting a
high-level concept or story. Identifying the transition locations

between scenes is considered a much higher-level problem, and
which is the focus of this work.

Recently, we proposed Optimal Sequential Grouping (OSG) [26]
as an effective deterministic optimization formulation to solve the
video scene detection problem. The approach takes the distance
matrix of the shot representations and calculates the optimal divi-
sion given a cost function on the intra-scene distances [28]. Despite
its generality and strengths, the formulation leaves no room for
learning from examples.

For learning from examples, deep learning has risen in popu-
larity in recent years as a leading technology in many fields, and
doubly so in the field of computer vision [38]. However, it can
be beneficial to combine learning with analytical deterministic al-
gorithms to gain the advantages of both learning from examples
and incorporating designer knowledge and expertise [9, 10, 16, 25].
Merging learning with deterministic formulations can help arrive
at more explainable technologies, ensure validity of performance,
guide parameter learning, and support generalization as opposed
to memorising.

Therefore, in this work, we present an approach to integrate the
OSG formulation into a deep learning setting. Our model retains
the original strengths of attaining an optimal division given the
defined cost function, but additionally has the ability to learn better
representations given annotated scene divisions.

We present a number of possible configurations for integrating
OSG into the learning regime with different levels of integration.
First, we present the use of the triplet loss [30], for a classical learn-
ing approach to train an embedding with valuable properties for
division into scenes. This embodies the most straightforward and
logical approach, but does not incorporate directly the properties
of OSG. Next, we present a tailored loss directly on the distance
matrix values. This loss is aimed to provide the input data in a rep-
resentation which is favorable for the OSG formulation. Finally, we
present an approach where learning is performed through the OSG
pipeline and dynamic programming formulation to allow direct
learning from results.

Figure 1 depicts our OSG model with the possible configurations.
We analyze the performance and results of the different approaches
and configurations. Besides out-performing the state of the art, we
show how the different configurations function and analyze the
behavior, benefits, and advantages.

2 PREVIOUS WORK
In this section we review some of the recent work on video scene de-
tectionwhere the task is focused on creating a complete partitioning
of a motion-picture film using visual features. For a more complete
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Figure 1: Our three configurations of OSG incorporated into a neural network: 1) the triplet loss (in red, OSG-Triplet), or 2)
block-diagonal loss (in blue, OSG-Block), or 3) scene division probability loss (in green, OSG-Prob). The latter includes learning
through the pipeline of the OSG dynamic programming algorithm, and aggregating the probabilities for division at specific
locations. Video frame © Blender Foundation | gooseberry.blender.org.

review including, for example, transcript-based approaches, news
segmentation, and scene retrieval, see [8].

2.1 Video Scene Detection
2.1.1 Unsupervised Approaches. The prior art of video scene detec-
tion consists of mostly unsupervised approaches even in the most
recent works.

A prevalent approach for scene detection is to perform a variety
of clustering techniques [2, 4, 21]. By representing video shots in
some feature space the assumption is that shots from the same scene
will cluster together. The weakness with such an approach is that
the temporal aspect is not an inherent part of the formulation and
is usually either enforced by post-processing or integrated into the
feature space (as weighting, or as an additional dimension) instead
of being an integral aspect of the problem.

Graph approaches [17, 23, 24] denote shots as nodes in a graph
and perform graph analysis algorithms to determine the scene
transitions using the graph cut algorithm. Additionally, [32, 39]
construct Scene Transition Graphs by representing clusters of shots
as nodes and calculating a cumulative confidence for the locations
of scene divisions leveraging the primary set algorithm.

Regarding other advanced methods, [7] perform sequence align-
ment on shots categorized by clustering to identify recurring themes
and production rules. [14] group shots with a bag of visual words
descriptor and perform a sliding window for combining shots or
short scenes together. [13] perform dynamic programming with a
heuristic search scheme of boundaries calculated by linear discrim-
inant analysis over shot similarities.

A specific brand of video scene detection which is of high inter-
est focuses on egocentric videos [11, 20, 22]. Despite the overlap,
the type of challenges and the level of variability in a scene when
captured by an egocentric camera are not comparable to the com-
plexity of a movie scene which demands a higher level of semantic
understanding.

2.1.2 Deep Learning for Video Scene Detection. Regarding methods
for video scene detection which incorporate deep learning, one less

recent but relevant method [3] performs learning a distance mea-
sure using a deep siamese network and applies spectral clustering to
approximate scene boundaries. They learn a joint representation of
visual features and textual features (obtained from video transcrip-
tion) for a similarity metric to represent the video. This method has
the most in common with our approach. The main differences are
that the authors do not incorporate the learning pipeline into the
scene division. The learning is performed to train a distance metric,
but not tailored to the spectral clustering segmentation or learned
backward directly from the segmentation results. Therefore the
learning could be seen as detached from the division stage, similar
to the triplet configuration we present below (see Section 4.1).

In [36], the authors use deep visual, CSIFT, and MFCC audio
features to represent shots. They apply a CNN architecture to each
input modality and train an LSTM model to output whether each
shot is a scene transition or not. This is one of the most advanced ap-
proaches with learning video scene detection in a straight-forward
manner. However, results are comparable to [3] which means there
is most likely room for improvement.

2.2 Optimal Sequential Grouping
In this work, we focus on our recently proposed method for video
scene detection: Optimal Sequential Grouping (OSG).

In [26], we presented OSG as a dynamic programming algorithm
to divide a video by finding the optimal solution to an additive cost
function. The cost function sums the block-diagonal of the distance
matrix which represents the intra-scene distances between shots.
We additionally presented a log-elbow method to estimate the num-
ber of scenes directly from the distance matrix. We extended this
work [27] to utilize multiple modalities in the OSG framework. By
using an intermediate fusion approach, we merged the separate
sequential grouping divisions into a single decision. In [28], we pre-
sented a new normalized cost function with analytically superior
mathematical properties, and used deep features to represent the
videos. Despite the beneficial mathematical properties, we chose
to forgo using the normalized cost function in this work, because
the normalization adds an additional computation complexity to



Figure 2: A depiction of how an ideal distance matrix might
look for a heterogeneous video. In this depiction, higher
values are assigned brighter intensity. A dark block is a se-
quence of shots with low intra-distances which likely indi-
cates a scene.

the dynamic programming solution. We believe that when incorpo-
rating learning into OSG (as we detail in this paper), the resulting
distance values will likely overcome the mathematical bias, making
the choice of cost function less critical.

The technical details of the formulation and solution of OSG are
expanded on in Section 3.

Our contributions are as follows: (1) We are one of the first to
explore deep learning for video scene detection specifically on real-
world motion-picture films (as opposed to egocentric videos, sports,
news, etc.). (2) We present three configurations for combining learn-
ing into the OSG pipeline, with varying degrees of integration and
tailored losses. (3) We evaluate the various approaches and analyze
the advantages of the different techniques.

3 OPTIMAL SEQUENTIAL GROUPING
In this section we detail briefly the formulation and solution of
Optimal Sequential Grouping (OSG). For more in-depth details see
our previous publication [26]. Due to the generality of the approach,
the description refers to a sequence of feature vectors undergoing
partitioning into groups. For the task of video scene detection each
feature vector describes a shot and the groups are the resulting
scenes (see details in Section 5.1).

Intuitively, when representing a video containing scenes as a
distance matrix, we expect to see a block-diagonal structure (see
Figure 2). This structure is formed by the fact that shots belonging
to the same scene will likely have lower distance values than shots
belonging to different scenes. OSG is a dynamic programming
algorithm which finds the block-diagonal with the lowest intra-
scene distances.

We denote a sequence of 𝑁 feature vectors 𝑋𝑁1 = (𝑥1, . . . , 𝑥𝑁 )
where 𝑥𝑖 ∈ R𝑑 , 𝑑 is the feature vector length. A partitioning of the
sequence into 𝐾 ≤ 𝑁 groups is given by 𝑡 = (𝑡1, . . . , 𝑡𝐾 ), where
𝑡𝑖 ∈ N denotes the index of the last feature vector in group 𝑖 . A
distance metricD(𝑥 𝑗1 , 𝑥 𝑗2 ) measures the dissimilarity between two
feature vectors. These distances guide a cost function H(𝑡) ∈ R
which measures the loss of a given division. The goal of OSG is to
find 𝑡∗ = argmin(H) as the optimal division of 𝑋𝑁1 .

The additive cost function for a given division is defined as:

H(𝑡) =
𝐾∑︁
𝑖=1

𝑡𝑖∑︁∑︁
𝑗1, 𝑗2=𝑡𝑖−1+1

D(𝑥 𝑗1 , 𝑥 𝑗2 ), (1)

where the abbreviated notation of the double sum indicates that
𝑗1 and 𝑗2 run from 𝑡𝑖−1 + 1 to 𝑡𝑖 each. This cost function sums all
of the intra-group distances over all of the groups in the division.
Intuitively, this cost function finds a low-valued block diagonal as
illustrated in Figure 2.

To find the optimal division 𝑡∗, we build the following recursive
dynamic programming table:

C(𝑛, 𝑘) = min
𝑖


𝑖∑︁∑︁

𝑗1, 𝑗2=𝑛

D(𝑥 𝑗1 , 𝑥 𝑗2 ) + C(𝑖 + 1, 𝑘 − 1)
 . (2)

Here, C(𝑛, 𝑘) is the optimal cost when dividing 𝑋𝑁𝑛 into 𝑘 groups.
Essentially, we find the best cost for dividing a sub-sequence which
begins at index 𝑛, where 𝑖 is the location of the first point of division
for this sub-sequence. The initialization:

C(𝑛, 1) =
𝑁∑︁∑︁

𝑗1, 𝑗2=𝑛

D(𝑥 𝑗1 , 𝑥 𝑗2 ), (3)

is the cost of a sub-sequence starting at 𝑛 without any divisions.
Building the table with ascending 𝑘 = 2 . . . 𝐾 (rising number of di-
visions) and descending 𝑛 = 𝑁 . . . 1 (increasingly longer sequences)
allows us to utilize the table to aggregate the partial solutions.
Therefore we have that: C(1, 𝐾) = H(𝑡∗), and we can reconstruct
𝑡∗ by storing the indexes of the chosen divisions from (2).

The number of divisions 𝐾 is estimated using the log-elbow
approach [26, 35]. To this end, the singular values of the distance
matrix are computed, and the plot of the log values is analyzed. The
point of plateau (‘elbow’) in the plot was shown to correspond to
the number of blocks with intuition from performing a low-rank
matrix approximation. See Appendix B for details on how the elbow
point is estimated.

When incorporating multiple modalities [27], the distance for
each modality is used to build its own table C𝑥 , C𝑦 , where the
subscript indicates the modality, and 𝑌𝑁1 = (𝑦1, . . . , 𝑦𝑁 ) is an ad-
ditional modality. Instead of choosing the point of division which
yields the lowest cost for a single modality, the modality which has
a more pronounced division point is chosen. We define:

𝐺
𝑛,𝑘
𝑥 (𝑖) =

𝑖∑︁∑︁
𝑗1, 𝑗2=𝑛

D𝑥 (𝑥 𝑗1 , 𝑥 𝑗2 ) + C𝑥 (𝑖 + 1, 𝑘 − 1), (4)

which is the argument of the minimum function in (2). 𝐺𝑛,𝑘𝑥 is
normalized to indicate the relative inclination for division:

𝐺𝑥 (𝑖) =
𝐺𝑥 (𝑖) −mean {𝐺𝑥 }

std {𝐺𝑥 }
, (5)

and the index is chosen as: argmin
𝑖

{
min(𝐺𝑥 (𝑖),𝐺𝑦 (𝑖))

}
(super-

scripts were omitted for the sake of readability).



4 LEARNABLE OSG
Despite the strengths of OSG as an unsupervised optimization
scheme, the main weakness is the dependency on choosing the rep-
resentative features𝑋𝑁1 and distance metricD. Here, deep learning
as a data representation mechanism can be a powerful tool when
joined with OSG. In this section we detail three possible configu-
rations for joining learning with the OSG algorithm. In all of the
sections below, we take the shot representations 𝑋𝑁1 and feed them
through a series of fully connected layers to learn a new represen-
tation 𝑋𝑁1 (in the notations below, we omit the tilde for simplicity).
These parameters are what the network learns to better perform
OSG.

4.1 Cluster Embedding (OSG-Triplet)
The most direct way to apply learning to the OSG problem would
be with learning an embedding. Specifically, the triplet loss [30]
learns a feature space embedding where samples from the same
class are close in the feature space while samples from different
classes are further apart. This is useful for a range of tasks, but for
scene division this is doubly intuitive because the triplet loss causes
samples (shots, in this case) to cluster together (see Appendix A).

These clusters will likely make scene detection a much simpler
task, because often the task is approached as a variant of a shot
clustering problem. In an embedding where shots are clustered into
scenes, we can assume that the distance matrix will possess bene-
ficial properties for OSG. Likely, the intra-scene distances will be
reduced compared to the inter-scene distances causing the dynamic
programming algorithm to arrive at the correct divisions.

Given a label 𝐿(𝑥𝑖 ) ∈ [1, 𝐾] indicating the number of the scene
that feature vector 𝑥𝑖 belongs to, the neural network parameters
are learned by minimizing the triplet loss:∑︁

min(D(𝑥𝑖 , 𝑥𝑝𝑖 ) − D(𝑥𝑖 , 𝑥𝑛𝑖 ) + 𝛼, 0). (6)

For anchor samples 𝑥𝑖 , a positive and negative pair are chosen,
where 𝐿(𝑥𝑖 ) = 𝐿(𝑥𝑝𝑖 ) and 𝐿(𝑥𝑖 ) ≠ 𝐿(𝑥

𝑛
𝑖
), and 𝛼 is a margin param-

eter. The samples are chosen using the semi-hard approach, where
the triplets that satisfy the condition D(𝑥𝑖 , 𝑥𝑝𝑖 ) < D(𝑥𝑖 , 𝑥𝑛𝑖 ) <

D(𝑥𝑖 , 𝑥𝑝𝑖 ) + 𝛼 are chosen.
As stated above, this approach is intuitive and likely to aid OSG

in division. In the next configurations we show how we go further
to tailor the learning specifically for the OSG formulation.

4.2 Block-Diagonal Loss (OSG-Block)
In Section 3, we described the intuition behind OSG as identifying
the block-diagonal structure in the distance matrix. In this configu-
ration, we apply a loss designated to strengthen that block-diagonal
structure.

If we present the distance values in a matrix 𝐷 , where the 𝑖-th
row and 𝑗-th column is 𝐷𝑖, 𝑗 = D(𝑥𝑖 , 𝑥 𝑗 ), then we can define an
‘optimal’ 𝐷∗ as:

𝐷∗
𝑖, 𝑗 =

{
0 𝐿(𝑥𝑖 ) = 𝐿(𝑥 𝑗 )
1 else . (7)

Here, 0 is the minimal distance and is allocated for features from
the same scene, and 1 is the maximal distance for features from
different scenes (see Figure 3).

Figure 3: 𝐷∗. For OSG-Block the entire matrix is used, while
for OSG-Block-Adjacent only the gray (dark and light) por-
tions are considered.

OSG does not need an optimal 𝐷 matrix to perform well. The
relative divisions are compared to each other so the correct solution
only needs to have a slightly lower cost than any other solution.
However, driving 𝐷 toward 𝐷∗ will likely help OSG find the the
correct division. Therefore, the loss we use is the Frobenius norm
of the subtraction:

𝐷 − 𝐷∗



𝐹
=

√︄∑︁
𝑖

∑︁
𝑗

���𝐷𝑖, 𝑗 − 𝐷∗
𝑖, 𝑗

���2 . (8)

A slight variant of this loss is to not consider the inter-scene
distances between scenes which are not adjacent to each other
(OSG-Block-Adjacent). The rational is that some scenes throughout
a video might be quite similar to each other, but their temporal dis-
tance or an intervening scenewill indicate their distinction. The cost
function in OSG accumulates the inner values of the block-diagonal,
while the far off-diagonal values do not impact the decision as long
as the values in between are high enough.

In this case, the loss receives only a portion of the values. Specif-
ically, in (8), we only consider values of 𝑗 that satisfy the constraint:
𝐿(𝑥𝑖 ) − 1 ≤ 𝐿(𝑥 𝑗 ) ≤ 𝐿(𝑥𝑖 ) + 1. I.e., only the intra-scene distances
and distances between feature vectors belonging to neighboring
scenes are considered (see Figure 3).

4.3 Scene Division Probabilities (OSG-Prob)
In this configuration, the learning process is performed through
the OSG pipeline. The OSG formulation is altered slightly to allow
division probabilities to be calculated, and this is contrasted to
the ground truth divisions. The model then learns to raise the
probability for division at the correct location.

In (2), the𝐶 table is used to calculate optimal locations of division.
As in (4), we retain the relative inclinations for division. Instead
of (5), we output a probability vector with the established softmin
operator and aggregate the values in a larger table:

C(𝑛, 𝑘, 𝑖) = exp(−𝐺𝑛,𝑘 (𝑖))∑
𝑗 exp(−𝐺𝑛,𝑘 ( 𝑗))

. (9)

The values in this table retain the probability to divide the video at
point 𝑖 when dividing 𝑋𝑁𝑛 into 𝑘 scenes. We average these proba-
bilities in the 𝐶 table over 𝑛 and 𝑘 and arrive at a vector of ‘scores’



for division at each location in the video:

𝑇 (𝑖) = 1
𝑁 · 𝐾

∑︁
𝑛

∑︁
𝑘

C(𝑛, 𝑘, 𝑖). (10)

Given the probabilistic nature of the values, we opt to use the
cross-entropy loss on the probabilities at the indexes where a divi-
sion is annotated:

−
∑︁
𝑖∈𝑡𝐺𝑇

log(𝑇 (𝑖)) . (11)

Where 𝑡𝐺𝑇 = {𝑖 |𝐿(𝑥𝑖+1) > 𝐿(𝑥𝑖 )} is the ground truth division.
We note that there is no inherent problem with evaluating 𝑇

only on the ground truth division indexes. The network cannot
learn a trivial 𝑇 ≡ 1, as high values in the 𝐶 table imply directly
that other locations have lower values due to the softmin operation.
For a location to arrive at a high average probability, it means there
must be a comprehensive indication for a division at that index,
and this is what the configuration attempts to create by learning.

5 EVALUATION AND ANALYSIS
In this section we evaluate and analyze the performance of the
proposed configurations.

5.1 Technical Details
We use a pre-trained Inception-v3 architecture [34] as a 2048-
dimension visual backbone feature extractor from images, and we
use a pre-trained VGGish network [15] to encode the audio seg-
ments into 128-dimension vectors. In our experiments, we used four
fully connected (FC) layers, (3000, 3000, 1000, 100) for visual and
(200, 200, 100, 20) for audio. Batch normalization was applied on all
layers, and ReLU activations were applied on all layers excluding
output. The ADAM optimization algorithm was used to train the
network with a learning rate of 5 · 10−3. A stopping criteria to
avoid overfitting was used, and aborted the learning process when
the training loss decreased to 25% of its initial value. The cosine
distance normalized between 0 and 1 was used as D, the margin 𝛼
was chosen as 0.5, and the log-elbow approach was used to estimate
the number of scenes 𝐾 .

Regarding runtime constraints, complexity of the OSG stage
is unchanged compared to the original publication [26]. The em-
bedding network is relatively light-weight and the addition to the
forward pass compared to the backbone is negligible. Training took
roughly 24 hours on a single GPU.

For video scene detection we used the OVSD dataset [27]. The
dataset contains 21 full-length motion-picture films from a variety
of genres with ground truth scene labeling (see Appendix C for
dataset details). For each video, we perform shot boundary detec-
tion [5] and extract a center image for the visual representation
fed into the Inception network. Audio for each 0.96 seconds was
encoded using the VGGish network and average pooling was ap-
plied to encode each shot with its relevant audio representation.
These features were used to provide a fair comparison to [28]. Bet-
ter performance can likely be attained by incorporating advanced
representations such as an I3D network [6].

In order to compare results on the entire OVSD dataset, we aimed
to show ‘test’ performance on all of the videos. To accomplish this,
we incorporated a 5-fold testing approach, where the videos were

split into five groups of roughly equal size with regard to number of
shots, i.e., some groups consisted of fewer but longer videos while
others consisted of more videos, each with less shots (see Table 2 in
the video name subscripts for the division to groups). Five separate
models were each trained on four-fifths of the data, leaving out one
group for testing. At test time, the five models were applied each
to its test group, and scores were averaged over all of the videos.

5.2 Configuration Analysis
In this section, we analyze the behavior of the various configura-
tions.

In Table 1, we present various stages of 𝐷 from visual features of
the video Meridian from OVSD with the accompanied ground truth
𝐷∗. This video contains the smallest amount of shots, and offers
the ability to visually and qualitatively inspect the structure of the
matrix 𝐷 and behavior of the configurations. ‘Orig’ displays the
distance metric applied directly to the backbone features. Since the
features were chosen to provide a fair comparison, this is exactly
the matrix that the method in [28] applies OSG on. ‘Epoch 0’ is
the matrix from the features after applying an untrained embed-
ding network and incurring a level of noise. On the right are the
matrix after 20 epochs under the different configurations, with the
gradients below each matrix.

OSG-Triplet and OSG-Block both explicitly strive to minimize
the distances between shots from the same scene and raise the
distances between shots belonging to different scenes. The main
difference between these approaches is strengthening the block-
diagonal structure to better help OSG performance.While the triplet
loss focuses on distinct samples, the block-diagonal loss concen-
trates on the complete structure and raises the values outside of
the block-diagonal.

It is interesting to note the balance between how the configura-
tions emphasize small versus large scenes. OSG-Triplet based off
of distinct samples manages to emphasize the small scenes and
has difficulty with long scenes. OSG-Block-Adjacent compared to
OSG-Block dismisses the far off-diagonal blocks, focuses on the ar-
eas which are more important (the areas between adjacent scenes),
and manages to accentuate both large and small scenes. OSG-Prob
seems to converge more slowly but consistently over the scenes.

One interesting aspect to explore is how the losses affect the gra-
dients of the distance matrix. In Table 1 (right, bottom), we see the
map of the gradient values for the various configurations. As can
be expected, OSG-Triplet is dependant on individual values of dis-
tance, OSG-Block puts emphasis on the entire block-diagonal, and
OSG-Block-Adjacent on the relevant section of the block-diagonal
as defined by the ground truth, while OSG-Prob has a much more
‘local’ impact focused around the points of division. For OSG-Prob,
this is a direct outcome of the formulation which emphasizes the
value of the average probability on the scene division.

OVSD [27], is one of the only freely-available video scene de-
tection datasets. Despite the substantial length and variety, the
amount of data is still very limited especially when considering
other deep learning tasks. The reason the network is able to learn
at all, we assume, is because the configurations we chose do not
treat a complete video as a sample, but rather a shot as a sample.
With each scene acting as a label instead of the entire division being



Table 1: An example 𝐷 from OVSD. On the left: Ground Truth (𝐷∗), Orig (without an applied embedding), Epoch 0 (embedding
before learning). On the right, trained examples after 20 epochs for: OSG-Triplet, OSG-Block, OSG-Block-Adjacent, and OSG-
Prob, with corresponding gradients (bottom row)

Ground
Truth

Orig Epoch 0

OSG-Block-
OSG-Triplet OSG-Block Adjacent OSG-Prob

Grad Grad Grad Grad

considered a label, the models manage to generalize the important
elements which represent shots belonging to the same scene.

Regarding the behavior of𝑇 , in Figure 4 we show the progression
of the values of𝑇 (𝑖) over a number of iterations. We can see that as
the iterations progress, 𝑇 raises the probability at the ground truth
points of division. The probability is lowered for locations with no
true division even though this is not specifically enforced by the
loss but rather an outcome of the construction of 𝑇 (see Section
4.3). Additionally we see that the model has difficulty on the last
small scenes which are more difficult to enforce.

5.3 Baselines
As explained in Section 1, the motivation to integrate learning into
the OSG pipeline is to leverage the strengths of the deterministic
formulations together with the ability to learn from examples. To
emphasise this point, besides comparing to state-of-the-art methods,
we implement two ‘pure’ deep learning baselines.

The first is a sliding window approach. Using a window of𝑊
consecutive feature vectors (representing shots), the network is
trained to identify when the scene transition is precisely in the
middle of the window. This is a naive but straightforward way to
apply learning to the problem but without leveraging a formula-
tion such as OSG. To represent a fair comparison, we used all the
same parameters as the embedding network detailed above.𝑊 = 4
embedded feature vectors were concatenated and a final FC layer
to size 1 was added followed by a sigmoid output (additional values
of𝑊 were tested resulting in comparable or worse performance).

The second baseline we used is a Long Short-Term Memory
(LSTM) recurrent neural network architecture. The LSTM is a classic
choice for modeling sequence-to-sequence problems, and presents
a more advanced baseline for comparison. A bi-directional LSTM
component was used with a hidden state of length 1000, followed
by two FC layers sized 100 and 1, the former with a ReLU activation
and the latter with a sigmoid output. The network processes the
sequence of feature vectors and for each time step outputs the
probability for the current feature representing the end of a scene.

Both baselines were trained using the same methodology as
our configurations. As an unfair advantage, sigmoid threshold was
chosen as the value which maximized test performance. Table 2
under the ‘Supervised’ column shows the sliding window (SW) and
LSTM results.

5.4 Scene Detection Evaluation
We measure the performance of our OSG configurations on the
OVSD dataset [27]. For a metric, we use the widely accepted Cover-
age𝐶 and Overflow𝑂 [37], with a single value 𝐹 -score for assessing
the quality of division as the harmonic mean between 𝐶 and 1 −𝑂 .

Figure 5 on the left presents the average 𝐹 -score for the various
configurations on the tested videos. We present the performance
when using the visual or audio features separately, and when per-
forming OSG with the multimodal fusion approach (see Section 3).
The results show superior performance for OSG-Prob, and specif-
ically the multimodal fusion approach, which is more preferable
than using a single modality for most of the configurations.

As an analysis of the behavior of each modality, we divided the
performance of OSG-Prob per genre of OVSD (Figure 5 on the
right). It can be noted that for documentaries where it is charac-
teristic for the visuals to change often, but for speakers to stay
constant within a scene, the audio modality played a vital role in
division. On the other hand, for comedy, crime, and animation,
the visual aspect played a slightly more important role. In drama,
both modalities contributed greatly, which coincides with the fact
that often the changing visuals are accompanied with matching
auditory ambiance in this genre.

Table 2 presents the 𝐹 -scores over all of the videos in the OVSD
dataset with our OSG configurations leveraging multimodal fu-
sion of visual and audio features. As a comparison, we show the
‘Prior Art’ column which are two state-of-the-art unsupervised
methods [2, 32]. The ‘OSG Prior Art’ column [26–28], are the prior
art on OSG. Specifically, as stated above in Section 5.1, our back-
bone features are the same as [28]. Therefore, this can be seen as
directly comparable to the case when no learning is performed.



Figure 4: Progression of 𝑇 as a function of 𝑖 (shot number) over a number of iterations. Graphs go from translucent blue to
opaque red as iterations progress (best viewed in color). Vertical black lines indicate ground truth divisions.

Figure 5: Modality analysis. Average 𝐹 -score when using visual, audio, or a multimodal fusion. Performance per configuration
(left), and performance of OSG-Prob consolidated per genre (right).

Additionally, the ‘Supervised’ column presents the results of our
implemented baselines as detailed in Section 5.3. These represent
applying learning to the problem without leveraging a strong de-
terministic formulation such as OSG.

It is interesting to note the substantial increase in performance
of the configurations compared to the prior art on OSG. But even
more so, when comparing to the performance of the supervised
baselines, we can clearly see the benefit of leveraging both learning
and OSG. Despite OSG-Prob attaining the best results, it is not
directly our intention to promote it as the only viable option. Indeed,
with closely comparable results, we felt that it would be beneficial
for the advancement of future work to present multiple options,
as opposed to promoting a single architecture. When extending
or applying our work to future problems, it can be beneficial to
choose the relevant configuration for the problem while being able
to understand the behavior and trade-offs.

Figure 6 shows results on part of a video from the OVSD dataset
(additional results in Appendix G). In general, we can see divisions
which result in reasonable and often precise scene divisions. Using
these divisions for applying video understanding and classification
technologies will undoubtedly be superior over applying them on
the entire video or on naive uniform divisions.

6 CONCLUSION
In this work, we have presented a novel approach for incorporat-
ing learning into OSG for the task of video scene detection. We
presented a number of different configurations, evaluated their
performance, and analyzed their behavior and various advantages.

Overall, our goal was to explore the possibility of integrating learn-
ing into the powerful formulation of OSG, so as to merge learning
models with this effective analytic algorithm. We demonstrated this
ability with varying amounts of model complexity and dependence
on the OSG pipeline. Beyond creating a more precise and robust
video scene detection technology, we believe this approach can en-
able constructing a model with designated performance on specific
content or genres. Additionally, this model could be integrated into
other video models or leveraged for additional video understanding
tasks. We hope this work encourages continued research in the
field of temporal video analysis.
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A TRIPLET LOSS FOR VIDEO SCENE
DETECTION

As mentioned in the paper, the triplet loss [30] learns a feature
space embedding where samples from the same class are close in
the feature space while samples from different classes are further
apart. This is useful for a range of tasks, but for scene division this
is doubly intuitive because the triplet loss causes samples (shots, in
this case) to cluster together. In Figure 7 is a reduced 2-dimensional
representation of shot feature vectors (using TSNE) from the video
Meridian from the OVSD dataset. This video contains the smallest
amount of shots, and offers the ability to visually and qualitatively
inspect the distribution of the shot representations.

Despite the success of separating the shot representations into
clusters, we can see that classic clustering algorithms might have
trouble dividing correctly. Specifically we are referring to the single-
shot scenes surrounding the large light blue square scene. In this
instance, the OSG algorithm will likely be beneficial given the order
and locations of the scenes, and the ability to make a decision based
on the temporal order of the shots.
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Figure 8: A depiction of the estimation of the log-elbow
plateau point in the log graph of the singular values of the
distance matrix.

B ESTIMATING THE NUMBER OF SCENES 𝐾
The number of divisions 𝐾 is estimated using the log-elbow ap-
proach [26, 35]. To this end, the singular values of the distance
matrix are computed, and the plot of the log values is analyzed. The
point of plateau (‘elbow’) in the plot was shown to correspond to
the number of blocks with intuition from performing a low-rank
matrix approximation. The mathematical intuition is that given a
distance matrix with a block-diagonal structure, we can see the
rows of the matrix which belong to a specific block as being roughly
linearly dependant. If the matrix were ideal (zeros on the block diag-
onal and ones outside), the rank of the matrix would be exactly the
number of blocks in the block diagonal. Given a real noisy matrix,
we expect the noise to act as the high frequency and low energy
additions to the underlying inherent structure of the matrix. By
identifying the plateau point of the singular values we can estimate
the rank of the fundamental structure of the matrix.

Practically, this plateau point is located with an elbow estimation,
as the point farthest from the diagonal running over the graph.
Formally, if 𝑠 is the log singular values of length 𝑁 and we consider
the index of each value as the first dimension, then the vector
𝐼𝑖 = [𝑖, 𝑠𝑖 ]𝑇 represents the values of the graph. The diagonal would
be: 𝐻 = [𝑁 − 1, 𝑠𝑁 − 𝑠1]𝑇 , with 𝐻̂ = 𝐻/∥𝐻 ∥ the unit vector in the
same direction, and using the euclidean distance to each point and
projecting the vector 𝐼 , we can identify the index of the plateau
point:

log-elbow = argmax
𝑖

{
∥𝐼𝑖 − (𝐼𝑇𝑖 𝐻̂ )𝐻̂ ∥

}
. (12)

See Figure 8 for an illustration.

C OVSD DATASET
For video scene detection we used the OVSD dataset [27]. OVSD,
is one of the only freely-available video scene detection datasets
allowing both academic and industrial research use (creative com-
mons licenses). To the extent of our knowledge, this dataset is the
only video scene detection dataset that has entire movies and is
freely available with only minimal legal restrictions.

The dataset contains 21 full-length motion-picture films from a
variety of genres with ground truth scene labeling. Table 3 presents

the details of the OVSD dataset. ‘Short Name’ is the name presented
in the results table in the paper to conserve space, and ‘# shots’ is
the number of shots as estimated using a shot boundary detection
method [5]. Some videos are defined by a number of genres (as
is acceptable with films). For the analysis per genre in the paper,
the first genre was used to aggregate results, where Meridian was
added to Crime (being the genre closest to Mystery).

D EVALUATION METRIC
We measure the performance of our OSG configurations on the
OVSD dataset. For a metric, we use the widely accepted Coverage
𝐶 and Overflow 𝑂 [37], with a single value 𝐹 -score for assessing
the quality of division as the harmonic mean between 𝐶 and 1 −𝑂 .

Formally, as in [4], we denote 𝑠1, 𝑠2, . . . , 𝑠𝑚 as the series of de-
tected scenes, and 𝑠1, 𝑠2, . . . , ˜𝑠𝑛 as the series of ground truth scenes,
where each element 𝑠 is a set of shots. The coverage 𝐶𝑡 of ground
truth scene 𝑠𝑡 is computed as:

𝐶𝑡 =
max𝑖=1,...,𝑚 #(𝑠𝑖 ∩ 𝑠𝑡 )

#𝑠𝑡
, (13)

where #(𝑠) is the number of shots in scene 𝑠 . Essentially, this is the
relative amount of the ground truth scene that was allocated to a
single scene in the proposed division. The overflow 𝑂𝑡 for ground
truth scene 𝑠𝑡 is computed as:

𝑂𝑡 =

∑𝑚
𝑖=1 [#(𝑠𝑖 \ 𝑠𝑡 ) · min(1, #(𝑠𝑖 ∩ 𝑠𝑡 ))]

#(𝑠𝑡−1) + #(𝑠𝑡+1)
. (14)

Essentially, min(1, #(𝑠𝑖 ∩ 𝑠𝑡 )) is a binary indicator whether scene
𝑠𝑖 shares at least one shot with 𝑠𝑡 , and #(𝑠𝑖 \ 𝑠𝑡 ) are the shots of
these scenes which are not part of 𝑠𝑡 . Therefore this measures how
much the overlapping proposed scenes extend beyond the ground
truth scene normalized by the number of shots in the neighboring
scenes.

These measures for each ground truth scene are aggregated into
video-wide metrics as the weighted average:

𝐶 =
∑𝑛
𝑡=1𝐶𝑡 ·

#(𝑠𝑡 )∑
𝑖 #(𝑠𝑖 ) , 𝑂 =

∑𝑛
𝑡=1𝑂𝑡 ·

#(𝑠𝑡 )∑
𝑖 #(𝑠𝑖 ) . (15)

Finally, as a single score for the quality of the scene detection, we
compute the harmonic mean:

𝐹 = 2 · 𝐶 · (1 −𝑂)
𝐶 + (1 −𝑂) . (16)

E ADDITIONAL 𝐷 EXAMPLES
In Table 4 we present various stages of 𝐷 from visual features of
the video La Chute D‘une Plume from OVSD with the accompanied
ground truth 𝐷∗, and in Table 5 the same for the video Big Buck
Bunny. In Tables 6 and 7 we show how the𝐷 matrices and gradients
evolve over a number of epochs for the videos La Chute D‘une
Plume and Big Buck Bunny respectively.

In general our observations are that OSG-Triplet manages to
emphasize the small scenes better than large scenes, while OSG-
Block is the reverse. OSG-Block-Adjacent gives a good trade-off of
emphasizing the immediate off-diagonal, but results in some low
distances in the far off-diagonal. In practice, these shouldn’t affect
the OSG algorithm if the intervening distances are large enough.
OSG-Prob converges more slowly, learns from the boundary edges,
and gives a good trade-off as well.



Regarding this last point, part of our motivation for OSG-Prob
is to have a configuration which is specifically reliant on division
locations as opposed to the block-diagonal. Such a structure would
allow OSG to be integrated into a larger learning pipeline. For
example, there are other temporal analysis tasks where division
is only a part of the process. In the weakly-supervised regime
there might not be ground truth divisions with which to perform
OSG-Triplet or OSG-Block. OSG-Prob on the other hand, could be
configured to perform backpropagation on a loss which reflects
on the locations of division, and is inferred back to the distance
values. In this respect, our continued research involves having this
component as a plug-and-play module for other tasks which can
act as temporal region proposal networks (see Figure 9).

F ADDITIONAL 𝑇 EXAMPLES
In Figure 10 and 11 we show the progression of the values of 𝑇 (𝑖)
over a number of iterations for videos La Chute D‘une Plume and
Big Buck Bunny respectively. We can see that as the iterations
progress, 𝑇 raises the probability at the ground truth points of divi-
sion. The probability is lowered for locations with no true division
even though this is not specifically enforced by the loss but rather
an outcome of the construction of 𝑇 .

Specifically we note that in these instances the small beginning
scenes proved difficult for the network to emphasize 𝑇 on. We
speculate that this is due to the formulation, where smaller values
of 𝑛 inspect longer and longer sequences (see the formulation in
the paper). Possible future work could be to formulate an additional
mirrored OSG which inspects the 𝐷 matrix backwards.

G ADDITIONAL VISUAL RESULTS
Figures 12, 13, and 14, show results on sections of videos from the
OVSD dataset. In general, we can see divisions which result in
reasonable and often precise scene divisions. Using these divisions
for applying video understanding and classification technologies
will undoubtedly be superior over applying them on the entire
video or on naive uniform divisions. Specifically, Figure 14 is a
single scene from the video Tears of Steel which includes intricate
character and setting changes. This portrays the complexity of
the task and the challenges that the method needs to overcome.
Despite the fact that all of the proposed scene divisions in this case
are technically false, we note that they present a plausible division
to story-units, and can be useful for a variety of downstream tasks.



Figure 9: OSG-Prob as a plug-and-play temporal region proposal network.

Figure 10: Progression of𝑇 as a function of 𝑖 (shot number) over a number of iterations for video LaChuteD‘une Plume. Graphs
go from translucent blue to opaque red as iterations progress (best viewed in color). Vertical black lines indicate ground truth
divisions.

Figure 11: Progression of 𝑇 as a function of 𝑖 (shot number) over a number of iterations for video Big Buck Bunny. Graphs go
from translucent blue to opaque red as iterations progress (best viewed in color). Vertical black lines indicate ground truth
divisions.



Table 3: OVSD dataset details

Video Short Duration # #
Name Name (minutes) Scenes Shots Genre

1000 Days 1000 43 23 404 Drama
Big Buck Bunny BBB 8 13 129 Animation

Boy Who Never Slept BWNS 69 23 336 Comedy, Romance
CH7 CH7 86 45 1293 Crime

Cosmos Laundromat CL 10 6 94 Animation
Elephants Dream ED 9 8 128 Animation

Fires Beneath Water FBW 76 63 411 Documentary
Honey Honey 86 21 326 Drama

Jathia’s Wager JW 21 16 177 Drama, Sci-Fi
La Chute D’une Plume LCDP 10 11 88 Animation

Lord Meia LM 37 28 333 Crime, Comedy
Meridian Meridian 12 10 64 Mystery, Sci-Fi
Oceania Oceania 54 32 253 Drama, Mystery
Pentagon Pentagon 50 32 305 Comedy, Drama
Route 66 Route 66 103 56 1357 Documentary

Seven Dead Men SDM 57 35 167 Crime
Sintel Sintel 12 7 198 Animation

Sita Sings the Blues SStB 81 53 1384 Animation, Comedy
Star Wreck SW 103 56 1439 Comedy, Sci-Fi
Tears of Steal ToS 10 6 136 Drama, Sci-Fi
Valkaama Valkaama 93 49 714 Drama

Table 4: An example 𝐷 from the video La Chute D‘une Plume from OVSD. On the left: Ground Truth (𝐷∗), Orig (without an
applied embedding), Epoch 0 (embedding before learning). On the right, trained examples after 20 epochs for: OSG-Triplet,
OSG-Block, OSG-Block-Adjacent, and OSG-Prob, with corresponding gradients (bottom row)

Ground
Truth

Orig Epoch 0

OSG-Block-
OSG-Triplet OSG-Block Adjacent OSG-Prob

Grad Grad Grad Grad



Table 5: An example 𝐷 from the video Big Buck Bunny from OVSD. On the left: Ground Truth (𝐷∗), Orig (without an applied
embedding), Epoch 0 (embedding before learning). On the right, trained examples after 20 epochs for: OSG-Triplet, OSG-Block,
OSG-Block-Adjacent, and OSG-Prob, with corresponding gradients (bottom row)

Ground
Truth

Orig Epoch 0

OSG-Block-
OSG-Triplet OSG-Block Adjacent OSG-Prob

Grad Grad Grad Grad

Figure 12: Qualitative results of configurations on shots 68 through 128 of the video 1000Days from theOVSDdataset. Points of
divisionmarked by A. OSG-Triplet (red) B. OSG-Block (blue) B‘. OSG-Block-Adjacent (blue) C. OSG-Prob (green) and D. Ground
truth (black).



Table 6: 𝐷 and gradients from the video La Chute D‘une Plume from OVSD evolving over a number of Epochs
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Table 7: 𝐷 and gradients from the video Big Buck Bunny from OVSD evolving over a number of Epochs
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OSG-Block-
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OSG-Prob

Gradients
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Figure 13: Qualitative results of configurations on a section of the video Meridian from the OVSD dataset. Points of division
marked by A. OSG-Triplet (red) B. OSG-Block (blue) B‘. OSG-Block-Adjacent (blue) C. OSG-Prob (green) and D. Ground truth
(black).

Figure 14: Qualitative results of configurations on a section of the video Tears of Steel from theOVSDdataset. Points of division
marked by A. OSG-Triplet (red) B. OSG-Block (blue) B‘. OSG-Block-Adjacent (blue) C. OSG-Prob (green). The shots are part of
a single complex ground truth scene.
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