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Music-to-visual Style Transfer

Figure 1: Let music change the visual style of an image. For example, a spectrogram of Claude Debussy’s music Sarabande in
Pour le piano, L. 95 (1901) transfers Alfred Jacob Miller’s painting The Lake Her Lone Bosom Expands to the Sky (1850) into an
Impressionism-like color scheme through a neural network linking the semantic space shared by music and image.

ABSTRACT

Music-to-visual style transfer is a challenging yet important cross-
modal learning problem in the practice of creativity. Its major dif-
ference from the traditional image style transfer problem is that the
style information is provided by music rather than images. Assum-
ing that musical features can be properly mapped to visual contents
through semantic links between the two domains, we solve the
music-to-visual style transfer problem in two steps: music visual-
ization and style transfer. The music visualization network utilizes
an encoder-generator architecture with a conditional generative
adversarial network to generate image-based music representations
from music data. This network is integrated with an image style
transfer method to accomplish the style transfer process. Experi-
ments are conducted on WikiArt-IMSLP, a newly compiled dataset
including Western music recordings and paintings listed by decades.
By utilizing such a label to learn the semantic connection between
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paintings and music, we demonstrate that the proposed framework
can generate diverse image style representations from a music piece,
and these representations can unveil certain art forms of the same
era. Subjective testing results also emphasize the role of the era label
in improving the perceptual quality on the compatibility between
music and visual content.
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1 INTRODUCTION

Since Gatys et al. proposed the neural algorithm for image style
transfer [11], deep learning-based style transfer has been exten-
sively studied. Various types of neural network models now can
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modify the texture of an image [13, 19, 30], the genre or instrument
of a music piece [20, 21], and the sentiment of texts [29], with all
their content information being preserved. Despite its success, one
notable issue in these style transfer methods is that almost all of
them operate merely within one single data modality, e.g., from
one image to another image, or from one music piece to another.
Such a situation is far from the cases that human beings design,
create, and interpret an artwork, where good ideas and inspirations
usually stem from the interplay among the materials from different
data modalities. It is quite natural for human artists to break the
restriction of data modality, by projecting their imagination of a
music piece into their paintings, or by altering a paragraph of texts
in a novel into a scene in a movie. In such processes, one would
consider a generation problem mapping from one data modality
to another via a latent space, and this latent space properly en-
codes the styles shared by both sides. This problem is referred to
as cross-modal style transfer in this paper.

Previous investigation of cross-modal learning has been mostly
focused on content generation rather than style transfer. Most of
these studies leverage the techniques of deep transfer learning for
various tasks, such as generating images from sound or sounds
from images [33, 36, 37]. In comparison to cross-modal content
generation, endeavors to cross-modal style transfer are still rarely
investigated. However, cross-modal style transfer is often a critical
part in the practice of creativity. For example, in design products
of virtual reality, animation, and interactive arts, to synergize the
styles of visual and music contents is a complicated job, and an
automatic process could greatly reduce the efforts. Cross-modal
style transfer therefore opens a much broader yet unexplored field
for deep generation models.

In this paper, we for the first time investigate music-to-visual
style transfer, a cross-modal style transfer task considered as image
style transfer with music as extra condition. This task is concep-
tually demonstrated in Figure 1, where an Impressionism music
piece is encoded to modify the color scheme an American paint-
ing in the mid-19th century into an Impressionism-like one. Such
utility demonstrates great potential in integrating visual and music
contents in animation, virtual reality, and real-world environments
such as concerts.

The music-to-visual style transfer network is proposed based
on an assumption that music and image styles can be properly
linked by their shared semantic labels. With this assumption, three
major questions need to be answered: 1) how to link such semantic
labels together, 2) how to evaluate the efficacy of each network
component in achieving such aesthetic quality by learning such
semantic labels, and 3) how to evaluate the aesthetic quality of
the results. We will answer the first question in Section 3 and 4,
by introducing the proposed dataset and the music visualization
network. Questions 2 and 3 will be discussed in Section 5.

2 RELATED WORKS
2.1 Visual style transfer

Given a content image and a style image as input, an image style
transfer network typically incorporates two tasks: reconstructing
the content image or its representation and approximating the
statistics of the texture representations (e.g., the Gram matrix) of

the style image [11]. Notable developments include the Gram matrix
of feature maps [11], adaptive instance normalization (AdaIN) [13],
whitening and coloring transform (WCT) [19], and patch-based
methods [30]. While early developments in style transfer were
usually limited by the speed of inference and the classes of output
style, recent state-of-the-art style transfer methods have overcome
these issues and have shown great potential in online video artistic
style transfer [7, 10].

2.2 Music style transfer

It is hard to give a holistic definition of music style. Music styles
depend on the semantic domain being discussed, such as timbre,
performance, or composition styles. Timbre style transfer is usually
audio-to-audio style transfer which aims at modifying the timbre
such as instrument [9, 20, 32] or the gender of singers’ voice [17, 34].
Performance style transfer can be either audio-to-audio or symbolic-
to-audio, the latter such as piano performance rendering [12, 22]
refers to the tasks of converting deadpan performance data (e.g.,
MIDI) into expressive performance with a specific interpretation of
timing and dynamics. Finally, composition style transfer is usually
a symbolic-to-symbolic style transfer problem, which aims at mod-
ifying the harmonic, rhythmic or structural attributes of music at
the score level, and is applied in music genre transfer [5, 21, 23] or
blending [15].

2.3 Audio-visual content generation and style
transfer

Deep learning has provided unprecedented flexibility in various
cross-modal content generation tasks operating among audio, vi-
sual, and textual information. Both audio-to-visual or visual-to-
audio content generation has been studied. [36] proposed source
separation based on the visual information in music performance.
[33] proposed an image generation framework taking sound as in-
put. [37] proposed to generate ambient sound or soundscape from
a given image.

Cross-model style transfer is still a rarely investigated topic by
now. Recently, [6] proposed a text-to-image style transfer frame-
work. Some performance generation works can be regarded as
text-to-music style transfer, and one important aim of performance
generation is to add expressiveness to a dead-pan performance
while preserving its content. How artists and composers transfer
visual contents into musical ideas and vice versa has long been an at-
tractive topic in art studies [4, 16]. Continuous efforts for centuries
to unravel the relationship between music and visual contents have
also engendered new art forms and tools, such as color music [26],
Lumia arts [8] and music visualization techniques which are widely
seen in a modern multimedia world [3, 24].

3 DATASET

To make a machine learn the relationship between the styles of
visual arts and music, we need a dataset containing music and
images sharing the same set of semantic labels. How to present
such connection between music and images is challenging. The
most straightforward way to achieve this goal might be taking the
era (i.e., the years the music was composed or the visual artwork
was made) as the shared label, as the first attempt to achieve this
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Figure 2: Overview of the music-to-visual style transfer framework. (a) The training scheme of the music visualization net
(MVNet), which contains the encoder-generator pair {E, G}. The classifier C and discriminator D are for regularization and
adversarial training. (b) The inference scheme. The trained MVNet can be integrated with an arbitrary style transfer network
for image style transfer, based on the visualized music representation outputted by the MVNet.

challenge.! Other kinds of labels such as genres, user preference,
and emotions are likely to limit the size of the dataset because
of the incompatibility of labels in different domains. We consider
compiling our dataset from two resources: the WikiArt archive?
for Western visual arts, and the International Music Score Library
Project (IMSLP) online music library® for Western classical music,
both of which contain era label. For the paintings, we use the
Wikiart Retriever? to obtain the images and the corresponding
meta-data. As for the music, we use Selenium® to retrieve classical
music pieces in the IMSLP music library. We choose the data from
1480 to the present and annotate their era labels by decades. For
example, the music and paintings in 1700-1710 share one label,
and those in 1710-1720 share another label. The proposed dataset,
named as the WikiArt-IMSLP dataset hereafter, contains in total
11,127 music pieces and 62,968 paintings divided into 54 classes.
To the best of our knowledge, this dataset is the first open-source
dataset which pairs the music and visual art together. The dataset
will be released after the paper is accepted.

Note that the labels in the WikiArt-IMSLP dataset are imbalance.
To facilitate the training process, we choose only portraits (which is
the largest category in the WikiArt archive) for training. For music,
we choose up to 100 music pieces in each era. As a result, there are
11,078 images and 5,587 music pieces for training.

4 MUSIC-TO-VISUAL STYLE TRANSFER

We solve the music-to-visual style transfer problem with two steps,
namely music visualization and style transfer. Figure 2 illustrates

!In this paper, the term era may relate to a particular event or movement (e.g., Roman-
ticism), or it may just refer to an arbitrary time interval (e.g., 1700-1710).
https://www.wikiart.org/

Shttps://imslp.org/wiki/Main_Page

4 https://github.com/lucasdavid/wikiart

Shttps://pypi.org/project/selenium/

the pipeline of the proposed system. The system contains two
major networks, which are referred to as the music visualization net
(MVNet) and the style transfer net (STNet) in this paper. The MVNet
is a regularized encoder-decoder network; its input is an audio data
representation, and its output is an image which resembles the style
of that image paired with the audio. This image will be referred
to as the style image hereafter. The style image generated by the
MVNet and the target image (i.e. content image) are then fed into
the STNet. The output of the STNet is a modified image which
resembles the style of the style image.

In what follows, we consider the training data with N music-
image pairs {x;, y; }fi 1» Where the x being the 2-D mel-spectrogram
of music signals and y being the corresponding image, such that
each x; and y; were created in the same era. For simplicity, the
dimension of all the images is adjusted to 64 X 64. The music signals
are clips with the length of 8.91 seconds, segmented at the first
one-third of each music piece in the dataset. The sampling rate of
the music signals is 22.05 kHz. Hamming window with the size of
1024 and hop size of 256 are used for computing spectrogram. The
size of the mel-filterbank is 128. The mel-spectrogram is divided
into three parts, each of which with 2.97 seconds length. The three
parts are then assigned to the three input channels, resulting in the
dimension of 128 X 256 X 3. The mel-spectrogram is obtained with
the librosa library.®

The main reason that we divide a mel-spctrogram into three
channels for training rather than using merely one channel is de-
scribed as follows. Our pilot study showed that a single-channel
feature is insufficient in representing music information possibly
because it is too short. Considering a longer piece of music could
solve this issue, but in this case, the input dimension is too large
and the model becomes unstable to converge. One compromise is

®https://librosa.github.io/librosa/
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Table 1: The architecture of the networks adopted in this work.

x; € R1Z8X256 _

Conv3 X 3-BN-ReLU

{Ui o Z} c R8><8><257

128 X 256 X 32

DeConv4 X 4-IN-ReLU 16 X 16 X 256

yi € ROX6O3 _y

MaxPool-Conv3 X 3-BN-ReLU 64 X 128 X 64 Conv4 X 4-LeakyReLU 32 X 32 X 64
DeConv4 X 4-IN-ReLU 32 x 32 x 128

MaxPool-Conv3 X 3-BN-ReLU 32 X 64 X 128 Conv4 X 4-LeakyReLU 16 x 16 x 128
Self attention module 32 X 32 x 128

MaxPool-Conv3 X 3-BN-ReLU 16 X 32 X 256 Conv4 X 4-LeakyReLU 8 X 8 X 256
Self attention module 32 X 32 x 128

MaxPool-Conv3 X 3-BN-ReLU 8 X 16 X 256 Conv4 X 4-LeakyReLU 4 x 4 X 256

DeConv4 X 4-Tanh 64 X 64 X3
Convl X 1 8§X16x1
(a) Encoder (b) Generator (c) Discriminator

to use a long music segment but split it into three channels. In this
case, the role of the convolutional filters in the network would differ
from the usual ones in processing the RGB channels in images, as
now the mel-spectrograms in the three channels are not necessarily
synchronized.

4.1 Training the Music Visualization Net
(MVNet)

The left part of Fig. 2 demonstrates the MVNet in the training stage,
which contains an encoder E, a generator G, a discriminator D,
and an auxiliary classifier C. The encoder E first encodes x; into a
latent vector v; := E(x;). A triplet loss term L;,; [28] regularizes
the behaviors of v; such that any two v;s encoded from the music
pieces in the same era are as similar to each other as possible,
while any two v;s from different era are as far to each other as
possible. That means, for every input triplet (x, xf ,x]') where xf’
and xlfz are in the same era, x? and xf are in different eras, and
(&, of o) = (E(x), E(x?), E(x™)), the triplet loss is represented
as
N
Leri = ) [llof = of I = llof = oI +a| M

i=1

where « is the margin which is set to 1.0 in our experiment, and
[]+ := max(0, -). In the training process, we select xf and x] by
randomly sampling images from training set.

The latent vector v; is then concatenated with a random vector
z ~ N(0,I) and fed into the generator G. The output m; is repre-
sented m; = G(v; ® z). To make m; resemble the style of y;, we
impose a style loss term Ls;y on the generator network. The style
loss is defined as the [; distance in Gram matrices between two
images, and we follow the method in [11] to compute the style loss
based on the feature maps of a pre-trained VGG net [31]:

S
Lsty = ZIIGram(VGGS(mi))—Gram(VGGs(yi))”l @

i=1s=1

M=

where S is the number of layers, Gram(-) is the Gram matrix oper-
ation [11], and VGGs(-) represents the sth-layered feature map of
the pre-trained VGG net.

We also introduce an adversarial loss L, 4,, to enhance the train-
ing process. Following [20], we employ RaGAN [14] as our adversar-
ial training mechanism. Let D represent the discriminator D without
the last sigmoid layer; that means, D(a, b) := sigmoid(D(a) — D(b)).
Let P¢qp and Pgep be the distributions of the image and the music
representation, respectively. The adversarial loss is represented as

Lago =— IE'y,-~Prw1 [log(Em,ngE,, [D(yi’ m;)]]
- Emi~Pgen [log(l - Eyi"Preal [D(mi’ yl)])]

Finally, to better utilize the era labels in the training data, we
further introduce a classifier C for era classification. By using this
classifier we expect that the likelihood function of the music rep-
resentation P(c|m;) should approximate the likelihood function of
the training image P(c|y;), where c represents the era labels. We
therefore consider the era classification loss L4 for y; and m;:

©)

N

LS, = " log Plcly:) ()
i=1
N

18 = ZlogP(c|m,~) (5)
i=1

where the superscripts C and G indicate the sub-network being up-
dated when that loss term is used during training. More specifically,
when training the auxiliary classifier C, we adopt Lgls in Equation 4
to fit the training image y; their labels; when training G, we adopt
L?ls in Equation 5 to fit the generated music representation m; to
the label of their corresponding music piece x;. In this way, the
generator is regularized by this loss term since x; and y; are paired
with the same set of era labels.

In summary, the total loss function L for training the network
{E, G, D} is represent as

L=Lagy + aLsyi + BLsty +yLG (6)

cls’

and the era classifier C is trained solely with Lfls' In our experiment,
we set a = 0.1, f = 10.0 and y = 0.1. In the following, we refer to
the trained encoder-decoder pair {E, G} as the MVNet.

Note that the training pair {x;, y;} is not uniquely defined. One
x; can be paired with multiple y; having the same era label to x;.
Therefore, to include more possible {x;, y;} pairs, these pairs are
randomly shuffled for every training epoch.



Charles Wesley, Joachim Raff,
String Quartets, String Quartet No.5, Op.138,
(1778) (1867)

Christian Junck,
String Quartet No.5 in G major,
(1942) (2010)

Eugene Goossens,
String Quartet No.2, Op.59,

Figure 3: Random music representation samples generated from four string quartets composed in different eras. The com-
posers’ name, the title of music, and the year of composition are listed below the generated samples.

Table 1 shows the components of the encoder, generator and
discriminator. Each row of the tables lists the operations employed
in each layer (left, different operators are separated with hyphen),
and the size of output feature (right). The kernel size for each max
pooling operation is two. The structure of the encoder is similar
to the encoder part of a traditional U-Net [27]. The architecture of
generator generally follows the self-attention GAN (SAGAN) [35],
where we employ the self-attention module after the stacked decon-
volution layers. For each deconvolution operator in the generator,
we adopt spectral normalization to guarantee the training stabil-
ity. It should be noted that the music latent vector v; is resized
to 8 X 8 X 1 with bi-linear interpolation, in order to guarantee the
consistency among feature dimensions, since the size of the random
vector z is 8 X 8 X 256. As a result, the overall size of the feature
{vi ® z} is 8 X 8 X 257. At last, to enforce better modeling of high-
frequency structure, we follow the idea of PatchGAN [38], and have
the discriminator output a feature map with size of 4 X 4 X 256.

4.2 Inference

The right part of Figure 2 demonstrates the inference procedure.
After finishing training, the trained MVNet {E, G} is employed to
generate images (i.e. music representation m;) from music, and
the images are expected to convey visual style information of the
paintings coming from the era of that music piece.

This style image and the content image are fed into the STNet,
which can be an arbitrary image style transfer network, such as
those being reviewed in the previous sections. More specifically,
for a given content image y; and an arbitrary music segment xj.,
the stylized image o can be generated as:

o = STNet(yx, G(E(x))) . ™)

A detailed comparison of various STNets can be found in the
next section.

5 EXPERIMENT AND RESULT

The model is trained using two GTX-1080 Ti GPUs and 2 TB SSD.
Training the MVNet takes around 48 hours to acheive convergence.

The system is implemented with Python3.6 and PyTorch deep learn-
ing framework. For network optimization, we use the Adam op-
timizer (f1 = 0.9, f2 = 0.999), a fixed learning rate 0.0001, and a
batch size 16 to train the network. Weight decay is set to 0.0001
to avoid over-fitting. Before the painting images are fed into the
network, we resize the image as 96 X 96, and randomly crop it with
a 64 X 64 patch.

Experimental results are demonstrated as follows: First, gener-
ated samples of the music representation are illustrated. Second,
the performance of the system is assessed through the accuracy
of era classification, Third, transferred image and audio samples
conditioned on music in different eras and processed with differ-
ent STNets are illustrated and discussed. Finally, we conduct a
systematic user study to evaluate the aesthetic quality of the music-
to-visual style transfer system. The supplementary materials, demo
images and videos, data, and codes are available at the project
webpage: https://sunnerli.github.io/Cross-you-in-style/

5.1 Illustration of music representations

To see how the music representations look like, in Figure 3 we
illustrate four sets of music representations, which are generated
from four string quartets composed in the years of 1778, 1867, 1942,
and 2010, respectively. First, we investigate whether the MVNet
can generate diverse outputs by random sampling over z ~ N(0,I).
To verify this, nine samples are selected for each set. The illustrated
samples indicate that the MVNet does generate diverse outputs, as
none of them look the same as others.

Second, by fixing the inputs to be string quartets, Figure 3 allows
us to compare how the styles in both music and paintings affect
each other through neural network mapping. The compositional
styles of the four music pieces are quite different: Wesley is in the
Classical period; Raft’s work is mixed with the Romantic penchant
where transposition and chromatic scales are more actively used;
and Goosens and Junck are more or less influenced by post-tonal
music and electronic music. These difference can be observed from
their mel-spectrograms. The styles of paintings in the four periods
are also different; for example, before the mid-19th century, low
color saturation and unified color tone are preferred, while after the
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Composer / title / year spectrogram

St. Jean de Brébeuf,
The Huron Carol
(1643)

Johann Caspar Ferdinand Fischer,
Ricercar pro Festis Natalytis
(1702)

Johannes Brahms,
Piano Trio No. 1 in B major, Op. 8
(1854)

Nathan Shirley,
Images
(2002)

STNet

representation

AdalN WCT Linear

Avatar-Net

Figure 4: Comparison of music-to-image style transfer results over four music pieces from different eras and four STNets. The
original content image can be seen in the left of Figure 1. The first column shows the name of the composer, the title of music,
and the year of composition. The mel-spectrograms of the music are also illustrated for reference. More results with different

content images are provided in supplementary material.
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—— With era classification loss
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[e2]
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Epoch (1e2)

Figure 5: The accuracy of era classification for every epoch.

Green line: with classification loss. Orange line: without era
classification loss.

mid-19th century, colorful elements (e.g., orange, pink, etc.) with
high saturation and complementary colors (e.g., orange and blue,
yellow and purple) are characteristic.

We observe that what Figure 3 shows is consistent with the
aforementioned historical statements on music and arts. The images
of the first set (Wesley’s string quartet, 1778) are more similar to
each other than the other three sets in terms of tone and saturation.
The use of complementary colors within one image is also rarely
seen in the first set but commonly seen in the other three. This
demonstrates that the network does capture the music and image
styles and map them to each other properly. More examples of
the music representation can be found in Figure 4 and the project
webpage.”

5.2 Era classification

Figure 5 shows the accuracy on era classification computed over
the generated music representations for every epoch. Since there
are 54 era classes, the accuracy of a random guess is around 2%.
Two settings are compared in this experiment: the first setting
imposes the classifier loss (.Efls) when training G, and the second
setting does not include this loss term. The result shows that if
the classification loss is not imposed, the accuracy remains at the
random guessing level over the epochs. When the classification loss
function is imposed, the accuracy increases over the epochs. An
increased accuracy implies a higher probability to generate images
that can be classified to the correct era through this classifier.

"The link of project page: https://sunnerli.github.io/Cross-you-in-style/
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Music Title  Content image Result (linear)
Arcade Fire,
Photograph,

(2013)

Danny Elfman,
Sandra’s Theme,

I

(2003)

Carlos Gardel,
Por Una Cabeze,
(1935)

Underworld,
Born Slippy,
(1995)

Content image

Result (linear) Result (linear)

Content image

Figure 6: Results of music-to-video transfer. The original content images and the transferred results of three selected frames
for each video are shown. Music genres from top to down: piano solo, symphony, chamber music, and progressive house. From
left to right: composer/ music title/ years, and three pairs of original content image with transferred result which using the

linear transformation method.

5.3 Comparison of STNets

To demonstrate the compatibility of the proposed framework with
various style transfer methods, we compare the style transfer out-
puts generated by four different STNets. The STNets include AdaIN
[13], WCT [19], linear transformation [18] and Avatar-Net [30].
Figure 4 shows the input mel-spectrograms, the music representa-
tions, and the generated results of the four STNets conditioned on
four music pieces in different eras. Results show that, again, the
generated music representations do correspond with the painting
styles in that era: low saturation and unified hue before the Clas-
sic period, while high saturation and complementary colors after
Romanticism.

For the transferred results, we found that AdaIN merely cap-
tures the colors in the music representations, though its processing
speed is the fastest among all. The other three STNets can better
capture the color scheme of the music representations. The linear
transformation can even capture the brushstroke-like texture. WCT
tends to emphasize the boundary on a small scale, and Avatar-Net
tends to blur the content image. In summary, we indicate that the
linear transformation is a compromise between speed and quality.
As a result, we will use the linear transformation method in the
remaining experiments.

5.4 Music-to-video style transfer

In the above discussion, a music segment is assumed to be a static
object. We then consider a more realistic case that how music, as an
art of time, modifies the visual styles of video in a dynamical manner.
As a proof-of-concept study, we consider a preliminary scenario: we
select movie clips with background music arrangement, resample
the clips to 20 fps, and then for every video frame we take the
background music segment around the video frame as the music
input to transfer the visual style of that video frame. The length of

the background music segment is 8.91 secs and the middle of this
segment is at the time of the video frame. That means, style transfer
is processed frame by frame, and each frame takes different but
overlapped music segments to generate the music representations.
For simplicity, the latent vector z is kept the same over time. We
selected four movie clips from Her (2013), Big Fish (2003), Scent of a
Woman (1992), and Trainspotting (1996) whose background music
are piano solo, symphony, chamber music, and progressive house,
respectively. The last one does not belong to the classic repertoire.
The titles of the music and the composers’ name are listed in Figure
6. The movie clips were retrieved from YouTube, and we retrieved
these movie clips for research use only.

Figure 6 shows the selected results of music-to-video style trans-
fer. We observe that different music genres transfer the clips into
different color tones. Piano solo and symphony transfer the videos
into a brighter tone, while chamber music transfer the videos into a
darker tone. The genre of progressive house music is obviously not
seen in the training set, so the transferred color tone is less usual
compared to other samples. A common issue in this task is the
fluctuation in brightness and color, which implies that the model is
still unstable with the change of music features. To overcome this
issue, additional constraints are needed to smooth the style in time
domain, and this will be part of our future work.

5.5 Aesthetic quality assessment: a user study

To examine the visual aesthetics of the transferred images and
videos, we refer to prior research on measuring peopleaAZs per-
ceived aesthetic impressions [1, 2, 25]. Key scholars summarize
various dimensions of aesthetic judgements, from a general di-
mension 4ATJpleasingnessaAl to commonly emphasized cognitive
(e.g., comprehensibility, originality) and emotional (e.g., emotive-
ness, impressiveness) dimensions. We adopted questions from the
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emotional and pleasingness dimensions as the first step to assess
visual aesthetics of the images (including painting, photograph) and
videos after the transfer. We decided to focus on general perceived
aesthetic impression instead of more technical aspects of visual
aesthetics (e.g., saturation, contrast, stroke), as the latter type of
assessment requires knowledge at the expert level.

We recruited a total of 137 participants (47.20% male, 52.10% fe-
male) to fill out an online questionnaire to assess eight image/video
samples. Four are music-to-image (M2I) while four are music-to-
video (M2V) samples. First, we had participants get familiar with
the original images and audio/video content. Then, participants
were asked to compare the style transfer outputs generated from
three variants of our model: 1) style loss only (STYLE), 2) style
loss plus the triplet and classification loss (CLS_TRIP), and 3) the
three loss terms plus the adversarial loss (FULL). It should be noted
that we compared the original images/videos and STYLE in a pilot
study but found that the clean images/videos could bias human
judgement on the artifacts of the style transfer results. Therefore,
we removed the images/ videos in the official study to reduce sur-
vey completion difficulty. For each image/ audio/ video content,
participants were asked to select the one they perceived the most
beautiful (Q1), attractive (Q2), moving (Q3), and most harmonious
with the background music (Q4) out of the three images/videos
style transfer outputs. Q1 and Q2 belong to the pleasingness dimen-
sion; Q3 belongs to the emotion dimension; Q4 is the objective of
our research.

Results are shown in Figure 7. For M2I samples, participants
preferred the FULL model the most while for M2V samples, par-
ticipants preferred the STYLE model. The difference in M2I and
M2V reveals the roles of the objective functions in the generation

process. Using only style loss in the M2I case seems to generate 4AY-
boringaAZ result, but in the M2V case this is preferred as adding
additional loss terms usually results in fluctuations in video. Com-
paring FULL to CLS_TRIP, it shows that adding the adversarial loss
helps both M2I and M2V. Additionally, participant responses to the
four questions strongly correlated to each other. For instance, the
correlation between the percentage of votes of Q1 and Q4 suggests
that the model making the background music more harmonious
with the visual style tends to make such visual style more beautiful
(r =0.92, 0.96 and 0.86 for the three models, respectively).

6 CONCLUSION

We have demonstrated the feasibility of transferring visual styles
directly from music. The flexibility of using different style transfer
networks and of using either image or video contents in our frame-
work all suggest great potential in the applications of animation
and interactive arts. Evaluation results indicate the importance of
a shared semantic space in solving the cross-modal style transfer
problem, and also reveal the multi-dimensional nature of aesthetic
quality assessment, which is still a challenging problem worth fur-
ther study.

We have emphasized the importance of cross-model transfer in
human creativity process. However, it should be noted that our pro-
posed solution does not include all the scenarios that human artists
deal with this problem in the real world. In fact, shared labels are
not a necessary condition in real-world cross-model style transfer
process. The condition of pairing an image to a music piece can
usually be arbitrary and relies on how one interprets it. Shared
labels are neither a sufficient condition in real-world cross-model
style transfer. The reason that we can imagine a visual scene when
listening to music is that our brains have built a complicated web
of meaning that connects these data in various semantic levels,
not because we know the time they were composed or painted.
Annotations of high-level semantics such as art movement or genre
could partly address this issue, but such annotations might be more
difficult to be shared. On the other hand, the era labels adopted in
this work ignore the the time asynchronization in the development
of art and music (e.g., impressionism music appeared later than
impressionism art). The purpose of this work is not to claim that
learning the semantic links from era labels is the unique and ‘correc-
tAAZ way to assign a style to an artwork. Rather, we emphasize that
learning the arbitrary semantic links between different domains
can be a feasible and scalable way for content generation. A future
direction toward a more advanced cross-modal style transfer is to
establish more label information such as genres and emotions to
link the data from different modalities altogether up to a higher
semantic level.
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