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ABSTRACT
The recent generative model-driven Generalized Zero-shot Learn-
ing (GZSL) techniques overcome the prevailing issue of the model
bias towards the seen classes by synthesizing the visual samples of
the unseen classes through leveraging the corresponding semantic
prototypes. Although such approaches significantly improve the
GZSL performance due to data augmentation, they violate the prin-
cipal assumption of GZSL regarding the unavailability of semantic
information of unseen classes during training. In this work, we pro-
pose to use a generative model (GAN) for synthesizing the visual
proxy samples while strictly adhering to the standard assumptions
of the GZSL. The aforementioned proxy samples are generated by
exploring the early training regime of the GAN. We hypothesize
that such proxy samples can effectively be used to characterize the
average entropy of the label distribution of the samples from the
unseen classes. Further, we train a classifier on the visual samples
from the seen classes and proxy samples using entropy separation
criterion such that an average entropy of the label distribution is
low and high, respectively, for the visual samples from the seen
classes and the proxy samples. Such entropy separation criterion
generalizes well during testing where the samples from the unseen
classes exhibit higher entropy than the entropy of the samples from
the seen classes. Subsequently, low and high entropy samples are
classified using supervised learning and ZSL rather than GZSL. We
show the superiority of the proposed method by experimenting on
AWA1, CUB, HMDB51, and UCF101 datasets.
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1 INTRODUCTION
The Generalized Zero-shot Learning (GZSL) [34] addresses the
problem of identifying the visual samples of previously unseen
or seen classes when the machine learning model is trained on
the visual-semantic data only from the seen classes. GZSL mod-
els exhibit poor performance due to model bias towards the seen
classes as the training data is not available for the unseen classes.
To overcome the issue of a model bias towards the seen classes,
recently, generative models such as Generative Adversarial Net-
work (GAN) and Variational Auto-encoder (VAE) have been used in
GZSL [4, 11, 35]. Specifically, such methods train the GAN or VAE
using visual-semantic data from the seen classes. The prototypes
of the unseen classes are then utilized to generate visual samples of
corresponding unseen classes. A standard softmax based classifier
is subsequently trained using the already available visual samples
of the seen classes and the generated visual samples of the unseen
classes. The complex GZSL problem is consequently transmuted
into a relatively simpler problem of supervised classification, thus
implicitly reducing the model-bias problem considerably.

However, the approach above suffers from the following issues.
Firstly, the generative model-driven approaches clearly violate the
holy grail of GZSL in the sense that no information is available about
the unseen classes during training. Although the generative models
are trained using the data from the seen classes, subsequent steps
make use of the prototypes of the unseen classes to generate the
visual samples of corresponding unseen classes. It is evident that
accessing the prototypes of the unseen classes during training ben-
efits such models, resulting in superior performance as compared
to other GZSL approaches, which do not violate the assumptions
of GZSL. Secondly, although generative models trained on visual-
semantic data of the seen classes can generate the visual samples of
the unseen classes, the quality of such samples is generally abysmal
under the aforesaid model-bias problem [14, 27].

We address the above issues of GZSL in this work, as explained
below. Firstly, we emphasize that we do not use data from the
unseen classes during training, thus adhering to the standard as-
sumption of GZSL. Secondly, as we do not attempt to generate
visual samples of the unseen classes, the issue of poor quality of
generated samples of the unseen classes does not arise. Instead,
we exploit the poor quality of the samples from the seen classes
generated by GAN during its early training regime.

We use conditional Wasserstein GAN [6] (CWGAN) as our back-
bone generative model trained on the visual-semantic data from
the seen classes. As we do not use any information (semantic proto-
types) related to the unseen classes during training, generating the
visual samples of the unseen classes is clearly not feasible. Hence,
we synthesize the visual samples, termed as proxy samples, during

Poster Session G3: Vision and Language MM '20, October 12–16, 2020, Seattle, WA, USA

4262

https://doi.org/10.1145/3394171.3413657
https://doi.org/10.1145/3394171.3413657


the early training regime of CWGAN. The exact training iteration
is identified based on the Confidence Score (CS) of the proxy sam-
ples in that training iteration. The CS obtained from the classifier
pre-trained on the seen classes is similar to the Inception Score [25].
CS is indicative of the diversity of the samples generated by GAN,
where a higher CS corresponds to the fact that generated data distri-
bution matches the real data distribution. A lower CS is indicative
of the poor quality of the generated samples where generated data
distribution is very different from the real data distribution.

Furthermore, it is a known fact that samples generated during
early training regime are far from the real samples (referring to the
visual samples from the seen classes in the (G)ZSL setup) having
a low CS. However, it does not necessarily mean that generated
proxy samples belong to the unseen classes. We hypothesize that
proxy samples are representative of the samples belonging to the
open-set of classes. (Here, we refer to the close-set as the set of seen
classes and open-set as the set of all the classes excluding the seen
classes. In principle, the open-set is vast and contains the unseen
classes.) Therefore, we use the proxy samples to characterize the
samples from the open-set classes in terms of the entropy of the
label distribution. Towards that end, we train a separate classifier
on visual samples of the seen classes and proxy samples. We train
the classifier to have low and high average entropy of the label
distribution for visual samples of the seen classes and proxy samples,
respectively. Such entropy separation criterion generalizes well
during testing, where we observe that the average entropy of the
samples from the unseen classes is higher than the average entropy
of the samples from the seen classes. During testing, low and high
entropy test samples are identified as belonging to the seen classes
and the unseen classes, respectively. The labels of low and high
entropy samples are then separately identified using supervised
learning (SL) and ZSL. To minimize the effect of misclassification
due to hard division of samples based on low and high entropy, we
also keep a margin around the decision boundary. The test samples
whose entropies fall into this margin are classified using GZSL.

To the best of our knowledge, we are the first to use the evolution
of GAN training to address GZSL. Our four-fold contributions are

• We deal with GZSL while adhering to the standard assump-
tion that no data from the unseen classes are available during
training. While doing so, we solve the harder GZSL problem
in terms of simpler SL or ZSL problems.

• We propose to use the early training regime of GAN to syn-
thesize the proxy samples, which are representatives of the
samples from the open-set containing the unseen classes.
The exact training regime is identified using the Confidence
Score of the generated proxy samples.

• We increase the separation between the entropies of visual
samples from the seen classes and proxy samples. Subse-
quently, based on the low or high entropy of a test sample,
the GZSL problem is solved using SL or ZSL, respectively.

• We demonstrate the efficacy of the proposed approach on
diverse tasks such as image object recognition (AWA1 and
CUB) and video action recognition (HMDB51 and UCF101),
where our approach outperforms the existing methods.

2 RELATED WORK
GZSL has gained much attention in the last few years to address
the label scarcity issue in the open-world visual recognition sys-
tems [13, 34]. GZSL makes use of the semantic information to
transfer knowledge from seen classes to unseen classes. In this
respect, semantic space can be derived in terms of semantic at-
tributes [22] or distributed word-vector embeddings [17]. Amongst
different GZSL approaches, non-generative models aim to learn
deterministic or stochastic functions given the semantic and the
visual spaces [9, 10, 15, 21, 23, 24, 29, 31, 37–39]. On the other
hand, generative techniques for GZSL focus to combat the class-
imbalance issue in GZSL by modeling the underlying data distri-
butions [4, 12, 14, 16, 19, 27, 35, 36]. Notably, [35] uses WGAN [6],
which is trained to generate visual samples of the seen classes from
the corresponding seen class-prototypes. The generator of WGAN
is then bestowed to synthesize the visual features of unseen classes
from the respective class-prototypes. Synthesized features of un-
seen classes, along with the features of the seen classes, are used to
train a supervised classifier. However, it is observed that generated
samples of unseen classes are poor in quality in the sense that they
do not represent unseen class distribution [14, 27]. To overcome
this issue and improve the quality of samples of unseen classes,
cycle consistency is proposed in [4], where generated visual sam-
ples are mapped back to their corresponding semantic prototype.
[27] proposes to match the gradients of generated and real samples
to improve sample generation further. [16] extend the approach
in [35] and train a separate classifier for seen and unseen classes.
[14] proposes to alleviate confusion between seen and unseen class
samples and introduce feature confusion scores. [36] uses GAN and
VAE to generate unseen class samples.

The existing generative-model driven methods using GAN or
VAE differ from our approach in two ways. First, these methods
train the generator for large enough iterations such that it can
match the distribution of the seen classes. On the other hand, we
are interested in the early training regime to synthesize the proxy
samples, which are far from the samples from the seen classes.
Second, the existing methods train the softmax classifier on seen
and unseen classes using the visual samples from seen classes and
synthesized visual samples from unseen classes by optimizing the
cross-entropy loss. However, we make use of the entropy separation
criterion to train the classifier on the visual samples of the seen
classes and proxy samples.

3 THE GZSL PROBLEM
We first formally define the problem of ZSL and GZSL, following
which the proposed approach is discussed.

Consider a dataset D consisting of 𝑆 seen classes and 𝑈 unseen
classes such that D = D𝑆

⋃
D𝑈 where D𝑆 = {𝑥𝑖 , 𝑦𝑖 , 𝑎𝑦𝑖 }

𝑛𝑠
𝑖=1 and

D𝑈 = {𝑥𝑖 , 𝑦𝑖 , 𝑎𝑦𝑖 }
𝑛𝑢
𝑖=1 denote the data belonging to the seen/train

classes and unseen/test classes, respectively. Here, 𝑥𝑖 ∈ R𝑑 , 𝑦𝑖 ∈
Z, 𝑎𝑦𝑖 ∈ R𝑘 represent a visual feature, its class label, and the corre-
sponding class prototype while 𝑛𝑠 and 𝑛𝑢 represent the numbers
of samples from the seen and unseen classes, respectively. For D𝑆 ,
𝑦𝑖 ∈ Y𝑆 = {1, 2, . . . , 𝑆} and forD𝑈 ,𝑦𝑖 ∈ Y𝑈 = {𝑆+1, 𝑆+2, . . . , 𝑆+𝑈 }
such that Y𝑆 ∩ Y𝑈 = 𝜙 . Furthermore, D𝑆 = D𝑡𝑟

⋃
D

′
𝑡𝑟 where D𝑡𝑟

represents the data of the seen classes used during training andD
′
𝑡𝑟
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Figure 1: The three stages of the proposed method are shown. Left: A CWGAN is trained, and the generator 𝐺 is used to
synthesize the proxy samples. The exact training iterations are identified based on the Confidence Score (CS) of the generated
proxy samples given by the pre-trained classifier 𝑃𝑇𝐶 (trained on seen classes). Middle: A Visual-Semantic Mapping Module
(VSMM) having the classifier𝐶 is trained on the visual-semantic data from the seen classes and synthesized proxy samples. The
VSMM is trained using different loss criteria, including the entropy separation criterion. Right: During testing, the domain of
a test sample (seen/unseen or unknown) is identified based on its entropy𝐻𝑡 of the label distribution given by𝐶. Subsequently,
based on entropy thresholds 𝛿𝑙 and 𝛿ℎ , a sample is classified using SL, ZSL, or GZSL techniques.

represents the held out data of the seen classes which is used during
testing. Let 𝑓𝑣 (·) and 𝑓𝑠 (·) denote the embedding functions project-
ing the visual and semantic features to a shared latent space with
𝑚 dimensions. The goal of ZSL training is to use D𝑡𝑟 to maximize
the compatibility between visual embedding 𝑓𝑣 (𝑥𝑖 ) and semantic
embedding 𝑓𝑠 (𝑎𝑦𝑖 ). Let F(·) denote a compatibility function (e.g.
inner product) which gives a higher score for pairs of visual and
semantic embeddings associated with the same samples inD𝑡𝑟 and
gives lower score otherwise. During testing, the class label of a test
sample 𝑥𝑡 is inferred as

𝑦𝑡 = argmax
𝑖∈Y𝑈

F(𝑓𝑣 (𝑥𝑡 ), 𝑓𝑠 (𝑎𝑖 )) . (1)

In GZSL, a test sample may come either from unseen class data
D𝑈 or seen class data (D

′
𝑡𝑟 ). The class label is obtained using the

following criterion.

𝑦𝑡 = argmax
𝑖∈{Y𝑆

⋃
Y𝑈 }

F(𝑓𝑣 (𝑥𝑡 ), 𝑓𝑠 (𝑎𝑖 )) (2)

4 METHODOLOGY
Motivation: Existing GZSL methods focus on improving the vi-
sual and semantic embedding functions to boost the model per-
formance. We take an alternate path, where our method acts as
a pre-processing step for the existing GZSL methods. In the pre-
processing step, the domain (seen or unseen) of a test sample is
first identified. If a sample is identified as belonging to the unseen
domain, then its class label is inferred using Eq. (1) rather than
Eq.(2). Furthermore, if a test sample is identified as belonging to
the seen domain, its class label can be inferred using a supervised
learning (SL) framework. Hence, the GZSL problem can be solved
using relatively simpler ZSL and SL problems.

One way to identify the domain of the samples is to train a
binary classifier for the task of identifying domain as seen or unseen.
Alternatively, the above problem translates to the close/open-set

recognition problem where the close-set is formed by the seen
classes and open-set consists of all classes other than the seen
classes (including the unseen classes). For such a task, one would
need the visual samples of the close-set (seen) and open-set classes.
Synthesizing the visual samples of the vast open-set classes is a
difficult task in itself. One can resort to synthesizing the visual
samples of the unseen classes as the representative samples of the
open-set classes. However, synthesizing the visual samples of the
unseen classes using corresponding semantic prototypes violates
the GZSL setting.

We would like to get the benefits of synthesizing the visual sam-
ples of unseen classes. However, the use of prototypes for doing the
same is prohibited. While synthesizing the visual samples of unseen
classes looks infeasible in such a situation, we aim at generating
the proxy samples, which are representatives of the samples from
the open-set classes. To this end, we carefully assess the evolution
of the training regime of GAN and claim that the early training
regime of GAN is indeed capable of generating such samples. Next,
we train the classifier such that the average entropy of label distri-
bution is low and high, respectively, for the visual samples of the
seen classes and synthesized proxy samples. During testing, based
on the entropy of the test sample, one can identify its domain.

Our overall method is shown in Figure 1 has three stages. First,
we use conditional Wasserstein GAN [35] (CWGAN) to generate
proxy samples. The exact training iteration for generating proxy
samples is identified using the classifier (PTC) pre-trained on the
visual samples of the seen classes. Second, we train the Visual-
Semantic Mapping Module (VSMM) containing the classifier (C)
(different than the PTC) using the proposed entropy separation cri-
terion. Third, we carry out the testing where the domain of the test
sample is identified based on its entropy, followed by classification
using SL or ZSL or GZSL.
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4.1 Visual-semantic Mapping Module (VSMM)
We use a Neural Network based Visual-Semantic Mapping Module
(VSMM) to learn the visual and semantic embedding functions to
carry out the GZSL. Our VSMM is similar to themodel in [38], which
consists of an autoencoder (AE) but additionally uses a classifier
which plays a vital role in identifying the domain of a test sample.
The proposed VSMMmay be simple but provides robust embedding
in the latent space due to AE. Further, the classifier in the latent
space makes the embedding discriminative. The standard AE is
trained to minimize the following loss on the visual samples from
the seen classes.

L𝐴𝐸 =

𝑛𝑡𝑟∑
𝑖=1

| |𝑥𝑖 − 𝑥𝑖 | |22, (3)

where 𝑥𝑖 = 𝑔(𝑓𝑣 (𝑥𝑖 )). Here, encoder function 𝑓𝑣 (·) is the visual
embedding function and 𝑔(·) is the decoder function. We simultane-
ously learn a separate semantic embedding function 𝑓𝑠 (·) such that
semantic embedding is matched with the corresponding class visual
embedding in the shared latent space of the AE. This is achieved
by minimizing the following loss.

L𝐿𝐸 =

𝑛𝑡𝑟∑
𝑖=1

| |𝑓𝑣 (𝑥𝑖 ) − 𝑓𝑠 (𝑎𝑦𝑖 ) | |22 . (4)

Next, we use a standard softmax classifier, denoted by 𝐶 , which
is trained on the visual embeddings in the latent space to minimize
the cross-entropy loss L𝐶𝐿𝐹𝑅 for the samples belonging to the seen
classes. The overall objective function to be minimized by training
on the visual-semantic data from the seen classes is given by

LS = L𝐴𝐸 + L𝐿𝐸 + L𝐶𝐿𝐹𝑅 (5)

In the next section, we describe the generation of the proxy samples
in the early training regime of the GAN.

4.2 Exploiting Early Training Regime of GAN
In order to generate proxy samples further to be used to construct
the seen/unseen domain classifier, we built upon the conditional
Wasserstein GAN (CWGAN) [6] based approach of [35]. Our CW-
GAN consists of a generator 𝐺 and a discriminator (critic) 𝐷 being
conditioned on the semantic class prototype 𝑎. The adversarial
game between 𝐺 and 𝐷 optimizes the following objective function

min
𝐺

max
𝐷

L𝐶𝑊𝐺𝐴𝑁 = E[𝐷 (𝑥, 𝑎)] − E(𝐷 (𝐺 (𝑧, 𝑎)), 𝑎)]

− 𝜆E[( | |∇𝑥𝐷 (𝑥, 𝑎) | |2 − 1)2], (6)

where 𝑥 = 𝛼𝑥 + (1 − 𝛼𝑥) with 𝛼 ∼ 𝑈 (0, 1), E[·] is an expectation
operator and 𝑧 is noise from the standard normal distribution. The
third term in Eq.(6) corresponds to gradient penalty to ensure a
stable training where 𝜆 is a hyper-parameter.

It is well understood that generative models can produce the
samples which match the original data distribution when 𝐺 and 𝐷
are locked into equilibrium. Furthermore, during the initial phase
of training of CWGAN, 𝐷 is confident in identifying the real and
generated samples. From a different perspective, samples generated
by 𝐺 during the early training phase are far from the samples
belonging to the seen classes. Such samples belong to the open-set
classes but may not necessarily represent the samples from the
unseen classes. However, we hypothesize that they can effectively

be used to characterize the samples from the unseen classes in terms
of entropies of label distribution. However, a natural question may
arise as to what would one mean by the early training phase of
GAN? Or is there any criterion to decide how early it is early? To
decide on the exact iteration index of training, we are interested in;
we use the criterion similar to the Inception Score (𝐼𝑆) [26].

The 𝐼𝑆 is used to measure the quality and the diversity of samples
generated by 𝐺 in a typical deep generative model. We make use
of an 𝐼𝑆-like criterion to identify the training iteration of CWGAN
where proxy samples of interest can be generated. We call such
criterion as the Confidence Score (𝐶𝑆). We formally define it first
and then mention how it helps decide the training iteration to
generate proxy samples. Let 𝑝 (𝑦 |𝑥) denote the conditional label
distribution obtained by applying the pre-trained classifier (PTC)
(trained on seen classes and different than the classifier𝐶 in Section
4.1) to generated samples. Let 𝑝 (𝑦) denote the distribution obtained
by marginalizing over the label distributions obtained by passing
the generated samples through the PTC. The 𝐶𝑆 is given by

𝐶𝑆 = 𝑒𝑥𝑝 (E[𝐾𝐿(𝑝 (𝑦 |𝑥) | |𝑝 (𝑦))]) (7)

where 𝐾𝐿(·) represents the KL divergence. The 𝐼𝑆 uses Inception
model [30] to obtain 𝑝 (𝑦 |𝑥) and 𝑝 (𝑦). We emphasize that we do not
use the Inception model to obtain 𝑝 (𝑦 |𝑥) and 𝑝 (𝑦) but use a PTC on
seen classes of the given dataset. This is because the Inceptionmodel
[30] is trained on images of objects, whereas we also experiment on
videos of actions. In such a scenario, the Inception model may not
be appropriate to obtain the conditional and marginal probabilities.

For well trained CWGAN, the generator can produce samples
from all the seen classes. Marginalizing the label probability distri-
butions of these samples results in 𝑝 (𝑦) to be a uniform distribution.
On the other hand, 𝑝 (𝑦 |𝑥) changes from uniform distribution to
a peaky distribution as training of CWGAN progresses. During
the initial training phase, samples produced by 𝐺 are far from the
real samples of the seen classes. Hence, when such samples are
passed through the PTC, their label probability distribution 𝑝 (𝑦 |𝑥)
follows a uniform distribution, resulting in lower 𝐶𝑆 . As training
progresses,𝐺 can produce realistic samples belonging to the seen
classes. When passed through the PTC, these images generate a
peaky distribution, indicating that they belong to one of the seen
classes. This results in larger KL-divergence between a marginal
and conditional distribution and hence the larger 𝐶𝑆 .

We identify the training iterations for which 𝑠𝑙 < 𝐶𝑆 < 𝑠ℎ where
thresholds 𝑠𝑙 and 𝑠ℎ are set using validation. The larger value of
𝐶𝑆 (𝐶𝑆 > 𝑠ℎ) corresponds to 𝐺 producing realistic samples of the
seen classes. Hence corresponding iterations are inappropriate for
synthesizing the proxy samples. On the other hand, a smaller value
of 𝐶𝑆 (𝐶𝑆 < 𝑠𝑙 ) also has limited use. This is because𝐺 conditioned
on the semantic prototypes and normally distributed noise can
produce only a normally distributed samples.

Next, we describe how the synthesized proxy samples and visual
samples of the seen classes can be used to train the GZSL model,
infer the domain label, and hence the class label.

4.3 Entropy Separation Criterion
Our goal is to identify whether a test sample belongs to the seen
(close-set) or the unseen domain (open-set). One way to identify
this is by looking at the entropy of the label distribution of the
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Figure 2: Histogram of the entropies of test samples from
the seen and unseen classes for the AWA1 dataset. The en-
tropy is obtained from the output of the classifier 𝐶 of the
VSMM, which is trained using Eq.(5). Uniform distribution
of entropies of the samples from the unseen classes makes
them challenging to distinguish from the samples of the
seen classes based on the threshold.

sample obtained using the classifier pre-trained on the seen classes.
One may expect the lower average entropy for the samples from the
seen classes and higher average entropy for the samples coming
from outside the seen classes. This is shown in Figure 2, where
histogram of entropies of the test samples from seen and unseen
classes are plotted for the HMDB51 dataset. The classifier (C) from
the VSMM is used to obtain the entropies of the test samples when
the VSMM is trained using the objective function in Eq.(5) on visual-
semantic data from the seen classes. We observe that the samples
from the seen classes have low entropies. However, the entropies
of the samples from the unseen classes range from smaller to larger
values. In such a case, the samples from the unseen classes would
be difficult to identify based on the entropy. Therefore, we aim
to increase the separation between the entropies of the samples
from the seen and unseen classes. As the GZSL setting does not
allow us to use any data from the unseen classes, we resort to the
proxy samples that are generated, as explained in Section 4.2. Let
𝐻𝑆 and 𝐻𝑃 denote the average entropy of samples from the seen
classes and the proxy samples. Then the entropy separation loss
with margin 𝛾 is given by

L𝐸𝑆 = max[0, 𝐻𝑆 − 𝐻𝑃 + 𝛾], (8)

The overall objective for training the VSMM is given by

L = L𝑆 + L𝐸𝑆 . (9)

4.4 Inference
Once the VSMM is trained by optimizing the loss in Eq.(9), in the
first step of the inference process, the domain of a test sample is
identified. For this, entropy𝐻𝑡 of the label distribution is calculated
using the softmax activations of the classifier 𝐶 . The following
decision rule gives the domain of the test sample

𝑦𝑡 ∈


Y𝑆 if 𝐻𝑡 < 𝛿𝑙 ,

Y𝑈 if 𝐻𝑡 > 𝛿ℎ,

Y𝑆
⋃

Y𝑈 if 𝛿𝑙 < 𝐻𝑡 < 𝛿ℎ,

(10)

where the thresholds 𝛿𝑙 and 𝛿ℎ are set using validation. The test
samples for which 𝛿𝑙 < 𝐻𝑡 < 𝛿ℎ , the classifier 𝐶 is not confident
about the domain of the sample, hence its domain can be seen or

Algorithm 1: GZSL using the proposed method.
Training:

1 Train CWGAN using Eq.(6);
2 Generate the proxy samples and calculate the 𝐶𝑆 (Eq.(7))

using PTC in each training iteration;
3 Identify the training iterations of interest such that

𝑠𝑙 < 𝐶𝑆 < 𝑠ℎ ;
4 Train the classifier 𝐶 by optimizing Eq.(9) using the

visual-semantic samples from the seen classes and the
proxy samples generated in training iterations of Step 3;

Inference:
5 For a test sample, identify the domain using Eq.(10);
6 Based on the domain of the test sample, identify the class

label using SL, ZSL or GZSL;

unseen classes (Y𝑆
⋃

Y𝑈 ). In the second step, a separate inference
module based on the domain label is used to identify the final class
label of the test sample. Specifically, if the domain is identified
as the seen class domain, then the class label is inferred using SL
(directly from the classifier 𝐶 output). If the domain is identified as
the unseen class domain, then the class label is inferred using ZSL
(Eq.(1)). If the domain is seen or unseen, then GZSL (Eq.(2)) is used
to infer the class label.

The proposed VSMM is end-to-end in the sense that it can infer
the domain labels and final class labels of the test samples. However,
it can also be used as a pre-processing step to determine the domain
labels of the samples followed by existing GZSL methods to infer
the final class labels.
Importance of two thresholds: We use two thresholds instead
of a single threshold to avoid the hard division and hence misclas-
sification due to the wrong assignment of the sample to either seen
or unseen classes. From a different perspective, we expect that the
entropies of proxy samples and test samples from the unseen classes
may differ slightly. This is because although the proxy samples are
representative of the samples from the extensive open-set, they
may not necessarily correspond to the samples from the unseen
classes. Hence, the single threshold separating the samples from the
seen classes and proxy samples may not be effective in separating
the samples from the seen and unseen classes during testing. To
overcome this difficulty, we use a two threshold system resulting
in a margin of the entropies. Furthermore, we ideally want all the
test samples to be classified using either SL or ZSL. However, some
of the test samples are classified using GZSL due to two threshold
system.We experimentally observe that the number of samples clas-
sified using GZSL is small. Algorithm 1 explains the GZSL training
and testing process using the proposed method.

5 EXPERIMENTS
Datasets and Feature: We evaluate the proposed method on four
diverse datasets. AWA1 [34] and CUB [32] are coarse grained and
fine-grained datasets, respectively, for recognition of animals and
birds from images. HMDB51 and UCF101 are two datasets for action
recognition from video. The description of the datasets is given
in Table 1. We use 𝑑 = 2048-dimension ResNet101 [8] features for
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Table 1: The description of different datasets for GZSL.

Item AWA1 CUB HMDB51 UCF101

|Y𝑆 | 40 150 26 51
|Y𝑈 | 10 50 25 50
|D| 30K 11K 6.7K 13K
𝑘 85 312 300 300

Table 2: GZSL performance comparison using average top-
1 accuracy on the seen (S) and the unseen classes (U) and
their harmonicmean (H). UD corresponds to using (Y) or not
using (N) unseen class data during training. GM corresponds
to using (Y) or not using (N) generative models.

AWA1 CUB
UD Method GM S U H S U H

Y

DSEN [18] N - - - 71.1 59.1 64.5
f-CLSWGAN [35] Y 61.4 57.9 59.6 57.7 43.7 49.7
SE-GZSL [11] Y 68.1 58.3 62.8 53.3 41.5 46.7
f-VAEGAND2 [36] Y 76.1 57.1 65.2 75.6 63.2 68.9

N

DeViSE [5] N 68.7 13.4 22.4 74.7 17.1 27.8
SYNC [3] N 87.3 8.9 16.2 90.5 10.0 18.0
SJE [1] N 74.6 11.3 19.6 73.9 8.0 14.4
ALE [33] N 76.1 16.8 27.5 81.8 14.0 23.9
SAE [10] N 77.1 1.8 3.5 82.2 1.1 2.2
DZSL [38] N 68.4 32.8 47.3 57.9 19.6 29.2
PSR [37] N - - - 73.8 20.7 32.3
Ours Y 65.0 51.9 57.8 42.7 37.6 40.0

images in AWA1 and CUB while manually defined attributes of
dimension 𝑘 = 85 and 𝑘 = 312 for AWA1 and CUB, respectively. For
HMDB51 and UCF101, we use the I3D [2] video feature of 𝑑 = 8196
dimension and 𝑘 = 300-dim word2vec as semantic prototypes pro-
vided by [16]. For AWA1 and CUB we use the new seen/unseen
split proposed by [34] while for HMDB1 and UCF101 we use the
seen/unseen splits provided by [16] where we experiment on 30
splits and report the average performance. We use the evaluation
criterion proposed by [34] where we report the average top 1 accu-
racy on the seen (𝑆) and the unseen (𝑈 ) classes and the harmonic
mean (𝐻 ) of 𝑆 and𝑈 .
Model Architecture:We use fully connected NN models for the
proposed method. The details of the model architecture are given
in supplementary material due to space constraints. We fix 𝛾 =

1, 𝛿𝑙 = 0.5 and 𝛿ℎ = 1.5 for all the datasets while 𝑠𝑙 and 𝑠ℎ are set
separately for each dataset based on validation.
Comparison with the state of the art methods: We compare
the performance of our model with the existing generative and non-
generative GZSL methods. We emphasize that many of the existing
generative model-based methods violate the principal assumption
of GZSL of not using any data related to the unseen classes during
training. It is imperative that such methods get the added advantage
of using the unseen class semantic information during training and
hence are not directly comparable with our method. Nonetheless, we
still report the performance of these methods and show that ours
perform comparably with these methods.

Table 3: GZSL performance comparison using average top-1
accuracy on the seen (S) and the unseen classes (U) and their
harmonic mean (H). UD corresponds to using (Y) or not us-
ing (N) the data from the unseen classes during training. GM
corresponds to using (Y) or not using (N) generative models.
∗ represents results are reported from [16]

HMDB51 UCF101
UD Method GM S U H S U H

Y
GGM∗ [20] Y - - 20.1 - - 17.5
f-CLSWGAN∗ [35] Y 52.6 23.7 32.7 74.8 20.7 32.4
CEWGAN [16] Y 55.6 26.8 36.1 75.9 24.8 37.3

N

ESZSL [24] N 71.1 4.3 8.0 96.4 3.2 3.4
SJE∗ [1] N - - 10.5 - - 8.9
ConSE∗ [21] N - - 15.4 - - 12.7
SADLE [7] N 76.2 16.0 26.3 98.1 12.7 22.5
Ours N 61.1 25.3 35.6 69.2 17.1 27.4

Results: Table 2 compares the proposed method with the exist-
ing generative and non-generative methods for AWA1 and CUB
datasets. All the generative model-driven methods outperform
those with non-generative models. This is because synthesizing
the visual samples from the unseen classes and using them during
training reduces the model bias towards the seen classes. Although
generative, our method synthesizes the proxy samples and not the
visual samples from the unseen classes during training. In the same
experimental setting, our method beats the𝐻 of existing state of the
art DZSL[38] (in AWA1) by 10.5 and PSR [37] (in CUB) by 7.7. Our
method performs comparably with other generative methods such
as f-CLSWGAN [35], SE-GZSL [11], which uses CWGAN and VAE,
respectively. Our performance is comparable with f-VAEGAND2
[36] on AWA, while our model performs poorly on CUB as com-
pared to f-VAEGAND2 [36].

Table 3 shows the results for HMDB51 and UCF101. These are
relatively complex datasets, but we still outperform the existing
models. We observe that the generative-model driven methods out-
perform the non-generative methods. In the standard GZSL setting,
we improve by 9.3 and 4.9 in 𝐻 over the non-generative model
SADLE in [28], for HMDB51 and UCF101, respectively. Generative-
model driven methods GGM [20], f-CLSWGAN [35] and CEWGAN
[16] uses unseen class prototypes during training to generate un-
seen class visual samples. We still outperform GGM, f-CLSWGAN,
and deliver comparable performance with CEWGAN. We note that
although we use the approach similar to CEWGAN for converting
GZSL into SL and ZSL, CEWGAN trains separate classifiers for the
unseen classes based on synthesized features.

The improvement due to the proposed entropy separation loss
can also be observed from the Figure 4 which shows the effect of
entropy separation during training and testing for AWA1 dataset.
The left plot of Figure 4 shows the histogram of entropies of the
samples from the seen classes and entropies of the proxy samples
at the end of the training of the VSMM. It can be observed that
the visual samples from the seen classes have a low entropy, while
the proxy samples possess high entropy. The right plot of Figure 4
shows that a large number of test samples from the seen classes and
the unseen classes have low and high entropies, respectively. By
using decision rule in Eq.(10), the test samples can be labeled using
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Generated proxy samples

Real visual samples (Seen classes)

Real Visual samples (Unseen classes)

Figure 3: HMDB51: t-SNE plots show the generated samples as training of CWGAN progresses. Left: Initial training phase
where discriminator (D) of the CWGAN can easily discriminate between generated fake samples and real samples (train sam-
ples) of the seen classes. Centre: Generated samples are still far from the real samples of seen classes and can be used as proxy
samples representing the samples from the open-set of classes. Right: Generator (G) of CWGAN can generate fake samples
that are indistinguishable from the real samples of the seen classes.

Figure 4: AWA1: Left: Histogramof entropies of the samples from the seen classes and generated proxy samples during training.
Right: Histogram of entropies of the samples from the seen and unseen classes during testing. Themodel trained with entropy
separation criterion generalizes well during testing providing better separation of the entropies of the samples from the seen
and unseen classes.

Table 4: The effect of entropy separation criterion over the
Baseline. For Ours, the average value and standard deviation
(in brackets) of𝐻 are reported. The average is reported as dif-
ferent models of CWGAN can be selected based on training
iterations to generate proxy samples such that 𝑠𝑙 < 𝐶𝑆 < 𝑠ℎ .

Model AWA1 CUB HMDB51 UCF101

Baseline 33.2 28.0 18.8 17.0
Ours 57.8 (±3.5) 40.0(±2.7) 35.6(±1.6) 27.4(±2.0)

SL, ZSL, or GZSL. The two histograms highlight the importance of
the two thresholds. It can be observed that there is a good separation
between the entropies of the visual samples from the seen classes
and proxy samples during training. As the proxy samples may
not necessarily constitute the unseen classes; there exists a small
overlap between the entropies of the visual samples from the seen
and unseen classes during testing (right plot Figure 4). To avoid
misclassification due to hard thresholding, we use two thresholds
where samples whose entropies fall in the [𝛿𝑙 , 𝛿ℎ] are classified
using GZSL.

5.1 Ablation Study
Effect of entropy separation criterion: We use Baseline to de-
note the performance of the VSMM, where we do not include the

0 20 40 60 80
Training Epoch

25

30

35

40

45

50

H
/C

S

Split 1: CS

Split 1: H

Split 2: CS

Split 2: H

Figure 5: The plot is showing the evolution of training of
CWGAN and its effect on𝐶𝑆 and𝐻 for two different splits of
HMDB51. 𝐶𝑆 increases as the training of CWGAN progress
whereas 𝐻 initially increases and then decreases.

entropy separation loss during training, and all the test samples
are classified using GZSL. Baseline suffers from the model bias as
there is no provision to overcome the model bias towards the seen
classes. The proxy samples and entropy separation criterion help
in reducing the model bias by converting the GZSL problem into
SL and ZSL. From Table 4, it can be observed that training VSMM
with entropy separation loss improves the 𝐻 over the Baseline by
24.6 (AWA1), 12.0 (CUB), 16.8 (HMDB51), and 10.4 (UCF101).
Selection of training iteration of CWGAN: It is important to
identify the appropriate training iteration for generating proxy
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Figure 6: Percentage of the test samples that are classified
using SL, ZSL, or GZSL. Dataset names followed by 𝑆 or 𝑈
correspond to the results for the test samples from the seen
classes or unseen classes, respectively.

samples for unseen classes. Once we decide upon the training itera-
tion, we use the 𝐺 of CWGAN, which is trained until that iteration
to generate the proxy samples. Selecting the training iteration at
the start of the training is not desirable. As the 𝐺 is conditioned
on the prototypes of seen classes as well as normally distributed
noise, generated samples would be normally distributed but very
far from the seen classes (Figure 3 (left)). The training iteration,
when 𝐷 of CWGAN can not distinguish between real and gener-
ated samples (this can be identified by looking at the Wasserstein’s
distance), is not desirable. Because 𝐺 in such a case would gener-
ate the visual samples from the seen classes (which is abundantly
available) (Figure 3 (right)). Hence, we select the training iteration
in the early training phase of CWGAN (Figure 3 (center)) where
normally distributed samples start to disperse. To exactly arrive at
the training iteration of interest, we use 𝐶𝑆 defined in Eq.(7). In
Figure 5, the the 𝐶𝑆 and 𝐻 are plotted against the training epochs
for a couple of splits for HMDB51. It can be noted that𝐶𝑆 increases
as the training progresses, indicating that 𝐺 can produce the data
that matches the real data. On the other hand, 𝐻 initially increases
and then decreases as the training progresses. The initial increase
in the 𝐻 is because the VSMM training can separate the entropies
of the proxy samples from the entropies of the visual samples from
the seen classes. The decrease in 𝐻 in the later part of CWGAN
training is because generated proxy samples get closer to the visual
samples of the seen classes, and hence the entropy separation loss
during the training of VSMM has no effect. It leads to confusion
about separating the entropies of the visual samples from the seen
classes and proxy samples during training. This results in poor
performance while separating the visual samples from the seen and
the unseen classes during testing. In Table 4 we report the average
and standard deviation of 𝐻 for different training iterations for
which 𝑠𝑙 < 𝐶𝑆 < 𝑠ℎ .
Effect of two thresholds 𝛿𝑙 and 𝛿ℎ : Ideally, we would like to
convert the GZSL problem into SL and ZSL. However, as explained
in section 4.4, we employ two threshold system for the inference.
Hence, class labels of some of the samples are inferred using GZSL.
Figure 6 shows the percentage of test samples from the seen and
unseen classes that are classified using SL, ZSL, and GZSL. We note
that for all the datasets, the relatively large number of test samples
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Figure 7: Effect of the number of generated proxy samples
on 𝐻 . Plots for HMDB51 and UCF101 are for a random split.

from the unseen classes are classified using ZSL. This can signifi-
cantly reduce the misclassification due to unseen class test samples.
We also note that although a significant fraction of the test samples
from the seen classes are classified using GZSL, they are less likely
to get misclassified. This is due to the strong model bias towards
the seen classes. We note that although the numbers of samples
that are classified using SL, ZSL, and GZSL are encouraging, this
does not reflect into the overall performance in terms of 𝐻 . This
can be attributed to relatively simpler VSMM. As our method acts
as a pre-processing step, one can use any existing GZSL model to
infer the class label after the domain of the test sample is identified
by our method. To that end, one can expect further improvement
in the GZSL performance in terms of 𝐻 .
Effect of number of generated proxy samples on𝐻 :We evalu-
ate the proposed method by generating different numbers of proxy
samples. Figure 7 shows that the 𝐻 increases as the number of
proxy sample increases. However, we do not observe the increase
in 𝐻 when the number of samples is more than 3K. As the proxy
samples are not the same as the visual samples from the unseen
classes, using a large number of proxy samples is recommended to
capture the diversity of the visual samples from the open-set.

6 CONCLUSION
In this paper, we have proposed a method that makes use of the
early training regime of the generative model and entropy separa-
tion criterion to address the problem of GZSL. The proxy samples
generated using the early training regime are representative of the
classes from the open-set, which contains the unseen classes. To
identify the exact training iteration, we used the Confidence Score
of the generated proxy samples given by a pre-trained classifier.
The proxy samples, along with samples from the seen classes, are
used to train a separate classifier with entropy separation loss in an
NN-based visual-semantic mapping module (VSMM). Such entropy
separation loss keeps the average entropy of the samples from the
seen classes low while increasing the average entropy of the proxy
samples. This an objective helps in identifying the test samples from
the seen and unseen classes by looking at their entropies obtained
from the classifier output. The coarse separation of the test samples
in the seen or unseen domain then follows the identification of class
labels using supervised learning, ZSL or GZSL. During an entire
training process, our method does not use any data from the unseen
classes; hence it strictly follows the GZSL settings. We demonstrate
the excellent performance on two image datasets for animal and
bird recognition and two video datasets for action recognition.
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