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ABSTRACT
In the CNN based object detectors, feature pyramids are widely
exploited to alleviate the problem of scale variation across object
instances. These object detectors, which strengthen features via a
top-down pathway and lateral connections, are mainly to enrich the
semantic information of low-level features, but ignore the enhance-
ment of high-level features. This can lead to an imbalance between
different levels of features, in particular a serious lack of detailed
information in the high-level features, which makes it difficult to
get accurate bounding boxes. In this paper, we introduce a novel
two-pronged transductive idea to explore the relationship among
different layers in both backward and forward directions, which
can enrich the semantic information of low-level features and de-
tailed information of high-level features at the same time. Under
the guidance of the two-pronged idea, we propose a Two-Pronged
Network (TPNet) to achieve bidirectional transfer between high-
level features and low-level features, which is useful for accurately
detecting object at different scales. Furthermore, due to the distribu-
tion imbalance between the hard and easy samples in single-stage
detectors, the gradient of localization loss is always dominated by
the hard examples that have poor localization accuracy. This will
enable the model to be biased toward the hard samples. So in our
TPNet, an adaptive IoU based localization loss, named Rectified
IoU (RIoU) loss, is proposed to rectify the gradients of each kind of
samples. The Rectified IoU loss increases the gradients of examples
with high IoU while suppressing the gradients of examples with
low IoU, which can improve the overall localization accuracy of
model. Extensive experiments demonstrate the superiority of our
TPNet and RIoU loss.
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1 INTRODUCTION
Along with the advances in deep convolutional networks, lots of ob-
ject detectors have been developed in recent years. On the whole, all
the detectors that use deep CNN can be divided into two categories:
(1) The multi-stage approaches, including [1, 6, 8, 13, 22, 24]. For the
multi-stage object detectors, multi-stage classification and localiza-
tion are applied sequentially, which make these models more pow-
erful on classification and localization tasks. So these approaches
have achieved the top performance on benchmark datasets. (2) The
one-stage approaches, including [5, 14, 17, 18, 20, 28]. The one-
stage approaches apply object classifiers and regressors in a dense
manner without object-based pruning. The main advantage of the
one-stage detectors is their efficiency, but the detection accuracy is
usually inferior to the two-stage approaches.

It is well known that enhancing the representation of features
by exploiting the layer-wise correlation and dependence between
different layers is an effective way to improve the performance of
object detection. FPN [13] uses a top-down pathway and lateral
connections to combine the low-level features and the high-level
features and achieve information interaction between different
layers. M2Det [29] presents Multi-Level Feature Pyramid Network
(MLFPN) to construct feature pyramids for detecting.

In our opinion, the FPN-based detectors above only take into
account one direction of the feature enhancement which may cause
the imbalance between low-level and high-level features. For ex-
ample, the original FPN, which strengthens feature via a top-down
pathway and lateral connections, is mainly to enrich the semantic
information of low-level features, but ignores the enhancement of
high-level features. This can lead to an imbalance between different
levels of features, in particular a serious lack of detailed information
in the high-level features, which makes it difficult to get accurate
bounding boxes although the network can regress some rough
boundaries.

In order to alleviate this problem, we think that high-level fea-
tures and low-level features should be equally interacted, which
means that each layer needs to receive more abstract information
from its upper layer and meanwhile get more basic cues or detailed
information from its lower layer, and we call this two-pronged
effect. In this paper, we originally introduce a novel two-pronged
transductive idea to explore the relationship and two-pronged effect
among different layers in both backward and forward directions,
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Figure 1: Our proposed two-pronged transductive structure,
in which the backward transfer (shown as the green lines
with arrows) achieves the feature transfer from high-level
layers to low-level layers, and the forward transfer (shown
as the red lines with arrows) achieves the transfer from
transductive features to high-level features.

which can improve the classification performance in low-level lay-
ers and the regression performance in high-level layers. Follow-
ing the two-pronged idea, we propose a Single-Shot Two-Pronged
Network (TPNet) consisting of multiple two-pronged layer-wise
interaction blocks named two-pronged Transductive (T) blocks to
achieve bidirectional transfer between high-level features and low-
level features. As shown in Figure 1, five T blocks are added after
the backbone. In each T block, we first transfer multiple high-level
features of low-resolution but stronger semantics to the low-level
features of high-resolution but weak semantic by the backward
transfer layers, as shown by the green lines with arrows. We gain
rich semantic information at all levels by the multi-level fusion,
which is helpful for object classification task in low-level layers.
Secondly, in order to compensate for the detailed information loss
in down-sampling process of network and get more basic cues from
lower layer, the forward transfer layers are designed to propagate
the enhanced features to higher-level layers, as shown by the red
solid lines with arrows. We obtain more detailed information in
deeper layers with the forward transfer layer, which can be effec-
tive for accurate object location. Through several T blocks, the
relationship and two-pronged effect among different layers can be
explored after training and different level features can be jointly
interacted to enhance the representation ability on both sides.

In the single-shot detectors, the matching strategy based on IoU
is often used for preparing the training samples. However, this IoU
based strategy neglects a fact that the IoU distribution of all the
samples is seriously imbalanced. This will cause that the gradient
of localization loss (e.g., smooth L1 loss, IoU loss) for single-shot
detectors are dominated by outliers (low IoU levels) during training
phase, which enables the detection model to be biased toward the
outliers. The issue always leads to the network unable to regress
accurate bounding boxes. So if we can rectify the gradients of each
kind of examples during training phase, the adverse effects caused
by this issue will be mitigated well. Motivated by this, we propose
an adaptive IoU based localization loss, named Rectified IoU (RIoU)

loss. Our Rectified IoU loss up-weights the gradients of examples
with high IoU while suppressing the gradients of examples with low
IoU. Training with Rectified IoU loss, the huge amount of cumulated
gradient produced by easy examples (high IoU levels) can be up-
weighted and the outliers (low IoU levels) can be relatively down-
weighted. In the end, the contribution of each kind of example will
be balanced and the training can be more efficient and stable.

With the Two-Pronged Transductive (T) blocks for feature learn-
ing and the Rectified IoU loss for training, our TPNet can regress
more accurate bounding boxes in object detection. In order to evalu-
ate the effectiveness of the proposed TPNet, we apply it on the very
challenging PASCAL VOC [4] and MS COCO [15] benchmarks. The
detection results demonstrate the competitiveness of our TPNet
over state-of-the-arts, especially in the case of higher IoU threshold.
In summary, this paper makes three main contributions:

1. We propose a novel two-pronged transductive idea to explore
the two-pronged effect between high-level features and low-
level features through the forward and backward feature
transfer. And under the guidance of the two-pronged trans-
ductive idea, we propose a novel Two-Pronged Network (TP-
Net) consisting of multiple two-pronged layer-wise transfer
blocks named Two-Pronged Transductive (T) blocks, which
can achieve more accurate bounding boxes regression.

2. We introduce an IoU based localization loss, named Rectified
IoU (RIoU) loss, to rectify the gradients of each kind of ex-
amples, which can prevent the gradients of localization loss
from being dominated by outliers during training phase and
ensure accurate bounding box regression ability of the whole
detector.

3. With two-pronged Transductive (T) blocks and the Rectified
IoU loss, a scale-aware object detector (TPNet) is materialized.
The proposed T block and RIoU loss can be easily plugged
and played in most existing detectors. The proposed TPNet
achieves competitive results on the PASCAL VOC and MS
COCO benchmarks.

2 RELATEDWORK
Model architectures for object detection. Benefited from the
power of Deep ConvNets, CNN has achieved great success in the
object detection field. All the CNN-based detectors can be roughly
divided into two categories, i.e., two-stage detector and one-stage
detector. The two-stage detector consists of two parts. The first part
is responsible for generating a set of candidate object proposals,
e.g., Selective Search [26], EdgeBoxes [32], RPN [22]. The second
part determines the accurate object regions and the corresponding
class labels using convolutional networks according to the candi-
date object proposals. Its descendants (e.g., R-CNN [7], Fast R-CNN
[6], Faster R-CNN [22], R-FCN [2], FPN [13], Mask RCNN [8], Cou-
pleNet [31]) achieve dominant performance on several challenging
datasets. However, the most serious limitation of the two-stage
approaches is inefficiency. In view of high efficiency, the one-stage
approaches attract much more attention recently. YOLO [20] di-
vides the input image into many grids and uses a single forward
convolutional network to perform localization and classification
on each part of the image, which is very fast. SSD [17] is another
efficient one-stage detector, which adds a series of progressively
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Figure 2: The overall architecture of TPNet which includes several T blocks and a Fusion block. The T blocks achieve bidirec-
tional feature transfer. The Fusion block further constrain the features of each T block.

smaller convolutional layers to generate pyramid feature maps
and two 3 × 3 convolutional layers to predict the class scores and
location offsets of the default bounding boxes. After that, more
advanced one-stage detectors (e.g., RetinaNet [14], RefineDet [28],
RFB [16], M2Det [29]) even achieve higher accuracy than some
two-stage detectors. Especially, in order to solve the problem that
the detection result is too sensitive to the size of the anchor and
simultaneously avoid the complex IoU computation and matching
between anchor boxes and ground-truth boxes during training,
some anchor-free detectors are proposed, including CornerNet [9],
FCOS [25], CenterNet [3].

IoU based localization loss. The Ln-norm loss functions are
usually adopted in bounding box regression. But as Ln-norm loss
has proved to be not tailored to the regression task because of their
scale-sensitivity, some IoU-based regression losses are proposed.
UnitBox [27] adopts the IoU loss instead of L1-norm loss to regress
the bounding boxes (bbox) and achieves more accurate location in
face detection. GIoU [23] is a generalized version to address the
weakness of IoU loss by extending the concept to non-overlapping
cases. DIoU [30] incorporates the normalized distance between the
predicted bbox and the GT bbox on the basis of GIoU. The IoU-based
losses have received increased attention due to their effectiveness
under a high IoU threshold.

Gradient rectified localization loss functions. In order to
balance the contribution of each kind of examples and prevent the
gradients of localization loss from being dominated by outliers,
some detectors have also made some explorations on gradient recti-
fied localization loss. GHM [10] analyzes the example imbalance in
one-stage detectors in term of gradient norm distribution and pro-
pose a gradient harmonized localization loss GHM-R. Libra R-CNN
[19] claims that the overall gradient of smoothL1 loss is dominated

by the outliers when balancing classification and localization task
directly. As a result, the balanced L1 loss is proposed to increase
the gradient of easy examples and keep the gradient of outliers un-
changed. However both the GHM-R and balanced L1 loss are based
on smooth L1 loss, which is not invariant to the scale. Different
from that, our proposed Rectified IoU loss is an IoU based gradient
rectified localization loss functions. This means that our Rectified
IoU loss can automatically rectify the gradients of different samples
while ensuring the scale invariance.

3 TWO-PRONGED NETWORK
Under the guidance of the two-pronged idea, we propose a novel
Two-Pronged Network (TPNet). The overall architecture of the TP-
Net is shown in Figure 2. We first feed the image into backbone (e.g.,
ResNet-50) to extract the basic features. Then, the basic features
are fed into the multiple T blocks to extract more representative
features by bidirectional transfer. Lastly, we construct a feature
pyramid for the final object detection. Similar to SSD, we produce
dense bounding boxes and category scores on the feature pyramid,
followed by the non-maximum suppression (NMS) operation to
produce the final results. In this section, we first introduce in detail
the architecture of our TPNet consisting of multiple two-pronged
layer-wise transfer blocks named Two-Pronged Transductive (T)
blocks in section 3.1 and Fusion (F) block in section 3.2. Then we
describe the details of Rectified IoU (RIoU) loss in section 3.3.

3.1 Two-Pronged Transductive (T) Blocks
In order to introduce the process of the transfer between different
T blocks, we present the detailed structure and connection of two
neighbor T blocks, as shown in Figure 3 (a), (b). We can clearly find
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Figure 3: Structural details of two blocks. (a) Two-Pronged Transductive (T) block L, (b) Two-Pronged Transductive (T) block
L+1: the core module of the TPNet which achieves multi-neighbor backward transfer and forward transfer. (c) fusion module:
the basic module of Fusion block.

that our T block is mainly divided into two parts, i.e., multi-neighbor
backward transfer and forward transfer.

Multi-neighbor backward transfer. As we know, the shallow
layer (e.g., conv2_x for ResNet50) in the network is useful for small
object detection because of its abundant detailed information. How-
ever, due to the lack of semantic information, those shallow layers
perform poorly on classification task. So in order to improve the
classification performance of shallow layers, we transfer multiple
high-level features to the low-level features by backward trans-
fer layers. This will help low-level feature maps acquire different
semantic information from different deeper layers, which can im-
prove the performance of the classifier in the low-level layer. Unlike
DSSD [5] which does up-sampling and fusion from the last level one
by one, we fuse the current features with the features of its multi-
neighbor layers to gain the transductive features. For example, if
the conv2_x in ResNet-50 is the current layer, then the conv4_x
in ResNet-50 is the first neighbor layer, while the basic feature
layer conv5_x which we build is the second neighbor layer and so
on. The specific structure may refer to Figure 3 (a) and (b) which
adopt 2-neighbor layer transfer. Assuming Xl , Xl+1, Xl+2 to be the
feature maps of the layer l , layer l +1 and layer l +2, andX l

out to be
the transductive features after multi-neighbor backward transfer.
So the features of the lth aggregation layer can be described as
follows:

X l
out = Relu((Xl ⊕ X

↑
l+1) ⊎ (X ∗

l ⊕ X
↑
l+2)) (1)

where “↑" is the up-sampling operation function, “⊕" is the element-
wise sum operation of feature maps,“⊎" is the concatenate operation
between feature maps, Relu(·) is the activation operation and X ∗

l
is the feature map of the lth forward transfer layer, which will be
introduced later. This part achieves the transfer from high-level
layers to low-level layers by the up-sampling and concatenated
operation, which is effective for small object detection in low-level
layers.

Forward transfer. In previous methods, such as FPN [13] and
DSSD [5], the features of the aggregation layers, which are gained
by constructing a feature pyramid, are only fed into the classi-
fier and regressor but without making any contributions to the

high-level layers. We think those aggregation layers with abun-
dant detailed information are useful for the accurate bounding
box regression in high-level layers where much detailed informa-
tion is lost in the down-sampling process. So in order to achieve
more accurate bounding box regression, the forward transfer layers
are proposed to compensate for the detailed information loss in
down-sampling process and enable upper layers with more basic
cues from lower layers. In fact, it is a concise but very effective
convolution layer as shown by the red solid lines with arrows in
Figure 3 (a) and (b). Suppose X l

out to be the aggregation output of
multi-neighbor backward transfer, and in order to transfer X l

out to
the next T block, a learnable convolution layer is used to obtain the
forward transductive featuresX ∗

l+1 of the next T block. The forward
transductive features will be fused with the second neighbor layer
of the next T block to achieve forward feature transfer. The forward
transductive features X ∗

l+1 can be described as follows:

X ∗
l+1 = Conv(X

l
out ) (2)

From the Eq.(1) and Eq.(2), the T blocks can be divided into the
following core components: (1) We transfer the features of the first
neighbor layer Xl+1 to the features of the current layer Xl after
deconvolution operation to obtain the k1 aggregation features. (2)
We transfer the features of the second neighbor layer Xl+2 to the
forward transfer layer X ∗

l after deconvolution operation to obtain
the k2 aggregation features. (3) Concatenating the features of the k1
and k2 aggregation layers to obtain the transductive features X l

out .
(4) We design the effective forward transfer layers to propagate
the enhanced features X l

out to high-level layers and apply a 1 × 1
convolution layer to gain the augmented features X l

output of the
lth T block at the same time. By designing the T blocks, we achieve
bidirectional feature transfer in a single network and generate better
features at all levels.

3.2 Fusion (F) Block
In order to further constrain the features of each layer, we design a
more concise Fusion (F) block, which consists of several simple fu-
sion modules shown as Figure 3 (c), to construct a feature pyramid
for the final object detection. As shown in Figure 2, after obtaining



the transductive features from multiple T blocks, then we construct
a feature pyramid to further constrain the features of each layer,
which includes several deconvolution and element-wise sum oper-
ations. Finally, we feed the features of the feature pyramid into the
classifier and regressor for object detection.

3.3 Rectified IoU loss
Intersection over Union (IoU) is a popular metric in object detection,
defined as:

IoU =
|Bp ∩ Bд |
|Bp ∪ Bд |

(3)

whereBp is the predicted bbox,Bд is the ground-truth. As suggested
in [27], the Ln -norm loss function is not a suitable choice to obtain
the optimal IoU metric, so IoU loss, defined as Eq.(4), is suggested
to be adopted for improving the IoU metric and regressing accurate
bounding boxes.

LIoU = 1 − IoU (4)
The absolute value |дradients(IoU )| of the gradients of the IoU loss
can be expressed as:

|дradients(IoU )| = | ∂LIoU
∂IoU

| = 1 (5)

The |дradients(IoU )| is the constant 1 for both easy samples (sam-
ples at high IoU levels) and hard samples (samples at low IoU levels).
But the IoU distribution of all the samples is seriously imbalanced,
generally, the number of samples at low IoU levels is larger than
that at high IoU levels. Needless to say, the hard samples at low IoUs
dominate the gradients of the location loss in the training phase,
which enables the detection model to be biased toward the hard
samples. So we want to explore a new IoU loss which can rectify
the gradients of each kind of example. Specifically, the loss can up-
weight the gradients of examples with high IoU while suppressing
the gradients of examples with low IoU.

IoU
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Figure 4: The gradients of the standard IoU loss and our pro-
posed Rectified IoU loss. β is the position of the inflection
point.

But if we always up-weight the gradients of the localization loss
as the IoU increases, we will face another problem that the gradient
will continue to increase when the regression is perfect (IoU → 1).
This means we will get the maximum gradient when two bboxes
overlay perfectly (IoU = 1), which is very unreasonable.

Combining the above two points, we proposed a Rectified IoU
(RIoU) loss, whose gradient is a hyperbolic function, as shown in
Figure 4. The hyperbolic gradient formulation can be defined as:

|дradients(IoU )| = | ∂LRIoU
∂IoU

| = (aIoU + b) + k

(IoU − c) (6)

where a, b, c and k are four parameters used to control the shape
of the curve of the hyperbolic gradient. From the Figure 4, we
can clearly find that the gradient value rises first and then drops
sharply as the IoU value increases. And the gradient value has an
inflection point when IoU = β . In this paper, we set the β to 0.95.
This inflection point can be controlled by parameters a, b, c and k .
Conversely, we can calculate the values of the parameters according
to the starting point, the ending point and inflection point of the
gradient curve.

By integrating the gradient formulation defined as Eq.(6) and
combining the properties of IoU based localization loss, we can get
the Rectified IoU loss as follows:

LRIoU = 1 − (a
2
IoU 2 + bIoU + kln |IoU − c | + t) (7)
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Figure 5: The distribution curves of the standard IoU loss
and our Rectified IoU loss.

Analytical Solution of the Parameters. As the five parame-
ters in Eq.(7) are analytically determined parameters, rather than
hyperparameters, so in the following, we further introduce how
to calculate the values of the five parameters in Eq.(7). Firstly, if
we set the starting point, the ending point and the inflection point
of the gradient curve as (0,0), (1,0) and IoU = β (β = 0.95 in this
paper) respectively, as shown in Figure 4. By substituting them into
Eq.(6), we can obtain three constraint equations as follows:

b − k

c
= 0

a + b +
k

1 − c
= 0

c −
√

k

a
= β

(8)

Secondly, according to the two properties of IoU based localization
loss: (1) The RIoU loss will be 1 when IoU = 0. (2)The RIoU loss
will be 0 when IoU = 1, by substituting them into Eq.(7), we can



get another two constraint equations as follows:
1 − kln |c | − t = 1

1 − a

2
− b − kln |1 − c | − t = 0

(9)

By combining the Eq.(8) and Eq.(9), we can calculate the values of
the five parameters a,b, c,k, t and get the final Rectified IoU loss
formulation according to the value of β that we set in advance. The
proposed RIoU loss (β=0.95) is visualized in Figure 5. We can find
that the distribution of RIoU loss shows an upwards convex shape
when IoU< β , and a sunken shape when IoU> β .

Detection Loss. In order to accelerate the convergence of the
RIoU localization loss, inspired by the DIoU loss [30], we add the
normalized distance between the central points of two bounding
boxes to the localization loss, which can directly minimize the dis-
tance between predicted bbox and GT bbox for achieving faster
convergence. With the proposed localization loss and the basic
object classification loss, the overall objective of our TPNet is sum-
marized as follows:

Ldet = Lcls + LRIoU + ρ(Bctp ,Bctд ) (10)

where Lcls is the classification loss, which is the cross entropy
loss in our experiments, the ρ(·) is the distance function, which is
smooth L1 in this paper. Bctp is the central points of the predicted
bbox, Bctд is the central points of the ground-truth.

4 EXPERIMENTS
In this section, we first conduct experiments on two widely used
benchmarks for the object detection task, i.e., PASCAL VOC and
MS COCO. We then conduct ablation analysis of the proposed T
blocks, F block and RIoU loss in our TPNet. All of our models are
trained under the PyTorch framework with SGD solver on NVIDIA
Titan Xp GPUs.

4.1 Experiments on PASCAL VOC
PASCAL VOC is a dataset of 20 classes for extensively evaluating
the object detection algorithms. In our experiments, all models are
trained on the union of the VOC 2007 trainval and VOC 2012
trainval datasets, and tested on the VOC 2007 test set. And the
ResNet-50 is adopted as the backbone. We set the batch size as
32 for PASCAL VOC datasets. The momentum is fixed to 0.9 and
the weight decay is set to 0.0005, which is consistent with the
original SSD settings. We start the learning rate with 10−3 for 150
epochs and decay it to 10−4 and 10−5 for another 50 and 50 epochs
respectively in PASCAL VOC datasets. In order to prove that our
model can regress more accurate bounding boxes, a stricter COCO-
style Average Precision (averaged AP at IoUs from 0.5 to 0.9 with
an interval of 0.1) metrics is adopted on the PASCAL VOC dataset.

We compare our method with the state-of-the-art detectors on
VOC 2007 test set. As shown in Table 1. Without bells and whistles,
our TPNet can achieve 59.4% AP when the input size is 320, which
can improve AP by 3.3% compared with the baselines DSSD320
(from 56.1% to 59.4%). Especially, the improvement for AP at higher
IoU threshold (0.8, 0.9) is 4.8% ∼ 6.5% over DSSD. And the AP of
our detector (59.4%) is better than most of state-of-the-art detec-
tors on PASCAL VOC, such as the RefineDet320 (54.7%), DIoU
(55.8%), DAFS (58.7%), Cascade R-CNN (58.5%). When the input

size is increased to 512, our method can achieve 61.2% AP which is
comparable to most of state-of-the-art detectors at the same scale.

4.2 Ablation Study
In order to demonstrate the effectiveness of different components
in our TPNet, we construct the ablation experiments on PASCAL
VOC. As shown in Table 2, we mainly analyze the effectiveness of
the following components: T block, F block and RIoU loss. For a
fair comparison, all models are trained on VOC 2007 trainval +
VOC 2012 trainval and tested on VOC 2007 test with the input
size of 320. The stricter COCO-style Average Precision (averaged
AP at IoUs from 0.5 to 0.9 with an interval of 0.1) is also adopted in
our ablation experiments.

Two-ProngedTransductive (T) Blocks and Fusion (F) Block.
We first conduct the ablation experiments to verify the effective-
ness of the T block and F block. As shown in Table 2, we can find
that the detector can achieve 57.6% AP when we only add the T
blocks to the base network, which improves the AP by 1.5% (from
56.1% to 57.6%). The reason is that the T blocks really improve
the performance of the classification task in low-level layers and
regression task in high-level layers by exploring the relationship
and two-pronged effect among different layers in both backward
and forward directions. And when we add the Fusion Block to the
network, the AP can be slightly improved (from 57.6% to 57.9%).
In addition, we also conduct experiments to analyze the effects of
the two parts in T blocks, i.e., Multi-neighbor backward transfer
(T-MBT) and forward transfer (T-FT). As shown in Table 3, the
detector can improve the AP by 0.7% (from 56.1% to 56.8%) when
we only adopt the T-MBT in T blocks. And when we add the T-FT
into the T blocks, our detector can further improve AP by 0.8%
(from 56.8% to 57.6%). These experiments demonstrate that both
T-MBT and T-FT play an important role in the network.

Performance analysis of our Rectified IoU loss. In order to
validate the effectiveness of the RIoU loss, we conduct three abla-
tion experiments. Firstly, we use the RIoU loss instead of smooth
L1 loss to train our TPNet. As shown in Table 2, our TPNet trained
with RIoU loss can improve AP by 1.5% compared with the detector
trained with smooth L1 loss (from 57.9% to 59.4%). Especially, the
performance is largely improved by 3% at higher IoU threshold
(i.e., 0.8 and 0.9), which demonstrates that our RIoU loss can sub-
stantially improve the model localization accuracy. Secondly, we
conduct experiments to analyze the effect of the inflection point
of the gradient β . Results are presented in Table 4, in which four
different inflection points of the gradient ranging from 0.85 to 1.0
are experimented. The best AP (59.4%) of RIoU is obtained when
the β is 0.95. And the AP is slightly decreased when the β = 1.0.
This proves that it is unreasonable to up-weight the gradients of
examples when the regression is perfect (IoU → 1), as is described
in section 3.3. Thirdly, in order to validate the compatibility and
generality of RIoU loss for object detection, we also conduct exper-
iments on the original SSD and compare our RIoU loss with some
other IoU based localization losses. The results are presented in
Table 5, from which we can see that the AP of the SSD with RIoU
loss (56.8%) is better than SSDwith other IoU based localization loss,
such as IoU loss (54.9%), GIoU loss (55.3%) and DIoU loss (55.8%).



Table 1: Comparison of detection methods on the PASCAL VOC dataset. For PASCAL VOC 2007, all methods are trained on
VOC 2007 and VOC 2012 trainval sets and tested on VOC 2007 test set.

Method Backbone Input size AP AP50 AP60 AP70 AP80 AP90
two-stage:

Faster R-CNN [22] ResNet-50-FPN ∼1000×600 52.9 79.8 75.0 61.7 39.0 8.8
Cascade R-CNN [1] ResNet-50-FPN ∼1000×600 58.5 80.0 74.7 65.8 50.5 21.5

one-stage:

SSD300 [17] VGG-16 300×300 52.7 77.6 72.7 61.0 40.9 11.4
YOLOv2 [21] Darknet-19 544×544 53.7 78.6 73.6 62.0 41.6 12.8
DSSD320 [5] ResNet-50 321×321 56.1 79.6 74.8 64.1 46.1 16.0
GIoU [23] ResNet-50-FPN 300×300 55.3 78.4 74.1 63.5 45.9 14.6
DIoU [30] ResNet-50-FPN 300×300 55.8 78.9 74.6 64.0 46.2 15.5

RefineDet320 [28] VGG-16 320×320 54.7 80.0 74.2 63.5 43.3 12.2
DAFS320 [11] ResNet-101 320×320 58.7 81.0 76.3 66.9 49.2 20.0

TPNet320(Ours) ResNet-50 320×320 59.4 80.3 76.3 66.8 50.9 22.5
SSD512 [17] VGG-16 512×512 57.5 79.8 76.6 66.7 49.4 15.2
DSSD512 [5] ResNet-50 513×513 58.5 81.5 77.7 67.6 50.0 15.8

RefineDet512 [28] VGG-16 512×512 58.4 81.8 77.8 67.2 49.6 15.6
RetinaNet [14] ResNet-101-FPN ∼1000×600 59.3 81.1 77.2 67.5 50.4 20.1
DAFS512 [11] VGG-16 512×512 59.4 82.4 78.2 67.6 50.9 18.0

TPNet512(Ours) ResNet-50 512×512 61.2 81.7 78.0 69.3 53.0 24.0

Table 2: Ablation results of each component (i.e.,T block, F block and RIoU loss) in TPNet, in which ResNet-50 is adopted as
the backbone.

method AP AP50 AP60 AP70 AP80 AP90
Baseline(DSSD) 56.1 79.6 74.8 64.1 46.1 16.0
Baseline+T block 57.6 80.6 76.1 65.0 47.3 19.0

Baseline+T block+F block 57.9 80.6 76.2 65.4 48.0 19.2
Baseline+T block+F block+RIoU loss 59.4 80.3 76.3 66.8 50.9 22.5

Table 3: The effectiveness of the Multi-neighbor backward
transfer (T-MBT) and forward transfer (T-FT) on VOC 2007
test set.

T block AP AP50 AP60 AP70 AP80 AP90
Baseline 56.1 79.6 74.8 64.1 46.1 16.0

Baseline+T-MBT 56.8 80.3 75.5 64.1 46.8 17.4
Baseline+T-MBT+T-FT 57.6 80.6 76.1 65.0 47.3 19.0

Table 4: Performance analysis of the inflection point β of the
gradient on VOC 2007 test set.

β AP AP50 AP60 AP70 AP80 AP90
0.85 58.7 80.2 76.5 66.3 50.0 20.7
0.90 59.1 80.2 76.3 66.6 50.5 21.7
0.95 59.4 80.3 76.3 66.8 50.9 22.5
1.0 59.2 80.2 76.2 66.4 50.7 22.4

Table 5: The effectiveness of training original SSD detector
with different IoU based localization losses, ResNet-50-FPN
is adopted as the backbone.

Location loss AP AP50 AP60 AP70 AP80 AP90
SSD+IoU loss 54.9 78.1 73.4 62.9 45.6 14.6
SSD+GIoU loss 55.3 78.4 74.1 63.5 45.9 14.6
SSD+DIoU loss 55.8 78.9 74.6 64.0 46.2 15.5

SSD+RIoU loss(Ours) 56.8 79.2 73.6 64.8 48.1 18.4

4.3 Experiments on MS COCO
To further validate our method, we also evaluate our TPNet on
MS COCO 2017. Following the protocol in MS COCO, we use the
train set (118, 287 images) for training and the test-dev set (20,
288 images) for evaluation. By submitting the detection result to
test-dev evaluation server, we can download the final evaluation
result.

We compare the evaluation results of our TPNet on MS COCO
test-dev set with the results of some state-of-the-art detectors in
Table 6. ResNet-101 is adopted as the backbone in our experiments.
Without bells and whistles, when the input size is 320, our TPNet
with ResNet-101 produces 34.2% mAP that is better than most of
one-stage detectors. Our model outperforms the baseline DSSD320
by 6.2% mAP (from 28.0% to 34.2%). When the input size is increased
to 512, our method can achieve 39.6% mAP with ResNet-101, which
is comparable to most of state-of-the-art detectors at the same scale.
Especially, our detector can achieve 41.2% mAP when we adopt
the multi-scale inference strategy, which is competitive to most of
one-stage detectors.

5 CONCLUSION
In this paper, we propose a novel accurate detector (TPNet), in
which two novel contributions are included. First, we introduce a
novel two-pronged transductive idea to explore the relationship and
two-pronged effect among different layers for both backward and



Table 6: Results on MS COCO test-dev set. The † means multi-scale inference.

Method Backbone FPS AP AP50 AP75 APS APM APL
two-stage:

Faster R-CNN [22] VGG-16 7 21.9 42.7 - - - -
Libra R-CNN [19] ResNet-101-FPN 6.8 40.3 61.3 43.9 22.9 43.1 51.0
TridentNet [12] ResNet-101 2.7 42.7 63.6 46.5 23.9 46.6 56.6

one-stage:

SSD300 [17] VGG-16 43 25.1 43.1 25.8 6.6 25.9 41.4
YOLOv2 [21] Darknet-19 40 21.6 44.0 19.2 5.0 22.4 35.5
DSSD321 [5] ResNet-101 9.5 28.0 46.1 29.2 7.4 28.1 47.6

RefineDet320 [28] ResNet-101 - 32.0 51.4 34.2 10.5 34.7 50.4
DAFS320 [11] ResNet-101 - 33.2 52.7 35.7 10.9 35.1 52.0

TPNet320(Ours) ResNet-101 25.7 34.2 53.1 36.4 13.6 36.8 50.5
SSD512 [17] VGG-16 22 28.8 48.5 30.3 10.9 31.8 43.5
DSSD513 [5] ResNet-101 5.5 33.2 53.3 35.2 13.0 35.4 51.1

RefineDet512 [28] ResNet-101 - 36.4 57.5 39.5 16.6 39.9 51.4
DAFS512 [11] ResNet101 - 38.6 58.9 42.2 17.2 42.2 54.8

RetinaNet800 [14] ResNet-101-FPN 5 39.1 59.1 42.3 21.8 42.7 50.2
GHM-C + GHM-R [10] ResNet-101-FPN 4.8 39.9 60.8 42.5 20.3 43.6 54.1

CornerNet [9] Hourglass-104 4.4 40.5 56.5 43.1 19.4 42.7 53.9
TPNet512(Ours) ResNet-101 13.9 39.6 58.5 42.8 20.5 45.3 53.3
TPNet512† (Ours) ResNet-101 - 41.2 59.9 44.2 22.6 46.3 55.0

forward feature transfer. Under the guidance of the two-pronged
idea, the proposed TPNet consists of multiple effective transductive
(T) blocks. The T blocks achieve the bidirectional enhancement of
features by multi-neighbor backward transfer and forward trans-
fer. A relation has been established between the high-level and
low-level layers of the network, which enables them to help each
other, promote each other, and acquire more discriminative features.
Second, in order to prevent the gradients of localization loss from
being dominated by outliers during training phase and ensure the
bounding box regression ability of the whole detector, we introduce
a new localization loss, named RIoU loss, which can up-weight
the gradients of examples with high IoU while suppressing the
gradients of examples with low IoU. We carry out benchmark ex-
periments on the PASCAL VOC and MS COCO datasets and the
results demonstrate the state-of-the-art detection performance of
our TPNet. The proposed T block and RIoU loss can be plugged
and played in existing detectors, which will be our future work.
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