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ABSTRACT

We propose a self-supervised method to learn feature representa-
tions from videos. A standard approach in traditional self-supervised
methods uses positive-negative data pairs to train with contrastive
learning strategy. In such a case, different modalities of the same
video are treated as positives and video clips from a different video
are treated as negatives. Because the spatio-temporal information
is important for video representation, we extend the negative sam-
ples by introducing intra-negative samples, which are transformed
from the same anchor video by breaking temporal relations in
video clips. With the proposed Inter-Intra Contrastive (IIC) frame-
work, we can train spatio-temporal convolutional networks to learn
video representations. There are many flexible options in our IIC
framework and we conduct experiments by using several differ-
ent configurations. Evaluations are conducted on video retrieval
and video recognition tasks using the learned video representation.
Our proposed IIC outperforms current state-of-the-art results by a
large margin, such as 16.7% and 9.5% points improvements in top-
1 accuracy on UCF101 and HMDB51 datasets for video retrieval,
respectively. For video recognition, improvements can also be ob-
tained on these two benchmark datasets. Code is available at https:
//github.com/BestJuly/Inter-intra-video-contrastive-learning.
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Figure 1: General idea of IIC. Given video x;, different views
of this video are treated as positives, and those features are
constrained to be close to each other. Data from other videos
are treated as negatives. Temporal relations in the anchor
view will be broken down to generate intra-negative sam-
ples, which are also treated as negatives to help the model
learn temporal information.

1 INTRODUCTION

There are many video understanding tasks, such as video caption-
ing and video segmentation. These tasks rely on effective motion
representation extractors, which are usually trained on the basis
of video recognition. For video recognition, the works presented
in [2, 12, 37, 38, 40, 42] have explored different network architec-
tures. In [4, 5, 32], an additional optical flow stream was used to
form a two-stream model. With optical flow, better results were
achieved [2, 38, 42]. Hara et al. [12] argued that they can imitate
image recognition procedures, which means that the performance
can be significantly improved with large datasets.

Though larger datasets are helpful for video understanding tasks
and numerous unlabeled videos are available on the Internet, anno-
tating new video datasets requires a wealth of resources. Ensuring
the performance of training action classification networks usually
requires properly trimmed action video clips, which makes the
situation more serious. Therefore, it is valuable if the unlabeled
videos can be leveraged to facilitate learning. From this point of
view, self-supervised learning is drawing a lot of attention these
days beacuse it does not require any labels.

Many self-supervised learning techniques are proposed for im-
age data. There are several designed tasks such as solving jigsaw
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puzzles [27], image inpainting [29], and image color channel pre-
diction [44]. For video data, existing works [6, 23, 26, 43] have
focused on changing the temporal information and making models
sensitive to the differences. The aforementioned methods can be
classified into a single category, which we call as intra-sample
learning because all operations are carried out in the sample itself.
For example, if a video contains several frames, shuffling frames to
change their order is performed within this sample.

In addition to intra-sample learning, inter-sample learning is
also a kind of self-supervised learning technique. For image data,
when we have an anchor image crop, crops from the same image are
treated as positives while crops from different images are treated as
negatives. If a model can distinguish whether samples come from
the same sample set or not, it is certain that this model can extract
discriminative features, which may be good feature representations.
The procedure is almost the same for video data.

For intra-sample learning methods, tasks should be carefully
designed, whereas inter-sample learning methods are simpler. How-
ever, for inter-sample learning, whether good temporal information
can be extracted relies on the model itself. Further, if spatial informa-
tion is sufficient enough as compared to its temporal information,
the model will not be helpful for other video related tasks. There-
fore, our goal is to learn better representations that can capture rich
temporal information. To do so, we break the temporal relationship
of the anchor sample to generate intra-negative samples. Then the
models can learn spatial differences as well as temporal differences
between samples. In particular, we adapt the recently proposed
method of Contrastive Multiview Coding (CMC) [36], extend it with
more generalized video recognition models, and improve it by in-
troducing intra-negative sample learning. The general idea of our
proposed method is illustrated in Fig. 1

In this paper, we propose Inter-Intra Contrastive (IIC) learning
framework in videos, which are built on the basis of many existing
techniques such as inter-intra learning, contrastive learning, and
deep representation learning. To the best of our knowledge, we are
the first to focus and apply these techniques together to videos. Re-
cent self-supervised learning in videos has mainly used intra-sample
learning methodologies, and video retrieval and video recognition
tasks were considered as evaluation tasks. Our main contribution is
to combine the advantages of inter- and intra-sample learning and
establish a general framework for self-supervised learning for video
representation. We have explored several options towards best prac-
tices in our framework. In addition, for both video retrieval and
video recognition tasks, we outperform the existing state-of-the-art
results by a notably large margin.

Our contributions are summarized as follows:

e We generate intra-negative samples by breaking temporal
relations, which encourage the model to learn rich temporal
information as well as spatial information, and it is helpful
for motion feature representation.

e We extend the contrastive multiview coding framework to
have an inter-intra style for video representation, where
many useful options in the framework are also provided.

o Our experiments show that by using the proposed IIC frame-
work, significant improvements over the state-of-the-art
methods are achieved with the same network architecture.

2 RELATED WORKS

In this section, we divide the existing self-supervised learning meth-
ods into two categories according to their learning style, namely
inter-sample learning and intra-sample learning. In addition, be-
cause we focus on video representation, we add another subsection
to briefly introduce the techniques in video understanding.

2.1 Intra-sample learning

For intra-sample learning methods, the constraints are in the sample
itself. By using different transformation functions, some relations
are broken down even though statistical or semantic information
remains. Different target tasks are carefully designed to help train
the model.

Self-supervised learning methods are close to unsupervised rep-
resentation learning, and include methods such as autoencoders [16]
and variational autoencoders [20]. Noroozi et al. [27] proposed to
learn features by solving Jigsaw puzzles. Pathak et al. [29] trained
context inpainting models to learn feature representation. Gidaris et
al. [8] rotated images and trained models by predicting the rotated
angles.

Because videos have an additional temporal axis compared to
images, for video representation learning, how to efficiently ex-
tract temporal information is important. There are many existing
works focusing on temporal orders [6, 23, 26, 43]. Misra et al. [26]
treated several video frames as a sequence, and trained a network
to distinguish whether these video frames were in the right order.
Odd-one-out network (O3N) [6] was proposed to identify unrelated
or odd video clips. Order prediction network (OPN) [23] shuffled
frames and trained networks to predict the correct order of input
frames. Similar to OPN, Xu et al. [43] set video clips as inputs and
used 3D convolutional networks to predict the order. In addition to
focusing on the temporal order, Wang et al. [39] proposed regress-
ing motion and appearance statistics to learn video representations.
Kim et al. [19] proposed training models by completing space-time
cubic puzzles. Luo et al. [24] applied one transformation from sev-
eral options, including spatial rotation and temporal shuffling, to
video clips and trained models to recognize which action has been
applied. The performance of these methods depends highly on the
special designed tasks.

2.2 Inter-sample learning

For inter-sample learning methods, features from the same sample
should be close to each other while the distance between different
samples should be far from each other.

In [31], frames from the same video were treated as positives
while frames from different videos were negatives. And triplet
loss [15] was used to train the network. After contrastive losses [11]
were proposed, contrastive learning has become the core of self-
supervised learning, especially on image data. Contrastive Predic-
tive Coding (CPC) [28] used sequential data to learn the future
from the past. Deep InfoMax [17] and Instance Discrimination [41]
learned to maximize information probability from the same sample.
Contrastive Multiview Coding (CMC) [36] used different views for
the same sample and minimized the distance between different
views while maximizing the distance between different samples.
MoCo [13] used a momentum encoder with a momentum-updated



encoder to conduct contrastive learning. In SimCLR [3], different
combinations of data augmentation methods were experimented
for paired samples. Note that none of these inter-sample learning
methods require specially designed tasks.

Our proposed method is closely related to CMC [36], where
multi-view coding is used. Most methods treat data from different
samples as negatives. In our research, we deal with video data and
extend negative samples by breaking the temporal relationships in
video clips.

2.3 Video representation

Previous self-supervised learning methods have mainly been ap-
plied on images. Some video representation learning methods still
use image frames as inputs [6, 23, 26], which do not enjoy the
benefits from new techniques related to video understanding.

For video representation, many supervised methods have been
proposed. Temporal Segment Networks (TSN) [40] split one video
into several segments and sampled one frame from each segment
as the input data of a 2D CNN. In addition to a single 2D CNN
for RGB data, two-stream ConvNets [4, 5, 32] have been used
with an additional optical flow stream. Recently, spatio-temporal
convolution (3D-CNN) was applied to video recognition task. In
C3D [37], Tran et al. used 3D convolutional layers to form their
network and achieved good performance. 3D convolutional ver-
sions of ResNet [14] and Inception net [34], R3D [12] and I3D [2],
were proposed and showed promising performance on benchmark
datasets [18, 22, 33]. By separating one 3D convolutional kernel
into two steps, a spatial part and a temporal part, R(2+1)D [38]
and S3D [42] were proposed. Those trained models were proved to
be effective feature extractors when applied to other video related
tasks.

The aforementioned models can also be used in self-supervised
learning to handle video data. By replacing a 2D CNN with a 3D
CNN, [43] reported better performance than [23] as their target
tasks were the same, predicting the temporal orders of inputs. C3D,
R3D, and R(2+1)D were used in [24, 43] and proved to be effective for
self-supervised learning with video data. Similar to these methods,
3D convolutional networks are used in our proposed framework.

3 METHODS

Our goal is to learn discriminative feature representations from
videos, not only for distinguishing one action from another, but also
for capturing rich temporal information. The entire IIC framework
is shown in Fig. 2. In this section, we start from the novel input
part, and then elaborate on contrastive learning with these inputs.
Because we simplify the model by using only one network to cope
with three kinds of input data, an unique joint retrieval method
will also be introduced.

3.1 Multi-view and intra-negative inputs

We denote video data from two different views as X! and X2, and
data with the same video id i from these two views as x} and xf,
respectively. The definition of view here is broad, including data in
different color space, depth information, segmentation information,
etc. Without loss of generality, only two views are used in this work,
which can be extended with more views of the same sample. We

use a 3D convolutional network as our backbone. Therefore, the
referred data xi1 and xi2 are in shape THWC, where T continuous
frames with height H and width W are stacked together. C is the
channel number of frames. Temporal information relies on the
connections among T stacked frames.

For multi-view contrastive learning, feature vl.1 and feature v?
should be close to each other because those features are extracted
from the same video i. In addition, feature v} should be far from
features v]l. (for j # i). This is effective enough for images. On
the other hand, video data have one more dimension. When the
same person behaves in opposite ways, e.g. standing up and sitting
down, the appearance information of each frame is similar, however,
traditional contrastive learning methods will easily be fooled.

Here, we introduce intra-negative samples in multi-view con-

trastive learning for videos by breaking the temporal relationship.
For one video clip, the data xl.1 is a set of frames. To simplify, we
use { framey, ..., framer} to represent a set of temporally-ordered
frames. Two kinds of methods, frame repeating and temporal shuf-
fling, are proposed to break the temporal relationship of a video
clip (Fig. 3).
Frame repeating. One frame that is randomly selected from one
video clip is repeated T times to generate intra-negative samples
(eq. 1). Then all frames in this video clip are the same and no
movements exist anymore, despite the scene of this intra-negative
sample is almost the same as the source.

Xrepeat = {framey, ..., framer}, k = random(1,T). (1)

Temporal shuffling. In the original video clip, frames are in the
correct sequence. By randomly shuffling the frames (eq. 2), the
actions will be strange and the corresponding action information
should be different. After this transformation, the global statistical
information of the intra-negative sample remains the same as its
source.

Xshuffle = shuf fle(x), where xspyrfie # x. (2)

Note that intra-negative samples can be generated from data
for both view 1 and view 2, and both generating functions can be
used simultaneously. To simplify, in this paper, we only generated
intra-negative samples from view 1 (original RGB video clips) and
only one generating function was used for each experiment. Then

x™¢9 is used to represent intra-negative samples from x!.

3.2 Contrastive learning

Similar to learning with triplet loss, which aims to learn an em-
bedding that separates the negative samples from the positive and
the anchor, contrastive learning aims to separate samples from two
different distributions. In traditional multi-view coding [36], the
sample pairs {x},xiz} are positives while {x}, sz.}(i # j) are nega-
tives. Because we generate intra-negative samples, the negatives
are extended by adding pairs {xl.l, xj'.my }, where j can be equal to i.

A discriminative function hy(-) is used to ensure that positive
pairs have high values while the value for negative pairs should be
low. The function is trained by selecting a single positive sample
from a set of data. After feature U; has been extracted, traditional
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Figure 3: Generating intra-negative samples from original
video clips.

contrastive learning methods train this function to correctly se-
lect a positive sample out of a set S = {v%, s vlz, s v,zﬁl}, which
contains one positive sample vz and k negative samples. In our
proposed method, another set S”eg = {v'wg, vy
which only contains negative samples. The loss function is similar

to recent works for contrastive learning [10, 28, 36]:

neg, .
Uk+1} is also used

o ho({o].0%})
contrast — log k+1 hg({vl,vz}) + Zk+1 hg({v%,v;leg})'
®)
Here, k is the number of negative samples, which can be equal to
N -1, where N is the total number of training samples. To accelerate
training, we randomly select k samples from N where k < N.
The critic hg(-) is implemented by feature representations using
the non-parametric softmax technique [41]. Then we can compute
this function as the following:

’U-1 "UZ- 1
ho({v],v3}) = exp(|l—J . _), @)

1 2
lo; I - lo5 1l 7

where 7 is a hyper-parameter that controls the range of the results.
In practice, three memory banks are used to store the extracted

features from previous iteration, and these features function as
weights in the non-parametric softmax learning [41].

Eq. 3 only treats view 1 as an anchor. When treating view 2 as
an anchor, symmetrically, another loss can be calculated and they
are added to form the final loss function:

2
v
L= Lcontrast + Lcontrast' (5)

To summarize this section, we write the process flow of our
proposal in Appendix A.

3.3 Joint representation

For learning video representations with supervision, different modal-
ity data require different models because the input channels are
usually different. Because stacked frame differences, which have
the same shape as the original RGB video clips, have succeeded
in supervised learning [35], it is possible to use one network to
handle video data in different views. In practice, we constrain data
from different views in the same shape and use only one model to
process data from different views. The options for different views
are original RGB clips, optical flow (u or v) frame clips and stacked
frame differences, and we used RGB clips as the anchor view. In the
following part, for convenience, we use residual clip to represent
stacked frame differences.

After training is complete, the model can be used to extract
features from different views of videos. These features can be con-
catenated to form two-view features and can be applied to video
retrieval (Fig. 4). We address this because for two-stream methods,
features extracted from different models can be also concatenated
to represent one video. With our multi-view contrastive learning
approach, different views of the same video are set as the input of
only one model. According to our experiments, it is sufficient to
use one model to handle different view data. This strategy can help
to extract more comprehensive representations of videos.

4 EXPERIMENTS

We conducted extensive experiments to evaluate our proposed IIC
framework and its transferability when applied to other tasks or
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datasets. Because there are several options in our framework, we
first elaborate on some option configurations on video retrieval
tasks because this can be evaluated directly when the training has
been performed. The trained models are also treated as one kind of
weight initialization strategy and by fine-tuning trained models on
video recognition datasets, we can further evaluate the performance
of our model.

4.1 Datasets

There are several existing labeled benchmark datasets in video
recognition: UCF101 [33], HMDB51 [22], something-something [9],
and Kinetics400 [18]. For fair comparison, we follow [24, 36, 43] and
use the UCF101 and HMDB51 datasets. The UCF101 dataset consists
of 13,320 videos in 101 action categories. HMDB51 is comprised of
7,000 videos with a total of 51 action classes. If not specially declared,
experiments were on split 1 for both UCF101 and HMDB51 datasets.

4.2 Evaluation tasks

Our goal is to learn effective and discriminative video representa-
tions using IIC learning framework. After training has been per-
formed, the direct way to evaluate is to use the trained model to
extract video features, then video retrieval can be tested easily.
UCF101 and HMDB51 are two different datasets. We trained our
model only on UCF101 split 1 and performed video retrieval on
both UCF101 and HMDB51 datasets. When applied to HMDB51, the
model generalization ability was mainly tested. To evaluate whether
good feature representations are learned with our proposed method,
we also conducted experiments by fine-tuning trained models on
both UCF101 and HMDB51 datasets.

4.3 Options in our IIC framework

Multiple Views. For video representation learning, traditional
RGB input and the corresponding optical flow were set as two com-
mon views [30, 36]. Optical flow data require additional calculation
and storage. In addition to optical flow, in video tasks, frame differ-
ence has also been used in existing works [40] with 2D ConvNets.
Residual frames with 3D ConvNets have been proved to be more
effective compared to original RGB video clips [35], which can also
be set as one view of video data. In our experiments, we chose RGB
video clips and another view from residual frames or optical flow.
Then the modality for the second view was from res, u, and v.

Backbone networks. 3D convolutional kernels have been proved
effective in many recent works. Recent self-supervised learning
methods [24, 43] used C3D [37], R3D [12], and R(2+1)D [38] as
their network backbones. We mainly used R3D in our experiments,
where each residual block consists of two 3D convolution layers.
Intra-negative generation. As we discussed in section 3.1, we
have two ways to generate intra-negative samples, frame repeating
and temporal shuffling. In our experiments, both were tested and
only one generation method was used in each experiment.

4.4 Implementation details

The input preparation part follows [37]. Sixteen successive frames
are sampled with size 128 x 171 to form a video clip for both view
1 and view 2. Random spatial cropping was conducted to generate
an input data of size 16 X 112 X 112, where the channel number
3 was ignored. For the data from the second view, when residual
frames were used, we shifted the RGB video clip along the temporal
axis and calculated the difference between the original clip and the
shifted clip. When optical flow was used, because traditional tv-11
optical flow calculates motion features in two directions—u and v,
we picked one direction and duplicate it to generate optical flow
clips with channel dimension 3. Then we can use one 3D ConvNet
to handle data from different views.

When performing temporal shuffling, similar to [24], one clip
was divided into four sub-clips, and we shuffled the sub-clips to
conduct temporal shuffling.

When training unsupervised procedure, the batch size is set to
16 and training lasted for 240 epochs. The initial learning rate was
set to 0.01 and it was updated by multiplying a fixed rate of 0.1
after 45, 90, 125 and 160 epochs. In non-parametric learning part,
2k negative samples were sampled from memory banks, with k set
to 1,024 for all our experiments. Video retrieval was conducted by
K nearest neighbor search. When evaluating task transferability,
we used our trained models as an initialization strategy and the
learning rate was set to 0.001 for fine-tuning. The best performance
on the validation dataset was used for testing.

5 RESULTS AND DISCUSSION

In this section, we first report our ablation studies with several
option configurations that were mentioned above. Then, we outline
the four option configurations that were selected to compete with
the state-of-the-art methods in self-supervised spatio-temporal
learning.

5.1 Ablation study

Joint retrieval. Because the models were evaluated on video re-
trieval task after self-supervised training process was done, we first
conducted ablation studies on the effectiveness of proposed joint
retrieval strategy. Results are shown in Table 1. Here, the perfor-
mance was tested by treating residual frames as the second view.
Experiments were conducted on UCF101 split 1.

As we can see from the table, by using only one model to
process data from two different views, when features were concate-
nated to represent videos, nearly 2% points improvements could
be achieved at top-1 retrieval accuracy. This indicates that these



Table 1: Effectiveness of joint retrieval.

intra-neg retrieval mode topl top5 topl0 top20 top50

X viewl:rgb 325 47.6 572 683 810
X view2: res 324 50.6 604 69.8 80.6
X joint 34.6 52.1 61.8 714 824
v viewl:rgb  34.8 51.6 60.8 69.7 80.6
v view?2: res 334 532 625 720 83.6
v joint 36.5 54.1 629 724 834

Table 2: Ablation studies on different option configurations.
The best performances are in bold for each modality. Note
that RGB video clips are fixed for view 1 and the modalities
here represent only for view 2.

Intra-neg type view2 topl (%) top5 (%) top10 (%) top20 (%) top50 (%)

X - res 34.6 52.1 61.8 71.4 82.4
- u 37.5 54.8 64.1 72.6 83.5
- v 34.7 534 63.5 72.0 82.9

repeat res  36.5 54.1 62.9 72.4 83.4
repeat u 41.8 60.4 69.5 78.4 87.7
repeat Vv 343 55.9 65.3 73.2 83.3

shuffle res 34.6 53.0 62.3 71.7 82.4
shuffle u 39.2 57.7 66.6 75.1 84.7
shuffle v 42.4 60.9 69.2 77.1 86.5
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features were more robust for video representation. We set the pro-
posed joint retrieval strategy as the default setting for the following
experiments.

Option configurations. We conducted experiments in three parts:
1. whether to use intra-negative samples or not; 2. which intra-
negative sample generation method to use; 3. which modality was
to be chosen for the second view.

As we can see from Table 2, no matter which modality was used
as the second view, all retrieval accuracies were better when the
proposed intra-negative samples were used in multi-view coding.

For residual frames, which can be treated as one solution without
optical flow, the best performances were achieved by using frame
repeating strategy. If temporal shuffling was used, improvements
could also be obtained.

When optical flow data was used, the results outperformed those
using residual frames as the second view. This makes sense because
optical flow data requires additional calculations and is designed to
represent motion features, which is suitable for video representa-
tion. The best performance on the top-1 and top-5 accuracies was
achieved by using temporal shuffling to generate intra-negative
samples with v data while for the top-10, top-20, and top-50 accura-
cies, using frame shuffling with u data was better. This is reasonable
because u and v are two dimensions of optical flow data, which
record movements in two directions. The performance relies on
the main movement directions in videos. This also highlighted one
limitation of the current settings, and indicated that it may be better
to use both u and v data to form the optical flow stream for self-
supervised learning, which requires two different models. In the
present study, we used only one model for data from both views.

CMC: baseline

Proposed method

Figure 5: Feature visualization by t-SNE. Features extracted
by our proposed method are more semantically separable
compared to the baseline, which does not use intra-negative
samples during training. Each video is visualized as a point,
with videos belonging to the same action category having
the same color.

We intend to explore the use of multiple models for different views
in our future work.

All the aforementioned results indicate that by introducing intra-
negative samples as additional negatives in contrastive learning,
the model could focus more on learning discriminative temporal
information, which is helpful for feature learning.

5.2 Visualization: feature embedding

Before applying our proposed method to other evaluation tasks,
we used trained models to extract video features and qualitatively
evaluated these features by visualization in order to verify whether
good feature representations have been learned. We selected videos
from UCF101 which belong to the first 10 categories (arranged by
action names in alphabetical order). Features were projected to
2-dimensional space using t-SNE [25]. Fig. 5 visualizes the embed-
ding of the features extracted by the baseline [36] and our proposed
method. It is obvious that with intra-negative samples, the trained
models showed better clustering ability for video data. We quanti-
tatively observe that better video representations were able to be
learned by our proposed method.

5.3 Comparison: video retrieval

For a fair comparison, we trained our models on UCF101 and tested
them on both UCF101 and HMDB51 datasets. Specially, the most
related work CMC [36] mainly focused on Image-related tasks and
for video representation part, two CaffeNets [21] with two views—
RGB and optical flow-were used. We reimplemented their work
using a more common model, ResNet-18 [14]. The model is a 2D
convolutional style and for both RGB and optical flow data, the
spatial size is 224 x 224. In addition, we experimented with a one-
view model to prove the effectiveness of multiple views for videos.
To simplify, we set the modality of the second view to be RGB
which is the same as the first view.

The results on the UCF101 dataset are shown in Table 3. The
compared models mostly design a special task for the model to learn,
which belong to the intra-sample learning category. IIC treats every
different samples as negative. In addition, intra-negative samples
are generated to enable the model to learn more temporal clues. We
picked four option configurations, two of which do not use optical
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Figure 6: Comparison of video retrieval results with baseline method. Red fonts indicate correct retrieval results.

Table 3: Video retrieval performance on UCF101.

Methods topl (%) top5 (%) top10 (%) top20 (%) top50 (%)
Jigsaw [27] 19.7 28.5 33.5 40.0 49.4
OPN [23] 19.9 28.7 34.0 40.6 51.6
Biichler [1] 25.7 36.2 42.2 49.2 59.5
R3D (random) 9.9 18.9 26.0 35.5 51.9
VCOP [43] 14.1 30.3 40.4 51.1 66.5
VCP [24] 18.6 33.6 42.5 53.5 68.1
One-view 26.2 39.3 46.8 55.6 66.8
CMC [36] 26.4 37.7 45.1 53.2 66.3
IIC (repeat + res)  36.5 54.1 62.9 72.4 83.4
IIC (repeat + u) 41.8 60.4 69.5 78.4 87.7
IIC (shuffle + res) 34.6 53.0 62.3 71.7 82.4
IIC (shuffle +v) 424  60.9 69.2 77.1 86.5

flow data. As shown in this table, when only RGB video clips were
used with contrastive learning, the top-1 accuracy was already
higher than that of previous works. Our implemented CMC [36]
used an optical flow stream and two models for different views,
obtaining 26.4% points at top-1 accuracy. By using our proposed
method with residual frames as the second view, the performance
was improved to 36.5%, which is 10.8% points higher than the cur-
rent state-of-the-art results. With optical flow data as the second
view, this record could even reach 42.4%. VCP [24] and VCOP [43]
could reach a better performance than the numbers we picked in
the table using R(2+1)D network, the best of which is 19.9%. We
did not include this here because we only use R3D as our network
backbone. However, the performance of our worst model, which
was 34.6%, was still much better. In Fig. 6, qualitative results also
show superiority of IIC compared with the baseline.

The transferability of the trained model was also tested on the
HMDB51 dataset. The results are shown in Table 4. A similar con-
clusion can be drawn. If only RGB video clips were used in the
contrastive learning framework, the top-1 accuracy was 10.8%. This
performance was even 0.6% higher than our implementation of

Table 4: Video retrieval performance on HMDB51.

Methods top1(%) top5(%) top10(%) top20(%) top50(%)
R3D (random) 6.7 18.3 28.3 43.1 67.9
VCOP [43] 7.6 22.9 34.4 48.8 68.9
VCP [24] 7.6 24.4 36.3 53.6 76.4
One-view 10.8 26.2 40.1 54.3 74.9
CMC [36] 102 253 366 51.6 74.3
IIC (repeat + res) 13.4 32.7 46.7 61.5 83.8

IIC (repeat + u) 17.1 41.9 55.1 70.4 84.9
IIC (shuffle + res) 13.2 32.9 47.3 62.8 81.9
IIC (shuffle + v) 19.7 42.9 57.1 70.6 85.9

the CMC method. This may have been caused by the effectiveness
of 3D ConvNets. Without optical flow data, the performance of
our proposed method is 13.4% and 13.2% respectively for the two
different intra-negative sample generation strategies, revealing that
inter-sample learning with intra-negatives is a good approach for
self-supervised spatio-temporal feature learning, and is also good
for unseen datasets. The best performance was obtained when opti-
cal flow data were treated as the second view, where 19.7% on top-1
accuracy was achieved, outperforming the current state-of-the-art
results by VCP [24] over 12% points.

5.4 Comparison: video recognition

Video feature representation is usually learned by supervised learn-
ing for video recognition task. Here we used our proposed method
as an initialization strategy and the models were fine-tuned on
two benchmark datasets, UCF101 [33] and HMDB51 [22]. The com-
parisons are among self-supervised methods for fair comparison
because supervised methods usually used a much larger dataset,
Kinetics [18], together with labels to pre-train their models.
When training models using our proposed IIC, data from differ-
ent views were set as inputs to the same network. The distributions
of data from different views were different. We argue that even
though the network could handle different kinds of input, it would



Table 5: Results for different fine-tuning modes.

fine-tuning mode 1 fine-tuning mode 2

T iewl view2
ype  viewl view modality accuracy modality accuracy

repeat RGB  res RGB 61.6 res 71.8
repeat RGB u RGB 59.8 u 73.5
shuffle RGB  res RGB 61.2 res 74.9
shuffle RGB v RGB 61.6 v 63.1

become a bottleneck when fine-tuned with labeled data from dif-
ferent views. Therefore, we had two choices when fine-tuning our
trained models on the action recognition datasets: 1. use RGB video
clips; 2. use the same data modality as view 2.

Because we had several settings for self-supervised training,
four option configurations were selected and these models were
fine-tuned with data from the two different views separately. This
small test was conducted on UCF101 split 1 only, and the results are
shown in Table 5. As we can see from the table, fine-tuning with
RGB inputs yielded a worse performance than using the modality
of the second view. Then we compare our model with other self-
supervised learning methods by fine-tuning our models with the
modality of the second view.

From Table 6, we can see that the model with ImageNet pre-
trained weights can had a better performance than most methods.
Recent methods have achieved better performances than a ran-
dom initialization strategy, which means temporal information
has been embedded by self-supervised learning to some extent.
By fine-tuning models with data from the second modality, IIC
could outperform VCP [24] by at maximum 8.4% points when using
the same network architecture. Note that the best performance on
UCF101 dataset, 74.4% at the top-1 accuracy, was achieved without
using optical flow data, and better than O3N [6] which also used
residual inputs. Though the best performance for video retrieval
was achieved with optical flow data, it was not as good as residual
frames when fine-tuning. This could have been caused by a bias
when training during self-supervised learning. If we only used one
model to handle all input data, RGB video clips, its intra-negatives
and optical flow data, the model may have concatenated more on
distinguishing inputs with similar distributions as RGB video clips,
resulting in bad initialization when fine-tuning only using opti-
cal flow data. Retrieval with our joint strategy can eliminate this
drawback. This phenomenon could be improved if we use different
models to handle different modality of data, which is also an option
in our proposed framework. We leave this as our further work.

The transferability was again tested on the HMDB51 dataset,
which is more complicated because this is not only transferable for
different tasks, but also on different datasets. Table 6 shows that
IIC could handle this situation. With residual frames, our model
yielded 38.3% on HMDB51, which is the best among those methods
without optical flow data. The size of ImageNet is much larger than
our pre-trained dataset, UCF101 split 1, while better performance
was achieved. This indicates that our proposed method can be set
as a good initialization strategy for other video related tasks. With
optical flow data, especially u data, good results can also be obtained,
outperforming VCP [24] by 5.3% points.

Table 6: Comparison of action recognition accuracy on
UCF101 and HMDB51 datasets. Results are averaged over
three splits. * indicates results using the same network back-
bone, R3D. " indicates methods using optical flow.

Method UCF101(%) HMDB51(%)
Jigsaw [27] 51.5 225
O3N (res) [6] 60.3 32,5
OPN [23] 56.3 22.1
Biichler [1] 58.6 25.0
Mas [39] 58.8 32.6
Geometry [7] 54.1 22.6
CrossLearn [30]" 58.7 27.2
CMC (3 views) [36]" 59.1 26.7
R3D (random) [43]* 54.5 23.4
ImageNet-inflated [19]* 60.3 30.7
3D ST-puzzle [19]* 65.8 33.7
VCOP [43]* 64.9 29.5
VCP [24]* 66.0 31.5
IIC (repeat + res)* 72.8 35.3
IIC (repeat + u)** 72.7 36.8
IIC (shuffle + res)* 74.4 38.3
IC (shuffle + v)*T 67.0 34.0

6 CONCLUSIONS

In this paper, we proposed IIC, a self-supervised method for video
representation learning, to learn rich temporal features from videos.
We utilized the advantages of intra- and inter-sample learning
and trained a spatio-temporal convolution neural network (3D-
CNN) with intra-negative samples in contrastive multiview coding.
Two intra-negative sample generation functions were proposed
which break the temporal relations in input video clips. Different
view selection options were also experimented. The trained models
had learnt video representation and were applied to two video
tasks, video retrieval and video recognition. With only one model
handling different inputs, we could apply a joint retrieval strategy
and our results showed that our models could outperform other
methods by a large margin on video retrieval task. Experiments on
video recognition also indicated that our proposed method could
help the model learn better video representation.
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ALGORITHM

Algorithm 1 Training with inter-intra contrastive learning frame-
work

model: net, video view: X! = {x}, ...,x}v}, X% = {x%, ...,szv},

1:

9:
10:

video index: i, memory bank: MY, M2, M9

for each iteration do

xl.l,x?,i = load(Dataloader)

Generate intra-negative samples xl.neg =f (x})
v} = net(xl!), vl? = net(xiz), v?eg = net(x;wg)

Fetch weights W1, W2, W"¢9 = fetch(M', M?, M"Y, )

Form non-parametric weights W! = concat(W!, w"9),
W? = concat(W?, Wne9)

loss = contrastive_loss(Wl, Wz,vl.l, vl?)

Update net with loss

Update memory banks ML, M?%, M™€9 with vl.l, U?’ U?Eg
end for

Line 3,6 are the main differences from the baseline method CMC [36].
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