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ABSTRACT
Today, scene graph generation (SGG) task is largely limited in re-
alistic scenarios, mainly due to the extremely long-tailed bias of
predicate annotation distribution. Thus, tackling the class imbal-
ance trouble of SGG is critical and challenging. In this paper, we
first discover that when predicate labels have strong correlation
with each other, prevalent re-balancing strategies (e.g., re-sampling
and re-weighting) will give rise to either over-fitting the tail data
(e.g., bench sitting on sidewalk rather than on), or still suffering the
adverse effect from the original uneven distribution (e.g., aggregat-
ing varied parked on/standing on/sitting on into on). We argue the
principal reason is that re-balancing strategies are sensitive to the
frequencies of predicates yet blind to their relatedness, which may
play a more important role to promote the learning of predicate
features. Therefore, we propose a novel Predicate-Correlation Per-
ception Learning (PCPL for short) scheme to adaptively seek out
appropriate loss weights by directly perceiving and utilizing the cor-
relation among predicate classes. Moreover, our PCPL framework
is further equipped with a graph encoder module to better extract
context features. Extensive experiments on the benchmark VG150
dataset show that the proposed PCPL performs markedly better on
tail classes while well-preserving the performance on head ones,
which significantly outperforms previous state-of-the-art methods.

CCS CONCEPTS
• Computing methodologies→ Scene understanding.
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Figure 1: A comparison of re-balancing(e.g., re-weighting)
methods and our PCPL. The training weight of re-balancing
is set to nth power of the inverse of class sample frequen-
cies where n is the value of re-balancing parameter. (a) An
input image with bounding boxes and object labels. (b) The
blue curve depicts the mean recall@100 of re-balancing for
"on" and "sitting on" under different settings of parameter
while the orange curve indicates the performance of our
PCPL. It should be noted that there is no intersection be-
tween the PCPL and re-balancing training process. (c) SGG
with re-balancing parameter = 0. (d) SGG from the proposed
PCPL. (e) SGG with re-balancing parameter = 1. Red boxes
in (c) and (e) denote wrong predication.
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1 INTRODUCTION
Scene graph generation (SGG)[13], which is a visual task to detect
objects and recognize semantic relationships between different ob-
jects in an image, can serve as a powerful structural representation
∗This work was done during research intern at Alibaba.
†Corresponding authors.
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of images and benefit other high-level Vision-and-Language tasks
such as image generation[12, 33, 40], image retrieval[13, 24, 28, 34],
visual question answering[6, 18, 39] and image captioning[7, 19, 38].
Taking advantage of the remarkable feature representations of con-
volutional neural networks (CNNs)[16] and diverse contextual fea-
ture fusion strategies (e.g., message passing[20, 37], lstm[41]), a
variety of methods have made significant progress to improve the
recall evaluation metric performance of SGG tasks. Some other
works[3, 32] further utilize the co-occurring language regularity of
typical subject-predicate-object relationship triplets as prior infor-
mation to enhance overall performance. However, in practice the
SGG benchmark datasets such as Visual Genome 150 (VG150)[15,
37] always have extremely long-tailed predicate label distributions
(i.e., imbalanced annotation bias in training data, dominating by
a few classes which occupy most of the data). Although achiev-
ing encouraging performance on head classes (e.g., on/has), these
previous efforts are not feasible to obtain outstanding accuracy on
predicting fewer but more meaningful predicate samples(e.g., sit-
ting on/riding/looking at/eating/parked on), making them largely
limited for supporting high-level tasks in real-world scenarios.

Prevalent class re-balancing strategies are introduced into SGG
recently, examined by Tang et al. [31] at training stage in order to
tackle the challenging long-tailed training data bias problems. In
general, the prominent class re-balancing methods are roughly sum-
marized as two types, which are adjusting the sample proportion
within a mini-batch (i.e., re-sampling) or assigning relatively higher
costs to tail samples (i.e., re-weighting). These two categories share
the same connotation of manually tuning sampling frequencies or
classifier weights based on the numbers of different class samples
during training process to simulate the test distributions. These
effective strategies indeed promote the overall mean recall evalu-
ation metric for SGG benchmark datasets, however, when going
deeper to examine specific predicate cases, we unexpectedly find
that the performance is not satisfactory under the circumstances
that predicate labels have strong correlation with each other. Fig. 1
comprehensively illustrates our observation. Taking a semantically
closely related predicate pair — on (i.e., head class, occupying a
large proportion of annotations) and sitting on (i.e., tail class, hav-
ing rarely few samples) — as example, it can be seen from Fig. 1
that, class re-balancing strategies, which merely rely on the manual
tuned classifier weights based on the numbers of samples, give rise
to either over-fitting the tail data when re-balancing parameter is
relative high (bench sitting on sidewalk rather than on, shown in
Fig. 1(e)) or still suffering the side effect from the original uneven
distribution when re-balancing parameter is relative low (aggregat-
ing man sitting on bench into man on bench). As shown in Fig. 1(b),
the optimal point that maximizes the recall of both classes is hardly
reachable by manually tuning the re-balancing parameter. We argue
the principal reason is that re-balancing strategies merely utilize
the frequencies of classes yet neglect their semantic relatedness,
which may play a more important role to catalyze the learning of
predicate features. To the contrary of other classification tasks, SGG
essentially involves complex semantic correlations among different
ground truth predicate annotations, which are insensitive to the
class frequencies.

Consequently, we naturally put forward an assumption that the
performance of predicates having strong correlations with multi

classes will benefit from the learning of correlated ones, as a con-
sequence of which, smaller loss weights are acceptable, otherwise
those predicates tend to dominate other classes by severely degrad-
ing their recall, and vice versa. In view of that, we propose a novel
Predicate-Correlation Perception Learning (PCPL for short) scheme
aiming to tackle the class imbalance trouble of SGG, having the
benefit of adaptively seeking out optimal loss weights by directly
perceiving and explicitly utilizing the implicit correlations among
predicates. Equipped with PCPL, the model is able to markedly
improve the predicting results on tail classes and well preserve the
performance on head predicates simultaneously, thus the optimum
mean recall can be obtained as illustrated in Fig. 1(b). Specifically,
we construct an iteratively updated class graph to perceive the
correlations between predicates and the loss weights of classes
are appropriately inversed with their relatedness derived from the
graph.

Morever, we propose a graph encoding module (GE for short)
to encode global context through a series of stacked encoders in
a graph manner. A variety of methods have been adopted by pre-
vious works to fuse global context into relationship representa-
tions. Dual graph message passing[37] is relatively out-of-date
while BiLSTM[9] employed by Neural Motifs[41] achieves better
results yet suffers a drawback that different input orders will bring
different results. Without introducing additional information, the
performance of GGNN [3] is not satisfying. Compared with previ-
ous methods, our graph encoding module can better capture the
relationships between object classes and benefit from being permu-
tation invariant, thus can obtain more robust contextual features,
setting a higher baseline.

In summary, the contributions of this paper are threefold:
• We propose a novel Predicate-Correlation Perception Learn-
ing (PCPL for short) scheme that is able to alleviate the
long-tailed bias of SGG by directly perceiving and explicitly
utilizing the implicit correlations between predicate classes,
opening up new ideas to tackle the imbalance issue of SGG
or other tasks involving correlated classes.

• PCPL can significantly promote the predicting results of tail
classes while well preserving the performance of head pred-
icates, by adaptively assigning optimal loss weights, which
are appropriately inversed with the degrees of relatedness,
to different predicates.

• Extensive experiments show the effectiveness of PCPL and
demonstrate that PCPL achieves a new state-of-the-art.

2 RELATEDWORK
2.1 Scene Graph Methods
Reasoning about relationships is the major challenge for generating
scene graph. There are mainly two approaches in previous works
making efforts to improve the performance of relationship predic-
tion. The first approach is to make better use of visual features.
Xu et al. [37] finds that relationship prediction can be greatly im-
proved by jointly reasoning with contextual information. Message
Passing model proposed by Xu iteratively refines its prediction
by passing contextual messages along the topological structure
of a scene graph. Zellers et al. [41] emphasizes the importance of
context by introducing BiLSTM to encode global context that can



directly inform the local predictors. Second approach is to involve
additional information such as semantic labels and statistical cor-
relations to help prediction. Zellers et al. [41] embeds GloVe word
vectors, statistical correlations of object pairs and relationships
to visual features to obtain better results. Chen et al. [3] makes
further use of statistical correlations. They facilitate scene graph
generation by explicitly unifying the statistical knowledge with the
architecture of graph neural network.

Chen et al. [3], Tang et al. [32] both take a notice on the class
imbalanced issue of SGG by proposing the mean recall@K metric
but their works are still confined to better feature extracting. In
recent works, the criticalness of long-tailed bias of SGG is addressed
[31, 36]. Tang et al. [31] employ causal inference in the prediction
stage in an effort to remove the training bias while Wen et al.
[36] make use of a pseudo-siamese network to pursue extracting
balanced visual features. In contrast, our method perceives and

(a) (b)

Figure 2: The improvements of constrained and uncon-
strained recall@100 of re-balancing over cross-entropy in %.
(a) The results of weakly correlated group. (b) The results of
strongly correlated group.

utilizes the implicit correlations among predicate classes based on
an innovative observation, aiming to generate unbiased scene graph
representations.

2.2 Class Imbalance
Real-world large-scale datasets often have long-tailed data distri-
butions. Neural networks trained on these datasets tend to per-
form poorly on less presented classes. It has become a critical is-
sue for model training. A lot of works has been done to resolve
the class imbalance problem. Existing methods can be categorized
as re-sampling [1, 5, 11, 29, 42] and re-weighting[4, 14, 25]. Re-
sampling methods are simple yet effective. They often over-sample
(e.g.,[2, 23]) less presented classes or under-sample (e.g.,[8, 17])
frequent classes to make the data distribution more balanced. How-
ever, they have their downsides. Under-sampling frequent classes
will discard a large amount of data, causing waste of data. And
it is not practicable when the dataset is extremely imbalanced.
Over-sampling less presented classes can lead to over-fitting of the
repeatedly sampled classes.

Re-weighting methods assign different weights for different
classes to balance the loss. The simplest way of re-weighting is
to set weights of classes as the inverse of their frequency[10, 35],
but this causes poor performance on frequent classes. Cui et al.
[4] proposes the definition of effective number of samples and re-
weights the loss by the inverse of effective number to address this

issue. Another widely used re-weighting method is focal loss pro-
posed by Lin et al. [22]. Focal loss down-weights the loss assigned
to well-classified examples and focuses training on a sparse set of
hard examples.

While most of traditional re-balancing methods merely rely on
sample frequencies to manually tune the loss weights or sample
ratios of different classes, our proposed method is able to adaptively
assign optimal training costs to classes based on their relatedness.

3 METHODS
3.1 Problem definition
Scene graph[13], representing a visual scene’s detailed semantics,
is generated with:

• a set of bounding boxes B = {b1,b2,fi,bn }, referring to the
spatial locations of detected regions,

• a set of labels O = {o1,o2,fi,on }, containing object label oi
of the corresponding bounding box bi ,

• and R = {r1−>2, r1−>3,fi, rn−>n−1}, denoting the relation-
ships of object pairs.

A triplet of a start object (oi ,bi ), an end object (oj ,bj ) and a pred-
icate label pi−>j connecting the former to the latter make up
ri−>j ∈ R.

As shown in Fig. 3(d), we conduct a conventional two-stage
pipeline which detects the locations and labels of objects first and
then outputs the relationship representations. Given an input image
containing two strong correlated predicates with great disparity
in sample frequencies (i.e.,parked on and on), the ubiquitous cross
entropy loss, employed by most of SGG methods to optimize the
framework, causes aggregating parked on into on, as can be seen
in Fig. 3(a). At the other extreme, Fig. 3(b) illustrates that a typical
re-balancing strategy, which assign the fixed inverse of frequencies
to the sample weights of predicate classes, surprisingly give rise
to over-fitting parked on. Both strategies fail to achieve satisfac-
tory performance when there exists strong correlation between
predicate classes with long-tailed distribution. In view of that, we
propose a novel PCPL scheme aiming to tackle the class imbalance
trouble of SGG by directly perceiving and explicitly making use
of the implicit correlations among predicates. Fig. 3(c) presents an
overview of PCPL. We construct an iteratively updated class graph
to represent the correlations between predicates. By utilizing the
relatedness derived from the graph, PCPL has an advantage of adap-
tively seeking out optimal loss weights instead of manually tuning.
Equipped with PCPL, the model is able to markedly improve the
predicting results on tail classes and well preserve the performance
on head predicates simultaneously. In subsequent sections, we will
start with an innovative observation of re-balancing on SGG and
then describe our method in detail.

3.2 An observation of re-balancing
As mentioned above, we find that re-balancing methods are of no
avail when predicates are closely correlated to each other. In an
effort to further explore the origins of this phenomenon, this section
will discuss the influence of class correlations on the effectiveness
of re-balancing for SGG before diving into our method.



(a) (b) (c)

(d)

Figure 3: Illustration of how the baseline method (a), the re-balancing methods (b) and PCPL (c) generate scene graph from
relationship representation and the corresponding output scene graph. Red boxes in (a) and (b) denote wrong predictions. (d)
The pipeline used to acquire relationship representations.

Considering that it is hard to judge the degree of correlations by
human intuition, we utilize the distance between class centers in
feature space as a quantitatively measurement for the relatednesses,
as the feature clusters of two correlated classes tend to be closer
than two independent classes. Concretely, we employ a learnable
variable vk , jointly trained with the SGG model, to represent the
center of predicate class k in the feature space. The dimension of vk
is the same as the output relationship feature before the last fully
connected layer of SGG model. For output features { f1, f2... fN }
and predicate labels {l1, l2...lN }, the loss to update v is defined as:

Lcenter =
1
N

N∑
i=1

(fi − vli )
2 (1)

where N is the count of ground truth predicate annotations in the
mini-batch and vli is the corresponding center variable for output
feature fi . Notably, the gradient of v will not pass to feature f in
backward propagation in order not to mess up the training proce-
dure of SGG model.

Directly following the training process, we acquire the correla-
tions between predicate classes:

ek j = | |vj − vk | |2 (2)
Classes with larger e are more independent while smaller e means
stronger correlation. e between class k and it self equals 0.

To provide amore intuitive illustration, comparative experiments
are designed for two observation predicate groups with opposed
level of correlations. Specifically, The first group consists of two
predicates, a primary class, occupying a large proportion of anno-
tations, and a strong correlation class, with far fewer samples but
closely correlated with the primary one. The same primary class

and a weak correlation class, having the same sample frequency
with the strong one yet relatively independent, make up the other
group. To get rid of the influence of other classes, we remove irrel-
evant annotations from the dataset for each group separately, thus
to make the results clearer and more concise. Here we regard "has",
"with" and "looking at" as the primary predicate, strong correlation
predicate and weak correlation predicate respectively. Obtained
from Eq. 2, e between has and with is 4.57 while that between has
and looking at is 20.96, which means that the relatedness between
has and with is strong and that between has and looking at is weak.
For a fair comparison, we randomly down sample the frequency of
with to the same scale of looking at.

Examined with a same baseline model on each group, the con-
strained and unconstrained R@100 improvements of re-weighting
over cross-entropy are revealed in Fig. 2. The results demonstrate
that both the constrained and unconstrained R@100 of the weak
correlation predicate increase notably with almost no impact on
the primary predicate. In the other group, though the constrained
R@100 of the strong correlation predicate occurs a minor rise, that
of the primary predicate happens a relatively significant decrease,
while there is no obvious change on the unconstrained R@100 of
both predicates. The contrast results of the two groups indicate
that re-balancing, to some extent, is able to alleviate the class im-
balance trouble when classes are independent. However, when it
comes to classes closely correlated with each other, these strategies,
sensitive to class frequency but blind to the correlations between
classes, result in over-fitting to tail classes. Scene graph generation
task, predicating relationship between instances, involves critically
complex correlations between predicates, which fully exposes the



shortcoming of re-balancing. In stark contrast, our proposed PCPL
scheme can achieve a satisfying performance on both head and tail
classes by adaptively assigning optimal training costs, which are
appropriately inversed with the degrees of relatedness, to predi-
cates, opening up new ideas to tackle the imbalance issue of SGG
or other tasks involving correlated classes. Although predicates
having strong correlations with multi classes are assigned with
relatively smaller loss weights, their performance will benefit from
the learning process of correlated ones, while other predicates gain
improvements on account of higher training costs. The detailed
process of PCPL will be described in the next section.

3.3 Learning Process
The class correlations are dynamically changing along with the
optimization of the feature extracting network. For this reason, as is
shown in Fig. 4, we construct a learnable class graph to dynamically
perceive the relatedness between predicates. As the network grad-
ually converges, the graph we built is also achieving a relatively
stable state. In this way, we are able to guide the learning of the
model throughout the whole training process. The graph consists
of a set of nodes and edges connecting every pair of them. Each
node represents the center of one predicate class while the edges
connecting nodes represent their degrees of correlation. Given out-
put features, we first update the corresponding vi using Eq. 1 and
update the edges with Eq. 2 afterwards, as presented in Fig. 4(b,c,d).
Then the global correlations ui of predicate class i is defined as:

ui =
N∑
j=1

e
′
i j (3)

where N is the number of predicate classes in the dataset and e′i j is
the updated value of edge connecting node i and node j . Following
this, we perform a normalization for ui to obtain the correlation
factor τ :

τi =
ui −min(u) + ϵ
max(u) −min(u) (4)

where ϵ denotes a minimal value to prevent τi from being zero. The
correlation factor τi can be seen as a measure for the independence
degree of class i . After that, τi is assigned to the classification loss
weight of the SGG network, thus to correct the learning process
and alleviate the training bias:

p
′

li
=

epli∑N
j=1 e

pj
, (5)

L = −
N∑
i=1

τli∑Nr
k=1 (τlk )

∗ logp′

li
(6)

where Nr is the count of ground truth predicate classes present at
the current mini-batch, p is the probability of each predicate output
by the model and li is the ground truth label of feature i .

Moreover, the dynamic graph makes it possible to alleviate the
influence of noisy labels. Models are easy to be distracted by noisy
labels because their losses are usually higher than normal samples.
With the graph, we are able to distinguish and abandon noisy
labels, thus to make the learning process more stable to some extent.

Given an output feature fi with ground-truth label i , we distinguish
whether it is noisy or not by Ddrop :

Ddropj = | | fi − vi | |2 − || fi − vj | |2 −
ei j
λ

(7)

where λ is a hyper-parameter and Ddropj means Ddrop with class j .
Here we set λ as 2. If any of Ddropj is great than zero, we consider
fi as noisy and abandon the corresponding sample.

3.4 Context Encoding
Given an image I , bounding boxes are first detected using Faster
R-CNN as described in Fig. 3(d). Besides, for each bi in the proposal
region set B, it also outputs a corresponding feature vector and a
possible label li , which are of non-context, causing relatively low
performance in object and predicate classification. Thus, as shown
in Fig. 5, we design a graph encoding module to obtain contextual-
ized representations. Taking the pooled feature vectors as a set of
nodes, we use an input network implemented by fully connected
layers to expand bounding box coordinates to the same dimen-
sion of node features. Following that, we perform an element-wise
sum to acquire new representations of nodes, containing spatial
information which is also crucial when inferring relationships. Af-
terwards, we can construct a fully connected undirected graphG
by connecting all the nodes together. The edges between nodes rep-
resent to what extent nodes can interact with its neighbors. Then
we iteratively process the graph with stacked encoders. As Fig. 5
illustrates, each encoder consists of a self-attention layer and a
Feed Forward network (FF). Every encoder calculates the attention
coefficients between nodes and obtains the hidden state of each
node by attending over its neighbors:

Ĥi−1 = Hi−1 + Attention(Hi−1) (8)

Hi = Ĥi−1 + FF(Ĥi−1) (9)

where Hi is the hidden state of graph G output by ith encoder. In
this way, messages can be propagated through the whole graph.
Eventually, we obtain the final contextual representation of each
region after processing several encoders.

4 EXPERIMENTS
4.1 Experiment Settings
4.1.1 Implementation Details. To keep consistent with previous
works [3, 32, 37, 41], we adopt the Faster-RCNN detector[26], pre-
trained on ImageNet[27] and refined onVG150[37], with VGG16[30]
being the backbone to generate region proposals. The numbers of
stacked encoders and attention heads in graph encoding modules
are set to 6 and 12 respectively. All our experiments are conducted
using a NVIDIA P100 GPU.

4.1.2 Dataset. We evaluate our methods and all the comparison
models on Visual Genome[15], a large-scale dataset commonly used
in vision-and-language tasks. Following prior works[3, 32, 37, 41],
we adopt the most popular preprocessed split, VG150[37], which
contains the most frequent 150 object categories and 50 predicate
classes.



(a) (b) (c) (d) (e) (f)

Figure 4: Illustration of the proposed Predicate-Correlation Perception Learning (PCPL) scheme. (a) A learnable class graph
is constructed with each node representing the center of one predicate class and edges representing their correlations. (b) (c)
(d) The graph is jointly trained with SGG model. (e) Correlation factors are derived from the graph. (f) We utilize correlation
factors to adaptively assign optimal loss weights to predicate classes.

Table 1: Performance comparison with state-of-the-art methods on VG150 dataset. The constrained and unconstrained
mR@50/100 in % on PredCls, SGCls and SGGen tasks are presented. As VCTree and TDE do not report the unconstrained
mR@Kmetric, they are not listed in unconstrained results.

Methods PredCls SGCls SGGen
mR@50 mR@100 mR@50 mR@100 mR@50 mR@100 Mean

unconstrained

IMP+[37] 20.3 28.9 12.1 16.9 5.4 8.0 15.3
FREQ[41] 24.8 37.3 13.5 19.6 5.9 8.9 18.3
SMN[41] 27.5 37.9 15.4 20.6 9.3 12.9 20.6
KERN[3] 36.3 49.0 19.8 26.2 11.7 16.0 26.5
Ours 50.6 62.6 26.8 32.8 10.4 14.4 32.9

constrained

IMP+[37] 9.8 10.5 5.8 6.0 3.8 4.8 6.8
FREQ[41] 13.3 15.8 6.8 7.8 4.3 5.6 8.9
SMN[41] 13.3 14.4 7.1 7.6 5.3 6.1 9.0
KERN[3] 17.7 19.2 9.4 10.0 6.4 7.3 11.7

VCTree[31] 17.9 19.4 10.1 10.8 6.9 8.0 12.2
SMN+TDE[31] 25.5 29.1 13.1 14.9 8.2 9.8 16.8

Ours 35.2 37.8 18.6 19.6 9.5 11.7 22.1

Figure 5: A diagram of the Graph EncodingModule (GE).We
fuse object features as well as their corresponding spatial
information to construct a graph and obtain contextual fea-
tures by processing the graph with stacked encoders. Each
encoder is permutation invariant by consisting of a self-
attention layer and a Feed Forward network (FF).

4.1.3 Evaluation Metrics. Most of previous works adopt the re-
call@K (R@K for short) metric that measures the fraction of ground-
truth relationship triplets(subject-predicate-object) that appear among

the top K most confident predictions in an image[37]. However, this
metric is easily dominated by a few predicate classes accounting
for absolute proportion of data due to the long-tail distribution
of annotations. Thus we abandon R@K on most experiments and
evaluate all the methods using the mean rcall@K (mR@K for short),
proposed by Chen et al. [3] and Tang et al. [32], to give a more
comprehensive assessment. It is defined as the average R@K of
all the predicate classes, which gives a fair performance appraisal
for both head and tail classes. Notably, we report R@K in Table 2,
which compares different debiasing methods, to avoid over-fitting
to tail classes. Both unconstrained and constrained [41] mR@K are
presented on all experiments, which obtained from multi and single
output relationships respectively.

4.1.4 Tasks. To comprehensively evaluate the performance on dif-
ferent stages of SGG, we adopt the following three tasks: Predicate
classification (PredCls) predicts the predicate classes of a set of
given object pairs with ground truth bounding boxes and object
labels. Scene graph classification (SGCls) predicts the object classes
for ground truth bounding boxes and predicts the predicate labels
of each object pairs. Scene graph generation (SGGen) only takes



Figure 6: Performance comparison between re-weighting
and our method on the VG150 dataset. The unconstrained
R@100 for each predicate class on the PredCls task is pre-
sented.

the original image as input and sequentially detects the bounding
boxes, object labels and then predicts the relationships between
object pairs.

4.2 Compared methods
In this section, we first perform a thorough comparison between our
proposed method and the existing state-of-the-art methods of scene
graph generation, including Iterative Message Passing (IMP+)[37],
Frequency baseline (FREQ)[41], Stacked Motif Networks (SMN)[41],
Knowledge-Embedded Routing Network (KERN)[3], Visual Con-
texts Tree (VCTree)[32] and Stacked Motif Networks with TDE
(SMN + TDE) [31]. As shown in Table. 1, we present the uncon-
strained and constrained mR@K on three tasks on the VG150 bench-
mark. KERN, which explicitly uses the statistical co-occurring prior
outperforms SMN by 5.9% and 2.7% of the mean mR while VC-
Tree, which mines the implicit relatedness between object pairs by
learning a score matrix, gains a slight improvement over KERN.
Though these methods achieve significant progress, TDE, as state-
of-the-art on mR@K, is the first method focusing on the long-tailed
trouble of SGG. While TDE is a prediction strategy, our proposed
PCPL is a training scheme. Our method achieves higher constrained
mR@K than others on all three tasks, gaining the mean mR of 22.1%
and 32.9%, with a relative improvement of 31.5% and 24.2% com-
pared with the previous state-of-the-art methods (i.e., SMN+TDE
and KERN). Our model evidently outperforms others on PredCls
and SGCls in the unconstrained mR@K metric, only slightly lower
than KERN on the SGGen task, principally due to the statistical
co-occurrence of objects KERN uses to promote the performance of
object detection which is not the main concern of our discussion.

Secondly, we perform a more in-depth comparison between our
method and several commonly used class imbalance handling strate-
gies as well as the previous state-of-the-art debiasing method of
SGG (SMN+TDE) to further demonstrate the effectiveness of PCPL.
We retrain our baseline model (GE) with focal loss[22], class bal-
anced loss[4] and weighted cross entropy loss respectively. The
results of R@50/100 and mR@50/100 on three tasks are listed in Ta-
ble. 2. Focal loss, which assigns larger training costs to hard samples,
leads to a decline of mR@50/100 fromGE. Re-balancingmethods, i.e.
class-balanced loss and re-weighting gain significant improvements
on mR@50/100 but occur huge decrease on R@50/100, indicating
over-fitting to tail classes. SMN+TDE[31] achieves a relatively bal-
anced performance, promopting the mR@50/100 while preferablely

keeping the performance of R50/100. Our method gains further
increase on mR@50/100 from re-weighting and acquire comparable
R@50/100 with SMN+TDE, though their detector is equipped with
resnet[21], which is a more powerful backbone than the VGG16 we
use. The comparison suggests that our proposed PCPL can super-
vise the model to learn a more unbiased representation of scene
graph.

Fig. 6 presents a comparison between ourmethod and re-weighting
of the detailed recall@100 of PredCls task on each predicate class
ranking by sample frequencies. PCPL performs better than re-
weighting on almost all the predicate classes. While evidently pro-
moting the performance of tail classes with few training samples
likewalking in,mounted on and painted on, PCPL obtains recall@100
on the four head predicates, which accounting of nearly 70% of the
training data, as 83%, 93%, 97.5% and 90.2%, with improvements of
29.9%, 13.8%, 8.6% and 8.1% over those of re-weighting. Re-balancing
strategies blindly restrain the training of head classes and encour-
age tail predicates while disregarding the correlations between
them, gaining unworthy improvements on tail classes at the cost
of massive decrease of the results on head predicates (e.g., on). On
the contrary, PCPL adaptively assigns optimal loss weights appro-
priately inversed with their relatedness to predicate classes during
the training process. The performance of predicates with weak
correlations (e.g., looking at,belonging to and playing) improves on
account of higher training costs. Although predicate classes having
strong correlations with multi classes (e.g., on) are assigned with
relatively smaller loss weights, their learning benefits from the
training process of correlated ones (e.g., parked on,standing on and
walking on), thus we are able to obtain relatively unbiased results
on all predicates.

4.3 Ablation Study
We consider several ablations in Table. 3 and Table. 4. Table. 3
reveals the different ways to obtain class center representations
(i.e., AvgCenter and LearntCenter, using the average of all features
of a class to represent the center in every epoch and learning a
class center end-to-end,respectively) and normalize the correlation
factor(i.e., SoftmaxNorm, ScalingNorm and MinMaxNorm, using
softmax function, divided with the maximum value and employing
Eq. 4 to obtain correlation factor τ from global correlation u, respec-
tively). Results show that the composition we use (i.e., LearntCenter
+ MinMaxNorm) acquires best performance. An explanation for
the low performance of SoftmaxNorm and ScalingNorm is that the
global correlation u of each predicate is roughly at the same scale,
causing the distribution of correlation factor τ obtained using Soft-
maxNorm or ScalingNorm is too smooth to make enough impact
on the loss weights while MinMaxNorm magnifies the difference.

The contributes of this paper can be summarized as PCPL, the
graph encoder and the noisy label droppingmethod. To better verify
the effectiveness of each components, we perform an ablation study
as listed in Table. 4. The performance of model with PCPL on all
three tasks occurs an evident rise from GE, which clearly shows
that our proposed PCPL greatly improves the generalization ability
of the model. Meanwhile, GE still markedly outperforms IMP+,
FREQ and SMN, indicating the effectiveness of the graph encoders
in encoding context and extracting better visual features. Equipped



Table 2: Performance comparison with other debiasing methods on VG150 dataset. The R@50/100 and mR@50/100 in % with
and without constraints on PredCls, SGCls and SGGen tasks are presented.

Methods PredCls SGCls SGGen
R@50/100 mR@50/100 R@50/100 mR@50/100 R@50/100 mR@50/100 Mean

unconstrained

GE + focal loss[22] 77.3/85.4 26.4/36.2 42.3/46.1 14.8/19.8 18.3/23.7 3.6/5.4 33.3
GE + class-balanced loss[4] 57.0/70.8 35.1/44.9 33.2/39.9 19.1/24.0 8.4/12.8 6.1/8.9 30.0

GE + re-weighting 56.5/70.7 39.0/49.6 32.0/38.9 20.6/25.8 8.1/12.1 6.5/9.4 30.8
Ours 72.1/81.5 50.6/62.6 39.9/44.5 26.8/32.8 15.2/20.6 10.4/14.4 38.4

constrained

GE + focal loss[22] 64.4/66.8 16.7/18.4 35.0/36.0 8.7/9.4 18.1/22.9 3.5/4.9 25.4
SMN+TDE[31] 46.2/51.4 25.5/29.1 27.7/29.9 13.1/14.9 16.9/20.3 8.2/9.8 24.4

GE + class-balanced loss[4] 43.4/48.1 29.7/33.6 24.9/26.8 15.9/17.9 8.4/12.6 6.0/8.8 23.0
GE + re-weighting 40.4/44.6 32.1/35.9 22.4/24.2 16.5/18.3 8.1/11.9 6.5/9.3 22.5

Ours 50.8/52.6 35.2/37.8 27.6/28.4 18.6/19.6 14.6/18.6 9.5/11.7 27.1

Table 3: Performance comparison of different compositions of PCPL on VG150. The constrained and unconstrained
mR@50/100 in % on PredCls, SGCls and SGGen tasks are presented.

Methods PredCls SGCls SGGen
mR@50 mR@100 mR@50 mR@100 mR@50 mR@100 Mean

unconstrained

LearntCenter + SoftmaxNorm 34.1 45.8 18.7 24.5 4.4 6.7 22.4
LearntCenter + ScalingNorm 37.2 49.1 20.6 26.4 5.1 7.4 24.3
AvgCenter + MinMaxNorm 49.7 61.9 25.4 31.8 9.2 12.0 31.7

LearntCenter + MinMaxNorm 50.6 62.6 26.8 32.8 10.4 14.4 32.9

constrained

LearntCenter + SoftmaxNorm 17.4 18.9 9.1 9.7 3.9 5.3 10.7
LearntCenter + ScalingNorm 19.0 20.5 10.1 10.7 4.5 5.8 11.8
AvgCenter + MinMaxNorm 34.1 36.9 17.8 18.9 8.6 10.6 21.2

LearntCenter + MinMaxNorm 35.2 37.8 18.6 19.6 9.5 11.7 22.1

Table 4: Ablation study of our method.The constrained and unconstrained mR@50/100 in % on PredCls, SGCls and SGGen
tasks are presented.

Methods PredCls SGCls SGGen
mR@50 mR@100 mR@50 mR@100 mR@50 mR@100 Mean

unconstrained
GE 32.7 44.0 18.3 23.8 8.3 11.6 23.1

GE+PCPL 50.1 61.9 26.1 32.3 10.1 14.2 32.5
Ours 50.6 62.6 26.8 32.8 10.4 14.4 32.9

constrained
GE 17.3 18.7 9.3 9.8 5.5 6.5 11.2

GE+PCPL 34.5 37.4 18.1 19.2 9.3 11.2 21.6
Ours 35.2 37.8 18.6 19.6 9.5 11.7 22.1

with the noisy label dropping schema, the performance of model
gains a sight further improvement, demonstrating its efficiency.

5 CONCLUSION
In this paper, we discover that the key challenge for generating
unbiased scene graph lies in the complex relatedness among predi-
cate classes. Thus, we propose a novel PCPL framework which can
adaptively assign optimal loss weights to predicates by directly per-
ceiving and explicitly utilizing the correlations among classes. PCPL
is further equipped with a graph encoder module to better extract

context features. Extensive experiments on the benchmark VG150
dataset show that PCPL performs markedly better on tail classes
while well-preserving the performance on head ones, which signifi-
cantly outperforms previous state-of-the-art methods inmean recall
evaluation metric, demonstrating its effectiveness in removing the
long-tailed bias of SGG.
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