
Relational Graph Learning for
Grounded Video Description Generation

Wenqiao Zhang
Zhejiang University

wenqiaozhang@zju.edu.cn

Xin Eric Wang
University of California, Santa Cruz

xwang366@ucsc.edu

Siliang Tang∗
Zhejiang Universety
siliang@zju.edu.cn

Haizhou Shi, Haocheng Shi
Zhejiang University

shihaizhou,hcshi@zju.edu.cn

Jun Xiao,Yueting Zhuang
Zhejiang University

junx,yzhuang@cs.zju.edu.cn

William Yang Wang
University of California, Santa

Barbara
william@cs.ucsb.edu

ABSTRACT
Grounded video description (GVD) encourages captioning models
to attend to appropriate video regions (e.g., objects) dynamically
and generate a description. Such a setting can help explain the
decisions of captioning models and prevents the model from hal-
lucinating object words in its description. However, such design
mainly focuses on object word generation and thus may ignore
fine-grained information and suffer from missing visual concepts.
Moreover, relational words (e.g., “jump left or right” ) are usual spatio-
temporal inference results, i.e., these words cannot be grounded on
certain spatial regions. To tackle the above limitations, we design
a novel relational graph learning framework for GVD, in which a
language-refined scene graph representation is designed to explore
fine-grained visual concepts. Furthermore, the refined graph can
be regarded as relational inductive knowledge to assist captioning
models in selecting the relevant information it needs to generate
correct words. We validate the effectiveness of our model through
automatic metrics and human evaluation, and the results indicate
that our approach can generate more fine-grained and accurate
description, and it solves the problem of object hallucination to
some extent.
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1 INTRODUCTION
Recently, video captioning [11], the task of automatically gener-
ating a sequence of natural-language words to describe a video,
has drawn increasing attention [19, 20, 33]. However, these models
are known to have poor grounding performance, which leads to
objects hallucination [23]. Captioning models generate descriptive
objects that are not in the video because of similar semantic con-
texts or pre-extracted priors during the training stage. As a result,
some models lack interpretability even if they have high captioning
scores. Therefore, grounded video description (GVD) [53], which
tries to improve the grounding performance of captioning models,
has been proposed. In this approach, the captioning model learns
to ground related video regions (e.g., objects) that are used as in-
put to predict the next word. Such a setting can teach models to
rely explicitly on the corresponding evidence in the video when
generating descriptions.

Focusing on object word generation can only partially address
the problem of object hallucination. Furthermore, this design may
lead to some potential limitations. First, a GVD model encourages
captioning models to focus on related regions of objects to gen-
erate correct words; thus, the fine details (e.g., related objects and
attributes of grounded object) in the corresponding video may be
ignored, and may generate a coarse-grained descriptive sentence.
Second, relational words (relationships among or between salient
objects), such as “climb up or down”, are usual inference results
from sequential frames. No specific spatial regions can ground
these words, thus, using only grounding regions may lead to inap-
propriate word generation. Therefore, an optimization goal of GVD
is to produce fine-grained information and a reasonable learning
approach to describing a video with fine and correct details.

Inspired by recent breakthroughs in higher-level visual under-
standing tasks, scene graph (SG ) construction has become a popu-
lar area with remarkable advancements. [5, 6]. As an abstraction
of objects and their complex relationships, SG can provide rich
semantic information of the visual domain. Thus, SG is expected
to deal with the problems mentioned above. On the one hand,
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GVD model (w/ SG) : A man in blue shirt is climbing up the rock wall.
GVD model (w/o SG) : A man is climbing down a rock.
Object Words : man
Ground Truth : We then see one man climbing a sheer cliff.

man
shirt wall

man greenshirt
Scene Graph Detector

1 2 3 4

Language Filter 

blue

climbing down climbing up

Figure 1: An example of how the language-refined graph fa-
cilitates GVD generation. The green bounding box is the at-
tended region. Pink, green and blue words represent the ob-
jects, relationships and attributes.

SG provides complementary information to assist the captioning
model in generating fine-grained phrases, such as “man in blue
shirt” (Figure 1). On the other hand, SG with relational inductive
knowledge guides the captioning model to generate appropriate
relational words, such as “climb up”, and ground the correct region
in the third frame. While w/o SG grounding a similar region in the
second frame but generate inappropriate relational words “climb
down”. However, directly using SG does not solve the problem of
semantic inconsistency between predefined concept categories and
target lexical words. For example, in Figure 1, ⟨ man-in-shirt ⟩ and
⟨ shirt-green ⟩ are the unconcerned concepts.We notice that a sen-
tence (ground truth of video description) can also parse a language
SG [1] that contains the key visual concepts. The language SG can
be treated as linguistic guidance to refine the visual SG. Exactly as
shown in Figure 1, the unconcerned concepts with color gray are
filtered and do not hallucinate objects in the description.h

Based on this insight, we propose the relational graph learning
framework (RGL), which incorporates SG into the conventional
encoder-decoder method for GVD generation. Specifically, given a
video, the training pipeline has three parts: 1) Relational Graph En-
coder. We first build the frame scene graph SGF and the language
scene graph SGL from the video frames and its ground truth at the
training stage. Then, to filter the unconcerned concepts, we regard
theSGL as linguistic guidance to refine theSGF . Thus, the refined
graph representation SGR with relational inductive knowledge is
obtained for improved GVD generation. 2) Sentence Decoder. We in-
troduce a selection mechanism for a sentence generator that learns
to decide the utilization of grounding regions and refined graph
SGR . Such a decoder can generate video descriptions reasonably
on a fine-grained level. In addition, we derive a context generator
with refined graph SGR to leverage and update the compressed
semantic information and maintain coherence among sentences.
3) Grounding Module. We build a grounding and localizing mecha-
nism, which not only encourages the model to ground the regions
dynamically on the basis of the current semantic context to predict
words but also localizes regions using the generated object words.
Such a setting can boost the accuracy of the object word generation
and address the problem of object hallucination. In summary, the
major contributions of our study are as follows:

• We develop a language-refined SG representation that con-
tains the key visual concepts for GVD generation.

• We propose a captioning model with a selection mechanism
that selects the relevant information it needs on the basis of
the current semantic context to describe a video reasonably.

• We demonstrate the superiority of RGL in generating fine-
grained and accurate description via automatic metrics and
human evaluation.

• This attempt is the first to combine GVD and visual SG or-
ganically. The proposed RGL can improve captioning quality,
grounding performance and alleviate object hallucination
simultaneously.

2 RELATEDWORK
Video Captioning: Video captioning is being actively studied in
vision and language research. The prevailing video captioning tech-
niques often incorporate the encoder-decoder pipeline inspired by
the first successful sequence-to-sequence model S2VT [30]. Benefit-
ting from the rapid development of deep learning, video captioning
models have achieved remarkable advances using attention mecha-
nism [27, 37, 43, 52], memory networks [3, 15, 22, 31], reinforcement
learning [14, 21, 33] and generative adversarial networks [20, 40].
Although these encoder-decoder-based methods have reached im-
pressive performance on automatic metrics, they often neglect how
well the generated caption words (e.g., objects) are grounded in the
video, making models less explainable and trustworthy.
Visual Grounding: Visual grounding models encourage caption-
ing generators to link phrases with specific spatial regions of images
or videos, thereby presenting a potential way to improve the ex-
plainability of models [7, 24, 35, 46, 49, 53]. The most common way
of grounding models is to predict the next word using an attention
mechanism, which is deployed over noun phrases, with supervised
bounding boxes as input. However, these models often focus on ob-
ject word generation and further produce a coarse-grained sentence
to describe an image or a video. Moreover, grounding video regions
seem inappropriate to predict relational words because these words
do not usually correspond to a specific spatial region.
Scene Graph: Recently, SG construction have become popular
research topics with significant advancements [9, 36, 38, 47, 48, 55]
based on the Visual Genome [12] dataset. The SGs contain struc-
tured semantic information and can represent scenes as directed
graphs, where nodes are objects and edges are relationships and at-
tributes. Using this inductive information is natural to improve the
performance of vision-language tasks, e.g., image captioning [8, 39],
VQA [26, 28]. However, directly feeding the SG to the captioning
model may lead to a noncorrespondence problem between vision
and language. Therefore, how to refine the relational knowledge is
key to promote the vision-language field further.
Graph Convolutional Network: A graph convolutional network
(GCN) [2]is a weighted average function that operates directly on
a graph and induces the embedding vectors of nodes on the basis
of the properties of their neighborhoods. Graph neural networks
have achieved remarkable success in processing graph-structured
data and have been widely adopted in many areas, such as semantic
role labeling [17, 18], relation classification [32, 54], social network
mining [4], text classification [41, 42], recommendation system [44],
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Figure 2: Overview of our method. It consists of three modules: (a) The relational graph encoder to produce the language-
refined graph representation ũ from the source video and its ground truth. (b) The sentence generator uses a stacked two-layer
LSTM with a selection mechanism for video description generation. (3) The grounding module has the mechanism of region
grounding and object localization to predict the correct object words.

and scene understanding [38]. Given the effectiveness of GCN in
handling graph-based data, we use a GCN to capture the contextual
relations among the SGs of a video for GVD generation.

3 METHOD
3.1 Task Description
Before presenting ourmethod, we first introduce some basic notions
and terminologies. Given a video V={V 1, · · · ,V𝐿 } consisting of L
clips, the goal of grounded video description (GVD) is to generate
the natural language description S={S1, · · · , S𝐿}, and localize the
object words O={O1, · · · ,O𝐾 } in frames, where K is the number
of objects appearing in the description. We denote the model as G,
and the sentence Ŝ, object grounding Ô𝑔 generated by G(V), i.e., Ŝ,
Ô𝑔 = G(V). For a model parameterized by 𝜃 , we define the loss for
a training pair as L((S, O𝑔), 𝐺( V ; Θ)).

Figure 2 shows the overall pipeline of our Relational Graph Learn-
ing (RGL) approach, which mainly consists of the Relational Graph
Encoder, Sentence Decoder and Grounding Module. (1) Given a video
and its corresponding ground truth, the Relational Graph Encoder
module first transforms them into the SGs. Then adapting the
visual-language mapping is adopted to generate a language-refined
graph representation ũ (Section 3.2). (2) The Sentence Decoder is
encouraged to select information dynamically from ũ and ground
regions r to generate the current word. (Section 3.3). (3) We com-
pute the localization accuracy of object words on the ground truth
sentence, and the language model dynamically attends region pro-
posals r in the subsequent word prediction stage. (Section 3.4).For
clarity, we use a GVD task as an example to illustrate our method.

3.2 Relational Graph Encoder
Generally, the SG defined in our task SG = (N , E) and contains
a set of nodes N and edges E. As exemplified in Figure 2(a), the
node set N contains three types of nodes: object node 𝑜 , attribute
node 𝑎, and relationship node 𝑟 .

3.2.1 Scene Graph Detector. Given a video clip, we sample sev-
eral frames to generate the Frame Scene Graph SGF . In detail,
for 𝑖𝑡ℎ frame, the corresponding SGF

𝑖
is extracted by the SG

parser comprising an object detector Faster-RCNN [34], an attribute
classifier [39], and a relationship classifier MOTIFS [47]. Hence,
SGF = {SGF

1 , · · · ,SGF
𝑄
}, where 𝑄 is number of sampled frames.

To generate the Language Scene Graph SGL , we use the SG gen-
erator [1] that parses the sentence to a syntactic dependency tree.
Then, the rule-based method [25] is developed to transform the
tree into an SG.

3.2.2 Scene Graph Encoder. To represent the nodes of the SG, we
denote the nodes {𝑜, 𝑎, 𝑟 } by the label embeddings as {e𝑜 , e𝑎, e𝑟 }
∈ R𝑒 , corresponding respectively to objects, attributes and rela-
tionships both in SGF and SGL . In particular, different from
using the simple label embeddings e𝑜 and e𝑟 in SGF , e𝑜 is the
key to connect domains of vision and language. Thus, we intro-
duce the Multi-modal Factorized Bilinear Pooling (MFB) [45] to
fuse the region features and label embeddings to augment object
representation e𝑜 , which is known to be effective in multi-modal
tasks [13, 16].
Node embedding : To encode the SG nodes at a unified repre-
sentation u = {u𝑜 ,u𝑎,u𝑟 } ∈ R𝑢 , we introduce the Graph Convolu-
tional Network (GCN ) [18], which can embed the graph structure
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into vector representations. Thus, we use the GCN that encodes
three kinds of node embeddings by considering their neighborhood
information. All the GCNs are defined with the same structure but
independent parameters.
Objects Encoding : An object 𝑜 𝑗 in SG, it can play different roles
(“subject” or “object”) due to different edge directions, i.e., two triples
with different relationships, ⟨𝑜𝑖 −𝑟𝑖, 𝑗 −𝑜 𝑗 ⟩ and ⟨𝑜 𝑗 −𝑟 𝑗,𝑘 −𝑜𝑘 ⟩. Such
associated objects by the cascaded encoding scheme can represent
the global information of objects for a frame or sentence. Therefore
we compute u𝑜 𝑗 via explicit role modeling:

u𝑜 𝑗 =
1

𝑁𝑜 𝑗
[

∑︁
e𝑜𝑗 ∈𝑠𝑢𝑏

𝐺𝑠 (e𝑜 𝑗 , e𝑟 𝑗,𝑘 , e𝑜𝑘 )

+
∑︁

e𝑜𝑗 ∈𝑜𝑏 𝑗
𝐺𝑜 (e𝑜𝑖 , e𝑟𝑖,𝑗 , e𝑜 𝑗 )]

(1)

where 𝑁𝑜 𝑗 =
��𝑠𝑢𝑏 (𝑜 𝑗 )�� + ��𝑜𝑏 𝑗 (𝑜 𝑗 )�� is the total number of the re-

lationship triplets in SG that object 𝑜 𝑗 has. 𝐺𝑠 and 𝐺𝑜 are the
convolutional operation for objects as a “subject” or an “object”.
Attributes Encoding : An 𝑜𝑖 in SG usually includes several at-
tributes {𝑎𝑖1, · · · , 𝑎

𝑖
𝑇𝑎𝑖

}, where 𝑇𝑎𝑖 is the total number of attributes.
Therefore, the unified u𝑎𝑖 can be computed as:

u𝑎𝑖 =
1
𝑇𝑎𝑖

∑︁
𝑖∈𝑇𝑎𝑖

𝐺𝑎 (e𝑜𝑖 , e𝑎𝑖 ) (2)

where 𝐺𝑎 is the convolutional operation for object 𝑜𝑖 and its at-
tributes.
Relationships Encoding : The relationship between two salient
objects 𝑜𝑖 and 𝑜 𝑗 is given by the triplet ⟨𝑜𝑖 − 𝑟𝑖, 𝑗 − 𝑜 𝑗 ⟩. Similarly,
the unified relationship encoding u𝑟𝑖,𝑗 is produced as follows:

u𝑟𝑖,𝑗 =𝐺𝑟𝑖, 𝑗 (e
𝑜𝑖 , e𝑟𝑖,𝑗 , e𝑜 𝑗 ) (3)

where 𝐺𝑟
𝑖, 𝑗

is the convolutional operation for relational object 𝑜𝑖
and 𝑜 𝑗 .

3.2.3 Visual-Language Mapping. To refine the visual SGF , we
adapt the visual domain to the language domain using the across-
modality mapping function. In our model, we translate uF (video)
on the basis of linguistic guidance uL (sentence) to a refined SG
representation ũ = {ũ𝑜 , ũ𝑎, ũ𝑟 } using an effective multi-layer per-
ceptron. The visual-language mapping loss L(𝑀) is computed by
mean squared error (MSE) loss as follows:

L(𝑀) = 𝑀𝑆𝐸 (uF,uL) (4)

Such language-refined SG ũ is then fed into the sentence de-
coder, providing relational inductive knowledge to generate GVD.

3.3 Sentence Decoder
3.3.1 Single Sentence Generator. We develop a stacked two-layer
LSTM network using a selection mechanism to generate video
description. The first layer of the LSTM network is for encoding
the video features. Specifically, we concatenate the previous hidden
stateh2

𝑡−1, global video representation v̄
𝑔 , and embed the previously

generated word y𝑡−1 as the source input to the first-layer LSTM:

h1
𝑡 = LSTM1st (h1

𝑡−1, [h
2
𝑡−1, v̄

𝑔, 𝐸𝑚𝑏𝑤 (y𝑡−1)]) (5)

3rd-Sentence 
Generator

2nd-Sentence 
Generator

1st-Sentence 
Generator

Context 
LSTM

Context 
LSTM

Context 
LSTM

Lth-Sentence 
Generator

ℎ𝑀𝑀
2,1

ℎ1c

ℎ1c

�𝑢𝑢1

ℎ𝑀𝑀
2,2 ℎ𝑀𝑀

2,3

ℎ2c

ℎ2c

ℎ𝐿𝐿−1c

Dense 
layer

�𝑢𝑢2 Dense 
layer

Dense 
layer

ℎ3c

�𝑢𝑢3

Figure 3: Overview of the context generator. The final hid-
den states in sentence generator are fed into context gener-
ator, whose output and SG representation ũ are return to
initialize the next sentence generator.

where [·, ·] indicates the row-wise concatenation. 𝐸𝑚𝑏𝑤 is the word
embedding matrix. v̄𝑔 contains the pooling result of v𝑔 and the
positional information of current video clip.

The second layer of the LSTM network is for sentence generation.
To improve the robustness of the sentence generator, we enrich the
language input as four parts instead of simply utilizing h1

𝑡 as the
source input. We first extract the frame features f = {f1, · · · , f𝑄 }
and design a temporal attention [37, 50, 51] to determine the weight
for each frame. The attended frame representation is given by f̂.

We augment region proposals r = {r1, · · · , r𝑁 } using its posi-
tional encoding and region-class similarity matrix. To model the
relations between regions further, we deploy a self-attention [29]
layer for r, thereby allowing information to pass across all regions
in the sample frames. Thus, the augmented region representation
is given by r̃.
Selection Mechanism : The hidden state h1

𝑡 is determined to se-
lect dynamically how much and what from the SG and grounding
regions. (1) how much , a soft attention is developed on ũ and r̃, and
the corresponding weight score 𝑠𝑟 and 𝑠𝑠𝑔 are determined to select
dynamically how much from SG and grounding regions. (2) what,
then we compute the spatial attention 𝑎𝑟 for {r̃1, · · · , r̃𝑁 } and soft
attention 𝑎𝑠𝑔 for {ũ𝑜 , ũ𝑎, ũ𝑟 } to generate attended representation r̂
and û. 𝑎𝑟 and 𝑎𝑠𝑔 are determined to select what in ũ and r̃. Lastly,
we concatenate h1

𝑡−1 ,f̂, 𝑠𝑠𝑔û and 𝑠𝑟 r̃ as the input to the second
layer of the LSTM network:

h2
𝑡 = LSTM2nd (h2

𝑡−1, [h
1
𝑡 , f̂, 𝑠

𝑠𝑔û, 𝑠𝑟 r̂]) (6)

Using the notationy1:𝑇 , we refer to a sequence ofwords {y1, · · · , y𝑇 }.
For each step 𝑡 , the conditional distribution over possible words is
given by:

𝑝 (y𝑡 |y1:𝑡−1, r, f, ũ) = 𝑆𝑜 𝑓 𝑡𝑚𝑎𝑥 (W⊤
ℎ𝑦

h2
𝑡 ) (7)

whereWℎ𝑦 ∈ R𝑚×𝑣 , h2
𝑡 is the hidden state from the second layer

of the LSTM network .

3.3.2 Context Generator. The clips belong to the same video and
are thus contextually co-dependent, i.e., the previous sentences gen-
erated by the single sentence generator are semantically relevant
to generate the next sentence. To exploit contextual dependencies
among the sentences, we build a superordinate context generator
that using a LSTM runs over the embedding of each sentence (Fig-
ure 3), and is therefore asynchronous to the sentence generator.
Each time the state of sentence generator is updated, its output is
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utilized to initialize the sentence generator of the first layer LSTM:

x𝑖0 = INI ( [LSTMc (h2,𝑖−1
𝑀

,h𝑐𝑡−1), ũ
𝑖 ]) (8)

where x𝑖0 is the initial input of 𝑖
𝑡ℎ sentence generator. 𝐼𝑁𝐼 is a dense

layer with an activation function, h2,𝑖−1
𝑀

is the last hidden state of
the 𝑖-1𝑡ℎ sentence, and h𝑐𝑡−1 is the previous hidden state of context
LSTM.

In summary, combining visual-language mapping lossL(𝑀), the
cross-entropy lossL(𝑆) for description generation can be computed
by:

L(𝑆) = −
𝑀∑︁
𝑖=0

𝑙𝑜𝑔(𝑝 (y𝑡 |y0:𝑡−1)) + 𝜆𝑀L(𝑀) (9)

3.4 Grounding Module
Region Grounding : In this section, we aim to evaluate how well
the captioning model grounds visual objects. To assist the language
model in attending to the correct regions, following [53], we de-
velop the region attention loss L(𝑅): we denote the indicators of
positive/negative regions as 𝛾 = {𝛾1, · · · , 𝛾𝑁 } in each time step,
where 𝛾𝑖 = 1 if the region 𝛾𝑖 has over 0.5 IoU with a ground truth
box and otherwise 0. In combination with the treating attention 𝑎𝑟

(Section 3.3.1), the region attention loss function is defined as:

L(𝑅) = −
𝑁∑︁
1
𝛾𝑖𝑙𝑜𝑔𝑎

𝑟
𝑖 (10)

Object Localizaiton : Given an object word w with a specific
class label, we aim to localize the related region proposals. We
first define the region-class similarity function with the treating
attention weights 𝑎𝑟 as below:

𝑝𝑠 (r, 𝑎𝑟 ) = Softmax(W⊤
𝑠 r + 𝑎𝑟 ) (11)

where𝑊𝑠 ∈ R𝑑×𝑁 is a simple object classifier to estimate the class
probability distribution.

Thus we use the 𝑝𝑠 (r, 𝑎𝑟 ) to calculate the confidence score for
w, combing the supervised attention loss L(𝑅), the grounding loss
function L(𝐺) for word w is defined as:

L(𝐺) = −𝜆𝐿
𝑁∑︁
𝑖=1

𝛾𝑖𝑙𝑜𝑔𝑝
𝑠 (r𝑖 ) + 𝜆𝑅L(𝑅) (12)

3.5 Training Algorithm
Algorithm 1 details the pseudocode of our RGL algorithm for GVD
generation. First, we pre-train the language GCN by reconstruct-
ing the sentences from the latent vector that is encoded from the
language SG with the GCN (sentence→SG → latent vector→
sentence→ object grounding). Then, we keep the language GCN
fixed, and learn the visual GCN by mapping the visual SG and the
language SG in the latent space. Basically, the encoded latent vec-
tor from the language SG is used as supervised signals to learn the
visual GCN and assist the GVD generation. Through the learning
procedure, we found that most of the unconcerned visual concepts
are filtered.

Algorithm 1: Relational Graph Learning Algorithm
Input: Training pairs (𝑉 , (𝑆 , 𝑂𝑔 )).
Output: (𝑆,𝑂𝑔).

1 Initialization: Load the pre-trained SG generator, and
generate SGF and SGL ;

2 repeat
3 if Language GCN have not trained then
4 repeat
5 Randomly sample a minibatch;
6 𝑢L⇐= SGL by using Equation (1)(2)(3);
7 𝑆 ⇐= 𝑢L by using Equation (9);
8 𝑂𝑔 ⇐= 𝑆 by using Equation (10) (12);
9 Update Θ, and minimizing L(𝑆),L(𝑅),L(𝐺);

10 until Convergence;;
11 Fix the Language GCN;
12 Randomly sample a minibatch;
13 𝑢F⇐= SGF by using Equation (1)(2)(3);
14 Non-linearly map 𝑢F into 𝑢̃ by using Equation (4);
15 𝑆 ⇐= 𝑢̃ by using Equation (9);
16 𝑂𝑔 ⇐= 𝑆 by using Equation (10) (12);
17 Update Θ, and minimizing L(𝑀), L(𝑆), L(𝑅), L(𝐺);
18 until Convergence;

4 EXPERIMENTS
4.1 Dataset and Setting
Dataset : We benchmark the RGL method on the ActivityNet-
Entities dataset1 and compare it with other baselines and state-of-
the-art models. Moreover, the ActivityNet-Entities collect NPs with
bounding box annotations in the frame region level, every NP only
in one frame inside each clip. It defines the 4-D tuple (𝑉 , 𝐷, 𝐸, 𝐵)
that represents the number of videos, descriptions, objects, and
bounding boxes, and the official split has (10k ,35k, 432 ,105k )/,(2.5k,
8.6k, 427, 26.5k)/,( 2.5k ,8.5k, 421, 26.1k) for train/val/test data, re-
spectively.
Settings : For video description, we tokenized the texts on white
space, and the sentences are “cut” at a maximum length of 20 words.
All the Arabic numerals are converted to the English word. We add
a special Unknown token to replace the words out of the vocabulary
list. The vocabulary has 4,904 words, and each word represents
as a 512-dimensional vector. The hidden state size of the LSTM
is 1024. The embedding size of nodes in the scene graph and the
unified scene graph representation is 1000. The dimension of other
learnable matrices are Wℎ𝑦 ∈ 512 × 4904, Wℎ𝑦 ∈ 2048 × 1024. We
train our model with cross-entropy objectives and use the ADAM
optimizer [10] with a learning rate of 1.25e-4, the batch size is fixed
to 64 when training all models. All experiments were run on the
2080Ti GPUs. The training is limited to 40 epochs and the model
with the best validation CIDEr score is selected for testing.

1https://github.com/facebookresearch/ActivityNet-Entities
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4.2 Metrics
Captioning Evaluation: We use the performance evaluation tool
2 provided by the 2018 ActivityNet Captions Challenge, which
includes BLEU@1, BLEU@4,METEOR, CIDEr, and SPICE to evaluate
the results of video captioning.
Grounding Evaluation: Following the grounding evaluation from
GVD [53] on the generated sentences, we define the number of
object words as 𝐴, the number of correctly predicted object words
as 𝐵, and the number of correctly predicted and localized words as
𝐶 . A region prediction is considered correct if the object word is
correctly predicted and also correctly localized (i.e., IoUwith ground
truth box >0.5). Thus, we compute two versions of precision Fl𝐴𝐿𝐿
and Fl𝐿𝑂𝐶 to evaluate the object localization accuracy for attention.

𝐹𝑙𝐴𝐿𝐿 =
𝐶

𝐴
, 𝐹𝑙𝐿𝑂𝐶 =

𝐶

𝐵
(13)

During model training, we restrict the grounding region candi-
dates within the target frame (w/ GT box), i.e., only consider the
N proposals on the frame f with the GT box. We also compute the
localization accuracy GRD. and attention correctness ATT. at each
annotated object word.
Hallucination Evaluation: Some related object words have not
been annotated in the ActivityNet-Entities dataset. Thus, we relabel
five related object words for 100 video clips (randomly selected) on
the basis of visual content and its ground truth. According to [23],
we compute CHAIR𝑖 and CHAIR𝑠 , which indicate the fraction of ob-
ject instances that are hallucinated per-instance and per-sentence,
respectively. Besides, we also record the recall of object word pre-
diction 𝑅𝐸𝐶𝐴𝐿𝐿𝑜 .
Human Evaluation: Since our model can describe a video in more
fine-grained details, and some of these details (e.g., Figure 4.a)
don’t exist in the ground truth. Thus, evaluating the grounding
performance of object/relational/attribute words seems unfair. To
verify the grounding performance of our model further, we evalu-
ate the description quality through human judgment. On the one
hand, the human evaluation validates the grounded performance of
object/relational/attribute words by Relevant𝑜𝑏 𝑗 , Relevant𝑟𝑒𝑙 and
Relevant𝑎𝑡𝑡 . On the other hand, we also allow humans to evalu-
ate the coherence of the generated descriptions subjectively using
Performance𝑐𝑜ℎ .

4.3 Baseline and SoTA
We compare the proposed RGL algorithm with the existing SoTA
method GVD [53] 3 and baseline ST-LSTM on the ActivityNet-
Entities dataset.We also conduct an ablation study to investigate the
contributions of individual components in RGL. In our experiment,
we train the following baselines of ST-LSTM and four variants of
RGL:

• ST-LSTM, which is a captioning model with a two-layer
LSTM and spatiotemporal attention and a simplified version
of our model.

• RGL (w/o SG), which only uses video representation to
generate GVD.

2https://github.com/ranjaykrishna/densevid_eval
3https://github.com/facebookresearch/grounded-video-description

• RGL (w/o CG), which generates captions without a context
generator and merely uses a stack LSTM as its sentence
generator.

• RGL (w/o RA), which generates captions without regional
attention to study the importance of regional supervision.

• RGL (w/o OG), which generates captions sequentially with-
out object word grounding and is similar to a standard video
captioning algorithm.

4.4 Experimental Results
Captioning Results : Table 1 shows the overall qualitative results
of our model and SoTA on the ActivityNet-Entities dataset. Gen-
erally, RGL achieves the best performance on all the metrics in
comparison with SoTA. We obtain an improvement of 0.7 on SPICE
because our method learns the refined representation of SG, which
provides relational knowledge and positional semantic prior, to im-
prove this score. It is noteworthy that the RGL (w/o OG) achieves
almost all the best captioning scores, this is reasonable, because
without grounding operation, the captioning model may pay more
attention to the description generation. Moreover, compared with
other variants of our method, the performance of RGL (w/o SG) is
relatively poor, thus validating the effectiveness of refined SG for
video description generation.
Grounding Results : Table 1 also reveals that our method effec-
tively improves the accuracy of GRD., ATT., F1𝐴𝐿𝐿 and F1𝐿𝑂𝐶 .
According to our observation, RGL almost obtains the best perfor-
mance for all of the grounding metrics. Since theSG representation
can be regarded as relational inductive knowledge, the captioning
model can dynamically select relevant information from grounding
correct regions and refined SG to generate correct words.
Hallucination Results : Table 2 presents object hallucination
on the test set. We note an interesting phenomenon that the SG
based methods tend to perform considerably better on the CHAIR𝑖 ,
CHAIR𝑠 and RECALL𝑜 metrics than methods without SG by a
large margin. This finding proves that the SG contains refined
visual concepts that can help the captioning model to capture more
correct objects in a video. On this basis, object hallucination is
decreased. Therefore, the refined language SG can assist the region
grounding operation in generating correct object words.
Human Evaluation : As commonly known, the text-matching-
based metrics are not perfect, and some descriptions with lower
scores actually depict the videos more accurately (See related cases
in a later section of Qualitative Examples), i.e., some captioning
models can describe a video in detail but with low captioning scores.
Thus, human evaluation is conducted. We show five experienced
workers the descriptions generated by RGL and RGL (w/o SG) and
asked them which one is more coherent and captures more related
visual concepts. For each pairwise comparison, a total of 100 video
clips (same videos in hallucination evaluation) are randomly ex-
tracted for comparison. The results of the comparisons are shown
in Table 3. RGL considerably outperforms RGL (w/o SG) in terms of
Relevant𝑜𝑏 𝑗 , Relevant𝑟𝑒𝑙 and Relevant𝑎𝑡𝑡 by a large margin. These
results indicate that the model with SG can generate more rel-
evant video description in fine detail. The results also prove the
effectiveness of RGL for GVD generation. Meanwhile, the sentence
produced by RGL achieves a higher score in terms of coherent
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Captioning Evaluation Grounding Evaluation
Method RSG. BLEU@1 BLEU@4 METEOR CIDEr SPICE GRD. ATT. F1𝐴𝐿𝐿 F1𝐿𝑂𝐶
GVD (w/o SA) [53]∗ 23.1 2.16 10.8 44.9 14.9 22.3 16.1 3.73 11.7
GVD [53]∗ 23.6 2.35 11.0 45.5 14.7 44.9 35.7 7.10 23.8
ST-LSTM† 22.7 2.13 10.3 42.5 11.6 - - - -
RGL (w/o SG)† 23.4 2.30 10.7 45.9 14.5 45.0 35.9 7.11 23.4
RGL (w/o RA)† ✓ 25.0 2.46 10.7 45.1 15.1 44.3 35.1 5.29 14.8
RGL (w/o OG)† ✓ 25.4 2.60 11.1 47.4 15.4 45.8 36.7 - -
RGL (w/o CG)† ✓ 25.2 2.60 10.8 46.9 15.4 45.3 36.2 7.69 26.2
RGL† ✓ 25.5 2.59 11.0 47.2 15.4 45.6 36.6 7.70 26.4

Table 1: Captioning results and grounding results on ANet-Entities test set. BLEU-1/4, METEOR, CIDEr and SPICE are used
as captioning metrics. Grd., ATT, F1𝐴𝐿𝐿 and F1𝐿𝑂𝐶 are used as grounding metrics. RSG. indicates the language refined scene
graph is used or not for GVD generation. ∗ indicates the results are obtained from the original papers, † sentences obtained
directly from the author. Larger value indicates better performance. All accuracies are in %. Top one score on each metric are
in bold. Acronym notations of each method see in Sec 4.3.

RSG. Hallucination Evaluation
Method CHAIR𝑖 CHAIR𝑠 RECALL𝑜
ST-LSTM† 0.686 0.894 0.147
RGL (w/o SG)† 0.572 0.824 0.198
RGL (w/o RA)† ✓ 0.659 0.867 0.164
RGL (w/o OG)† ✓ 0.609 0.836 0.206
RGL (w/o CG)† ✓ 0.531 0.807 0.228
RGL† ✓ 0.513 0.795 0.234

Table 2: Hallucination results on ANet-Entities test set.
CHAIR𝑖 , CHAIR𝑠 and ACC𝑜 are used as hallucination met-
rics. Lower value of CHAIR𝑖 , CHAIR𝑠 indicates better per-
formance, while the large value of ACC𝑜 is better.

evaluation. This result is obtained probably due to the structured
semantic information of SG.
Analysis of Scene Graph Refinement : To justify the contribu-
tion of SG refinement to GVD generation, we investigate the im-
portance of the SG with language guidance using three different
SG. As we can see in Figure 4, the best performance is obtained
when the language SG is used directly. This result is reasonable
because the language SG contains key language concepts that can
naturally reconstruct its video description. In addition, Refined SG
considerably outperforms visualSG by a large margin on all impor-
tant metrics, especially the CHAIRi (-9.0). The experimental results
indicate the importance of SG refinement in GVD generation.
Qualitative Examples : To evaluate the quality of video descrip-
tion, we conduct qualitative analysis to compare the RGL and RGL
(w/o SG) in Figure 6. We present the SG for each video, with the
annotated bounding boxes as object words. From these exemplary
results, RGL produces a more fine-grained caption compared with
RGL (w/o SG). As shown in case (a), RGL generates the related ob-
jects “woman, cat, shirt", their relationships “in, grab”, and attribute
“blue” in accordance with the SG, even if the object words only
have “lady”. Moreover, the relational phrase “next to” in the SG
is converted to “grab" through language refinement. However, the
sentence generated by RGL (w/o SG) only gives the object word

Huamn Evaluation
Metric RGL is Better RGL is Worse Equal

Relevant𝑜𝑏 𝑗 0.40 (+9%) 0.31 0.29
Relevant𝑟𝑒𝑙 0.43 (+14%) 0.29 0.28
Relevant𝑎𝑡𝑡 0.39 (+16%) 0.23 0.38

Performance𝑐𝑜ℎ 0.30 (+6%) 0.24 0.46
Table 3: Human evaluation of ourmodel and its variant RGL
(w/o SG). Relevant𝑜𝑏 𝑗 , Relevant𝑟𝑒𝑙 and Relevant𝑎𝑡𝑡 indicate
the relevant visual concepts of objects, relationships and at-
tributes in generated sentence. Performance𝑐𝑜ℎ is to evalu-
ate the coherence in sentence.
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Figure 4: The major captioning (CIDEr), grounding (GRD.)
and hallucination (CHAIR𝑖 ) results of using different scene
graphs. Visual SG: using video scene graph. Language SG:
using the language scene graph. Refined SG: using the lan-
guage refined scene graph. To facilitate the comparison, the
value of CHAIR𝑖 is multiplied by 100.

“woman” to describe the video in a coarse-grained manner, even if
it has a higher captioning score and a higher similarity with the
ground truth. This result further shows that RGL can generate a
more fine-grained and accurate description.

To study how RGL generates a video description, we visualize the
selection process during word generation (Figure 5). The histogram
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A man in a white shirt

is standing in a room

A man in a white shirt is standing in a room
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Ground Truth:  We see a man stand in a room talking.                             Object Words: room, man

𝑠𝑠𝑟𝑟 𝑠𝑠𝑠𝑠𝑠𝑠

Figure 5: Visualization of words generation. Green texts represent the higher weight of grounding regions. Pink(objects),
green(relationships) and blue(attributes) texts indicate that SG is more important. Green box corresponds to the region with
the highest attention 𝑎𝑟 . Histogram presents the selection weight of 𝑠𝑠𝑔 and 𝑠𝑟 .

woman

blue
shirt

cat

Scene Graph

RGL: The woman in blue shirt then grabs the cat and begins to talk 
to the camera.
RGL (w/o SG): The woman continue to talk to the camera.
Object Words: lady
Ground Truth: The lady finishes and talks to the camera.

man

wall
guitar

Scene Graph

RGL: A man is next to the wall and playing a guitar.
RGL (w/o SG): A man is playing a guitar on stage.
Object Words: man, wall, guitar
Ground Truth: A man stands against a wall playing guitar and singing.

Case (a)

Case (b)

Figure 6: Qualitative examples from RGL and RGL (w/o
SG). For each figure, the SG is pruned to avoid clutter.
Three word colors correspond to objects, relationships and
attributes in detected SG.

presents that the RGL selects how much from 𝑟 (grounding regions)
and 𝑢̃ (SG) to generate each word. The words in green/(pink, green,
or blue) color show the RGL select what from grounding regions
and SG. On the one hand, our model correctly attends to video

regions while generating the object words “room” and “man”, the
extra word “shirt” is also grounded correctly. On the other hand,
“in” and“white”, the words in “⟨man-in-shirt⟩ and “⟨shirt-white⟩”,
the SG is more important than grounding regions. Thus, the fine-
grained phrase ¡°man in white shirt¡± is generated.

5 CONCLUSION
We propose a novel RGL framework to train a GVD generation
model. Moreover, we develop a language-refined SG-based method
that contains additional visual concepts to describe a video in fine
detail. A novel language model with a selection mechanism is also
designed. This model can dynamically select the required infor-
mation from the grounding regions and refined SG to generate
descriptions in a reasonable manner. Our experimental results show
the effectiveness of our method via multiple qualitative evaluations.
We hope the RGL method can complement the existing literature
on video description and benefit further studies on vision and lan-
guage.
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