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ABSTRACT
Both images and music can convey rich semantics and are widely
used to induce specific emotions. Matching images and music with
similar emotions might help to make emotion perceptions more
vivid and stronger. Existing emotion-based image and music match-
ing methods either employ limited categorical emotion states which
cannot well reflect the complexity and subtlety of emotions, or
train the matching model using an impractical multi-stage pipeline.
In this paper, we study end-to-end matching between image and
music based on emotions in the continuous valence-arousal (VA)
space. First, we construct a large-scale dataset, termed Image-Music-
Emotion-Matching-Net (IMEMNet), with over 140K image-music
pairs. Second, we propose cross-modal deep continuous metric
learning (CDCML) to learn a shared latent embedding space which
preserves the cross-modal similarity relationship in the continuous
matching space. Finally, we refine the embedding space by further
preserving the single-modal emotion relationship in the VA spaces
of both images and music. The metric learning in the embedding
space and task regression in the label space are jointly optimized
for both cross-modal matching and single-modal VA prediction.
The extensive experiments conducted on IMEMNet demonstrate
the superiority of CDCML for emotion-based image and music
matching as compared to the state-of-the-art approaches.
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Figure 1: The basic idea of our image and music match-
ing based on continuous emotions. Both images and music
are projected into the same shared latent embedding space,
which is learned by preserving both the cross-modal and
single-modal emotion relationships.
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1 INTRODUCTION
Humans are emotional animals. Famous artists remain immortal
because the artworks they create such as paintings, music, and
literary works can express unique insights of life and cause emo-
tional resonance to the audience [18, 79]. The wide popularity of
mobile devices and social networks enables everyone to become an
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“artist”. Humans habitually use images, audios, and videos together
with text in social networks to express their opinions and share
their emotions [82, 84]. Affective analysis of the huge volume of
multimedia data can help to understand humans’ behaviors and
preferences and thus plays an important role in many practical
applications [51, 80], such as opinion mining [23, 56, 71], business
intelligence [25–27, 43, 46, 55], psychological health [6, 20, 36], and
entertainment assistant [2, 54, 63, 69].

Recently, extensive efforts have been dedicated to recognizing
the emotions in single-modality, such as text [19, 75], image [28,
78], speech [17], and music [68]. There are also increasing efforts
on fusing information from multiple modalities [47, 52, 59, 83].
Since different modalities can provide complementary ability for
emotion recognition, these multi-modal based methods usually
achieve better performance. The main goal is to bridge the affective
gap by extracting discriminative features and designing effective
learning or fusing strategies [83].

Compared with multi-modal emotion recognition, relatively less
efforts have been made to understand the emotion-centric cor-
relation between different modalities (e.g. image and music stud-
ied in this paper). Such emotion-based matching is essential for
various applications [57], such as affective cross-modal retrieval,
emotion-based multimedia slideshow, and emotion-aware recom-
mendation systems. The early emotion-based matching methods
mainly employ a shallow pipeline [9, 34, 48, 53, 61, 86], i.e. extracting
hand-crafted features and training matching classifiers (or training
emotion classifiers for both modalities and then learning matching
similarities). The differences lie in the extracted features, employed
emotion representations, learned classifiers, and similarity metrics.
Until very recently, some methods [57, 64] train a matching model
end-to-end with specific emotion categories by concatenating the
extracted visual and audio features and feeding them into a few
fully-connected (FC) layers.

However, there are some limitations of existing emotion-based
image and music matching methods. First, many employ limited
categorical states to represent emotion. As recent psychological
theories show, emotion categories in real-world are actually diverse
and fine-grained [13, 74]. Therefore, such coarse-grained represen-
tation cannot well reflect the complexity and subtlety of emotions.
Second, most models are trained in a multi-stage pipeline, which are
impractical. Third, they do not consider how the emotional content
is shared in a latent embedding space across different modalities
or the learned space cannot guarantee to preserve the relationship
in the label space. Finally, they do not release the datasets, which
make it difficult to compare with these methods.

To address the above-mentioned problems, we propose to match
image and music based on continuous valence-arousal emotions in
an end-to-end manner, as shown in Figure 1. We construct Image-
Music-Emotion-Matching-Net (IMEMNet), a large-scale dataset for
evaluation with over 140K image-music pairs. We select DEAM [3]
as the music corpora, and combine IAPS [33], NAPS [40], and
EMOTIC [32] as the image corpora. To project the image and mu-
sic modalities into the same shared latent embedding space, we
propose cross-modal deep continuous metric learning (CDCML),
which consists of three components. Cross-modal similarity metric
learning enforces the distance ratios in the cross-modal matching
space to be preserved in the learned embedding space. Single-modal

emotion metric learning further refines the embedding space by
preserving the distance ratios in the VA space of both images and
music. Embedded multi-task regression learns desired regression
models based on the embeddings for multi-task continuous predic-
tions: cross-modal similarities and single-modal VA values.

In summary, the contributions of this paper are threefold:
(1) We are the first to study image and music matching based on

continuous valence-arousal emotions in an end-to-end manner.
(2) We propose a novel metric learning method, CDCML, to

match image and music based on emotions by learning a shared
latent embedding space. The joint optimization of metric learn-
ing in the embedding space and task regression in the label space
enables CDCML to simultaneously predict cross-modal matching
similarities and single-modal VA values.

(3) We construct a new large-scale dataset, termed IMEMNet, for
continuous emotion-based image and music matching. Extensive
experimental results on IMEMNet demonstrate that the proposed
CDCML method outperforms the state-of-the-art methods by a
large margin for emotion-based image and music matching.

2 RELATEDWORK
Emotion Representation Models. In psychology, emotion is of-
ten measured by two kinds of representation models: categorical
emotion states (CES) and dimensional emotion space (DES). CES
models aim to classify emotions into several discrete categories,
which are easy to understand for non-professionals. The simplest
CES model is sentiment polarity, i.e. positive and negative. More
emotion categories are proposed based on psychological theories,
such as Mikel’s eight emotions [41] and Ekman’s six emotions [16].

To more accurately model the complexity and subtlety of emo-
tions, an increasing number of psychology studies tend to represent
emotions using DES models in a 2D, 3D, or higher dimensional
Cartesian space. One most popular DES model is valence-arousal-
dominance (VAD) [49], where valence denotes the degree of pleas-
antness ranging from positive and negative, arousal shows the
intensity of emotion ranging from excited to calm, and dominance
represents the level of control ranging from controlled to in control.
Due to the difficulty in predicting dominance, many studies repre-
sent emotions in VA space [22, 30, 85]. In this paper, we develop an
end-to-end framework for cross-modal matching between image
and music based on continuous emotions in VA space.
Image Emotion Recognition. The studies for image emotion
recognition emerge in large numbers recently, which originates
from the research in psychology to explore the relation between
visual stimuli and emotion [33, 41]. In the earlier years, many types
of hand-crafted representations [38, 79] are designed to bridge
affective gap between low-level features and abstract emotions,
such as adjective noun pairs [7, 11] and high-level concepts [4].
With the success of the convolutional neural networks (CNNs) on
different multimedia tasks, current researchers mainly design CNN-
based algorithms [51, 65, 67, 70, 72, 73, 81, 87]. In CES model, apart
from traditional dominant emotion classification, label distribution
learning [66, 76, 77] is introduced to tackle the ambiguity of image
emotion by describing each category with a concrete probability.
Using DES model, Kim et al. [30] developed an emotion-based net-
work that combines low-level features, object, and background



information to predict emotion values in VA space. In [80], polarity-
consistent regression loss is designed to take emotion’s polarity
into account for VAD prediction. Differently, our method not only
penalizes the VA predictions, but also considers the feature distance
in an embedding space based on the emotion similarity in VA space.
Music Emotion Recognition. Over the years, various methods
have emerged to characterize and quantify the emotions associ-
ated with music. The early music emotion recognition methods
mainly implement traditional machine learning algorithms with
hand-crafted acoustic features as input [14, 44, 58, 60, 62], the valid-
ity and generality of which cannot be guaranteed [15]. Since these
methods require careful design and data preprocessing based on
extensive prior knowledge, recent emphasis has been shifted to
automatically extracting features from the original data. Represen-
tative methods include CNNs [21, 39], recurrent neural networks
(RNNs) especially long short-term memory (LSTM) [8, 10], and the
combination of CNN and RNN [1, 15, 35]. Similar to image emotion
recognition, we also preserve the music emotion similarity when
learning the embedding space.
Emotion-Based Image andMusicMatching.Chen et al. [9] pro-
posed to visualize music using photos based on their emotion cat-
egories. They separately extracted hand-crafted features, learned
emotion classifiers, and composited images and music based on the
predicted emotions. Many methods follow this pipeline [34, 48, 53,
61, 86]. They (1) extracted more discriminative emotion features,
such as low-level color [9, 34, 48, 53, 61] and mid-level principles-
of-art [86] for image; (2) employed different emotion representa-
tion models, from categorical states [9, 34, 53, 61] to dimensional
space [48, 86]; (3) correspondingly learned different classifiers, from
Support Vector Machine [9], Naive Bayes, and Decision Tree [53]
to Support Vector Regression [86]; and (4) used different composi-
tion strategies to match image and music, from emotion category
comparison [9, 34, 53, 61] to Euclidean distance [48, 86].

The most relevant methods to ours are [57, 64]. Verma et al. [57]
proposed to learn affective correspondence between image and
music based on sentiment polarity (positive, negative, and neutral).
The images and music are projected into a common representation
space and a binary classification task is performed to predict the
affective correspondence by a few fully-connected (FC) layers. Xing
et al. [64] studied a similar task but the dataset is collected using
Chinese folk images and music, which are annotated using Hevner
Emotion Ring model with eight emotion categories. They also in-
vestigated the emotion similarity comparison approaches between
Pearson correlation coefficient and Euclidean distance.

Differently, we propose to match image and music based on
continuous emotions to better reflect the complexity and subtlety of
emotions. Further, the projected latent embedding space preserves
the relationship in the cross-modal similarity space and in the
single-modal emotion space.
Deep Metric Learning. Deep metric learning has been widely
utilized to measure the similarity or distance between different
samples. As the standard loss functions, contrastive loss [12] and
triplet loss [50] are milestones of deep metric learning and are
widely employed in subsequent work. The contrastive loss mini-
mizes the distance of samples from the same classes, and separates
the samples of different classes awaywith a fixedmargin. The triplet
loss introduces three types of samples, named anchor, positive, and

Table 1: Statistics of the IMEMNet dataset, where ‘#’ denotes
the corresponding number (the same below).

Training Validation Testing Total
#Songs 1,442 90 270 1,802
#Song clips 28,835 1,759 5,223 35,817
#Images 20,496 1,281 3,843 25,620
#Paires 109,525 8,795 26,115 144,435

negative samples. Specifically, the loss enforces the distance be-
tween the anchor and the negative to be larger than that between
the anchor and the positive. To improve the efficiency of metric
learning, Oh Song et al. [42] utilized a matrix comprising pairwise
distance of the mini-batch to design a loss, in which a lifted embed-
ding structure is formed by all samples. Simultaneously, n-pair loss
aims to learn the embeddings for (n + 1)-tuple, including an anchor,
a positive, and n − 2 negative examples.

In the field of cross-modal matching or retrieval across multi-
media data such as image, text, and audio, deep metric learning
is broadly used to transform the features of each modality into a
common embedding space [45, 88]. In [37], Liong et al. designed
a unified architecture including two parallel neural networks, in
which the intra-class variation is minimized and the inter-class
variation is enlarged, and the difference of each sample pair from
two modalities of the same class is minimized, respectively. Kang
et al. [29] integrated the center loss and softmax cross-entropy loss
to learn an embedding space that has a semantic meaning for both
image and text for cross-modal retrieval.

As emotions in VA space are continuous values, the binary super-
vision that indicates whether a pair of data belong to the same class
cannot describe the similarity. Inspired by log-ratio loss [31], we
propose cross-modal deep continuous metric learning to measure
the degree of continuous cross-modal similarity.

3 THE IMEMNET DATASET
In this section, we introduce the IMEMNET dataset1 on continuous
emotion-based image and music matching, including image and
music data selection and image-music matching.

3.1 Image and Music Data Selection
We combine IAPS [33], NAPS [40], and EMOTIC [32] with contin-
uous VA labels as the image corpora. IAPS is an emotion evoking
image set in psychology with 1,182 documentary-style natural color
images. Each image is annotated with a 9-point VAD ratingby about
100 college students. NAPS consists of 1,356 realistic, high-quality
photographs rated by 204 mostly European participants in a 9-
point bipolar semantic sliding scale on VA and approach-avoidance
dimensions. EMOTIC is a dataset with 23,082 images containing
people in non-controlled environments. The images were anno-
tated by Amazon Mechanical Turk (AMT) workers with continuous
10-scale VAD dimensions.

We select DEAM [3] as the music corpora. DEAM consists of
1,802 excerpts and full songs annotated with VA values (from -1
to +1) both continuously (per-second) and over the whole song.
1The IMEMNet dataset is released at: https://github.com/linkAmy/IMEMNet.

https://github.com/linkAmy/IMEMNet


Table 2: Comparison of our released IMEMNet dataset with others, where the values in the parentheses of the second column
are the number of emotion categories or detailed emotion space, ‘ED’, ‘AED’, and ‘PCC’ are abbreviations for Euclidean distance,
Aesthetic energy distance, and Pearson correlation coefficient, respectively.

Reference Emotion label #Images #Music Clip length #Pairs Matching Released
[9] CES (8) 368 - 5s - Self-defined No
[53] DES (VA) 3,000 1000 30s - ED No
[61] CES (3) 233 16 Unfixed - AED No
[48] DES (VA) 1,182 315 Unfixed - ED No
[86] DES (VA) 1,182 240 15s - ED No
[34] DES (VA) 57 273 20s - ED No
[57] CES (3) 85,000 3,812 60s - 0/1 Yes
[64] CES (8) 500 500 30s 250,000 ED & PCC No
Ours DES (VA) 25,620 1,802 2s 144,435 ED Yes

Considering the stability of the annotations, each song is annotated
from the 15th second. The frequency of all songs is 44100Hz. Most of
the songs (1,723 in total) are 45 seconds long, with the rest varying
in length, reaching a maximum of more than 600 seconds.

Since the image and music data is labeled in different scales,
we normalize the VA values into [0,1] respectively based on the
minimum and range. After normalization, we randomly split both
image and music data into 80% for training, 5% for validation, and
15% for testing, as shown in Table 1.

3.2 Image-Music Matching
To match the images and music clips, we calculate the Euclidean
distance between their VA ground truth labels, and then obtain the
similarity as follows:

S(Ii ,Mj ) = exp
(
−
d
(
yIi ,yMj

)
σmn

)
, i = 1, · · · ,n, j = 1, · · · ,m, (1)

where d stands for the Euclidean distance, yIi and yMj are the VA
labels of image Ii and music clip Mj , n and m are the numbers
of images and music clips, respectively. σmn is set as the average
Euclidean distance between all images and music clips. The de-
gree of similarity is then set as the emotion matching label for
corresponding image and music clip.

It is worth noting that all possible matching pairs ism×n. For our
images and music clips, the number of matching pairs will reach
hundreds of millions. In order to avoid the explosion of the dataset
scale, for each music clip, we select 50 images. Among them, 30 are
randomly selected from the image dataset, and the remaining 20
are composed of 10 with highest matching score and 10 with the
lowest. Finally, we randomly sample 10% of the pairs to constitute
the IMEMNet dataset. Please note that the images and music clips
of the training set, verification set, and test set do not intersect.
They are constructed independently. The statistics of the IMEMNet
dataset is summarized in Table 1, and the comparison of IMEMNet
with existing datasets are compared in Table 2.

4 PROBLEM DEFINITION
In this paper, we study the problem of continuous emotion-based
matching between images I and music M, where I = {Ii }ni=1 and

M = {Mi }mi=1. On one hand, we aim to predict the degree of simi-
larity between images and music clips; on the other hand, we also
aim to predict the concrete VA values for each modality. Given the
dataset consisting of N image-music pairs P = {(Ii ,Mi )}Ni=1 and
their ground truth on the degree of similarity S = {S(Ii ,Mi )}Ni=1,
we build a branch F1 : P → S to learn the similarity for the input
sample pairs. Meanwhile, the single image or music clip has its
own ground truth VA values. Specifically, we use YI =

{
yIi

}n
i=1

and YM =
{
yMj

}m
j=1 to represent the emotion labels of images

and music clips, respectively, where yIi = (v Ii ,aIi ) represent the
valence and arousal of the ith image and yMj = (vMj ,aMj ) repre-
sent the valence and arousal of the jth music clip. Therefore, our
another objective is to learn a common branch to learn the mapping
F2 : I → YI andM → YM .

5 CROSS-MODAL DEEP CONTINUOUS
METRIC LEARNING

In this section, we introduce the detailed cross-modal deep con-
tinuous metric learning (CDCML). The framework is shown in
Figure 2. First, we feed images and music clips into two parallel
feature extractors, which take ResNet-50 and ResNet-18 [24] as
backbones, respectively. Second, we employ cross-modal similar-
ity metric learning and single-modal emotion metric learning to
learn a shared latent embedding space by optimizing various metric
losses. The cross-modal similarity and single-modal emotion rela-
tionships are well preserved in the embedding space. Finally, we
jointly learn a similarity predictor for image and music matching
and a VA predictor for continuous emotion regression.

5.1 Cross-modal Similarity Metric Learning
In the shared feature space, we refine the feature distributions to
reflect the similarity relationships and to minimize the gap between
image and music modalities.

5.1.1 Cross-modal feature-ratio Loss. The popular metric learning
methods usually enlarge the inter-class variation and minimize the
intra-class variation by modulating the Euclidean distance between
features. However, there is no specific class in VA space, where
emotion label is continuous, so the widely-usedmetric losses cannot
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Figure 2: Framework of the proposed CDCML for continuous emotion-based image and music matching. The blue and orange
circles represent image samples andmusic clips. ‘FC’ represents fully-connected layers. For simplicity,we omit the cross-modal
feature-ratio loss and single-modal feature-ratio loss using music clips as anchors.

be directly applied in our tasks. Inspired by [31], we propose a cross-
modal feature-ratio loss LCFR to accurately optimize the distance
of multi-modal embeddings based on their emotion similarity:

LCFR =
N∑
i=1

{
log

D(f Ii , f Mi )
D(f Ii , f Mj )

− log
S(Ii ,Mi )
S(Ii ,Mj )

}2
+

N∑
i=1

{
log

D(f Mi , f Ii )
D(f Mi , f Ij )

− log
S(Mi , Ii )
S(Mi , Ij )

}2
,

(2)

where D(·) means the squared Euclidean distance, S(·) denotes the
similarity between image and music clip as defined in Eq. (1), and
i , j. In the first item, image Ii is treated as the anchor, while
the music clipMi serves as the anchor in the second item. For the
anchor of one modality (e.g. Ii ), we randomly choose two examples
from another modality (e.g.Mi ,Mj ) at one time.

5.1.2 Cross-modal feature-margin loss. To minimize the gap be-
tween the image and music spaces, we introduce cross-modal
feature-margin loss to control the largest distance between rep-
resentations of the two modalities. Suppose we obtain the image
representation f I and music representation f M from their sub-
networks. In order to eliminate their difference, we penalize the
image-music pairs whose distances are larger than α :

LCFM =
N∑
i=1

[| | f Ii − f Mi | |2 − α]+, (3)

where [·]+ = max(0, ·). α is a threshold to manipulate the maximum
tolerable distance.

5.2 Single-modal Emotion Metric Learning
Besides the cross-modal similarity relationship, we also enforce the
embedding space to preserve the continuous emotion relationships
for each modality when the VA labels are available. To achieve

this goal, we minimize the feature-ratio loss within each modality.
Differently, the distances between features from the same modality
are computed based on their Euclidean distance between VA labels.
The single-modal feature-ratio losses based on image and music
representations are respectively definded as:

LSFR_I =
n∑
i=1

{
log

D(f Ii , f Ij )
D(f Ii , f Ik )

− log
D(yIi ,yIj )
D(yIi ,yIk )

}2
, (4)

LSFR_M =
m∑
i=1

{
log

D(f Mi , f Mj )
D(f Mi , f Mk )

− log
D(yMi ,yMj )
D(yMi ,yMk )

}2
, (5)

where D(·) means the squared Euclidean distance and i , j , k .
In the loss of each modality, an anchor and two neighbors take
part in the loss computing. By approximating the ratio between the
distances of VA labels, the learned embedding space can reflect the
emotion similarity of each modality.

5.3 Embedded Multi-task Regression
After learning the shared latent embedding space, we can jointly
predict the matching similities and the concrete VA values.

5.3.1 Cross-modal similarity MSE loss. The similarity predictor is
used to predict the matching similarity between a pair of image
and music clip. This network is composed of three fully connected
layers with BatchNorm, using Relu as the activation function except
for the last layer which uses Sigmoid. Taking the concatenated
image-music embeddings as input, the similarity predictor aims to
minimize the following mean squared error (MSE) loss:

LSim =
1
N

N∑
i=1

(
S(Ii ,Mi ) − Ŝ(Ii ,Mi )

)2
, (6)



where Ŝ(Ii ,Mi ) is the predicted similarity of the ith image-music
pair, while S(Ii ,Mi ) is the corresponding ground truth, and N is
the total amount of matching pairs.

5.3.2 Single-modal VA MSE loss. The VA predictor is used to pre-
dict the VA values of images and music clicps. This part of the
network is also composed of three fully connected layers with
BatchNorm, using Relu as the activation function except for the last
layer which uses Sigmoid. Taking the image or music embeddings
as input, the predictor minizes a similar MSE loss:

LIVA =
1
n

n∑
j=1

(
yIi − ŷIi

)2
,LMVA =

1
m

m∑
j=1

(
yMj − ŷMj

)2
, (7)

where ŷIi and ŷMj are the predicted VA values for image Ii and
music clipMj .

5.4 CDCML Optimization
We can classify the loss functions mentioned above into two fami-
lies, named similarity family LSF and VA family LVAF . If we only
have similarity labels of image-music pairs, we can use LSF , which
includes LCFR , LCFM , and LSim , to train our framework end-to-
end for matching images and music clips. If the VA labels of each
modality are also available, we can simultaneously optimize both
LSF and LVAF , where LVAF contains LSFR_I , LSFR_M , LMVA,
and LIVA. Therefore, with available similarity and VA labels, our
CDCML framework can be optimized by minimizing the following
total loss:

LCDCML = LCFR+LCFM+LSim+LSFR_I+LSFR_M+LMVA+LIVA .
(8)

With the total loss, the embedding space and label space can be
well optimized for the final prediction of multiple tasks.

6 EXPERIMENTS
In this section, we first introduce the experimental settings, in-
cluding evaluation metrics, baselines, and implementation details,
and then quantitatively compare the performance of the proposed
cross-modal deep continuous metric learning (CDCML) method
and several state-of-the-art approaches, followed by some ablation
studies and visualization.

6.1 Experimental Settings
6.1.1 Evaluation Metrics. We employ mean squared error (MSE)
and mean absolute error (MAE) to evaluate the effectiveness of
the proposed CDCML method for image-music matching and VA

prediction:MSE =
1
t

t∑
i=1

(
li − l̂i

)2
,MAE =

1
t

t∑
i=1

���li − l̂i

���, where l̂i
represents the predicted value, li is the ground truth label, and t is
the number of testing samples. MSE represents the sample standard
deviation of the differences between predicted values and ground
truth values. MAE is an arithmetic average of the absolute errors.
Smaller MSE/MAE values represent better results.

6.1.2 Baselines. To compare CDCML with the state-of-the-art ap-
proaches for image and music matching, we select the following
methods as baselines. (1) SP-Net, separately train two VA pre-
diction models for image and music, calculate the corresponding

Euclidean distance based on the predicted VA values for an image-
music pair, and then obtain the matching similarity. Please note
that SP-Net is trained only using VA labels. When the VA labels are
unavailable, it does not work anymore. (2) L3-Net [5] and (3) ACP-
Net [57], extract features for image and music, fuse/concatenate
the extracted features, and pass through several fully-connected
(FC) layers to obtain the final similarity prediction. The differences
lie in the input to the music feature extractors and the number
of FC layers. Since L3-Net and ACP-Net are initially designed for
“general audio-visual correspondence” and “affective audio-visual
correspondence” with 2-class output (i.e. true or false correspon-
dence), we replace the cross-entropy loss with MSE loss. Following
ACP-Net [57], we feed the learned features of both images and
music clips by L3-Net and ACP-Net into another VA predictor to
compare the performance of VA prediction.

6.1.3 Implementation Details. As shown in Figure 2, our model
consists of two branches: the image branch and the music branch,
which are used to respectively extract visual and audio features.
After metric learning, the embeddings in the shared latent space are
followed by two functional sub-networks: the similarity predictor
and the VA predictor.

The image branch is based on Resnet-50. We drop the original
classification layer and add one additional FC layer to obtain the
final 512-dimensional visual features. Each image is resized to a
predefined size of [224×224×3] before passing to Resnet-50.

The Music Branch is based on Resnet-18. We also drop the
classification layer and add one FC layer to extract 512-dimensional
audio features. Different from images, the input of the music branch
is a batch of basic music features. We first extract the [193,87]-
dimensional music features, which are composed of 40 MFCCs,
12 chroma features, 7 spectral contrast features, 6 tonal centroid
features, and 128 features obtained from the mel spectrogram. And
then we tile the music feature to form a feature matrix in the size
of [193×87×3].

The similarity predictor and VA predictor are both com-
posed of 3 fully connected layers to respectively predict the similar-
ity of an image-music pair and the concrete VA values of an image
or music clip. Each FC layer is followed by a BatchNorm layer and
an activate function layer with Relu, except for the last output layer
which activation function is Sigmoid. Dropout rate is set to 0.5.

The weights of the feature extractors (i.e. ResNet-50 and ResNet-
18) are initialized from models trained on ImageNet. The network
is implemented in PyTorch and trained with SGD optimizer using
a batch size of 128 with initial learning rate 1e-3. The learning rate
decreases with a decay of 0.1 for every 10 epochs.

6.2 Comparison with the State-of-the-art
The comparison of the proposed CDCML method and several state-
of-the-art approaches on IMEMNet is shown in Table 3. From the
results, we have the following observations:

(1) SP-Net performs the worst on cross-modal similarity pre-
diction, but obtains much better results on VA prediction than
L3-Net [5] and ACP-Net [57]. This is reasonable because SP-Net
separately trains two VA prediction models for image and music.
On one hand, with the VA labels as full supervision, SP-Net can
learn discriminative representations for both image and music. On



Table 3: Performance of the proposed CDCML and the stare-of-art approaches on IMEMNet for continuous emotion-based
image and music matching. The best results are emphasized in bold.

Similarity Image emotion Music emotionMethod MSE MAE V MSE V MAE A MSE A MAE V MSE V MAE A MSE A MAE
SP-Net 0.135 0.301 0.048 0.165 0.054 0.186 0.026 0.120 0.020 0.114

L3-Net [5] 0.095 0.232 0.058 0.183 0.085 0.232 0.034 0.143 0.028 0.136
ACP-Net [57] 0.086 0.222 0.062 0.195 0.091 0.241 0.027 0.130 0.022 0.131

CDCML (Ours) 0.067 0.210 0.044 0.157 0.050 0.175 0.024 0.118 0.015 0.099

Table 4: Ablation studies of different components in CDCML on IMEMNet. ‘Sim’, ‘VA’, ‘CFR’, ‘CFM’, and ‘SFR’ denote the cross-
modal similarity MSE loss, single-modal VA MSE loss, cross-modal feature-ratio loss, cross-modal feature-margin loss, and
single-modal feature-ratio loss, respectively. ‘

√
’ means the corresponding loss is utilized in the training process.

Sim VA CFR CFM SFR Similarity Image emotion Music emotion
MSE MAE V MSE V MAE A MSE A MAE V MSE V MAE A MSE A MAE

√
0.083 0.239 0.060 0.195 0.087 0.239 0.039 0.163 0.046 0.173√ √
0.074 0.231 0.058 0.187 0.075 0.225 0.034 0.153 0.042 0.163√ √ √
0.072 0.227 0.057 0.186 0.074 0.229 0.034 0.153 0.042 0.162

√ √
0.080 0.233 0.046 0.158 0.052 0.180 0.026 0.120 0.017 0.104√ √ √ √ √
0.067 0.210 0.044 0.157 0.050 0.175 0.024 0.118 0.015 0.099

the other hand, without the similarity as supervision, it performs
much worse than the methods that use similarity as supervision,
i.e. L3-Net, ACP-Net, and the proposed CDCML.

(2) Similar to [57], our results also show that ACP-Net [57] out-
performs L3-Net [5] on the matching and music VA prediction tasks.
ACP-Net extracts various acoustic features, such as MFCC, chroma,
and spectral contrast, while L3-Net only uses log-spectrograms.
Further, ACP-Net employs more FC layers to better learn the map-
ping between concatenated features and the similarity. However,
L3-Net performs better than ACP-Net on image VA prediction. This
is because ACP-Net employs a pre-trained model to extract visual
features, while the visual feature extractor in L3-Net is trainable.

(3) CDCML obtains the best performance on both cross-modal
matching and single-modal VA prediction. Specifically, compared
to ACP-Net [57], CDCML achieves 22.1% and 5.4% relative perfor-
mance improvements on MSE and MAE, while the relative gains
over SP-Net on the valence and arousal of images and music mea-
sured by MSE are 8.3%, 7.4% and 7.7%, 25.0%, respectively. These
results demonstrate the superiority of the proposed CDCML. The
performance improvements benefit from the advantages of CDCML.
First, it learns a shared latent embedding space which preserves
the cross-similarity and single-modal emotion relationships in the
label space. As a result, the embeddings are more discriminative for
our task. Second, the embedded multi-task regression enables to
learn a better similarity predictor and VA predictor with the joint
supervision of similarity and VA labels.

6.3 Ablation Studies
We conduct in-depth ablation studies to systematically analyze the
effectiveness of different components in CDCML. The experimental
results are shown in Table 4. If only cross-modal similarity labels
between image and music are provided, we can train the network

by optimizing cross-modal similarity MSE loss, cross-modal feature-
ratio loss, and cross-modal feature-margin loss. As shown in the first
part of the table, cross-modal feature-ratio loss can notably improve
the performance on similarity prediction (e.g. 10.8% relative gains on
MSE). Besides, what is pleasantly surprised is that the results of on
VA prediction are also significanlty improved with the supervision
of cross-modal feature-ratio loss in the shared embedding space.
It demonstrates that the loss makes the feature embeddings more
discriminitive not only for cross-modal matching but also for single-
modal VA prediction. Note that cross-modal feature-margin loss is
proposed to reduce the gap between different modalities by setting
a maximum margin between features, so the performance of the
output from shared FC layers is improved.

When VA labels are also provided, we can add several supervi-
sions in both the embedding space and the VA space, as shown in
the second part of Table 4. With the penalties of cross-modal simi-
larity MSE loss and single-modal VA MSE loss on the final output,
the embedded multi-task regression obtains better performance
than that of using only one loss. Apart from directly using VA label
in single-modal VA MSE loss, we also use single-modal feature-
ratio loss to manipulate the distance between features of the same
modality based on the similarity of the VA labels. It is obvious that
the overall performance is further improved with the two losses
that are based on VA labels, especially the results of VA prediction.
The effectiveness of single-modal feature-ratio loss indicates the
importance of feature distribution in the latent embedding space.

6.4 Visualization
We vividly visualize the matching results between image and music
based on continuous VA emotions in Figure 3. We can observe
that although the emotions of different music clips may change



(b) High VA values

(a) Low VA values

Figure 3: Visualization of emotion-based image and music matching results in the VA space (best viewed in color). For each
example, the upper part shows the emotion curves of both image andmusic over time. In the lower part, the images with high
matching similarities to corresponding music clips are shown.

dramatically, the proposed CDCMLmethod can well match suitable
images for each music clip with similar emotions.

In Figure 3 (a), themusic’s VA values are relatively low, indicating
a negative emotion (e.g. sadness). It is clear that the matched images
also have similar emotions. For example, the funeral and lonely
elder lady both make people feel sad. In Figure 3 (b), the music’s
emotions are represented with high VA values, corresponding to a
positive emotion (e.g. excitement). Meanwhile, the matched images
tend to be passionate, such as the kisses and extreme sports, which
can easily evoke exciting emotions. The qualitative matching results
further demonstrate the effectiveness of the proposed CDCML
method for matching image and music based on emotions.

7 CONCLUSION
In this paper, we aimed to study continuous emotion-based image
and music matching in an end-to-end manner. To learn a shared
latent embedding space, we proposed cross-modal deep continuous

metric learning (CDCML) by preserving the cross-modal similar-
ity and single-modal emotion relationships. The embedded multi-
task regression can simultaneously predict the matching similarity
and VA values. To evaluate the effectiveness, we constructed a
large-scale dataset, termed IMEMNet. The extensive experiments
on IMEMDnet demonstrate that CDCML achieves 22.1% and 5.4%
relative performance improvements on MSE and MAE for match-
ing similarity prediction as compared to the best state-of-the-art
method (i.e. ACP-Net [57]). In future studies, we plan to model
the sequential information of different music clips in a whole song
using LSTM-based techniques. In addition, we will study a more
practical image and music matching based on both emotions and
semantics. How to deal with incremental training image-music
pairs is also worth exploring.
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