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ABSTRACT
Conditional image generation is an active research topic including
text2image and image translation. Recently image manipulation
with linguistic instruction brings new challenges of multimodal
conditional generation. However, traditional conditional image
generation models mainly focus on generating high-quality and
visually realistic images, and lack resolving the partial consistency
between image and instruction. To address this issue, we propose an
Increment Reasoning Generative Adversarial Network (IR-GAN),
which aims to reason the consistency between visual increment in
images and semantic increment in instructions. First, we introduce
the word-level and instruction-level instruction encoders to learn
user’s intention from history-correlated instructions as semantic
increment. Second, we embed the representation of semantic incre-
ment into that of source image for generating target image, where
source image plays the role of referring auxiliary. Finally, we pro-
pose a reasoning discriminator to measure the consistency between
visual increment and semantic increment, which purifies user’s
intention and guarantees the good logic of generated target image.
Extensive experiments and visualization conducted on two datasets
show the effectiveness of IR-GAN.
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1 INTRODUCTION
Conditional image generation allows people produce preferred im-
age based on their intention. Recent research have made this with
different types of conditions, such as class label, text description
or source images for image translation. As a new conditional gen-
eration task, image manipulation with linguistic instruction has
attracted a lot of attention. Figure 1 shows the flowchart of this task:
given an image and a series of sequential linguistic instructions,
this task is to iteratively manipulate the image by understanding
user’s intention. This brings a more natural and effective human-AI
interaction, and has great significance in real applications, such as
image processing, content creation, etc.

As a multimodal conditional image generation task, image ma-
nipulation with linguistic instruction is more complex than other
unimodal conditional generation tasks. There exist three key issues
in this task: first, perceive the visual content from source image,
and cognize the user’s intention from linguistic instruction; sec-
ond, align the referring phrase in the instruction with the visual
elements in the source image, and reason the location, appearance
and attributes of new changes for target image; third, construct the
image generation model based on multimodal inputs. For current
generation technologies, these issues are still big challenges to be
solved.

Conditional image generation tasks can be divided into five
groups by their condition types. (1) Label-based conditional image
generation [12, 14–16, 20, 29, 32]. It uses class or visual attributes
as labels to generate realistic images. Due to the simplicity of con-
dition, we can hardly control the details of generated images. (2)
Image-to-Image(I2I) generation [7, 11, 13, 21, 30, 31, 35]. This task is
to translate source image in a domain to the style of another domain.
I2I methods can generate natural and realistic images but it requires
that the images in two domains share some common geometry struc-
tures. (3) Text-to-Image(T2I) generation [4, 24, 26–28, 33, 34]. Its
goal is to generate images according to a linguistic sentence. In the
early stage, researchers introduced visually-discriminative vector
representation of text descriptions as condition to generate images.
Recently, some works use different architectures to generate high
resolution images and strengthen the semantic consistency with
text description. Due to the limited amount of information in a
sentence, T2I is hard to generate satisfying images for users. (4)
Semantic image synthesis(SIS) [2, 19]. Dong et al. [2] first tried to
implement such task, which changes the source image to match
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Add a brown cylinder in 
front of it on the right

Add a purple sphere 
at the center

Add a red sphere in front of 
it on the left and in front of 
the purple sphere on the left

Add a brown cube behind brown 
cylinder on the left and behind the 

purple sphere on the left

Add a blue cylinder in front of it 
on the right and in front of the 

purple sphere on the right

Figure 1: Overview of image manipulation with linguistic
instruction task, at each time step, the source image is ma-
nipulated into a new image according to current linguistic
instruction.

with the text description. Although this task can do some manipula-
tion on the origin image, it only focuses on changing the attributes
of different objects while keeping the global structure. (5) Image
Manipulation with linguistic instruction(IM) [3]. This task iter-
atively generates images under multimodal condition including
a source image and a sequence of text instructions. El-Nouby et
al. [3] proposed a recurrent image generation model which takes
into account both current source image and past text instructions.
By representing intention by multi-step instructions and getting
dynamic feedback of manipulated image, user can guide the gener-
ation process more flexibly and accurately.

In the IM task, it requires not only perceiving the content of
each condition, but also cognizing user’s manipulation intention
from two conditions. However, the elements in both conditions
are only partially consistent: (1) The referring phrase in instruc-
tions are consistent with existing visual elements in images. (2) The
semantic information about new objects in instructions are not rep-
resented in current image. (3) The image includes background, prior
knowledge of objects appearance that may be irrelevant with the
instructions. This cross-modal partial consistency brings difficulty
to the generation of target image.

In this paper, we propose the Increment Reasoning Generative
Adversarial Network (IR-GAN) to model the multimodal condi-
tional generation for image manipulation. The increment reasoning
mechanism is designed to reason the consistency between visual
increment in target image and user’s intention in linguistic instruc-
tion. Our model consists of instruction encoder, image generator
and reasoning discriminator. For the instruction encoder, we use
word-level and instruction-level GRUs as encoder to learn user’s
intention from current instruction along with history instruction
informations. The user’s intention is purified into the increment
representation through the backpropagation of the discriminator.

For the generator, we introduce a MLP to project the above repre-
sentation to a semantic increment feature map, and embed it into
the feature map of source image. Then the composited features are
fed into the image decoder to generate target image, where source
image plays the role of referring auxiliary. Finally, we propose a
reasoning discriminator to reason the consistency among existing
visual elements, visual increment and the corresponding instruc-
tion. This multimodal conditional discriminator can guarantee the
good logic of generated target image. By explicitly modeling the
visual increment in image and the semantic increment in instruc-
tions, we formulate the interactions between image and text in the
generation of target image.

The contributions of this paper are summarized as follows:
(1) We propose the IR-GAN tomodel the task of imagemanipula-

tion with linguistic instruction, which learns user’s intention
from instructions and iteratively manipulates images.

(2) We design an adversarial mechanism of increment reason-
ing, where the generator is to generate the visual increment
and the discriminator is to figure out its consistency with
semantic increment.

(3) We evaluate our model on two datasets. Extensive experi-
ments show that our model surpasses the state-of-the-art
performance.

2 RELATEDWORK
Image-to-Image Translation(I2I). Originally many works fo-
cused on different tasks of image-to-image translation, such as
image inpainting, image super-resolution, style transfer and each
one employs a specific loss formulation. Isola et al. [7] proposed
pix2pix framework to implement a general purpose image-to-image
translation architecture, which applies adversarial loss to learn the
translation with paired image. Then Zhu et al. [35] proposed Cycle-
GAN to resolve the unpaired image-to-image translation problem
with an additional cycle loss. Recently Park et al. [21] came up with
spatially-adaptive normalization to generate realistic image from a
semantic segmentation mask.

Text-to-Image Generation(T2I). The goal of T2I is to gener-
ate realistic image which captures the representation given by the
text description. Reed et al. [24] first employed conditional genera-
tive adversarial networks (cGANs) to implement T2I and verified
its effectiveness. To generate high resolution images, Zhang et al.
[34] leveraged multiple generators and discriminators to model the
image in different scales. Then Xu et al. [28] applied attention mech-
anism to focus on different semantic features at each subregion of
images during different stages of image generation. Recently, Qiao
et al. [23] designed an additional I2T loss to enhance the semantic
consistency between generated image and source text by redescrip-
tion. Due to the gap between image and text modality, learning the
appropriate image representation of text is still a challenge to be
solved.

Semantic Image Synthesis(SIS). Different from I2I and T2I,
semantic image synthesis is a multimodal conditional image gener-
ation task conditioned on both image and text. It aims to generate
realistic images not only matching the target text description, but
also maintaining other image features that are irrelevant to the
text description. Dong et al. [2] first proposed an end-to-end neural
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Figure 2: Overview of IR-GAN structure. At each time step 𝑡 , the instruction encoder learns user’s intention representation
ℎ𝑡 through current instruction representation 𝑑𝑡 and history instruction information. The generator first projects ℎ𝑡 to visual
feature space and get the feature map 𝐿𝐺𝑡

representing semantic increment. After that, we composite 𝐿𝐺𝑡
with 𝐼𝐺𝑡

by addition
and get 𝑆𝐺𝑡

as an abstract representation of target image, which then is fed into the image decoder to generate target image.
For the discriminator, we first extract the visual increment feature 𝐿𝐷𝑡

by subtraction between the two feature maps, 𝐼𝐷𝑡

and 𝐼𝐷𝑡−1 . And then we leverage a multimodal discriminator to determine its consistency with ℎ𝑡 . It’s worth noting that the
instruction encoder is only optimized through the backpropogation fromdiscriminator, which ensures the learned instruction
representation semantic ℎ𝑡 are consistent with visual increment.

architecture built upon cGANs framework. Nam et al. [19] designed
a text-adaptive GANs model which uses word-level local discrimi-
nators to classify fine-grained attributes of images independently.
However, the main purpose of SIS is for text-to-image synthesis,
rather than using text to manipulate image semantically.

Image Manipulation with linguistic instruction(IM). This
task aims to manipulate visual elements in the image following
linguistic instructions, such as adding new objects, changing layout
and attributes of objects. El-Nouby et al. [3] first implemented this
image manipulation task with sequential linguistic instructions.
They proposed a recurrent architecture to generate the final image
through a sequence of image manipulation process, which demon-
strates much better performance than generating final image in a
single pass. Due to the complex interactions between image and
linguistic instruction, this task needs complete and fine-grained un-
derstanding of multimodal inputs, thoroughly reasoning of user’s
intention, and accurately generating new changes for target image.

3 METHOD
3.1 Overview
To address the IM task, we propose the Increment Reasoning Gen-
erative Adversarial Network, which consists of instruction encoder,
image generator and reasoning discriminator. The whole architec-
ture is shown in Figure 2. As the task involves a sequence of lin-
guistic instructions, we propose iterative algorithm to learn user’s
intention from instructions and manipulate the image correspond-
ingly. In each iterative process of manipulation, we explore the
historical instructions as auxiliary information, instead of only
relying on current instruction. First, The instruction encoder is
designed to embed the instruction information into feature vectors.
Second, guided by user’s intention representation from instruction
encoder, the image generator manipulates source image into target

image. Finally, we leverage the reasoning discriminator to measure
the consistency among existing visual elements, visual increment
and corresponding instruction, which directs the image generator
to generate target images with good logic.

3.2 Instruction Encoder
Since instructions at different time steps are correlated, the current
instruction can not represent user’s intention alone. As illustrated
in Figure 1, all instructions except for the first one use "it" to indi-
cate the object added at last time step, instead of directly referring
to the visual element in source image. To resolve such problem,
we propose the hierarchical instruction encoder to learn the repre-
sentation of user’s intention by consuming the current instruction
along with history instruction information, which consists of a
word-level encoder and an instruction-level encoder.

Specifically, let {𝑠1, 𝑠2 ...𝑠𝑛} denote the sequence of instructions
and {𝑤1

𝑡 ,𝑤
2
𝑡 ...𝑤

𝑚
𝑡 } denote the embeddings of each word in 𝑠𝑡 . For

the word-level encoder, we utilize a bidirectional GRU to encode
the current instruction 𝑠𝑡 and compute the last hidden state 𝑑𝑡
as the representation of instruction. For the instruction level en-
coder, we utilize another GRU to learn representation ℎ𝑡 of history
instructions. The above process can be formulated as,

𝑑𝑡 = 𝐵𝑖𝐺𝑅𝑈 (𝑤1
𝑡 ,𝑤

2
𝑡 ...𝑤

𝑚
𝑡 ) (1)

ℎ𝑡 = 𝐺𝑅𝑈 (𝑑𝑡 , ℎ𝑡−1) (2)

where 𝑤𝑚𝑡 ∈ R𝐾 , 𝑑𝑡 ∈ R𝑁 and ℎ𝑡 , ℎ𝑡−1 ∈ R𝑀 , 𝐾, 𝑁,𝑀 denote the
dimension of word embeddings, word-level encoder hidden state,
and instruction-level encoder hidden state, respectively. Besides,
we introduce the conditional augmentation [34] to augment the
feature vector of linguistic instruction, which helps generate more
descriptive feature vectors and makes model more robust to new
instructions. The instruction encoder is only optimized through the
backpropagation of reasoning discriminator, thus it is encouraged



to purify the historical instruction information into increment rep-
resentation of user’s intention consistent with visual increment at
this time step.

3.3 Image Generator
Guided by the learned feature vector from instruction encoder, we
use the image generator to manipulate the source image into target
image, which can be formulated as,

𝐼𝑡 = 𝐺 (𝐼𝑡−1, ℎ𝑡 ) (3)

where 𝐼𝑡−1, 𝐼𝑡 denote the source image and the generated target
image at this time step, and ℎ𝑡 denotes the instruction represen-
tation. The image manipulation process can be decomposed into
three steps: (1) perceive the visual content from source image, the
semantic increment from the instruction. (2) embed the semantic
increment on the source image. (3) generate target image based
on the composited feature. We design the three modules of image
generator, respectively.

Image Encoder. To perceive the visual information from source
image, we utilize a shallow Convolution Neural Network(CNN) as
𝐸𝐺 to encode the source image 𝐼𝑡−1 into the feature map 𝑉𝐺𝑡−1 ∈
R𝐶×𝐻×𝑊 , which can be formulated as,

𝑉𝐺𝑡−1 = 𝐸𝐺 (𝐼𝑡−1) (4)

Specifically, the image encoder consists of 4 residual building blocks
(ResBlocks) with kernel size of 3 × 3 and Average Pooling stride
of 2 × 2. Finally, we obtain the feature map 𝑉𝐺𝑡−1 of source image
with the spatial size of 16 × 16.

Embedding of Semantic Increment. One of the key issues in
this task is to aggregate semantic information and visual representa-
tion to generate target image. To solve this, we project the purified
semantic increment representation ℎ𝑡 to the representation 𝐿𝐺𝑡

in
visual space using a Multiple Layer Perception(MLP). Then, we use
element-wise addition between 𝑉𝐺𝑡−1 and 𝐿𝐺𝑡

to generate an com-
posited multimodal representation 𝑆𝐺𝑡

, which can be formulated
as,

𝑆𝐺𝑡
= 𝑉𝐺𝑡−1 + 𝐿𝐺𝑡

(5)

The semantic increment 𝐿𝐺𝑡
represents the changed manipulation

information of instruction. By using addition operation in the spa-
tial dimension, the referring semantic information in instruction
will be aligned with the corresponding visual representation of
source image, and the semantic increment information will gener-
ate the visual increment of target image.

Image Decoder. In this module, we utilize stacked transposed
convolution layers to synthesize target image based on the compos-
ited representation. However, it is not enough to rely on 𝑆𝐺𝑡

alone
to generate the target image, since it doesn’t cover all detailed visual
information of source image. To solve the problem, we introduce
𝑉𝐺𝑡−1 as auxiliary information to help the decoder construct the
target image.

𝐼𝑡 = 𝐹𝐺 ( [𝑆𝐺𝑡
;𝑉𝐺𝑡−1 ]) (6)

Following the work [18], we apply conditional batch normal-
ization and spectral normalization [17] at each layer of the image
decoder.

3.4 Reasoning Discriminator
To measure the quality and logic of generated target image, we
propose the reasoning discriminator, which is to reason the con-
sistency between visual increment upon source image and user’s
intention in linguistic instruction. This discrimination process can
be formulated as,

𝑟 = 𝐷 (𝐼𝑡 , 𝐼𝑡−1, ℎ𝑡 ) (7)
Where 𝑟 ∈ 𝑅 is the output score, 𝐼𝑡 is the generated target image,
𝐼𝑡−1 is the source image. After obtaining the visual information
of both source and target image, we extract the visual increment
between them and use a multimodal discriminator to determine it’s
consistency with user’s intention.

Image Encoder. Similar with the above image encoder of gen-
erator, we use another CNN to encode both source image and target
image, and compute their feature maps of 𝑉𝐺𝑡−1 and 𝑉𝐺𝑡

. By pro-
jecting source and target image into a common feature space, we
implement the alignment of their visual information.

Extraction of Visual Increment. In a single image manipula-
tion stage, most visual elements in both source image and target
image are common, and they are irrelevant with current user’s
intention. The semantic difference between two images is the key
to determine the logic of the generated target image. We employ
element-wise subtraction between feature maps of two images to
extract the difference and obtain the visual increment 𝐿𝐷𝑡

, which
can be formulated as,

𝐿𝐷𝑡
= 𝑉𝐷𝑡

−𝑉𝐷𝑡−1 (8)

where 𝐿𝐷𝑡
∈ R𝐶×𝐻×𝑊 can be regarded as the feature representa-

tion of the visual changes in the discrimination process.
Multimodal Discriminator. Finally, we leverage a multimodal

discriminator to measure the quality and logic of generated target
image under the given instructions. Since the error of generated
image could be caused by history wrong manipulation, relying on
visual increment alone is not enough. Here we employ the source
image feature map as an auxiliary information. In detail, following
the cGANs [18], we use a projection discriminator to measure the
consistency of this multimodal condition. The projection discrimi-
nator can be formulated as,

𝑥𝑡 = 𝜙 ( [𝐿𝐷𝑡
;𝑉𝐷𝑡−1 ]) (9)

𝑟 = ℎ𝑇𝑡 𝑥𝑡 +𝜓 (𝑥𝑡 ) (10)

where𝑉𝐷𝑡−1 is the feature map of source image, 𝜙 is a MLP module
to project visual feature maps to a feature vector with the same
dimension as ℎ𝑡 , 𝜓 is a fully connected layer to project 𝑥𝑡 into a
scalar.

3.5 Objective Optimization
In the conditional adversarial learning procedure, the discriminator
is to distinguish the generated fake image under given condition,
while the generator tries to fool the discriminator. Following the
common practice, the loss function is designed for two purposes.
One is to ensure the generated image visually realistic, and the
other is to make it consistent with corresponding instruction. In
the multimodal conditional case, the discriminator may focus too
much on visual details and ignore the global influence of linguistic
condition. Thus, besides the loss about real and fake, we introduce



the loss about inconsistent pairs to encourage the discriminator
to formulate the consistence between visual increment and user’s
intention. In IR-GAN, the objective of discriminator is to minimize
this hinge loss:

𝐿𝐷 = 𝐿𝐷real + 𝛼𝐿𝐷fake + 𝛽𝐿𝐷inconsistence (11)

Where

𝐿𝐷real = −E(𝐼𝑡 ,𝐼𝑡−1,ℎ𝑡 )∼𝑝data(0:𝑇 ) [min(0,−1 + 𝐷 (𝐼𝑡 , 𝐼𝑡−1, ℎ𝑡 ))]
(12)

𝐿𝐷fake = −E(𝐼𝑡−1,ℎ𝑡 )∼𝑝data(0:𝑇 ) [min(0,−1 − 𝐷 (𝐺 (𝐼𝑡−1, ℎ𝑡 ), 𝐼𝑡−1, ℎ𝑡 ))]
(13)

𝐿𝐷inconsistence = −E(𝐼𝑡 ,𝐼𝑡−1,ℎ̃𝑡 )∼𝑝data(0:𝑇 )
[min(0,−1 − 𝐷 (𝐼𝑡 , 𝐼𝑡−1, ℎ̃𝑡 ))]

(14)

ℎ̃𝑡 is the instruction feature vector under the condition of incon-
sistent pairing, 𝛼 and 𝛽 are the loss weight to handle the impor-
tance about fake loss and the loss of inconsistent pairs. During
the adversarial training of IR-GAN, the objective loss directs the
discriminator to measure the consistency between visual increment
in images and semantic increment in instructions. In the meantime,
the instruction encoder is optimized using the backpropagation
gradient from the discriminator, which encourages it to purify the
user’s intention into the increment information consistent with the
visual increment in the manipulation process.

The objective of generator is to minimize this loss based on
discriminator:

𝐿𝐺 = −E(𝐼𝑡−1,ℎ𝑡 )∼𝑝data(0:𝑇 )𝐷 (𝐺 (𝐼𝑡−1, ℎ𝑡 )) (15)

This loss encourages generator to composite the learned increment
representation from instruction encoder with source image to fool
the discriminator, which ensures the quality and good logic of the
generated target image.

4 EXPERIMENTS
4.1 Datasets
For this image manipulation task with a sequence of instructions,
the standard dataset contains linguistic instructions describing ma-
nipulation actions and corresponding ground truth images for each
instruction. Here we use two standard benchmarks, namely Co-
Draw [9] and i-CLEVR [3].

CoDraw [9] is a dataset for collaborative drawing between a
teller and a drawer. Firstly the teller is provided a final target image,
and at each turn the teller gives a text instruction to the drawer.
Based on the drawer’s generated image, the teller gives the next
instruction to drawer until the generated image is similar enough to
the final target image. This dataset consists of 9993 samples totally,
and each sample consists of varying length conversations. The
target image in each sample contains different objects of 58 types,
such as trees, planes and balls. And each object has the different
size, direction and location.

i-CLEVR CLEVR [8] is a programmatically rendered dataset
and often used in Visual Question Answering(VQA) tasks. Each
image in CLEVR consists of several objects with different shapes,
colors and sizes. Based on the generation code of CLEVR, i-CLEVR
generates a sequence of (image, instruction) pairs starting from

an empty canvas. Each instruction describes a new object to be
added with its shape and color. The place of the new added object
is specified by trelative location to existing objects. This dataset
contains 10,000 sequences, and each sequence contains 5 linguistic
instructions.

4.2 Evaluation Metrics
For GAN based models, the Inception Score(IS)[25] or Fréchet Incep-
tion Distance (FID)[5] are popularly used to measure the diversity
and reality relative to the true image distribution. In this image
manipulation task, the correctness of the manipulation result ac-
cording to user’s intention is the most important evaluation. For a
good generated result, the objects mentioned in user’s instruction
should not only be generated accurately, but also follow the layout
indicated by user’s intention.

To meet these constraints, we use object localizer pretrained
on the training dataset to detect the objects and its location of
both ground true image and generated image. For each generated
example, we compare the detected results and compute the pre-
cision, recall and F1 score. Besides, to measure the arrangement
of generated objects, we compute the relational similarity score
as [3] by constructing a scene graph for each example, in which the
objects and image center point are the vertices and their left-right,
front-back relations are the directed edges. The relational similar-
ity is computed by the percentage of common relations between
generated image and ground true image:

rsim
(
𝐸𝐺gt , 𝐸𝐺gen

)
= recall×

���𝐸𝐺gen ∩ 𝐸𝐺gt

������𝐸𝐺gt

��� (16)

Where "recall" is the recall over detected objects of the generated
image to that in the ground truth image. 𝐸𝐺gt is the set of relational
edges for the ground truth image corresponding to vertices common
to both ground truth images and generated images and 𝐸𝐺gen is
the set of relational edges for the generated image corresponding
to vertices common to both ground truth images and generated
images.

4.3 Implementation Details
We use GloVe[22] as the input word embeddings of the word-level
instruction encoder. The dimension of hidden state in word-level
encoder and instruction-level encoder are both set as 1024. The
image encoder of generator and discriminator both use ResBlocks
with 3 × 3 kernel and 2 × 2 Average Pooling. The dimension of𝑉𝐺𝑡

,
𝑉𝐷𝑡

and 𝐿𝐺𝑡
are 256 × 16 × 16.

We add the layer normalization[1] in the word-level encoder and
instruction-level encoder. We introduce batch normalization[6] in
each layer of the image encoder of generator and spectral normal-
ization [17] for all layers of the discriminator.

During training1, we use the ground truth image 𝐼𝑡−1 as input
to generate 𝐼𝑡 , but use 𝐼𝑡−1 for the test time. We use Adam[10] to
optimize the parameters of generator and discriminator with mo-
mentums of 0 and 0.9, and instruction encoder of with momentums
of 0.999 and 0.9. The learning rate of generator, discriminator, word-
level encoder, instruction-level encoder are set to 0.0001, 0.0004,
1The whole source code will be released on github.



Table 1: Results comparison of imagemanipulationwith lin-
guistic instruction on i-CLEVR Dataset

Method Precision Recall F1 Rsim
Single-step text2image 25.49 20.95 22.63 11.52
Iterative text2image 71.15 60.57 65.44 50.21
Iterative IM 88.47 83.35 85.83 70.22
GeNeVA 92.39 84.72 88.39 74.02
Our IR-GAN 94.81 86.90 90.68 74.26

0.003 and 0.006 respectively. For the training dynamics, the genera-
tor and discriminator parameters are updated at every time step,
while the parameters of instruction encoder are updated in every
sequence. The instruction encoder is trained with respect to the
discriminator objective only.

4.4 Experimental Results
To evaluate the effectiveness of the proposed IR-GAN, we conduct
experiments on the i-CLEVR and CoDraw dataset and compare
the performance with several state-of-the-art models. The single-
step text2image model leverages general text2image architecture
and only uses the concatenation of sequential instructions as the
condition to generate a single final image. The iterative text2image
model iteratively generates images based on history instruction.
The iterative IM model uses both image and instructions as the
condition to generate the target image. GeNeVA [3] is current state-
of-the-art model for this task. To ensure the equity of comparison,
we use the same pretrained detection models as GeNeVA to detect
the elements in generated target images, and the split of training
and testing dataset are also identical.

4.4.1 Results on i-CLEVR dataset. Table 1 shows the performance
of different methods. We can observe that, first, our IR-GAN sur-
passes the state-of-the-art method GeNeVA [3] on all four metrics.
By introducing increment reasoning, IR-GAN can focus on the in-
crement semantic intention in the instruction encoding process and
increment visual elements in the image generation process, which
better formulates the interactions between image and instruction.
Second, the high precision score reflects the ability of our model
to generate visual elements from semantic representation in the
image; the high recall score indicates our model can thoroughly
capture the semantic meaning in the instruction; the relational simi-
larity score proves IR-GAN is good at understanding and reasoning
the interaction between image and linguistic instruction. Third,
the F1 score of our method achieves the 90%+ performance, which
means it has the potential for practical applications.

4.4.2 Results on CoDraw dataset. The performance comparison
on CoDraw dataset is shown in Table 2, and our model surpasses
state-of-the-art for all metrics. First, we find that similar with the
experiments on i-CLEVR, our model surpasses all other methods on
precision, recall, F1 score and relational similarity. This proves the
effectiveness of increment reasoning again in this multimodal con-
ditional image generation task. Second, we notice that compared
with i-CLEVR, the performance of our IR-GAN on this dataset is
relatively low. The reason lies in that (1) the visual elements in Co-
Draw are much more complex and various than those in i-CLEVR

Table 2: Results comparison of imagemanipulationwith lin-
guistic instruction on CoDraw Dataset

Method Precision Recall F1 Rsim
Single-step text2image 50.60 43.42 44.96 22.33
Iterative text2image 62.47 48.95 54.89 32.74
Iterative IM 66.38 51.27 57.85 33.57
GeNeVA 66.64 52.66 58.83 35.41
Our IR-GAN 70.12 52.75 60.20 35.51

dataset; (2) different from the instruction in i-CLEVR generated pro-
grammatically via predefined template, the instructions in CoDraw
are generated by human interaction. The teller uses the detailed
information like the horizon line in the background, which needs
the models have the stronger cognition. (3) the conversations be-
tween teller and drawer are concatenated together until the image
is changed, which can cause the longer term of instructions. How-
ever, the instruction encoder is hard to capture information for very
long instructions.

4.5 Qualitative Results
We present some examples generated by our IR-GAN and state-of-
the-art method GeNeVA [3], Figure 3 shows the qualitative com-
parison on i-CLEVR dataset and Figure 4 shows that on CoDraw
dataset.

For the i-CLEVR dataset, we can find, first, our model can better
capture the color and shape of objects in instructions accurately
and generate them on the right place of the target image, which
proves the ability of our IR-GAN to understand and reason the
spatial information and content from source image and linguistic
instruction. Second, comparing with GeNeVA [3], the visual ele-
ments in images generated by our model are more realistic and the
layout are more reasonable. Moreover, observed from the right first
column of Figure 3, our IR-GAN can generate new object, which
is partially covered by objects of source image. Third, comparing
with ground truth image, our model has the difficulty in generating
logical shaders due to the weak supervision information about light
direction.

For the CoDraw dataset, a series of generated target images
show that our IR-GAN is able to generate scenes that represent
most information in linguistic instruction. In detail, we can see
that: (1) The elements especially the large elements like trees and
cloud are generated accurately; (2) the relative spatial layout are
placed consistent with linguistic instruction, which proves that our
IR-GAN can roughly learn the user’s intention (3) detailed visual
elements in the ground truth image are hard to represent. Besides,
compared with state-of-the-art GeNeVA [3], the visual elements
generated by our IR-GAN are more close to ground truth image
and captures more semantic information in instructions like human
pose. Finally, since our method focuses on the reasoning process
in the multimodal conditional generation task, we do not apply
techniques like stacked generators to improve the resolution of the
generated image.

4.6 Ablation Studies
We conduct the experiments on different variants of our model to
evaluate the effectiveness of each component in IR-GAN, including
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Figure 3: Examples of imagemanipulation with linguistic instruction on i-CLEVR dataset. The first row represents the instruc-
tion sequence in a complete manipulation process. The second row shows the ground truth image. The third and fourth row
are the generated images by state-of-the-art GeNeVA [3] and our IR-GAN. The resolution of images are scaled to 128x128 in
the pre-processing step.

Table 3: Ablation experimental results of different variants conducted on i-CLEVR and CoDraw dataset.

Dataset i-CLEVR CoDraw
Method Precision Recall F1 Rsim Precision Recall F1 Rsim

IR-GAN w/o increment reasoning 90.55 82.81 86.51 68.75 65.12 51.10 57.26 33.40
IR-GAN w/o historical instruction 91.66 82.94 87.08 69.52 70.10 52.72 60.18 34.45

IR-GAN w/o user’s intention purification 90.78 84.83 87.70 73.08 70.00 52.09 59.73 34.72
IR-GAN 94.81 86.90 90.68 74.26 70.12 52.75 60.20 35.51

the increment reasoning, history instruction information, user’s
intention purification. The ablation study on i-CLEVR and CoDraw
dataset is shown in Table 3.

4.6.1 Effects of Increment Reasoning. To evaluate the performance
improvement from the increment reasoning mechanism, we imple-
ment a degraded model which just uses concatenation to composite
visual and semantic features. Specifically, for the generator, the
image decoder uses the concatenation of 𝐿𝐺𝑡

and 𝑉𝐺𝑡
as the input

feature to generate the target image. For the discriminator, we do
the concatenation of 𝑉𝐷𝑡

and 𝑉𝐷𝑡−1 as its input to measure the
consistency with instruction representation ℎ𝑡 .

As seen in Table 3, benefiting from the increment reasoning,
on the i-CLEVR dataset, IR-GAN boosts the F1 score with +4.17%
and the relational similarity (Rsim) with +5.51%. On the CoDraw
dataset, it improves the F1 score with +2.94% and the relational
similarity (Rsim) with +2.11%. Moreover, this module brings the

larger improvement performance than other two modules. The in-
crement reasoning mechanism formulates the interactions between
image and instruction, and helps the model reason the consistency
between visual increment in target image and user’s intention in
linguistic instruction.

4.6.2 Effects of History Instruction Information. To evaluate the ef-
fects of historical instruction information, we conduct experiments
on IR-GAN with only word-level instruction encoder. Specifically,
the ℎ𝑡 is replaced by 𝑑𝑡 for both generator and discriminator as
condition, which makes the model only learn information about
existing elements from source image.

By using historical instruction information in our model, on
the i-CLEVR dataset, the precision, recall, F1 score and relational
similarity score (Rsim) achieve the performance improvement with
+3.15%, +3.96%, +3.60% and +4.74% respectively. On CoDraw dataset,
the precision, recall, F1 score, the Rsim are boosted with +0.02%,
+0.03%, +0.02%, and +1.06% respectively. From the comparison, we
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Figure 4: Examples of imagemanipulation with linguistic instruction on CoDraw dataset, which are generated by our IR-GAN
and state-of-the-art GeNeVA [3]

can see that (1) the sequential instructions in i-CLEVR dataset are
more correlated and IR-GAN can use this correlation to generate
high quality images; (2) in CoDraw dataset, the historical instruction
information is less correlated with current manipulation, but our
IR-GAN has to capture more information from source image to
cognize the user’s intention. (3) the increased Rsim score (+1.06%)
shows that although historical instructions in CoDraw include few
useful information, IR-GAN is still able to reason the layout of
target image.

4.6.3 Effects of User’s Intention Purification. In our IR-GAN, the
learned user’s intention representation is used in two ways: (1) as
condition to generate target image; (2) as information for discrimi-
nator to measure the logic of generated image. We only optimize
the instruction encoder in the second procedure. To evaluate the
effectiveness of this module, we design a model which uses two
instruction encoders to learn separate representations for the gen-
erator and discriminator respectively.

As shown in Table 3, the comparison result indicates that pu-
rifying user’s intention through discriminator helps improve the
performance of all metrics on both i-CLEVR and CoDraw dataset.
The reasoning process of discriminator encourages the instruction
encoder to learn a better representation that captures the manip-
ulation intention for source image. Besides, the optimization of
two instruction encoders consumes more memory and computing
resources.

In IR-GAN, the instruction encoder is optimized through the
backpropagation of discriminator. Here we also conduct the ab-
lation experiment with training the instruction encoder by the
backpropagation of generator. We find that, this new training fails
converging and obtains a very low performance.

5 CONCLUSION
In this paper, we propose the Increment Reasoning Generative Ad-
versarial Network (IR-GAN) to address the multimodal conditional
generation task, i.e. image manipulation with linguistic instruction.
The instruction encoder is designed to learn user’s intention from
current and history instruction, a image generator is used to gener-
ate target image based on the features of user’s intention and source
image. Finally, the increment reasoning discriminator is proposed
to reason the consistency between visual increment upon images
and semantic increment in linguistic instruction, which ensures the
quality and good logic of generated image. Extensive experiments
and ablation studies on CoDraw and i-CLEVR datasets show the
effectiveness of our IR-GAN.
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