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ABSTRACT
Recent research has demonstrated that adding some imperceptible
perturbations to original images can fool deep learning models.
However, the current adversarial perturbations are usually shown
in the form of noises, and thus have no practical meaning. Image
watermark is a technique widely used for copyright protection. We
can regard image watermark as a kind of meaningful noises and
adding it to the original image will not affect people’s understand-
ing of the image content, and will not arouse people’s suspicion.
Therefore, it will be interesting to generate adversarial examples
using watermarks. In this paper, we propose a novel watermark
perturbation for adversarial examples (Adv-watermark) which com-
bines image watermarking techniques and adversarial example al-
gorithms. Adding a meaningful watermark to the clean images can
attack the DNN models. Specifically, we propose a novel optimiza-
tion algorithm, which is called Basin Hopping Evolution (BHE),
to generate adversarial watermarks in the black-box attack mode.
Thanks to the BHE, Adv-watermark only requires a few queries
from the threat models to finish the attacks. A series of experiments
conducted on ImageNet and CASIA-WebFace datasets show that the
proposed method can efficiently generate adversarial examples, and
outperforms the state-of-the-art attack methods. Moreover, Adv-
watermark is more robust against image transformation defense
methods.
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1 INTRODUCTION
Recent literature has found that Deep Neural Networks (DNNs)
are vulnerable to the adversarial examples which are generated by
adding some imperceptible noises to the clean images [5]. Generally
speaking, attack methods can be divided into two categories: white-
box attack methods and black-box attack methods. The white-box
attack [2, 6, 15, 23] denotes that the attacker has complete access
to the target model such as model parameters, model structure, etc.
And the black-box attack [1, 4, 17, 29, 33] denotes that the attacker
can only access the output of the target model. The above methods
achieve attacks by generating imperceptible perturbations. They use
L0,L2,L∞ to bound the noises. Recently, more andmore researchers
pay attention to generating realistic adversarial examples without
the Lp norm limitation [4, 16, 26].

Watermarking methods [7] play an important role in protecting
intellectual property rights. It embeds some specific information of
the copyright holder (such as university logos, ownership descrip-
tions, etc) into the multimedia data according to the requirements
of users. In [21], Mintzer et al. describe the characteristics of visible
watermarks. The visible watermark should be visible but does not
significantly obscure the details of the host image.

In this paper, we propose a novel adversarial attack which gener-
ates adversarial examples using watermarks. We find that although
watermarks do not affect people’s understanding of the image con-
tent, and adding specific watermarks to the clean images can fool
the DNN models. The specific watermarks refer to the specific po-
sition and transparency of them. We mainly consider using visible
watermarks to generate adversarial examples. In detail, we use
alpha blending [31] to achieve watermark embedding. The host
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Figure 1: Adversarial examples with watermark perturba-
tions. The original class labels are in black text and the ad-
versarial class labels are in red text.

image and the watermark are multiplied by a scaling factor. The
scaling factor is manipulated in the α channel of the image, which
decides the image’s transparency.

As for a certain watermark, the DNN models can be success-
fully attacked only by adding the watermark with the specific
transparency to a specific position of the host image. Consider-
ing this, we propose a novel attack method to generate watermark
adversarial perturbations. Specifically, we propose a Basin Hopping
Evolution (BHE) algorithm to find the appropriate transparency
of the watermark image and the appropriate position within the
host image to embed watermark. BHE is proposed based on the
Hopping Evolution (BH) [36], where we find it usually falls into
a local optimum and fails in attacking DNN models. In contrast,
BHE has multiple initial starting points and crossover operation
to keep the diversity of solutions. In this way, BHE makes it easier
to find a global optimal solution and thus achieves a higher attack
success rate than BH. The proposed method achieves attacks by
using a little information (predicted probability of the classification
model). It does not need the inner information of DNNs such as net-
work structures and weights. Therefore, it belongs to the black-box
attack.

Besides the ability to perform adversarial attacks, Adv-watermark
also inherits the function of the visible watermark. That’s to say,
Adv-watermark can also protect the copyright of the image because
it carries the owner’s description. Therefore, Adv-watermark can
accomplish two functions at the same time. This is a major advan-
tage compared with the previous research. Specifically, peoples
tend to share their images on social media to record their lives.
They usually add a visible watermark to protect their copyright.
But their images can also be identified and embezzled by malicious
software. Adv-watermark can be used to avoid this situation. It not
only protects the copyright of the image but also performs adver-
sarial attacks to avoid being embezzled by malicious software. In
this paper, we explore two kinds of media as the watermarks: logos

Figure 2: In this paper, we explore two kinds of media as
the watermark: logos and texts. These six host images are
randomly selected from ImageNet.

and texts. Figure 2 lists the used watermarks, and some generated
Adv-watermark examples are shown in Figure 1.

In summary, this paper has the following contributions:
1) We propose the Adv-watermark, a novel watermark perturba-

tion for adversarial examples, which combines image watermarking
techniques and adversarial example algorithms. Compared with the
previous works, the proposed adversarial example is more realistic
and effective.

2) We propose a novel optimization algorithm, which is called
Basin Hopping Evolution (BHE), to generate adversarial examples
efficiently. The proposed method adopts a population-based global
search strategy to generate adversarial examples, and can achieve
high performance in attacking DNN models.

3) Compared with the previous black-box attack methods, the
proposedmethod can achieve a higher attack success rate.Moreover,
the state-of-the-art image transformation defense methods can
not defend the proposed attack method. The code is released at
https://github.com/jiaxiaojunQAQ/Adv-watermark.git.

The remainder of this paper is organized as follows. Section 2
briefly reviews the related work. Section 3 introduces the details of
the proposed Adv-watermark. Section 4 shows a series of experi-
mental results and analysis. Finally, Section 5 gives the conclusion.

2 RELATEDWORK
In this section, we investigate the attack methods and the visible
watermarking methods.

2.1 Attack methods
In [6], Goodfellow et al. devise an effective method to calculate the
adversarial examples, and the adversarial perturbation is generated
according to the direction of the gradient change of the DNNs.
This method is also called FGSM. Iterative FGSM (I-FGSM) [15] is
an improved version of FGSM. I-FGSM constructs an adversarial
example by multi-step and smaller movements, which greatly im-
proves the success rate of the attack. The most common adversarial
attack methods are under the L∞ and L2 distance metric. But in
[24], Papernot et al. propose to build adversarial saliency maps to
generate adversarial examples under L0 norm. Moosavi-Dezfooli
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Figure 3: The top row is the original images (they are cor-
rectly classified by Resnet101) and their corresponding heat-
maps (generated by Grad-CAM algorithm).The bottom row
is the adversarial images with the visible watermark and
their corresponding heat-maps. The image classification la-
bels are in black color.

et al. propose a simple and accurate method (Deepfool) [23] to effi-
ciently generate the adversarial examples. Moreover, they further
propose the universal perturbation based on Deepfool in [22]. And
in [2], Carlini and Wagner propose three attack methods to attack
defensive distillation Networks [25]. In [33], Su at el. propose to
generate one-pixel adversarial perturbations based on differential
evolution (DE).

2.2 Visible watermarking methods
In [13], Kankanhalli et al. propose a visible watermarking technique
that can find the strength of the watermark image and the location
of the host image. In [31], Shen et al. propose to use the alpha
blending technique to generate the visible watermark. A removable
visible watermark is proposed in [9]. They design a vision water-
marking algorithm suitable for the different requirements of the
applications. In [19], Liu et at. propose a new approach to generate
a generic lossless visible watermark. The proposed method makes
use of deterministic one-to-one mappings of image pixel values
to achieve generating the visible watermark. In [10], Huang et al.
design a visible watermarking algorithm for digital right manage-
ment. A contrast-sensitive function and block classification are used
to achieve a better visual effect in the discrete wavelet transform
domain.

3 METHODOLOGY
In this section, we introduce the proposed method from three as-
pects: visible watermarking, problem formulation and problem
solving.

3.1 Visible Watermarking
We use alpha blending in [31] to generate a visible watermark. Al-
pha channel(α channel) refers to the transparency of a foreground
region w.r.t. the background image. In this paper, we use α to repre-
sent the value of the alpha channel, H to represent the host image

whose size is N ×M ,W to represent the watermark image whose
size is n ×m and G to represent the generated image with a water-
mark whose size is N ×M . When i ∈ (p,p + n), j ∈ (q,q +m), the
generation for G is formulated as:

v(G)i, j = (v(W )i−p, j−q ∗ α +v(H )i, j ∗ (255 − α))/255 (1)

when i < (p,p + n), j < (q,q +m), G is formulated as:

v(G)i, j = v(H )i, j , (2)

where v(x) denotes the image x , the subscript i, j of v(x) represent
the pixel position, and p,q represent the position where the wa-
termark image is embedded. As for the image watermark, we use
UC Berkeley, CMU, MIT, Cambridge and Stanford University logo
watermarks. Simultaneously, we also use the official ACMMM logo
from 2016 to 2020. As for text watermark, we use red, green, blue,
black and gray fonts to generate adversarial examples. We also syn-
thesize watermark images in different sizes to explore scale-ware
effects. It is formulated as:

η = min((Wh ∗ sl)/Ww , (Hh ∗ sl)/Hw ),
Wsw =Ww ∗ η,Hsw = Hw ∗ η,

(3)

whereWh and Hh represent the width and height of the host image.
Ww andHw represent the width and height of the watermark image.
sl is the scaling factor. AndWsw and Hsw represent the width and
height of the scaled watermark image. Note that in this paper, we
focus on the position and transparency of the watermark, not the
rotation, etc.

3.2 Problem Formulation
We disguise adversarial noise as a visible watermark to achieve
stealthiness. And the generation of adversarial examples is only re-
lated to the position and transparency of the watermark. Generating
adversarial watermark images can be formalized as an optimization
problem with constraints. The host image is assumed as H , the
well-trained classification model is assumed as f and the correct
classification class of H is t . ft (H ) is the probability of H belong-
ing to the class t . Simultaneously, letW be the watermark image
and д(H ,W ,p,q,α) be the visible watermark algorithm. It embeds
the watermark imageW in the position (p,q) of the host image
H . The p, q and α are dependent onW , H , f . And the limitation
of maximum transparency of the watermark is L. In the case of
untargeted attacks, the goal of generation of adversarial examples
can be transformed into finding the optimized solution e(p,q,α)∗.
It is formulated as:

minimize
e(p,q,α )∗

ft (д(H ,W ,p,q,α))

subject to α ≤ L
(4)

This problem involves two values: 1) the position (p,q) of the
watermark in the host image and 2) the transparency α of the water-
mark. Embedding the adversarial watermark which can be regarded
as a practical perturbation into the host image modifies the local in-
formation of the host image. In this way, the adversarial watermark
perturbation permits a clean image to be an adversarial example.
Without affecting the visual effect of the image, the adversarial wa-
termark disturbs the important local regions which determine the
image classification to attack the well-trained classification model.
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Figure 4: The process of Basin Hopping Evolution.

This is illustrated in Figure 3. From the heat-maps which are gener-
ated by Gradient-weighted Class Activation Mapping (Grad-CAM)
[30], it is clear why the Resnet101 predicts the input images as the
corresponding correct classes. And embedding the adversarial wa-
termark into the image can modify the distribution of the maximum
points on the generated heat-map.

3.3 Problem Solving
We propose a novel optimization algorithm, which is called Basin
Hopping Evolution(BHE). The proposed method is a heuristic ran-
dom search algorithm based on Basin Hopping, which can be used
for finding the global minimumof amultivariate function. As shown
in Figure 4, BHE includes Basin Hopping, crossover and selection
operations. During each iteration, the current solutions (parents)
use BH to produce a set of better solutions and conduct crossover
operation to generate a new set of candidate solutions (children).
And then in selection operation, compared with the corresponding
parents to conduct, if the children are more suitable for the cur-
rent population evolution (posses the smaller multivariate function
value), they survive and are passed to the next generation.

3.3.1 Population Initialization. BHE is an optimization algorithm
based on group evolution. We regard each solution as an individual
of a population. And the elements (p,q and α ) are considered as
its genes. Let Xi,д denote the i-th individual in the д-th generation
population. And Xi,д, j (j = 0, 1, 2) denotes the j-th gene of Xi,д .
Therefore, we initialize a population as follows:

Xi,0, j = Xmin, j + rand(0, 1) · (Xmax, j − Xmin, j ), j = 0, 1, 2 (5)

where Xi,0, j is the j-th gene of the i-th individual in the initial
population , Xmin, j is the minimum of the j-th gene and Xmax, j is
the maximum of the j-th gene.

3.3.2 Basin Hopping. Basin Hopping (BH) is a stochastic optimiza-
tion algorithm. During each iteration, BH generates some new
coordinates with random perturbations, next finds the local mini-
mization, and finally accepts or rejects the new coordinates accord-
ing to the minimized function value. We use BH to evolve a better
individual Vi,д from Xi,д .

In detail, ft (д(H ,W ,p,q,α)) is assumed as ft (·). Starting with
Xi,д , a local optimal solution Vi,д of the function ft (·) is found by
using a minimization method L(·). Next we start the global search
iterations and use µд(Xi,д) to represent the global neighborhood
of Xi,д . It is formulated as:

µд(Xi,д) = [Xi,д ,Xi,д + r ∗ ®d], (6)

Figure 5: The histogram of the top 5 category confidence of
generated images in the generation process of the adversar-
ial examples using BHE.

where ®d is an n-dimensional Gaussian(0, 1) variable and r is a fixed
step size. A new starting point is selected from the global neighbor-
hood of Vi,д . It is stored as Vi,д .It is formulated as:

Vi,д = G(µд(Vi,д)) (7)

And then starting with Vi,д , a local search is performed and the
result is stored as Si,д . Finally, we use a function Accept(Vi,д , Si,д)
to choose Vi,д or Si,д . And it is formulated as:

Accept(Vi,д , Si,д) =
{
1 ft (Si,д) ≤ ft (Vi,д)
0 ft (Si,д) > ft (Vi,д)

(8)

The detail description is given in Algorithm 1. To represent BH
algorithm simplify, it can be formulated as:

Vi,д = BH (Xi,д , I ), (9)

where Xi,д represents the i-th solution in the д-th generation popu-
lation, Vi,д represents the corresponding better solution using BH,
BH (·) represents the BH algorithm and I indicates the maximum
number of Basin Hopping iterations which is a super parameter
which we use a large number of experiments to certify.

Algorithm 1 BH algorithm
Require: The watermark imageW , the host image H , the well-

trained classifier f and Xi,д
Ensure: Vi,д
1: Vi,д = L(ft (·),Xi,д);
2: repeat
3: Vi,д = G(µд(Vi,д));
4: Si,д = L(ft (·),Vi,д);
5: if Accept(Vi,д , Si,д) then
6: Vi,д = Si,д ;
7: end if
8: until global stopping rule is satisfied
9: return Vi,д



3.3.3 Crossover. As for the current solution (parents) Xi,д and the
corresponding BH optimization solutionVi,д , we conduct crossover
operation to get a candidate solution (child)Ui,д . It is formulated
as:

Ui,д, j =

{
Vi,д, j , rand(0, 1) ≤ CR
Xi,д, j , others

(10)

whereUi,д, j is the j-th gene of Ui,д , Vi,д, j is the j-th gene of Vi,д ,
Xi,д, j is the j-th gene of Xi,д and CR is the crossover probability
which represents the degree of information exchange in the popula-
tion evolution. It is a super parameter which we use a large number
of experiments to certify.

3.3.4 Selection. We adopt a greedy selection strategy to select a
better solution as the next generation solution. It is formulated as:

Xi,д+1 =

{
Ui,д , ft

(
Ui,д

)
≤ ft

(
Xi,д

)
Xi,д others (11)

The detail description of BHE is given in Algorithm 2. And the
generation process of the adversarial examples by using BHE is
shown in Figure 5.

Algorithm 2 BHE algorithm
Require: Population:M ; Dimension: 3; Generation: N ; Iteration:

I ;
Ensure: The best solution -△
1: д← 0;
2: for i = 1 toM do
3: for j = 1 to 3 do
4: Xi,0, j = Xmin, j + rand(0, 1) · (Xmax, j − Xmin, j )
5: end for
6: end for
7: while ft (△) ≥ ε and д ≤ N do
8: for i = 1 toM do
9: ▶ Basin Hopping
10: Vi,д = BH (Xi,д , I )
11: ▶ Crossover
12: for j = 1 to 3 do
13: Ui,д, j = Crossover (Vi,д, j ,Xi,д, j )
14: end for
15: ▶ Selection
16: if ft (Ui,д) ≤ ft (Xi,д) then
17: Xi,д = Ui,д
18: if ft (Xi,д) ≤ ft (△) then
19: △ = Xi,д
20: end if
21: else
22: Xi,д = Xi,д
23: end if
24: end for
25: д← д + 1
26: end while

4 EXPERIMENTAL RESULTS AND ANALYSIS
4.1 Experiment Settings
We conduct experiments based on ImageNet [28]andCASIA-WebFace
[37]. In detail, we randomly select 1,000 images from them to con-
duct the related experiments. We choose six classification models

Table 1: Selection of hyper-parameters in BHE

I = 2 I = 3 I = 4 I = 5 I = 6 Average
CR=0.5 59.3% 58.1% 58.1% 60.0% 58.1% 58.4%
CR=0.6 56.2% 57.5% 57.5% 59.3% 58.7% 57.6%
CR=0.7 58.1% 58.7% 59.3% 59.3% 60.0% 58.7%
CR=0.8 58.7% 56.8% 60.0% 60.0% 60.0% 58.7%
CR=0.9 58.1% 60.0% 59.7% 59.3% 59.3% 58.9%
CR=1.0 59.3% 59.3% 60.0% 60.0% 60.0% 59.3%
Average 58.3% 58.4% 58.9% 59.6% 59.3% 58.6%

with different structures as threat models: Alexnet [14], VGG19
[32], SqueezeNet[11], Resnet101 [8], InceptionV1 [34] and Incep-
tionV3 [35]. We also compare with other black-box attack methods
to verify the proposed method: spatial attack [4], boundary attack
[1], single-pixel attack [33] and pointwise attack[29]. As for these
attack methods, we adopt their benchmark approaches and default
parameters as recommended in Foolbox [27].

4.2 Optimization method implementation
The initial value of the step size r is set as 0.5. And the initial p,q
and α are set as 0, 0 and 100. The range of thep is [0,Wh−Wsw ]. The
range of the q is [0,Hh −Hsw ]. And the range of the α is [100, 200].

4.3 Selection of hyper-parameters
We conduct a large number of experiments to determine two hyper
parameters in BHE. One is the number of basin hopping iterations
I , the other one is crossover probability CR. We adopt BHE to attack
DNN models using ACMMM 2020 logo with scale=1/4. In detail, we
compute the attack success rates of the Resnet101 on 1000 random
image of the ImageNet dataset. The result is shown in Table 1.
From Table 1, it is clear that the attack success rate increases when
I increases. That is, as the number of Basin Hopping iterations
increases, the solution generated by BH will be better, resulting in
achieving a higher attack success rate. But more iterations mean
more time spent. Considering time complexity, we set CR to 0.9 and
I to 3. In this way, Adv-watermark can achieve the highest attack
success rate(60%). And in the original BH algorithm, the iteration I
is set to 450.

4.4 Attack performance
In order to verify the proposed method comprehensively, we choose
five university logo watermarks and five official ACMMM water-
marks as the image watermarks to generate corresponding adver-
sarial examples. And we also choose five different color fonts as the
text watermarks to generate corresponding adversarial examples.
The average attack success rates of individual logos or text water-
marks are reported in Table 2. The first column of each row shows
the results of BH and the second column of each row shows the
results of BHE. It is clear that the proposed BHE can achieve a high
attack success rate. As for the university logo watermarks, when the
watermark size is set as 4/9 of the host image size, the attack success
rate can achieve about 97%. And when the watermark size is set as
1/16 of the host image size, the attack rate also can achieve 69%. As
for the ACMMM logo watermarks, the average attack success rates



Table 2: The attack success rates of individual logo or text watermark.
ACMMM logo watermarks

Alexnet VGG19 SqueezeNet1_0 Resnet101 InceptionV3 Average
scale=2/3 88%/92% 77%/83% 85%/88% 78%/83% 77%/79% 81%/85%
scale=1/2 80%/88% 69%/80% 76%/82% 70%/78% 65%/74% 72%/80%
scale=1/3 68%/76% 54%/68% 56%/69% 56%/66% 51%/61% 57%/68%
scale=1/4 58%/69% 43%/59% 46%/62% 47%/58% 41%/52% 47%/60%
Average 74%/81% 61%/72% 66%/75% 63%/71% 59%/62% 65%/73%

University logo watermarks
Alexnet VGG19 SqueezeNet1_0 Resnet101 InceptionV3 Average

scale=2/3 96%/98% 96%/96% 95%/97% 96%/97% 96%/98% 96%/97%
scale=1/2 90%/95% 88%/90% 88%/91% 88%/90% 87%/91% 89%/92%
scale=1/3 78%/88% 74%/76% 73%/79% 72%/76% 68%/77% 73%/79%
scale=1/4 66%/78% 62%/66% 61%/71% 60%/66% 54%/63% 61%/69%
Average 83%/90% 80%/82% 80%/84% 79%/82% 76%/82% 80%/84%

Text watermarks
Alexnet VGG19 SqueezeNet1_0 Resnet101 InceptionV3 Average

font size=40 89%/91% 82%/81% 84%/85% 74%/76% 68%/73% 79%/81%
font size=36 85%/89% 79%/78% 80%/83% 69%/73% 63%/69% 75%/78%
font size=32 82%/85% 75%/76% 76%/80% 65%/69% 58%/65% 71%/75%
font size=28 75%/80% 70%/71% 71%/75% 59%/66% 53%/60% 66%/70%
Average 83%/86% 76%/76% 78%/81% 67%/71% 61%/66% 73%/76%

Table 3: The attack success rates with limit of embedded watermark position
scale=1/4 scale=1/5 scale=1/6 scale=1/7 scale=1/8

MIT logo 62% 58% 56% 55% 54%
ACMMM2020 63% 59% 58% 57% 53%

font size=22 font size=21 font size=20 font size=19 font size=18
Red text 61% 57% 55% 53% 50%

Table 4: Comparison with other attack methods

Network
attacker Spatial Attack Boundary Attack Single-Pixel Pointwise Attack SU logo ACMMM2017 Blue text

Resnet101 52% 37% 5% 7% 88% 75% 73%
InceptionV3 58% 48% 5% - 87% 72% 67%

Table 5: Performance on the state-of-the-art image transformation defense methods

Network defender
attacker Single-pixel Attack Boundary Attack CMU(1.5/2/3/4) ACMMM2020(1.5/2/3/4)

Resnet101
Jpeg defend 24% 13% 100%/98%/94%/92% 97%/95%/88%/83%
Comdefend 17% 13% 99%/94%/88%/82% 97%/94%/89%/82%

HGD 42% 34% 98%/95%/95%/94% 97%/95%/92%/90%

InceptionV3
Jpeg defend 42% 8% 100%/97%/94%/91% 99%/95%/90%/87%
Comdefend 34% 12% 99%/95%/91%/86% 98%/94%/90%/86%

HGD 32% 36% 98%/95%/89%/88% 95%/90%/86%/85%

of them drop a little. That is because that the height-width ratio
of the ACMMM watermark is not 1:1(the height-width ratios of
the ACMMM logo watermarks(2016-2020) are 1 : 2.6, 1 : 2.5, 1 : 3,
1 : 2.1 and 1 : 2.6), and the size of the ACMMM logo watermark is
smaller than the university logo watermark when the scale is the
same. In detail, when scale=1/4, the size of ACMMM2018 logo wa-
termark is about 1/48 of the host watermark size. Even though the

performance of the adversarial ACMMM logo watermarks declines
a little, they also achieve a high attack success rate. Simultaneously,
we use the text watermark to attack the well-trained classification
models. As shown in Table 2, the proposed method can achieve
about 86%, 76%, 81%, 71% and 66% average attack success rates
on Alexnet, VGG19, SqueezeNet, Resnet101 and InceptionV3 with
different font sizes. Compared with BH, the proposed BHE can



Table 6: Performance on the adversarial training

Adversarial
Training

MIT ACMMM20 Red Text
1/4 1/3 1/4 1/3 28 32

MIT(1/4) 50% 55% 74% 80% 91% 92%
ACMMM20(1/4) 78% 83% 43% 48% 85% 86%
Red Text(28) 71% 74% 72% 86% 44% 47%

(a) Position of embedded watermark

(b)  Adversarial Examples

Figure 6: (a) Limit of embedded watermark position. The
face is in the red rectangle and the embedded watermark is
restricted to the green rectangles. (b) Adversarial examples
on the CASIA-WebFace dataset.

achieve a higher attack success rate. Moreover, we conduct a series
of experiments on the CASIA-WebFace dataset within restricting
adversarial watermark position. Specifically, as shown in Figure 6
(a), we use MTCNN [38] to find face area which is marked as the red
rectangle. We restrict the embedded watermark to the area on both
sides of the rectangle which is marked as the green rectangle. And
then we use Adv-watermark to attack InceptionV1 which is trained
on CASIA-WebFace dataset. Generated adversarial examples are
shown in Figure 6 (b). The attack result is shown in Table 3. Note
that since we limit the embedding area of the watermark, we should
adopt a smaller scale and font size.

4.5 Comparisons with other attack methods
To quantitatively evaluate the proposed method performance, we
compare the proposed method with other black-box attack methods:
spatial attack [4], boundary attack [1], single-pixel attack [33] and
pointwise attack[29]. In detail, we choose the SU and ACMMM2017
image watermarks with different scales and blue font text water-
mark with the different font sizes to complete the contrast experi-
ments. Their average attack success rates are shown in Table 4. As
shown in Table 4, it is clear that compared with other black-box
attack methods, our attack method can achieve a higher attack
success rate. In particular, the average attack success rate of SU
reaches up to 88%.

In order to evaluate the robustness of the proposed method, we
compare the Adv-watermark with other black-box attack methods:
single-pixel attack and boundary attack, and choose three image
transformation defense methods: Jpeg defend [3], Comdefend [12]
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Miniature Poodle

Cougar
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Spike

Nematode

Sorrel

Oxygen Mask

Pinwheel

Envelope

Figure 7: The adversarial examples with a variety of TV sta-
tion logos. The original class labels are in black color and
the class labels of the adversarial examples are in red color.

Figure 8: Layer-wise perturbation levels of theVGG16model.
Adversarial watermark and normal watermark added to
clean images correspond to the El , respectively.

and HGD [18]. From Table 5, it is clear that the existing image trans-
formation defense methods are useful for single-pixel attack and
boundary attack, but not useful for our proposedmethod. Compared
with other attack methods, the proposed method is more robust.
We also conduct adversarial training [20] to defend the proposed
attack method. In detail, we inject adversarial examples generated
by MIT, ACMMM2020 image watermark with scale = 1/4 and red
text watermark with font = 28 into the original image dataset and
retrain three Resnet101 on them respectively. And then we use
these watermarks with different sizes to attack these models. The
result is shown in Table 6. It is clear that the adversarial training
cannot effectively defend Adv-watermark. Moreover, using another
watermark to attack the adversarial training model can achieve a
higher attack success rate. In other words, even though adversarial
training increases the robustness to one watermark perturbation, it
increases the vulnerability to another watermark perturbation.

4.6 Extension
The proposed method is not limited to using a watermark to gener-
ate an adversarial example. It can be extended to use the TV station
logos to complete the attack. To make the generated adversarial



examples more realistic and imperceptible, we also choose more
commonly used TV station logos to complete the attack. In detail,
we select a variety of TV station logos, next limit the embedded
position of the logos to the upper right corner of the host image and
then use the proposed method to generate the adversarial examples.
As shown in Figure 7, the generated adversarial examples are more
realistic and common in the physical world.

4.7 Analysis for Adv-watermark
Compared with the previous attack methods, Adv-watermark pays
more attention to generate realistic adversarial examples. We find
DNN models are spatially vulnerable, which adding perturbations
at a specific position to clean images can attack them easily. To
investigate this characteristic, we conduct a comparative exper-
iment to evaluate layer-wise perturbations of the VGG16 model
fed adversarial watermark images and normal watermark images,
respectively. The difference between normal watermarks and ad-
versarial watermarks is that they are positioned differently on clean
images. The perturbation level in layer l can be formulated as:

El (xw ,x) = ∥ fl (xw ) − fl (x)∥2 /∥ fl (x)∥2 , (12)

where x represents a clean image, xw represents the clean image
with adversarial or normal watermark and fl (·) represents the l-th
layer of the VGG16 model.

The result is shown in Figure 8. The red curve represents the El
for adversarial watermark perturbations and the blue curve rep-
resents the El for normal watermark perturbations. Specifically,
the red curve is the average result on 30 randomly picked images
with the adversarial watermarks and the blue curve is the average
result on 30 same images with the normal watermarks. It is clear
that the watermark perturbation is progressively enlarged with
the layer hierarchy. But in the top layer, the adversarial watermark
perturbation is much higher than the normal watermark perturba-
tion. Because the classification result is dependent on the top-level
features, the adversarial watermark perturbation can fool DNN
models but the normal watermark perturbation can not.

5 CONCLUSION
In this paper, we discovered DNN models were spatially vulnerable,
which adding perturbations at a specific position to clean images
could attack models easily. And then we proposed a novel attacking
method which used the real watermark to attack the well-trained
classifier. Our adversarial perturbation was meaningful, which was
different from the traditional ones. We formulated the watermark
attack problem as a global optimization problem, and proposed
a novel optimization algorithm(BHE) to generate adversarial ex-
amples. Compared with the previous BH, BHE achieved a higher
attack success rate. Moreover, the Adv-watermark was more robust,
because the image transformation defense methods could not de-
fend the proposed attack method. And the proposed method could
be more commonly used in the real world.
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