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ABSTRACT
As a structured representation of the image content, the visual
scene graph (visual relationship) acts as a bridge between computer
vision and natural language processing. Existing models on the
scene graph generation task notoriously require tens or hundreds
of labeled samples. By contrast, human beings can learn visual
relationships from a few or even one example. Inspired by this,
we design a task named One-Shot Scene Graph Generation, where
each relationship triplet (e.g., “dog-has-head”) comes from only
one labeled example. The key insight is that rather than learning
from scratch, one can utilize rich prior knowledge. In this paper, we
propose Multiple Structured Knowledge (Relational Knowledge and
Commonsense Knowledge) for the one-shot scene graph generation
task. Specifically, the Relational Knowledge represents the prior
knowledge of relationships between entities extracted from the
visual content, e.g., the visual relationships “standing in”, “sitting
in”, and “lying in” may exist between “dog” and “yard”, while the
Commonsense Knowledge encodes “sense-making” knowledge like
“dog can guard yard”. By organizing these two kinds of knowledge
in a graph structure, Graph Convolution Networks (GCNs) are used
to extract knowledge-embedded semantic features of the entities.
Besides, instead of extracting isolated visual features from each
entity generated by Faster R-CNN, we utilize an Instance Relation
Transformer encoder to fully explore their context information.
Based on a constructed one-shot dataset, the experimental results
show that our method significantly outperforms existing state-of-
the-art methods by a large margin. Ablation studies also verify the
effectiveness of the Instance Relation Transformer encoder and the
Multiple Structured Knowledge.
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1 INTRODUCTION
As essential tasks of vision understanding, image classification [10,
30, 36], image retrieval [28, 29, 34, 40], and object detection [7, 25,
26] are booming with the development of deep neural networks.
However, general attributes of objects, such as category or location,
are not adequate to understand image contents. A scene graph,
which is a structured representation of the image content, con-
tains not only the semantic and spatial information of objects in
images but also relationships between instances. Since the scene
graph possesses a wealth of visual contents, the study of scene
graph generation facilitates other high-level tasks in the multi-
media field [4, 5], such as visual captioning [9, 31, 32] and visual
question answering (VQA) [6, 18, 19, 33].

In general, previous methods on scene graph generation focus
on the following aspects. 1). How to propose an efficient message-
passingmechanism between object features to get the local or global
context [20, 41, 43–45]? 2). How to effectively map visual relation-
ships to a semantic space [23, 24, 46]? 3). How to design a multi-task
network to enhance the scene graph generation task [8, 21]? Be-
cause the semantic space of visual relationships is tremendous,
these methods usually require a large number of labeled samples as
supervision information. However, based on rich prior knowledge
in the brain, humans can easily overcome this difficulty and learn
visual relations from few or even one example.

In order to equip models with the ability to learn visual rela-
tionships from one example, we design a new task called One-Shot
Scene Graph Generation, where each relationship triplet contains
only one annotated example, as shown in Figure 1. Due to a lack
of sufficient supervision information, this task is difficult for the
previous work, as illustrated in Figure 2. Directly applying existing
scene graph generation models on this task leads to a significant
performance drop.

As mentioned above, rich prior knowledge helps humans to
learn visual relationships from few examples. This suggests that
models should pay attention to not only visual information but also
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Figure 1: In this paper, we focus on the one-shot scene graph
generation task, where each relationship triplet (e.g., “dog-
has-head”) comes from only one labeled example. For clar-
ity, bounding boxes in the figure are not shown.
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Figure 2: MotifNet [45] is applied to the one-shot scene
graph generation task. The performances are evaluated on
the PredCls (Recall@K) setting. The blue bars denote the
performances of MotifNet on the scene graph generation
task. The orange bars denote the performances of MotifNet
on the one-shot scene graph generation task.

other information from prior knowledge [12, 22, 35]. In this paper,
the Multiple Structured Knowledge (Relational Knowledge and
Commonsense Knowledge) is introduced into the one-shot scene
graph generation task. The Relational Knowledge represents prior
knowledge of relationships between entities. For example, there is a
high probability that the relationship “play” exists between “person”
and “dog”, even if the image is not visible. The Commonsense
Knowledge precisely locates entities in the commonsense and helps
models to reason effectively. When we have known the facts “horse
is an animal” and “man can raise horses”, it is natural to infer “man
can raise animals”, even if we have not seen other animals.

In order to handle the one-shot scene graph generation task, the
Multiple Structured Knowledge is introduced into our method as
following steps: 1) Encoding instance features with an Instance

Relation Transformer; 2) Extracting the Relational Knowledge and
the Commonsense Knowledge from knowledge bases; 3) Organiz-
ing the prior knowledge into graph structures; 4) Encoding the
graph-structured knowledge with GCNs; and 5) Combining the
GCNs and the Instance Relation Transformer for relationship pred-
icate classification. Specifically, motivated by the Transformer [38]
structure, we propose the Instance Relation Transformer encoder to
capture the relational context among instances in an image. Then
the Relational Knowledge is extracted from a relation knowledge
base (Visual Genome [16]), and the Commonsense Knowledge is
obtained from a commonsense knowledge base (ConceptNet [35]).
These large knowledge bases consist of many loose triplets, and it
is unwieldy to obtain knowledge features from these triplets. In this
paper, the triplets in the knowledge bases are organized into graph
structures. Graph Convolutional Networks (GCNs) [14] encode the
graph structures to extract knowledge features. Finally, the outputs
of the Instance Relation Transformer and the GCNs are combined
to predict relationships between instances.

The contributions of this paper can be summarized as: 1) To
imitate the way human beings understand visual relationships,
this work first defines the one-shot scene graph generation task,
where the supervision information of each relationship triplet only
comes from one labeled example; 2) Relational Knowledge and
the Commonsense Knowledge are introduced into the one-shot
scene graph generation task. The Relational Knowledge provides
the prior knowledge about the relationships of entities, and the
Commonsense Knowledge encodes “sense-making” knowledge. An
Instance Relation Transformer encoder is utilized to explore the
context information of visual entity for scene graph generation; and
3) We collect a new dataset for the one-shot scene graph generation
task, where each relationship (subject, predicate, object) contains
only one annotated example. Experiments show that our method
significantly outperforms existing state-of-the-art methods by a
large margin.

2 RELATEDWORK
2.1 Scene Graph Generation
The scene graph defined by Johnson et al. [13] is composed of a
series of nodes and edges. The nodes are represented by entities
in images, which contain categories and locations of entities. The
edges are represented by visual relationship predicates between
entities, such as “on”, “in” and “under”. As mentioned above, the
previous methods for the scene graph generation task are roughly
based on the following three perspectives: 1). Building a seman-
tic space for visual relationships from a language model [23] or
a Translation Embedding [46]; 2). Extracting contextual informa-
tion from bipartite sub-graphs [45], global architectures [45], or
tree structures [37]; 3). Combining with multi-tasks, such as dense
captioning [21] and image reconstruction [8]. Most of these efforts
need a large-scale annotated dataset, which requires much labor.
However, human beings can understand visual relationships from
few examples. To imitate such ability, we design a one-shot scene
graph task and introduce rich knowledge from human beings to
handle this task.
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Figure 3: The framework of our method. Given an image, we first detect the instances in the image with Faster R-CNN. Then
the Instance Relation Transformer network is proposed to explore the contextual information among instances. Next, the
Relational Knowledge Extractor extracts the relational knowledge features from Visual Genome, and the Commonsense
Knowledge Extractor extracts the commonsense knowledge features from ConceptNet. Finally, the relationship predicates
are predicted with outputs of the Instance Relation Transformer, the Relational Knowledge Extractor, and the Commonsense
Knowledge Extractor.

2.2 One-Shot learning
Many works [17, 27, 39] have shown that the machine can under-
stand a wealth of information from one example. Feifei et al. [17]
explored general knowledge from learned categories and utilized
a Bayesian method to implement one-shot learning of object cate-
gories. However, in their work, the prior knowledge contains only
three categories. This weakens the generalization of the method.
To alleviate this issue, Salakhutdinov et al. [27] collected a set of
super-categories to represent different priors for new categories
and constructed a hierarchical Bayesian model for learning from
one example. Both of these Bayesian methods lack powerful image
features. Due to the success of deep learning in image represen-
tation, Koch et al. [15] proposed a siamese neural network that
combines the convolutional networks and the metric learning strat-
egy. Orthogonal to the above methods, Wang et al. [39] designed a
multi-attention network that generates the image features from the
category semantic embedding. Different from the above works, our
work focuses on the scene graph generation task under the one-
shot environment and adopts the rich knowledge from knowledge
bases to support this task.

3 APPROACH
In this paper, we introduce the Multiple Structured Knowledge into
the one-shot scene graph generation task. The framework of our
method is depicted in Figure 3. The proposed method contains four
main components: 1) An object detector; 2) An Instance Relation
Transformer encoder; 3) A Relational Knowledge extractor; and
4) A Commonsense Knowledge extractor. In this section, we first
define the one-shot scene graph generation task and then introduce
each part from inputs to outputs.

3.1 Problem Definition of One-Shot Scene
Graph Generation

Given an image, a scene graph is defined as a set of nodes and
edges, where the nodes represent instances in the image, while
the edges represent the relationships between instances. The scene
graph can be divided into relationship triplets <subject, predicate,
object>, where the subject and object are the instances detected by
an object detector. This task requires a model to predict relationship
predicates between instances.



For the one-shot scene graph generation task, the ground truth
of each relationship triplet <subject, predicate, object> contains
only one labeled example as supervision information. Specifically, a
one-shot dataset from the Visual Genome dataset is built to support
this task. During the construction process, we first initial the one-
shot dataset 𝐷 with none. Next, all images in the Visual Genome
dataset are checked. An image faces two situations: 1). When an
image contains relationship triplets that do not appear in dataset
𝐷 yet, we add the image and the corresponding annotations of the
relationship triplets to dataset 𝐷 . 2). When all relationship triplets
of an image have appeared in 𝐷 , the dataset 𝐷 skips the image.
The one-shot dataset 𝐷 is collected to verify our method on the
one-shot scene graph generation task.

3.2 Object Detector
In this paper, we adopt Faster R-CNN to generate𝑛 instances, which
include the following information:

• Label probabilities 𝐿 = {𝑙1, ..., 𝑙𝑛}, where 𝐿 ∈ R𝑛×𝑑𝑎 and 𝑑𝑎
is the number of instance categories;

• Bounding boxes 𝐵 = {𝑏1, ..., 𝑏𝑛}, where 𝐵 ∈ R𝑛×4;
• Object features 𝐹 = {𝑓1, ..., 𝑓𝑛}, where 𝐹 ∈ R𝑛×𝑑𝑐 and 𝑑𝑐 is
the feature dimension;

• Union object features𝑈 = {𝑢1,1, ..., 𝑢𝑛,𝑛}, where𝑈 ∈ R𝑛×𝑛×𝑑𝑐 .

The object feature 𝑓𝑖 is extracted from bounding box 𝑏𝑖 . The label
probability 𝑙𝑖 is generated with Faster R-CNN from bounding box 𝑏𝑖 .
The union object feature 𝑢𝑖, 𝑗 is extracted from the union bounding
box of 𝑏𝑖 and 𝑏 𝑗 .

3.3 Instance Relation Transformer
Generating a complete scene graph requires not only the visual
features of instances but also the contextual information. For exam-
ple, when we know “people feed horses”, we should also increase
the confidence of “horses on the ground”. However, the isolated
features 𝐹 from Faster R-CNN ignore the surrounding context, and
it is necessary to use an effective strategy to get the context in
an image for the scene graph generation task. Most of the previ-
ous methods [37, 41, 45] utilize RNNs to obtain the global or local
context. Nevertheless, as stated by Vaswani et al. [38], RNNs have
defects in parallelization, computational complexity, and long-term
dependence. In this paper, in order to understand the context of
relationships effectively, the Transformer network is utilized for
encoding the instance features. Since the Transformer structure
can explore the relationship among inputs, this structure is suitable
for capturing the relational context in an image.

We construct the Instance Relation Transformer and generate the
relation context features𝑀 ∈ R𝑛×𝑑𝑧 by applying the Transformer
structure to the instance information, i.e., visual features, label
embeddings, and position embeddings:

𝑀 = Transformer( [𝐹, 𝐸𝑔, 𝐸𝑣];𝑊 𝑧) , (1)

where𝑊 𝑧 is a parameter set in the Transformer. 𝐸𝑔 and 𝐸𝑣 are the
embedding vectors from label probabilities 𝐿 and bounding boxes
𝐵, respectively. 𝐹 is the instance feature mentioned in Section 3.2.
[:, :, ] means the concatenate operation.

3.4 Relational Knowledge Extractor
As discussed in the Section 1, the Multiple Structured Knowledge
(Relational Knowledge and Commonsense Knowledge) is intro-
duced into the one-shot scene graph generation task. The Relational
Knowledge extractor and the Commonsense Knowledge extractor
are designed to capture the relational knowledge features and com-
monsense knowledge features, respectively.

We first introduce the Relational Knowledge, which contains
the prior knowledge of the relationship between entities in the
visual space. Specifically, the Relational Knowledge is extracted
from a relation dataset: Visual Genome. Visual Genome bridges
the gap between computer vision and natural language processing,
and can be used for many tasks, such as VQA, image captions, and
scene graphs. In particular, we use scene graph labels filtered by
Xu et al. [41] as our knowledge base. A series of triplets <subject,
predicate, object>, e.g., <pillow, on, bed>, represent the scene graph
in Visual Genome. All triplets in the training dataset are organized
into a Relational Knowledge base 𝐾𝑣 , which contains 200 entity
categories 𝐶𝑞 that include subjects, objects, and predicates. The
structured knowledge is represented as a set of adjacency matrices
and entity vectors. In this work, two boolean adjacency matrices
𝐴𝑜 ∈ R200×200 and 𝐴𝑝 ∈ R200×200 are constructed to represent the
Relational Knowledge. The boolean adjacency matrix𝐴𝑜 represents
whether there are triplets between entity categories. To capture
predicate information, the adjacency matrix 𝐴𝑝 focuses on the rela-
tionship between objects/subjects and predicates. For example, the
relationship triplet <pillow, on, bed> is contained in the Relational
Knowledge base𝐾𝑣 , and 𝑥 ,𝑦 and 𝑧 are the indexes of “pillow”, “bed”,
and “on” in 𝐶𝑞 , respectively. Then the element 𝑎𝑜𝑥,𝑦 of the boolean
adjacency matrix 𝐴𝑜 is set to 1, and the elements 𝑎𝑝𝑥,𝑧 and 𝑎

𝑝
𝑧,𝑦 of

the boolean adjacency matrix 𝐴𝑝 are both set to 1.
After obtaining the boolean adjacencymatrices, theWord2Vector

method is adopted to extracts the entity vectors 𝐸𝑝 according to
the corresponding vocabularies in the categories 𝐶𝑞 . In order to
capture the structured information in the adjacency matrices 𝐴𝑜
and 𝐴𝑝 , Graph Convolutional Networks (GCNs) [14] are utilized
for encoding the entity vectors 𝐸𝑝 :

𝑂𝑣1 = GCNs(𝐸𝑝 , 𝐴𝑜 ;𝑊 𝑔1) ,
𝑂𝑣 = GCNs(𝑂𝑣1, 𝐴𝑝 ;𝑊 𝑔2) , (2)

where𝑊 𝑔1 and𝑊 𝑔2 are parameters in GCNs. We get the relational
knowledge features 𝑂𝑣 ∈ R200×𝑑𝑧 of the category set 𝐶𝑞 . Finally,
we find the indexes of label 𝐿 (mentioned in Section 3.2) in 𝐶𝑞 , and
then use these indexes to select the corresponding features from
𝑂𝑣 to form the Relation Knowledge features 𝑃𝑣 ∈ R𝑛×𝑑𝑧 of label 𝐿.

3.5 Commonsense Knowledge Extractor
The Commonsense Knowledge defines the exact meaning of entities,
which can assist the cognition and reasoning of the model. Inspired
by [35], a commonsense knowledge base (ConceptNet) is used to
obtain the Commonsense Knowledge. ConceptNet contains many
loose triplets <head, relation, tail>, such as <dog, desires, play>
and <frisbee, usedfor, play>. The head and the tail represent a head
concept and a tail concept in ConceptNet, respectively. The relation
represents a semantic relationship, such as “desires”, “has property”
and “is used for”. The commonsense information in ConceptNet



facilitates a model to understand the definitions of objects. However,
the ConceptNet dataset is large and hard to be used directly. It is
necessary to refine and filter the ConceptNet dataset. In order to
increase the density of ConceptNet, the original relation categories
are deleted and merged following the approach from Lin et al. [22].

As mentioned above, it is difficult to mine valuable information
from loose triplets in ConceptNet. Previous work [8] utilizing LSTM
to directly encode the loose triplets can not effectively extract the
structured knowledge among triplets. In our work, we build a sub-
graph from simple paths constructed by the loose triplets and use
GCNs on the subgraph to extract the knowledge features. To con-
struct the subgraph, the method [22] is adopted in ConceptNet to
find and prune simple paths constructed by triplets. We first locate
the instance labels of 𝐿 (mentioned in Section 3.2) in the concepts of
ConceptNet. Then, for each label pair of 𝑖-th label 𝑙𝑖 and 𝑗-th label
𝑙 𝑗 , all simple paths between 𝑙𝑖 and 𝑙 𝑗 along triplets in ConceptNet
are checked. If the length of a simple path is shorter than five, it is
reserved. Otherwise, it is discarded. For path pruning, each triplet
in a path is rated with the TranSE [1] method first. The score of
each path is the product of the scores of triplets in the path. Then
the paths with scores less than 0.15 are filtered out. Finally, for
an image, the concepts in the filtered paths of all label pairs are
organized into a new category set 𝐶𝑐 . A boolean adjacency matrix
𝐴𝑐 is used to indicate whether two concepts are adjacent in the
filtered paths.

Similar to Relational Knowledge Extractor, the Word2Vector
method extracts entity vectors 𝐸𝑐 from the category set 𝐶𝑐 , and
GCNs capture commonsense knowledge features from 𝐴𝑐 and 𝐸𝑐 :

𝑂𝑐 = GCNs(𝐸𝑐 , 𝐴𝑐 ;𝑊 𝑔3) . (3)

𝑂𝑐 ∈ R |𝐶𝑐 |×𝑑𝑧 is the commonsense knowledge feature of 𝐶𝑐 , and
|𝐶𝑐 | is the number of elements in the category set 𝐶𝑐 . The com-
monsense knowledge features 𝑃𝑐 ∈ R𝑛×𝑑𝑧 of the instance labels
are extracted from 𝑂𝑐 according to the indexes of 𝐿 in 𝐶𝑐 .

Until now, we can obtain the semantic features of the Multiple
Structured Knowledge (𝑃𝑣 and 𝑃𝑐 ).

3.6 Predicate Classification
In order to represent the detected instance, we sum the outputs from
the Instance Relation Transformer (𝑀), the Relational Knowledge
extractor (𝑃𝑣 ), and the Commonsense Knowledge extractor (𝑃𝑐 ):

𝐸𝑟 = 𝑃𝑣 + 𝑃𝑐 +𝑀 . (4)

Because the same instance is inconsistent in the subject space and
the object space, 𝐸𝑟 is mapped to the subject space and object space
with fully connected (FC) layers:

𝐸𝑠 = FC(𝐸𝑟 ;𝑊 𝑠 ) ,
𝐸𝑜 = FC(𝐸𝑟 ;𝑊 𝑜 ) , (5)

where𝑊 𝑠 and𝑊 𝑜 are parameters. 𝐸𝑠 = {𝑒𝑠1, 𝑒
𝑠
2, ..., 𝑒

𝑠
𝑛} and 𝐸𝑜 =

{𝑒𝑜1 , 𝑒
𝑜
2 , ..., 𝑒

𝑜
𝑛}.

The DisMult [42] method predicts relation predicate between
𝑖-th instance and 𝑗-th instance:

𝑟𝑖, 𝑗,𝑘 = (𝑒𝑠
𝑖
◦ 𝑢𝑖, 𝑗 )𝑇𝑊 𝑟

𝑘
(𝑒𝑜

𝑗
◦ 𝑢𝑖, 𝑗 ) + 𝑏𝑟𝑖, 𝑗,𝑘 , (6)

where 𝑟𝑖, 𝑗,𝑘 is the probability that the 𝑘-th relation predicate exists
between the 𝑖-th instance and the 𝑗-th instance.𝑊 𝑟

𝑘
is a diagonal

parameter matrix for the 𝑘-th relation predicate.𝑏𝑟
𝑖, 𝑗,𝑘

is a frequency
baseline proposed by [45]. In addition, 𝐸𝑠 and 𝐸𝑜 are also used to
predict the probability 𝑟 ′

𝑖, 𝑗
that indicates the probability of non-

background relationship between the 𝑖-th instance and the 𝑗-th
instance:

𝑟 ′
𝑖, 𝑗

= (𝑒𝑠
𝑖
◦ 𝑢𝑖, 𝑗 )𝑇𝑊 𝑟 ′ (𝑒𝑜

𝑗
◦ 𝑢𝑖, 𝑗 ) + 𝑏𝑟

′
𝑖, 𝑗
. (7)

If 𝑟 ′
𝑖, 𝑗

= 1, there is a non-background relationship between the
𝑖-th instance and the 𝑗-th instance. Finally, we apply the softmax
function to 𝑟𝑖, 𝑗,𝑘 and 𝑟 ′

𝑖, 𝑗
, and use the cross entropy function to

learn the parameters of the model.

4 EXPERIMENTS
In this section, we conduct experiments on two datasets: the Visual
Genome dataset and the One-Shot Visual Genome dataset. Firstly, in
order to verify whether a model can learn each visual relationship
from one example, our method and some existing methods are
evaluated on the one-shot scene graph task. Secondly, a detailed
ablation study is conducted on the one-shot scene graph generation
task to verify the effectiveness of each component. Then, we show
that our method can also handle the scene graph generation task
properly. Finally, some visual results are shown for qualitative
analysis.

4.1 Datasets
Visual Genome. For modeling relationships in our visual world,
Krishna et al. [16] collected a dense annotation dataset called Visual
Genome, where each image is annotated with objects, attributes,
and relationships. The Visual Genome dataset contains over 100𝐾
images. Each image contains about 21 instances, 18 attributes, and
18 relationship triplets. However, it is difficult for models to learn
stable information due to a lot of low-quality annotations in this
dataset. Therefore, Xu et al. [41] brought forward an approach to
filter the low-quality annotations, which is widely used in other
works [2, 37, 43, 45].

Each image contains about 12 instances and 6 relationship triplets
in the filtered Visual Genome dataset. The dataset contains 150 in-
stance categories and 50 predicate categories in total. The training
set and testing set account for 70% and 30% of the entire dataset,
respectively. Moreover, following previous works [8, 45], the vali-
dation set consists of 5k images from the training set. The previous
works [8, 21, 44] also proposed other different filtering strategies.
This paper ignores the different filtering strategies and employs the
filtering strategy proposed by Xu et al. [41] to verify our method.

One-Shot Visual Genome. To handle the one-shot scene graph
generation task, we collect an extreme training dataset from the
Visual Genome dataset, where each relationship triplet only appears
once. A relationship triplet set is constructed from the training set
proposed by [41]. The triplet set contains about 29𝐾 relationship
triplets in total. For each triplet, we randomly select an image for
forming the One-Shot Visual Genome dataset. Finally, the dataset
contains about 18𝐾 images. Since an image may contain several
different triplets, the number of images is less than the number of
triplets. It is worth emphasizing that we only use this dataset to
train models, while the test dataset remain the same as the test set
of Visual Genome.



Table 1: Existing methods decline significantly on the one-shot scene graph generation task. SGG denotes scene graph gen-
eration. OSSGG denotes one-shot scene graph generation. MSK denotes the Multiple Structured Knowledge. IRT denotes the
Instance Relation Transformer.

Dataset Method PredCls SGCls SGDet
R@20 R@50 R@100 R@20 R@50 R@100 R@20 R@50 R@100

SGG

FREQ+OVERLAP [45] 53.6 60.6 62.2 29.3 32.3 32.9 20.1 26.2 30.1
IMP+ [41] 52.7 59.3 61.3 31.7 34.6 35.4 14.6 20.7 24.5

MotifNet [45] 58.5 65.2 67.1 32.9 35.8 36.5 21.4 27.2 30.3
IRT (Ours) 60.3 66.8 68.5 33.9 36.9 37.5 21.9 27.8 31.0

OSSGG

FREQ+OVERLAP1 5.0 8.8 11.3 3.3 5.1 5.9 1.4 2.8 4.0
IMP+1 36.4 45.3 48.3 19.7 23.8 25.0 4.5 8.6 12.6

MotifNet1 33.5 43.6 47.1 17.4 22.0 23.4 6.2 9.4 11.8
IRT (Ours) 37.7 46.1 48.9 21.2 25.2 26.4 6.8 11.1 15.0

IRT+MSK (Ours) 41.3 49.5 52.2 23.0 26.9 28.1 7.1 11.5 15.5

4.2 Implementation Details
For the object detector, Faster R-CNN with RoI Align provided by
Zellers [45] is used to detect instances in images, and its parameters
are frozen. Besides the Instance Relation Transformer mentioned
above for predicting relationship predicates, we utilize another
Instance Relation Transformer to refine the instance labels on the
scene graph generation task. The depth and width of the Instance
Relation Transformers are both set to 6, and the dimension is set
to 768. For experiments on the one-shot scene graph generation
task, the depth and width of the Instance Relation Transformer are
both set to 12 and the dimensions to 768. The numbers of layers of
GCNs in Equation 2 and Equation 3 are 2, and the dimensions of
GCNs are 768.

We use the SGD method to learn the parameters. The learning
rate and the batch size are set as 5 × 10−3 and 16, respectively.
The maximum number of epochs is 50. Python and Pytorch are
adopted to build our model. All the experiments are carried out on
the Ubuntu system with 256 GB RAM, a Titan Xp (12 GB) GPU, and
4 Intel(R) Xeon(R) E5-2650 CPUs.

4.3 Evaluation Strategies
Following previous works, we use three setups (PredCls, SGCls
and SGDet) to evaluate our method. The PredCls (predicate clas-
sification) task predicts relationship predicates with the ground
truths of bounding boxes and categories in the test phase. The SG-
Cls (scene graph classification) task allows models to employ the
ground truths of bounding boxes in the test phase. The SGDet (scene
graph detection) setup requires the model to generate bounding
boxes, categories, and relationship predicates in the test phase with-
out any ground truths. All three cases are evaluated by Recall@K
(R@K, K=20,50,100). In this paper, we show all the results with
graph constraint, i.e., each instance pair produces a relationship
triplet.

4.4 Experimental Results on the One-Shot
Scene Graph Generation task

As mentioned above, human beings can learn stable information
from few samples or even one sample. In order to check whether
models possess such ability, we show the experimental results of

our method and existing methods on the one-shot scene graph
generation (OSSGG) task.

Due to the lack of sufficient supervision information, the OSSGG
task is more difficult than the scene graph generation task. Directly
applying existing methods to the OSSGG task can lead to a signifi-
cant performance drop, as shown in Table 1. It can be seen that the
decline of FREQ+OVERLAP is the most severe since it just relies
on the bias of the dataset. It is noteworthy that the decline rate of
our IRT is lower than that of MotifNet. For example, on 𝑅@20 of
PredCls, the rate of decline for our IRT is 37.5% ((60.3− 37.7)/60.3),
and the rate of decline for MotifNet is 42.7% ((58.5 − 33.5)/58.5).
This shows that the contextual information extracted by our IRT
is more robust than MotifNet, which uses Bi-LSTM to extract the
global context.

Moreover, the Multiple Structured Knowledge enhances the In-
stance Relation Transformer on the OSSGG task. Under the con-
ditions of PredCls and SGCls, the Multiple Structured Knowledge
notches up high growth rates ((41.3 − 37.7)/37.7 = 9.5% and
(23.0 − 21.2)/21.2 = 8.5%). On the SGDet task, the growth rates
brought by the Multiple Structured Knowledge are marginal, be-
cause the SGDet setting depends heavily on object detection. How-
ever, the emphasis of our work is predicate prediction rather than
object detection. These experiments verify the validity of the Mul-
tiple Structured Knowledge on the OSSGG task.

In general, comparedwith the abovemethods, ourmethod achieves
the best on the scene graph generation task as well as the one-shot
scene graph generation task.

4.5 Ablation Study
In order to profoundly analyze our method and illustrate the effec-
tiveness of each component, we conduct a set of detailed ablation
experiments on the one-shot scene graph generation task.

The role of Multiple Structured Knowledge. To further il-
lustrate the role of Multiple Structured Knowledge, we test the
effects of the Multiple Structured Knowledge and visual features,
as shown in Table 2. Using ResNet enhances the results of IRT with
an increase of 2.8% on R@20 compared with VGG. This means that
a powerful visual feature can improve the robustness of IRT on the
OSSGG task. Moreover, the results of IRT(V)+MSK are better than
IRT(R) (41.3 vs. 40.5). These results illustrate the effectiveness of
our Multiple Structured Knowledge. When we use both ResNet and



Table 2: Ablation study of visual features andMultiple Struc-
tured Knowledge. V denotes VGG-16. R denotes ResNet-101.

Method PredCls
R@20 R@50 R@100

IRT(V) 37.7 46.1 48.9
IRT(R) 40.5 48.6 51.2

IRT(V)+MSK 41.3 49.5 52.2
IRT(R)+MSK 41.8 51.3 54.3

Table 3: Ablation study of the Commonsense Knowledge
and the Relational Knowledge. CK denotes the Common-
sense Knowledge from the ConceptNet dataset. RK denotes
the Relational Knowledge from the Visual Genome dataset.

CK RK IRT PredCls
R@20 R@50 R@100√
37.7 46.1 48.9√ √
39.9 48.2 51.0√ √ √
41.3 49.5 52.2

Table 4: Ablation study of the structured knowledge from
Visual Genome.𝐴𝑜 is the adjacencymatrixwith instance cat-
egories mentioned in Section 3.4.𝐴𝑝 is the adjacency matrix
with predicate categories.

𝐴𝑝 𝐴𝑜 IRT PredCls
R@20 R@50 R@100√
37.7 46.1 48.9√ √
38.7 47.5 50.3√ √ √
39.9 48.2 51.0

Multiple Structured Knowledge, the model achieves the best. This
shows the adaptability of our Multiple Structured Knowledge.

The roles of the Commonsense Knowledge and the Rela-
tional knowledge. In order to further investigate the effect of the
structure knowledge, we gradually add different types of knowledge
to IRT, as shown in Table 3. Without any additional knowledge,
IRT achieves presentable results, which indicate that IRT can take
advantage of the contextual information to predict relationships.
After adding the Relational Knowledge (RK) for IRT, the results are
improved, e.g., the result increases by 2.2% on R@20. This shows
that the relational knowledge features are effectively extracted and
utilized in our model. Finally, the model achieves the best, when
the Commonsense Knowledge (CK) is further added. These results
indicate that providing the Relational Knowledge and the Common-
sense Knowledge for IRT can make up for the lack of supervision
information of the OSSGG task to some extent.

The roles of 𝐴𝑜 and 𝐴𝑝 in Visual Genome. Furthermore, we
explore the influence of the structured knowledge from Visual
Genome. As mentioned in Section 3.4, two adjacency matrices (𝐴𝑜
and 𝐴𝑝 ) are used to encode the structured knowledge from Visual
Genome. 𝐴𝑜 is the adjacency matrix with instance categories men-
tioned in Section 3.4. 𝐴𝑝 is the adjacency matrix with predicate
categories. Table 4 shows that both matrices improve the effective-
ness of the model, e.g., 𝐴𝑜 improves the result of IRT by 1.0% on
R@20, and 𝐴𝑝 further improves the result by 1.2%. This shows that

the model requires not only the prior knowledge from instance
categories (𝐴𝑜 ) but also the prior knowledge from relationship
predicates (𝐴𝑝 ).

4.6 Experimental Results on the Scene Graph
Generation task

In this section, we evaluate our method on the scene graph genera-
tion task to illustrate the universality of our approach. We compare
our method with previous methods, including: methods adopting
supervised learning [3, 11, 23, 24, 41, 43, 45], and methods adopting
reinforcement learning [2, 37], as shown in Table 5.

From Table 5, our IRT outperforms the state-of-the-art meth-
ods with the supervised learning strategy, such as KERN [3], Mo-
tifNet [45], and IMP [41]. This shows that our IRT can fully ex-
tract and utilize the contextual information among instances to
assist the relationship prediction. After adding Multiple Structured
Knowledge, the performances are also improved. However, the
improvement is marginal. Because the task already has rich annota-
tions that allow the model to learn stable knowledge, the additional
knowledge is trivial for the scene graph generation task.

We also compare our method with the methods using reinforce-
ment learning [2, 37] and observe the following results. Firstly, our
method achieves comparable results on the SGDet setup. The setup
depends heavily on the results of object detection. Because the
focus of our method and the previous methods is not the object
detection task, we get similar results on the SGDet setup. Secondly,
the methods based on the reinforcement learning strategy get better
results on the SGCls because the SGCls setup focuses more on the
instances classification results than the PredCls setup. [2, 37] use
the reinforcement learning strategy to enforce a high penalty on
the misclassification of prominent instances, resulting in a better
performance on the SGCls setup. Thirdly, on the PredCls setup, our
method is better than reinforcement learning based models since
the PredCls setup ignores the effect of instance categories. These
results show the superiority of our method for the relationship
predicate prediction. Moreover, compared with these methods, the
training process of our method is more concise.

4.7 Qualitative Results
In this section, we show some qualitative results in Figure 4. With
the Relational Knowledge and the Commonsense Knowledge, our
IRT predicts some spatial relationships correctly, e.g., <shirt, above,
shot> and <racker, on, hand>, in the first example, and some com-
monsense relationships, e.g., <dog, has, head> and <dog, has nose>,
in the second example. We also show some notable failures in the
third and fourth examples. In the third example, due to the ex-
cessive overlap between𝑚𝑎𝑛2 and𝑚𝑎𝑛3, the model outputs that
𝑚𝑎𝑛3 wears the T-shirt of𝑚𝑎𝑛2. In the fourth example, the model
outputs <bird, on, window> because the bounding box of the win-
dow completely contains the bird, which is a strong signal for the
relationship predicate “on”. These two failure examples are due to
the bias of spatial information. Properly reducing the dependence
on spatial information may help to alleviate this problem.

1 We use the codes provided by Zellers et al. [45] and train the MotifNet model on the
One-Shot Visual Genome dataset. Github: https://github.com/rowanz/neural-motifs



Table 5: Experimental results on the Visual Genome dataset. SL denotes supervised learning. RL denotes reinforcement learn-
ing.

Learning Strategy Methods PredCls SGClS SGDet
R@20 R@50 R@100 R@20 R@50 R@100 R@20 R@50 R@100

SL

VRD [23] - 27.9 35.0 - 11.8 14.1 - 0.3 0.5
IMP [41] - 44.8 53.0 - 21.7 24.4 - 3.4 4.2

IMP+ [41, 45] 52.7 59.3 61.3 31.7 34.6 35.4 14.6 20.7 24.5
TFR [11] 40.1 51.9 58.3 19.6 24.3 26.6 3.4 4.8 6.0
AE [24] 47.9 54.1 55.4 18.2 21.8 22.6 6.5 8.1 8.2

FREQ+OVERLAP [45] 53.6 60.6 62.2 29.3 32.3 32.9 20.1 26.2 30.1
Graph R-CNN [43] - 54.2 59.1 - 29.6 31.6 - 11.4 13.7

KERN [3] - 65.8 67.6 - 36.7 37.4 - 27.1 29.8
MotifNet [45] 58.5 65.2 67.1 32.9 35.8 36.5 21.4 27.2 30.3
IRT (Ours) 60.3 66.8 68.5 33.9 36.9 37.5 22.0 27.9 31.1

IRT+MSK (Ours) 60.4 67.0 68.6 34.2 37.1 37.7 22.2 28.0 31.2

SL+RL TreeLSTM+RLrefine [37] 60.1 66.4 68.1 35.2 38.1 38.8 22.0 27.9 31.3
CMAT+RLrefine [2] 60.2 66.4 68.1 35.9 39.0 39.8 22.1 27.9 31.2
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Figure 4: The visualization results of Instance Relation Transformer (VGG)+MSK on the one-shot scene graph generation task.
These results are generated on the PredCls setup.

5 CONCLUSION
In this paper, to equip the model with the ability to learn the vi-
sual relationship from one labeled sample, we design a novel task,
namely one-shot scene graph generation. Motivated by the way hu-
mans learn visual relationships, the Multiple Structured Knowledge
(Relational Knowledge and Commonsense Knowledge) is intro-
duced into the one-shot scene graph generation task. The Rela-
tional Knowledge extracted from Visual Genome represents the
prior knowledge of relationships among entities in the visual space.
The Commonsense Knowledge explores “sense-making” knowl-
edge from ConceptNet. Besides, we propose the Instance Relation
Transformer for capturing the relational context among instances.
Detailed experiments validate the effectiveness of the Instance Re-
lation Transformer and the Multiple Structured Knowledge.
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