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ABSTRACT
Temporal language localization in videos aims to ground one video
segment in an untrimmed video based on a given sentence query.
To tackle this task, designing an effective model to extract ground-
ing information from both visual and textual modalities is crucial.
However, most previous attempts in this field only focus on unidi-
rectional interactions from video to query, which emphasizes which
words to listen and attends to sentence information via vanilla soft
attention, but clues from query-by-video interactions implying
where to look are not taken into consideration. In this paper, we
propose a Fine-grained Iterative Attention Network (FIAN) that
consists of an iterative attention module for bilateral query-video
in-formation extraction. Specifically, in the iterative attention mod-
ule, each word in the query is first enhanced by attending to each
frame in the video through fine-grained attention, then video itera-
tively attends to the integrated query. Finally, both video and query
information is utilized to provide robust cross-modal representation
for further moment localization. In addition, to better predict the
target segment, we propose a content-oriented localization strategy
instead of applying recent anchor-based localization. We evaluate
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the proposed method on three challenging public benchmarks: Ac-
tivityNet Captions, TACoS, and Charades-STA. FIAN significantly
outperforms the state-of-the-art approaches.
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1 INTRODUCTION
Localizing activities is a challenging yet pragmatic task for video
understanding. In real scenarios, a video may contain multiple ac-
tivities of interests which are associated with complex language
dependencies, and cannot be classified to a pre-defined list of action
classes. To solve this problem, temporal language localization [7]
is proposed and attracts increasing attention recently. Formally,
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Sentence query: The second girl joins her again and they finish dancing

184.9s220.2sGround truth

Figure 1: Temporal language localization is designed to lo-
calize a video segment with a start point (184.9s) and an end
point (220.2s) in an untrimmed video corresponding to the
given sentence query.

as shown in Figure 1, given an untrimmed video and a sentence
query, this task is to automatically identify the start and end bound-
aries of the video segment semantically corresponding to the given
sentence query. Comparing with other video researches, such as
video retrieval and video captioning, this task is more challenging
as fine-grained interactions between video and sentence need to be
modelled to differentiate video segments in the long video.

Considering the query “The second girl joins her again and they
finish dancing" depicted in Figure 1, which emphasizes that “the
second girl" appears with a temporal relation “again". A model
that only localizes the action “The second girl joins her" is not
satisfactory, since this action appears twice in the video. There-
fore, designing an effective model to collect grounding information
from both modalities is central to task performance. From the video
perspective, it is necessary to capture detailed temporal contents
and decide which part does the sentence describe. From the sen-
tence aspect, as several words or phrases can give clear cues to
identify the target video segment, we should pay more attention to
these sentence details. It is conceivable that attending to key words
with the video and highlighting critical frames with query both
contribute to precise location.

To solve this task, traditional methods [7, 8, 21] for temporal
language localization first sample candidate video segments us-
ing sliding windows, and then fuse the sentence with each video
segment representations separately to calculate the matching rela-
tionships. However, they integrate global sentence representations
with video segment representations via matrix operations rather
than explore the fine-grained interactions across video and sen-
tence. Recently, some work [3, 4, 44] integrate the whole video
with sentence query to generate a sentence-aware video repre-
sentation for further location prediction. Specifically, they aggre-
gate word features in the sentence for each frame with the widely
used soft attention to obtain distinguishable frame features. While
promising results have been achieved by these works, they fail to
adequately exploit the sentence semantic information, since they
merely explore the unidirectional interaction from video to the
sentence. In this paper, we propose a novel Fine-grained Iterative
Attention Network (FIAN), which iteratively performs attention
for multi-modal location information gathering. The main idea is
as straightforward as to collect grounding clues from both modali-
ties. In specific, we design a cross-modal guided attention (CGA)
to capture the fine-grained interactions from different modalities
in multiple feature spaces. With CGA, each component from two
modalities achieves comprehensively interaction. Furthermore, to

integrate the attended information from CGA, we propose a cross-
modal encoder to iteratively generate sentence-aware video and
video-aware sentence representations. These two representations
are then incorporated into the cross-modal feature space with filter
controlling. To the end, we are able to obtain a robust cross-modal
feature for subsequent temporal localization.

Besides, in order to fully utilize the cross-modal information
for temporal localization, we devise a content-oriented location
strategy. Different from traditional anchor-based prediction which
simultaneously predicts multi-scale windows by feature at each
time step, we utilize the complete features inside each window for
prediction. In this way, each candidate window can be comprehen-
sively evaluated, thus leading to precise localization. Overall, the
main contributions of this work are:

• We propose a novel Fine-grained Iterative Attention Net-
work (FIAN) for temporal language localization, in which
fine-grained sentence and video grounding information is
attended. To our best knowledge, we are the first work to
explicitly utilize both video-aware sentence and sentence-
aware video representations for accurate location.

• We devise a content-oriented localization strategy to better
predict the temporal boundary. Based on the cross-modal
information, it carefully measures the whole component in
each candidate window for candidate moment evaluation.

• We conduct experiments on three public datasets: Activi-
tyNet Captions, TACoS, and Charades-STA and FIAN signif-
icantly outperform the state-of-the-art by a large margin.

2 RELATEDWORKS
2.1 Temporal Action Localization
Temporal action localization aims to locate action instances in
an untrimmed video. Approaches for this task can be classified
into three categories: (1) methods performing frame or segment-
level classification where the smoothing and merging steps are
substantially required to obtain the temporal boundaries [29, 41].
(2) methods adopting a two-stage framework involving proposal
generation, classification and boundary refinement [5, 30, 35, 45].
(3) methods developing a end-to-end architecture integrating the
proposal generation and classification [19, 33, 37]. Although these
works have achieved promising performance, they are limited to a
pre-defined list of actions. Thus, temporal language localization is
proposed to tackle this issue by introducing the language query.

2.2 Language Localization in images
Language localization in images is also called “locating referring
expressions in images", which aims to localize the object instance
in an image described by a referring expression phrased in natural
language. Traditional works in this field solve this task using a
CNN/LSTM framework [13, 24, 25]. The LSTM takes as input a
region-level CNN feature and a word vector at each time step,
and aims to maximize the likelihood of the expression given the
referred region. Another line of work treats referring expression
comprehension as a metric learning problem [23, 28, 34], whereby
the expression feature and the region feature are embedded into a
common feature space to measure the compatibility. The focus of
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Figure 2: An overview of our Fine-grained Iterative Attention Network (FIAN) for temporal language localization which con-
sists of three parts: (1) Video and sentence query are encoded into feature representations. (2) Based on the two modal infor-
mation, symmetrical iterative attentions generate both video-aware sentence and sentence-aware video representations for
two attention branches. Then all representations are integrated to produce the cross-modal information. (3) The localization
module finally locates the boundaries of target moments.

these approaches lies in how to define the matching loss function.
These approaches tend to use a single feature vector to represent
the expression and the image region. To overcome this limitation of
monolithic features, self-attention mechanisms have been used to
decompose the expression into sub-components and learn separate
features for each of the resulting parts [12, 38, 43].

2.3 Temporal language localization in videos
Temporal language localization in videos requires understandings
of both complex video scenes and natural language, which is a
new task introduced recently [7, 11]. Several early methods [8,
21] sample video segments through dense sliding windows. After
aggregating the two modality information using simple matrix
operation, they measure the similarity between these candidate
video segments and sentence query in a common embedding space.
In this way, the temporal language localization degrades into a
multi-modal matching problem. While simple and effective, these
methods just consider global representation and fail to exploit the
fine-grained interaction between modalities.

Recently, in order to avoid the redundant computation by prede-
fined sliding windows, some works propose to integrate sentence
query information with the whole video first, and then predict the
temporal boundary by directly regressing the start and end points
[4, 22, 40] or designing multi-scale temporal anchors [42, 44] which
follow the same spirit of anchor box in object detection. These
methods closely integrate the video and sentence representations
and obtain improved performance. They usually adopt frame-by-
word interactions for language and video feature fusion, which
aggregates sentence information for each frame according to the
normalized similarity. However, these methods lack fully explor-
ing the sentence semantic information which plays an important
role in distinguishing the ambiguous frames and strengthening the
integrated video representations for precise localization. Our pro-
posed FIAN captures themore fine-grained interaction between two
modalities, thus leading to more distinguished features. Moreover,
our work firstly utilizes the video-aware sentence representation
for enhancing the sentence-aware video representation, in order

to obtain a robust cross-modal information for following moment
prediction.

3 MODEL DESCRIPTION
In this section, we first introduce the basic formation of temporal
language localization. Then we present the detailed structure of
our fine-grained iterative attention network, which consists of
feature representation, symmetrical iterative attention module, and
moment localization module. The whole structure of our network
is shown in Figure 2.

3.1 Problem Formulation
Given an untrimmed video V , and a natural language query Q ,
the task aims to localize the temporal video segment described by
the query. We represent the video frame-by-frame as V = {vi }nvi=1,
where vi is the feature of i-th frame of the video and nv is the
frame number of the video. Similarly, the given natural language
query can be denoted as Q = {qi }

nq
i=1 word-by-word, where qi is

the feature of the corresponding word. Our goal is to predict the
start and end temporal coordinates (s, e) in the video.

3.2 Representation For Language and Video
Query representation For query encoding, we obtain its embed-
ding vector by the Glove [26]. To aggregate the contextual informa-
tion, we then feed the sentence embedding to the bi-directional GRU
network [6]. Formally, given word featuresQ = (q1,q2, ...,qnq ), we
obtain the contextual representation of each word by:

h
f
i =GRU

f
q (qi ,h

f
(i−1)) (1)

hbi =GRU
b
q (qi ,hb(i−1)) (2)

h
q
i =[h

f
i ;h

b
i ] (3)

where GRUfq and GRUbq are the forward and backward GRU net-
work. Thus, we get the contextual query representations hq =
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Figure 3: The structure of query-video iterative attention.
The query first attends to video to obtain integrated query
information and then the video iteratively attends to the in-
tegrated query for further enhanced video. During each at-
tention mechanism, each word in the query and each frame
in the video achieve fine-grained interactions.

(hq1 ,h
q
2 , ...,h

q
nq ) by concatenating the forward and backward hid-

den state at each time step.
Video representation Similar to [44], for video information en-
coding, we first extract features from the pre-trained 3D network
and then employ the self-attention [32] to learn the semantic de-
pendencies in the long video context. Also, in order to learn the
contextual information within the video, we feed the video fea-
tures into the bi-directional GRU network to further incorporate
the contextual information. In the similar way, we can get the video
representation hv = (hv1 ,h

v
2 , ...,h

v
nv ).

3.3 Iterative Attention Module
After obtaining the video and sentence representation, our aim is to
achieve fine-grained cross-modal interaction and collect grounding
information from both modalities. To this end, as shown in Fig-
ure 2, we design an symmetrical iterative attention module which
contains two sub-modules sharing same architecture but reverse
input, namely query-video iterative attention and video-query iter-
ative attention. As in Figure 3, the query-video iterative attention
successively performs query-video attention and video-query at-
tention to obtain integrated query and video information. Next, we
will describe the most important components in this architecture
including attention mechanism and information fusion.

3.3.1 Cross-Modal Guided Attention.
In our localization task, a robust model needs to find out the exact
starting and ending point of the video segment, however, a simple
soft attention mechanism which captures interaction from one
specific attention space may not be enough to solve this problem.
Thus, we devise a cross-modal guided attention (CGA) consisting
of cross-modal multi-head attention (CMA) and information gate
for this task, as shown in Figure 4 (a).

Here we first introduce CMA whose inputs are query Q ∈
Rnq×dh , and value V ∈ Rnv×dh from two different modalities,
where nq ,nv represent the numbers of queries and values and dh
represents feature dimension. Themulti-head attention is composed
of n parallel heads and each head performs the scaled dot-product

CGA block

Add&LayerNorm

Feed Forward

Add&LayerNorm

Q V V

LinearLinear

Sigmoid

Multiply

Concat

Multi-Head 
Attention

Q V V

(a) (b)

Figure 4: Left: The structure of cross-modal guided atten-
tion (CGA). Right: The architecture of Cross-Modal Encoder.
We name this encoder as a Q-V encoder which generates V-
aware Q representation.

attention as:

Atti (Q,V ) = Softmax
©«
QW

Q
i

(
VW K

i

)⊤√
dk

ª®®¬VWV
i (4)

whereWQ
i ,W

K
i ,W

V
i ∈ Rdh×dk are learnable parameter matrices

of projections. dk = dh/n is the size of the output features for each
head. The outputs yielded by each head are concatenated and then
projected again to construct the final output:

CMA (Q,V ) = Concat (head1, . . . , headn )WO (5)

where headi = Atti (Q,V ),WO ∈ Rdh×dh is the linear parameter.
With the help of CMA, we can capture the cross-modal interac-

tions from multiple different aspects corresponding to various at-
tention heads. Furthermore, to obtain more distinguishing features,
we employ an information gate [14] on CMA to refine the output in-
formation as noisy information could be captured by partial heads.
In this process, the outputs from CMA are filtered according to
the query semantic meaning, namely the attended information is
guided by query information. We name this guided CMA as CGA
and the CGA is computed as:

CGA(Q,V ) =σ (W д
q Q +W

д
v CMA(Q,V ) + bд)

⊙(W i
qQ +W

i
v CMA (Q,V ) + bi ) (6)

whereW д
q ,W

д
v ,W

i
q ,W

i
v ∈ Rdh×dh , bд ,bi ∈ Rdh , and ⊙ denotes

element-wise multiplication. In practice, we keepW д
q =W i

q and
W

д
v =W

i
v by sharing projection weights at training stage. After the

CGA, we can achieve effective interactions between two modalities.

3.3.2 Information Fusion.
After CGA, we attempt to fuse query Q with attended information
CGA(Q,V ) to enhance the the query representation. Inspired by
Transformer’s encoder, we apply a cross-modal encoder structure



in Figure 4 (b) to integrate these two branches. Here we just present
the feed-forward procedure by:

FFN(X ) = max(0,XW (1) + b(1))W (2) + b(2) (7)

but omit the internal shortcut connection [10], and layer normaliza-
tion [1].W (1) andW (2) are linear transformation parameters, b(1)

and b(2) are bias parameters. Thus, the cross-modal encoder can be
denoted as:

Encoder(Q,V ) = FFN(CGA(Q,V )) (8)

This encoder intrinsically captures the fine-grained interaction from
query to value as it computes the similarity for each query element
to all value elements, and generates a V-aware Q representation.
We call this encoder as Q-V encoder. Similarly, the V-Q encoder
can yield a Q-aware V representation.

Based on above cross-modal encoder, the query-video iterative
attention in Figure 3 can be denoted as:

Q(1) = Encoder(Q,V ), V (1) = Encoder(V ,Q(1)) (9)

Analogously, the video-query iterative attention in Figure 2 can be
presented as:

V (2) = Encoder(V ,Q), Q(2) = Encoder(Q,V (2)) (10)

These two iterative attention branch compensate each other and
contributes to generating robust cross-modal information.

3.3.3 Video-enhanced Integration.
With the symmetrical iterative attention module, we obtain two
sentence-aware video representationsV (1),V (2) ∈ Rnv×dh and two
video-aware query representationsQ(1),Q(2) ∈ Rnq×dh . To comple-
ment the sentence-aware video representation for further enhanced
video information, we first project each query representation to
same length as video by:

Q̂(1) =W1Q
(1) + b1, Q̂(2) =W2Q

(2) + b2 (11)

whereW1 ∈ Rnv×nq andW2 ∈ Rnv×nq are matrices for linear
transformation, b1 ∈ Rnq and b2 ∈ Rnq are the bias terms. We then
combine the corresponding modality information by column as:

V̂ = Concat[V (1),V (2)], Q̂ = Concat[Q̂(1), Q̂(2)] (12)

Finally, we devise a filter to control the ratio of query information
to incorporate with the video features.

r = σ (Q̂W r + br ) (13)

M = LayerNorm(V̂ + r ⊙ Q̂) (14)

whereW r ∈ R2dh×2dh , br ∈ R2dh are learnable parameters and ⊙
denotes element-wise multiplication.

3.4 Localization Module
In this section, we introduce the localization module. Previous
anchor-based predictions [3, 44] simultaneously score a set of can-
didate moments with multi-scale windows at each time step, how-
ever, the confidence scores of different window scales are predicted
based on the same point feature. In this paper, we devise a content-
oriented strategy which differs from traditional anchor-based lo-
calization. During our localization process, the confidence scores

of candidate moments with multi-scale windows can be calculated
with the entire features in the corresponding time duration.

With the integrated cross-modal representationM , we first apply
a bi-directional GRU network to aggregate contextual information,
resulting in final representation sequence M̂ = (f1, f2, · · · , fnv ).
To predict the target video segment, we pre-define several candi-
date moments for grounding by dividing representation sequence
into overlapped windows. In practice, we have multi-size windows.
Taking one window size for example, as shown in Figure 5, j-th
candidate moment can be denoted as Cj = (ŝj , êj ), where ŝj , êj
are the starting and ending coordinates between 1 to nv . Sub-
sequently, our goal is to score these candidate moments and ad-
just the temporal boundary for them. Here we adopt temporal 1D
convolution to process features of each candidate moment to pro-
duce the corresponding confidence score csj and temporal offsets
δ̂j = (δ̂s , δ̂e ). The temporal 1D convolution can be simply denoted
as Conv1d(Cf ,θk ,θs ), where Cf ,θk ,θs are filter numbers, kernel
size and stride size, respectively. Given a representation sequence
corresponding to candidate moment Cj , we apply two distinct con-
volution Conv1d(1,θk ,θs ) and Conv1d(2,θk ,θs ) for producing con-
fidence score and temporal offsets separately. Then the confidence
scores will be normalized by sigmoid function. θk is same as the
window size and θs is equal to window size minus overlap length.
In this way, temporal 1D convolution can properly process all can-
didate moments.

3.5 Training Loss and Inference
We first compute the IoU (Intersection over Union) oj between
each candidate moment (ŝj , êj ) with ground truth (s, e). If oj is
larger than a threshold value τ , this candidate moment is viewed
as positive sample, reverse as the negative sample. Thus we can
obtain Npos positive samples and Nneд negative samples in total.
Alignment Loss: We adopt an alignment loss to align the predicted
confidence scores cs and IoU o, which promotes candidate moments
with higher IoUs achieve higher confidence scores, the alignment
loss is calculated as:

Lj = oj log
(
csj

)
+
(
1 − oj

)
log

(
1 − csj

)
(15)

Laliдn =
∑

z∈{pos,neд }
− 1
Nz

Nz∑
j
Lj (16)

Boundary Loss: As the boundaries of pre-defined candidate mo-
ments are relatively coarse, we devise a boundary loss for Npos
positive samples to promote exploring the precise start and end
points. The boundary loss is:

Lb =
1

Npos

Npos∑
j

R1
(
δ̂sj − δsj

)
+ R1

(
δ̂ej − δej

)
(17)

where R1 represents the smooth L1 function, δsj and δej are the
starting and ending offsets of the ground-truth coordinates com-
pared to the pre-defined candidate coordinates, and δ̂sj and δ̂

e
j are

the predicted offsets.
Joint Loss: We adopt α to control the balance of the alignment loss
and boundary loss:

L = Laliдn + αLb (18)
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Inference: We rank all candidate moments according to their pre-
dicted confidence scores, and then “Top-n (Rank@n)" candidates
will be selected with non maximum suppression.

4 EXPERIMENTS
4.1 Datasets
We validate our proposed approach on three datasets.
ActivityNet Captions [16]: It is a large dataset which contains
20k videos with 100k language descriptions. The video contents of
this dataset are diverse and open. This dataset pays attention to
complicated human activities in daily life. Following public split,
we use 37,417, 17,505, and 17,031 sentence-video pairs for training,
validation, and testing respectively.
TACoS [27]: It collects 127 long videos, which are mainly about
cooking scenarios. On this dataset, we use the same split as [7],
which has 10146, 4589 and 4083 sentence-video pairs for training,
validation, and testing.
Charades-STA [7]: Gao et al.[7] first label the start and end time
of moments) of this dataset with language descriptions. It consists
of 9,848 videos of daily life indoors activities. There are 12,408
sentence-video pairs for training and 3,720 pairs for testing.

4.2 Evaluation Metrics
Following previous works [39, 44], we adopt “Rank@n, IoU@m" as
evaluation metrics. “Rank@n, IoU@m" is defined as the percentage
of the language queries having at least one matched retrieval (IoU
with ground-truth moment is larger than m) in the top-n retrieved
moments.

4.3 Implementation Details
Following [39], we adopt C3D [31] for ActivityNet Captions and
TACoS, and I3D [2] for Charades-STA to encode videos. Next, a
fully-connected layer is used to reduce video feature dimension to
512. We set the length of video feature sequences to 200 for Activi-
tyNet Captions and TACoS, and 64 for Charades-STA. For too long

Table 1: Performance compared with previous methods on
the Activity Captions dataset.

Method R@1 R@1 R@1 R@5 R@5 R@5
IoU=0.3 IoU=0.5 IoU=0.7 IoU=0.3 IoU=0.5 IoU=0.7

MCN [11] 39.35 21.36 6.43 68.12 53.23 29.70
CTRL [7] 47.43 29.01 10.34 75.32 59.17 37.54
QSPN [36] 45.30 27.70 13.60 75.70 59.20 38.30
TripNet [9] 48.42 32.19 13.93 - - -
ACRN [21] 49.70 31.67 11.25 76.50 60.34 38.57
ABLR [40] 55.67 36.79 - - - -
CMIN [44] 63.61 43.40 23.88 80.54 67.95 50.73
SCDM [39] 54.80 36.75 19.86 77.29 64.99 41.53

FIAN 64.10 47.90 29.81 87.59 77.64 59.66

Table 2: Performance compared with previous methods on
the TACoS dataset.

Method R@1 R@1 R@1 R@5 R@5 R@5
IoU=0.1 IoU=0.3 IoU=0.5 IoU=0.1 IoU=0.3 IoU=0.5

MCN [11] 14.42 - 5.58 37.35 - 10.33
CTRL [7] 24.32 18.32 13.30 48.73 36.69 25.42
QSPN [36] 25.31 20.15 15.23 53.21 36.72 25.30
ABLR [40] 34.70 19.50 9.40 - - -
TripNet [9] - 23.95 19.17 - - -
ACRN [21] 24.22 19.52 14.62 47.42 34.97 24.8
CMIN [44] 32.48 24.64 18.05 62.13 38.46 27.02
SCDM [39] - 26.11 21.17 - 40.16 32.18

FIAN 39.55 33.87 28.58 56.14 47.76 39.16

videos, we downsample them uniformly. During prediction, we use
convolution kernel size of [16, 32, 64, 96, 128, 160, 192] for Activ-
ityNet Captions, [8, 16, 32, 64] for TACoS, and [16, 24, 32, 40] for
Charades-STA. We then set stride size as 0.25, 0.125, 0.125 of kernel
size for ActivityNet Captions, TACoS and Charades-STA, respec-
tively. The trade-off parameter α is set 0.001 for ActivityNet Cap-
tions, 0.005 for TACoS and Charades-STA. In symmetrical mutual
attention, we set heads as 8 for ActivityNet Captions and TACoS,
and 4 for Charades-STA. The positive threshold value τ is set to
0.55. We train our model using Adam optimizer [15] with learning
rate of 8 × 10−4, 4 × 10−4, and 4 × 10−4 for ActivityNet Captions,
TACoS, and Charades-STA, respectively. The batch size is set to
128, 64, and 64, respectively. Hidden dimension of all bi-directional
GRUs is set as 512 in our model.

4.4 Performance Comparison
We compare our FIANwith existing state-of-the-art methods, which
can be classified into: (1) Sliding window-based models: MCN [11],
CTRL [7], ACRN [21], QSPN [36], TripNet [9]. (2) Recent works gen-
erate sentence-aware video representations: ABLR [40], MAN [42],
CMIN [44], SCDM [39]. The performance comparisons of previous
methods on three public benchmarks are shown in Table 1-3.We can
observe that the FIAN achieves a new state-of-the-art performance
under nearly all evaluation metrics and benchmarks.



Table 3: Performance compared with previous methods on
the Charades-STA dataset.

Method R@1 R@1 R@5 R@5
IoU=0.5 IoU=0.7 IoU=0.5 IoU=0.7

MCN [11] 17.46 8.01 48.22 26.73
CTRL [7] 23.63 8.89 58.92 29.52
QSPN [36] 35.60 15.80 79.40 45.40
TripNet [9] 36.61 14.50 - -
ACRN [21] 20.26 7.64 71.99 27.79
MAN [42] 46.53 22.72 86.23 53.72
SCDM [39] 54.44 33.43 74.43 58.08

FIAN 58.55 37.72 87.80 63.52

Table 4: Ablation study on the TACoS dataset.

Method R@1 R@1 R@1 R@5 R@5 R@5
IoU=0.1 IoU=0.3 IoU=0.5 IoU=0.1 IoU=0.3 IoU=0.5

FIAN-Soft 34.97 27.53 21.64 52.27 43.99 32.52
FIAN-CMA 36.82 29.27 23.05 53.86 44.40 34.61
FIAN-VQ 36.32 29.32 24.03 53.56 44.72 37.08

FIAN-VQMA 36.91 30.59 25.54 54.37 45.28 37.30
FIAN-QVMA 36.59 30.10 24.81 53.15 43.84 35.42
FIAN-Concat 38.03 31.59 26.01 54.86 46.14 36.71
FIAN-Matrix 38.31 32.21 25.96 55.45 45.43 37.50

FIAN 39.55 33.87 28.58 56.14 47.76 39.16

ActivityNet Captions. As we can see from Table 1, FIAN brings
5.93% improvement in the strict “R@1, IoU=0.7" metric, and out-
performs around 10% in the all R@5 metrics than the previous
state-of-the-art method in absolute values.
TACoS. Table 2 shows that our proposed FIAN achieves around 7%
higher improvements than previous methods in all metrics except
the “Rank@5, IoU=0.1". Compared to other datasets, the perfor-
mances of TACoS are worst, which may come from similar back-
ground and objects during the whole video. However, it is worth
noting that FIAN still achieves significant improvements, which
demonstrates that our proposed model can effectively differentiate
the visual similarity frames.
Charades-STA. In Table 3, we can observe that FIAN surpasses
much over SCDM, especially 13.37% in “Rank5, IoU=0.5" and 5.44%
in “Rank 5, IoU=0.7", demonstrating that FIAN has powerful capac-
ity of generating robust cross-modal information for prediction.
Overall Analysis. Compared to state-of-the-art methods, FIAN
gains significant improvements, especially in the stiff “Rank1, IoU=0.5"
or “Rank1, IoU=0.7" metrics. The results of sliding window-based
methods are obviously inferior to recent methods. ABLR directly
predicts start and end points based on the features rather than
design windows for prediction, thus leading to inaccurate results.
MAN and CMIN only exploit sentence-aware video representa-
tion, while SCDM further devises a mechanism to dynamically
modulate the sentence-aware video representation. Although these
methods achieve promising performance, they do not explore the
video-aware sentence representation to enhance the cross-modal
information. From the results, we can see that FIAN achieves better
results by utilizing both sentence-aware video and video-aware
sentence representations.

Table 5: Ablation study on the TACoS dataset. We apply
different localization strategy to substitute the localization
module in our network. FIAN-Full is our method with
content-oriented location strategy.

Method R@1 R@1 R@1 R@5 R@5 R@5
IoU=0.1 IoU=0.3 IoU=0.5 IoU=0.1 IoU=0.3 IoU=0.5

FIAN-Full 39.55 33.87 28.58 56.14 47.76 39.16
FIAN-TGN 34.82 23.37 20.05 48.76 38.40 31.64
FIAN-CMIN 35.56 27.46 22.39 51.41 39.92 33.88

Table 6: Ablation study on the TACoS dataset. We evaluate
the influence of different stride sizes in the localizationmod-
ule. θk is the kernel size.

Stride Size R@1 R@1 R@1 R@5 R@5 R@5
IoU=0.1 IoU=0.3 IoU=0.5 IoU=0.1 IoU=0.3 IoU=0.5

1 37.45 29.83 21.09 51.68 40.73 29.90
1/8θk 39.55 33.87 28.58 56.14 47.76 39.16
1/4θk 37.01 30.32 25.84 57.09 45.09 37.89
1/2θk 38.43 31.40 25.37 60.72 51.14 41.81

5 ABLATION STUDY
5.1 Influence of fine-grained iterative attention
In this section, we present ablation studies to understand the effects
of CGA block, video-aware sentence representation, and symmetri-
cal attention. We re-train our approach with following settings:

• FIAN-Soft: Instead of symmetrical iterative attention, we
just use one video-query encoder and substitute the CGA in
the encoder with soft attention.

• FIAN-CMA: We adopt one video-query encoder as above
while substituting the CGA with CMA.

• FIAN-VQ: Compared with above, we apply one complete
video-query encoder to generate sentence-aware video rep-
resentation V (2) as shown in Figure 2.

• FIAN-VQMA: We utilize one iterative attention branch to
generate sentence-aware video representationV (2) and video-
aware sentence representation Q(2).

• FIAN-QVMA:We apply iterative attention to generate sentence-
aware video representationV (1) and corresponding sentence
representation Q(1).

• FIAN-Concat: We directly concatenate two video repre-
sentations [V (1),V (2)] from two iterative attention branches
instead of applying video-enhanced integration.

• FIAN-Matrix: We use [V (1),V (2),V (1)−V (2),V (1) ⊙V (2)] to
fuse the video representations from two branches instead of
fusion gate.

• FIAN: Our full of FIAN model.
Table 4 shows the performance comparisons of our FIAN and

these ablations on the most difficult TACoS dataset.
Effect of CGA block. Comparing FIAN-CMA with FIAN-Soft, it
is significant that multi-head attention obtains a more fine-grained
interaction than plain soft attention. With information gate on
FIAN-CMA, FIAN-VQ effectively performs filtering information for
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Figure 6: Qualitative visualization of temporal language localization results (Rank@1) by CMIN, and FIAN. First example
comes fromActivity Captions and second example is fromTACoS dataset. Ground truth (GT) is also provided for both samples.

all candidates, which is demonstrated in “Rank@5, IoU=0.5". Thus,
our CGA block captures more detailed cross-modal interactions
than widely used soft attention.
Effect of video-aware sentence representation. (1) Comparing
FIAN-VQMA with FIAN-VQ, it can be observed that “Rank@1,
IoU=0.5" improves 1.51% and performance gains in all metrics. It
indicates that video-aware sentence representation can also benefit
cross-modal information integration for prediction. (2) Comparing
FIAN-Concat and FIAN-Matrix with FIAN, direct concatenation or
performing matrix operations between video representations show
weaker results. It denotes that video-aware sentence information
from two branches also effectively enhances the cross-modal inte-
gration.
Effect of symmetrical iterative attention. Comparing FIAN-
QVMA and FIAN-VQMA with FIAN, single branch performs worse
than full FIAN, which demonstrates that two branches from sym-
metrical mutual attention can compensate each other to generate
more robust cross-modal information.

5.2 Influence of location module
In this section, we first compare our localization module with ex-
isting techniques by replacement in order to further verify the
effectiveness of the proposal. Here we replace our localization mod-
ule with corresponding component in TGN [3], and CMIN [44], and
rename these variants as FIAN-TGN and FIAN-CMIN. The perfor-
mance degeneration observed in Table 5 verifies the superiority of
our proposed modules over their competitors. Moreover, we adjust
different stride sizes θs during candidate moments sampling. The
results are shown in Table 6. We can observe that too many candi-
date moments (stride=1) leads to performance drop. This indicates
that dense candidate moments confuse the learning process of re-
gression. Meanwhile, too few candidate moments (stride=1/2θk )

brings the highest R@5 metrics. For more precise R@1 retrieving
results, we choose 1/8θk as our experiments setting.

5.3 Qualitative Results
To qualitatively validate the locating effectiveness of our FIAN, we
show two examples on ActivityNet Captions and TACoS dataset. As
shown in Figure 6, in both samples, FIAN is capable of locating an
event which consists of two diverse activities, although the target
moment in ActivityNet Captions is obviously longer than the one
in TACoS dataset. By intuitive comparison, our FIAN localizes more
accurate boundaries than CMIN [44] and explicitly decreases the
location error brought by ambiguous frames.

6 CONCLUSIONS
In this paper, we propose a novel Fine-grained Iterative Attention
Network (FIAN) to adequately extract bilateral video-query inter-
action information for temporal language localization in videos.
Besides proposing a refined cross-modal guided attention (CGA)
block to capture the detailed cross-modal interactions, FIAN further
adopts a symmetrical iterative attention to generate both sentence-
aware video and video-aware sentence representations, where the
latter is explicitly facilitated to enhance the former and finally both
parts contribute to a robust cross-modal feature. In addition, we
devise a content-oriented localization strategy to better predict
the temporal boundary. Extensive experiments on three real-world
datasets validate the effectiveness of our method.

The future work includes apply FIAN tomore complicated bench-
marks [17, 20]. Combining our method with some pre-training
model [18] could also further boost the performance.
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