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ABSTRACT
Multimedia retrieval and analysis are two important areas in “Big
data” research. They have in common that they work with fea-
ture vectors as proxies for the media objects themselves. Together
with metadata such as textual descriptions or numbers, these vec-
tors describe a media object in its entirety, and must therefore be
considered jointly for both storage and retrieval.

In this paper we introduce Cottontail DB, an open source data-
base management system that integrates support for scalar and
vector attributes in a unified data and query model that allows for
both Boolean retrieval and nearest neighbour search. We demon-
strate that Cottontail DB scales well to large collection sizes and
vector dimensions and provide insights into how it proved to be a
valuable tool in various use cases ranging from the analysis of MRI
data to realizing retrieval solutions in the cultural heritage domain.
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• Information systems → Data management systems; Multime-
dia databases;Multimedia and multimodal retrieval.
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1 INTRODUCTION
Multimedia data is ubiquitous and can be found in countless applica-
tions across many different domains ranging from medical research
to entertainment and fraud detection. Such multimedia data usu-
ally comes in huge quantities and in different forms, including but
not limited to images, audio, videos, data streams, etc. This variety
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and the sheer volume make multimedia analysis and multimedia
retrieval two core disciplines of the more general domain of “Big
data” research, with very specific requirements on data storage,
access and processing.

In addition to the original multimedia objects and the associated
metadata, a lot of analysis and retrieval techniques rely on more
compact representations which are stored and processed alongside
the aforementioned information. These representations, often re-
ferred to as features, can encode very simple properties, e.g., the
average color of an image, but also very complex information, e.g.,
the output of a hidden layer of an artificial neural network. What
these features have in common, however, is that mathematically
they can be seen as 𝑑-dimensional vectors in N𝑑 , R𝑑 or even C𝑑 .
Downstream applications then operate on an ensemble of these
feature vectors, e.g., for classification, statistics, or lookup.

In the vector space model of multimedia retrieval, for example,
feature vectors belonging to a specific item in a collection are seen
as points in a𝑑-dimensional vector space. The dissimilarity between
two objects is then expressed as the distance 𝐷 between two such
vectors. Very often, simple distance metrics such as the Minkovski-
distances (𝐿1, 𝐿2) are employed. However, a great number of other
distance measures exist [7], depending on the use case.

If one now considers metadata and feature vectors jointly, it
becomes apparent that multimedia analysis and retrieval poses very
distinct requirements on a potential database engine: Firstly, such an
engine should be able to store feature vectors, textual information,
numbers, etc. in a unified data model. Secondly, its users should
be enabled to express different types of queries such as classical
Boolean queries (e.g., “Find all images, that have been captured
by a specific person.”) and similarity queries (e.g., “Find all video
segments, whose feature vectors are close to the given example.”) as
well as a combination thereof using one query language. And finally,
it should be able to cope with large volumes of data, especially since
feature vectors nowadays can become very high-dimensional while
at the same time, large quantities of these vectors are produced in
multimedia analysis scenarios.

In this paper we introduce Cottontail DB, an open source1 data-
base management system that jointly supports classical Boolean
retrieval as well as vector space retrieval. Cottontail DB is a column
store implemented in Kotlin and it is based on the concepts and
ideas introduced in [5]. Today, Cottontail DB is an integral part
of the vitrivr stack [4, 16] and has been battle-tested on several

1https://github.com/vitrivr/cottontaildb
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occasions. Among others, it has successfully been used to power
vitrivr’s participation to interactive retrieval competitions such as
the Video Browser Showdown (VBS) [14] and the Lifelog Search
Challenge (LSC) [6], contributing substantially to vitrivr achiev-
ing high scores in both evaluation campaigns in their most recent
editions [13, 17]. Furthermore, it forms the basis for a multitude
of multimedia retrieval and analysis activities, ranging from the
cultural heritage domain to signal analysis in magnetic resonance
fingerprinting [12]. As such, Cottontail DB has proven to be a ver-
satile and powerful tool when it comes to managing, accessing, and
processing data related to multimedia collections.

The contribution of this paper is twofold: First, we introduce Cot-
tontail DB and provide insights into its system architecture. Second,
we compare Cottontail DB to ADAMpro [5] and demonstrate how
it scales to large media collections containing millions of items.

The remainder of this paper is structured as follows: Section 2
surveys related work and Section 3 provides an overview over Cot-
tontail DB’s system architecture. Section 4 compares the retrieval
performance of Cottontail DB to its predecessor ADAMpro and
provides some insights into how it scales to even larger datasets.
Section 5 concludes and provides an outlook to future work.

2 RELATEDWORK
Over the years, the need for having efficient solutions that can
provide both nearest neighbour lookup for similarity search and
classical Boolean retrieval has brought about many different sys-
tems and tools. Early examples of such systems can be tracked as
far back as the 1980s [18] and 1990s [2, 3]. A lot of the available
solutions, however, focus on either one of the two aspects. There
are plenty of examples for classical DBMS solutions, with many
free and open source systems such as PostgreSQL2 or Maria DB3
available. One example from the multimedia retrieval domain is the
Lucene Image Retrieval (LIRE) [11] system. LIRE is a content based
image retrieval library that leverages Apache Lucene4 for index-
ing and storage and comes with a plugin for Apache Solr. It comes
bundled with a great number of local and global features, such as
MPEG-7 descriptors. However, it has not been designed as a general
purpose storage solution for multimedia data and is limited for use
with the features and distance metrics it comes with. FAISS [10]
developed by Facebook research is another example of such an
open source library. FAISS claims to facilitate similarity search and
clustering on billion-scale datasets by leveraging the computational
power of GPUs. But FAISS does not handle persistent storage and
only operates on data structures in RAM. Furthermore, its platform
compatibility is limited since there are only bindings for C++ and
Python and GPU acceleration only works with NVIDIA GPUs.

More in line with the idea of a unified architecture for multime-
dia and Boolean retrieval is ADAMpro [5], from which Cottontail
DB took some inspiration in terms of concepts and ideas. The idea
behind ADAMpro is to have a unified data model and query lan-
guage that allows to query collections consisting of primitive data
types (i.e., numbers, dates, strings, etc.) and vectors. It does so by
combining different storage engines and having an orchestration

2https://www.postgresql.org/
3https://mariadb.org/
4https://lucene.apache.org/

Figure 1: Illustration of Cottontail DB’s system architecture.

engine on top that facilitates query planning and execution. In ad-
dition, it comes with a selection of exact and approximate indexing
techniques that speed-up nearest neighbour search, including, but
not limited to, VA-File [21], Locality Sensitive Hashing (LSH) [8]
and Product Quantization (PQ) [9] indexes. However, even though
ADAMpro was shown to scale well to collection sizes in the range
of tens of millions of items and beyond [5], due to some internal
design decisions, it came with a significant overhead, which was
particularly detrimental for smaller collections and led to relatively
long retrieval times in such scenarios.

3 COTTONTAIL DB: SYSTEM OVERVIEW
3.1 Architecture
Cottontail DB does away with the idea of having different storage
engines for different data types and instead uses the same storage
engine for all data types it supports. Conceptually, Cottontail DB is
a column store, that is, data belonging to the same column is stored
in the same file. Columns that semantically belong together are
grouped in entities, which is the equivalent to a table in a classical
DBMS. Each record in such an entity is identified by a tuple ID.
Furthermore, entities can be organized into different schemata and
Cottontail DB can manage many schemata in a single instance.

Each column in Cottontail DB is strongly typed. Herewe leverage
a type system that maps to primitive data types of the underlying
Java Virtual Machine (JVM). In addition to supporting primitive
data types such as strings, integer numbers, and floating point num-
bers, Cottontail DB allows to compose these primitive types into
structured types such a float vectors, complex numbers, or vectors of
complex numbers. Support for the latter has been added to facilitate
research in MRI signal analysis. Mathematical operations such as
addition, subtraction, multiplication, and division are defined on
primitive numerical types as well as on vector types. On top of
these basic operations, Cottontail DB implements various distance
kernel functions required for nearest neighbour search. Currently,
it supports the Manhattan (𝐿1) distance, the Euclidean (𝐿2) distance,
the Cosine distance, the Hamming distance and the Chi-Squared
distance. However, other distance kernels can be added very easily.
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Figure 2: Query execution times on Cottontail DB.

An overview of Cottontail DB’s system architecture is given in
Figure 1. An application can interact with Cottontail DB through a
defined programming interface, as it would with any other database.
The interface exposes all relevant functionality such as the defini-
tion of schemata and entities (DDL), insertion and management of
data (DML), and querying (DQL). On a very high level, requests
formulated through the exposed API are first handed to an engine
that binds names to objects in Cottontail DB’s data model and then
generates an execution plan for the query. This execution plan is
then handed to a graph-based execution engine, which interacts
with the required schemata, entities, columns, and indexes and gen-
erates the desired result set. To speed-up retrieval time, Cottontail
DB offers support for various index structures both for nearest
neighbor search (e.g., LSH-based indexes) and Boolean search (e.g.,
hash-based indexes) and allows for trade-offs between retrieval
speed and accuracy through the use of inexact index structures.

3.2 Design Considerations
Cottontail DB has been designed with modularity and extensibil-
ity in mind. Many different aspects of Cottontail DB can be ex-
tended simply by implementing a certain interface. For example, it
is straightforward to add new index structures for nearest neigh-
bour or Boolean search or new types of kernel functions for distance
calculation. Even the interaction with the low-level storage engine
is defined via a set of interfaces and thus, the engine can be replaced
easily. This has proven valuable when adjusting Cottontail DB to a
new use case and extending it with new functionality. For example,
integrating and experimenting with different indexing techniques
for nearest neighbor search in MRI signal analysis proved to be
very simple given Cottontail DB’s versatile architecture.

Some of the design considerations, however, run very deep in
the code base. For example, Cottontail DB being a column store
allows for several optimizations on different levels especially in
the domain of nearest neighbour search. First and foremost, only
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Figure 3: Query execution times on ADAMpro.

the data relevant to the query is actually read from disk so as to
minimize I/O during such a search operation. Furthermore, the
compact organization of data allows for parallelisation. The search
space can simply be partitioned into smaller chunks and each chunk
can then be handed to a dedicated thread for processing.

3.3 Implementation
Cottontail DB is written in Kotlin5 and runs on the JVM. Hence, it
can be used on many different platforms. The API that exposes all
the functionality Cottontain DB offers is specified in gRPC6, which
allows the use of Cottontail DB with a huge number of different
programming languages and platforms.

Currently, Cottontail DB uses a fork of Map DB7 for data storage.
Map DB is a library that provides fast and persistent data structures
such as maps, queues, and lists. Furthermore, it comes with an API
for low-level data organisation. One advantage of Map DB is that it
uses memory mapped files and mmap, which facilitates very fast
access to the underlying data. A custom storage engine without the
reliance on mmap that allows a more fine grained control over I/O
organization is currently in development.

4 EVALUATION
To demonstrate Cottontail DB’s ability to cope with large mul-
timedia collections, we compare ADAMpro and Cottontail DB in
terms of retrieval speed for nearest neighbour queries. We base the
evaluation on the V3C1 [1] video collection, which has an overall
collection size of 𝑠 = 1.088.896 segments and is used in the VBS
setting and therefore representative of interactive video retrieval
tasks. For the comparison, we generated features using Cineast [15]
with vector dimensions ranging from 𝑑𝑚𝑖𝑛 = 3 to 𝑑𝑚𝑎𝑥 = 2048
and compared them using the Euclidean (L2) distance. All tests
5https://kotlinlang.org/
6https://grpc.io/
7http://www.mapdb.org/
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were run on the same hardware (32 cores at 3.4GHz, 64GB RAM,
data resides on SSDs) and both Cottontail DB and ADAMpro were
allowed to use 8GB of the available memory. All measurements
were aggregated over ten runs. Before the actual runs started, three
warm-up queries were conducted to initialize caches and other
data structures. Figures 2 and 3 depict the query execution times
for linear scans without the additional use of any index structure
for Cottontail DB and ADAMpro , respectively, grouped by feature
dimension and number of returned elements (𝑘). Note that we are
showing a logarithmic time scale so as to enable better side by side
comparison. It can be seen that Cottontail DB not only consistently
outperforms ADAMpro in terms of execution time, it also exhibits a
smaller variance. The dip in execution time for 𝑑 = 2048 compared
to 𝑑 = 512 can be attributed to an internal parallelization heuris-
tic in Cottontail DB, which apparently achieves a higher resource
utilization in the case of the longer feature vector.

To demonstrate that Cottontail DB can cope with even larger col-
lections, we conducted a similar experiment on the YFCC100M [19]
dataset, which contains 100 million images, i.e., roughly a 100 times
more elements than V3C1. In contrast to our comparison with
ADAMpro , we used pre-generated features from the multimedia
commons8 dataset, more precisely, feature vectors generated by
LIRE. In our experiment, nearest neighbour lookup execution times
ranged between 70.69s ± 2.81s for auto color correlogram features
(acc, 𝑑 = 64) and 500.42s ± 4.90s for joint histogram features (jhist,
𝑑 = 576) without the use of any index. By using an LSH index with a
100 buckets, execution time could be brought down to 0.87s± 0.28s
and 3.60s ± 0.041s, respectively.

5 CONCLUSION AND FUTUREWORK
In this paper we introduced Cottontail DB – our open source data-
base management system for multimedia collections – and demon-
strated its capability to manage and query large multimedia col-
lections. Cottontail DB combines Boolean and nearest neighbour
based retrieval and can be used to perform all types of analyses on
multimedia collections. Its well-defined programming interfaces
and its open architecture make it a great foundation for all kinds of
applications in that domain.

Currently, we are working on a new low-level storage engine for
Cottontail DB, which will enable more fine grained control over I/O
and buffering of data pages while at the same time taking advantage
of certain access patterns inherent to certain types of queries and
data. We also plan to add support for SQL by integrating Cottontail
DB into the polystore Polypheny DB [20]. Long-term ideas involve
support for distribution to several nodes and leveraging SIMD in-
structions for nearest neighbour search operations through Java’s
project Panama9 and JVM support for vector intrinsics.

Even though Cottontail DB may still be a very young project, it
has already propelled some of our own activities forward. We have
seen the advantage of having such a scalable, modular and extensi-
ble database system and we strongly believe, that its versatility will
prove valuable to other multimedia researchers as well as concrete
applications in the industry.

8http://mmcommons.org/
9https://openjdk.java.net/projects/panama/
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