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ABSTRACT
Together with the curse of dimensionality, nonlinear dependencies

in large data sets persist as major challenges in data mining tasks.

A reliable way to accurately preserve nonlinear structure is to

compute geodesic distances between data points. Manifold learning

methods, such as Isomap, aim to preserve geodesic distances in a

Riemannian manifold. However, as manifold learning algorithms

operate on the ambient dimensionality of the data, the essential step

of geodesic distance computation is sensitive to high-dimensional

noise. Therefore, a direct application of these algorithms to high-

dimensional, noisy data often yields unsatisfactory results and does

not accurately capture nonlinear structure.

We propose an unsupervised random forest approach called geo-

desic forests (GF) to geodesic distance estimation in linear and non-

linear manifolds with noise. GF operates on low-dimensional sparse

linear combinations of features, rather than the full observed dimen-

sionality. To choose the optimal split in a computationally efficient

fashion, we developed Fast-BIC, a fast Bayesian Information Crite-

rion statistic for Gaussian mixture models. We additionally propose

geodesic precision and geodesic recall as novel evaluation metrics

that quantify how well the geodesic distances of a latent manifold

are preserved. Empirical results on simulated and real data demon-

strate that GF is robust to high-dimensional noise, whereas other

methods, such as Isomap, UMAP, and FLANN, quickly deteriorate

in such settings. Notably, GF is able to estimate geodesic distances

better than other approaches on a real connectome dataset.
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1 INTRODUCTION
Nearest neighbor algorithms, which sort all points according to

their distances to one another, are considered among the top 10most

important data mining algorithms of all time [51] and have strong

theoretical guarantees for both classification and regression [43].

Decision trees (such as CART and C4.5) can also reasonably be

thought of as algorithms for organizing data in a hierarchical fash-

ion; these are among the top ten algorithms as well [51]. Moreover,

decision trees underlie both random forests [7] and gradient boosted

trees [22], which are the two leading algorithms for machine learn-

ing on tabular data today [9–11]. There is a rich literature on ap-

proximate nearest neighbor algorithms (see AumÃĳller et al. [2] for

benchmark comparisons), which are used extensively in big data

systems.

However, operating on the exact nearest neighbors, (or trying

to approximate them), is not always desirable. For example, con-

sider a simple supervised learning setting. Given a data corpus,

{(xn ,yn )}
N
n=1, learn a decision rule that predicts y for a given new

data point x and achieves a small error with high probability. A

canonical approach is kernel regression [37]. A kernel machine’s

prediction is a weighted linear combination of predictions that the

neighbors of x would make, specifically, ŷ = 1

N
∑N
n=1 yn ×κ(x ,xn ),

for some suitably chosen kernel κ (for example, a radial basis func-

tion or k-nearest neighbors kernel). Such approaches enjoy strong
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theoretical guarantees [33]. Now, further assume that the x ’s are
noisy measurements of some true, but unobserved x̃ ’s. Such an

assumption, called “measurement error modeling” [24], could rea-

sonably be argued to be much more accurate than assuming the

x ’s are noise-free measurements [25]. Under this measurement

error assumption, an approach that achieves smaller error given

the same sample size would be a kernel regression function on the

noise-free measurements, ŷ = 1

N
∑N
n=1 yn×κ(x̃ , x̃n ). Unfortunately,

because the x̃ ’s are not observed, such an approach is not avail-

able. This modeling framework highlights the need for learning

learning which sample points are close to one another on an under-

lying latent structure (such as a manifold), for subsequent inference.

Moreover, even though the above describes a supervised learning

task, performance may improve when learning the structure of only

the features x , while not even considering the labels y, as we will
demonstrate in this paper.

Learning latent structure is even more important when the di-

mensionality p is larger than the sample size N . In such a setting,

an intermediate representation is required to avoid (1) numeri-

cal stability issues with matrix operations, and (2) the “curse of

dimensionality” for statistical operations. This intermediate repre-

sentation can be explicit (as in manifold learning) or implicit (as in

kernel machines). When N is large, even approximation algorithms

are required to compute various quantities whose exact solution

requires O(N 2) or O(N 3) space and/or time.

Geodesic distance is the shortest path between two points in

a Riemannian manifold, and geodesic learning is the process of

estimating geodesic distances between pairs of points in a data

corpus. Given this definition, it would be reasonable to consider

using manifold learning algorithms to first learn the latent struc-

ture of the data, and then estimate distances in the estimated latent

structure space. In fact, the first step in many manifold learning

algorithms is to estimate the geodesic distance between all pairs

of points [27]. Nonetheless, this is not a common practice. Rather,

others have used manifold learning algorithms (such as random pro-

jection) to estimate the observed, noisy, and often high-dimensional

ambient distances. Yet, several disciplines in computer science and

machine learning have developed strategies to partially address

these challenges.

In computer science, space-partitioning trees are used exten-

sively for quite diverse applications; most relevant to this work are

efforts to build trees in support of efficient geometric queries [46].

Space partitioning trees use binary and recursive splits with hyper-

planes [14]. These tree structures are usually optimized to learn

relative proximities of the observed, noisy measurements, rather

than the latent noise-free, and potentially lower dimensional, mea-

surements. Paritioning trees are closely related to decision trees

in statistics and machine learning [8]. Extensions to decision trees

are the de facto standard for classification and regression tasks

(even in this age of deep learning), including random forests [7] and

gradient boosting trees [23]. However, decision trees are almost

exclusively concerned with supervised, rather than unsupervised

learning.

Analogies between decision trees and kernel learning have been

studied for decades. Breiman [6] showed that in a sense, random

forests are equivalent to a kernel acting on the true margin. This

realization recently gained traction in the machine learning liter-

ature [3, 17, 38, 39]. In manifold learning, many spectral variants

start by estimating all pairwise geodesic distances [36]. These ap-

proaches operate on the observed, high-dimensional data and suffer

serious performance loss in the face of additional noise dimensions.

Although each of the above works is closely related to geodesic

learning, none of them explicitly define and estimate geodesic dis-

tances.

We propose Geodesic Forest (GF) to achieve near linear space and
time complexity, while approximating the true latent geodesic dis-

tances. Unlike the previously described methods, GF does not need

to compute geodesic distances between all pairs of points. Instead,

GF examines local structure by recursively clustering data in sparse

linear subspaces, building on the recently proposed randomer for-

est algorithm for supervised learning [48]. The randomer forest

approach allows GF to separate meaningful structure in the data

from the noise dimensions. We also introduce a spitting criteria,

Fast-BIC, which efficiently and exactly computes the Bayesian In-

formation Criterion statistic for an approximate Gaussian mixture

model in one dimension.

This manuscript also contributes a method for evaluating geo-

desic learning algorithms. Most existing work on manifold learning

that explicitly estimates geodesic distances, does not explicitly eval-

uate the geodesics. Rather, such techniques embed the data into

a low-dimensional space and then visualize the results. This ap-

proach is limited in a number of ways: (1) it is qualitative; (2) when

the structure is higher dimensional it may not be revealed by the

first few dimensions; and (3) it relies on an embedding, which in-

troduces additional computational and statistical complications.

Sometimes the embedded data are used for subsequent inference

tasks, such as classification, which can be quantitatively evaluated.

These approaches are only able to evaluate performance of a man-

ifold learning algorithm composed with a particular subsequent

inferential method, but not the manifold or geodesic learning algo-

rithms directly.

Therefore, we introduce geodesic precision and recall. In contrast

to precision and recall, geodesic precision and recall compare the

set of nearest neighbors, as estimated by the geodesic learning

algorithm, with the set of true nearest neighbors on the latent

manifolds. If a geodesic learning algorithm does poorly on this

metric, estimating manifolds from these geodesics has no hope to

perform well on subsequent tasks. Indeed, functions of geodesic

precision can provide tight bounds on subsequent classification

accuracy [18].

GF finds neighbors in the latent low-dimensional space amid ad-

ditional noise dimensions more effectively than other approaches.

Moreover it can do this in a variety of linear and nonlinear set-

tings, with different dimensional submanifolds. In addition, we

demonstrate that GF is more effective than other approaches in

distinguishing cell types in a real, recently released, connectome

dataset.

2 RELATEDWORK
Nonlinear manifold learning approaches based on Isomap [45] are

designed to preserve geodesic distances. First, they estimate geo-

desic distances in the original manifold. This is done by constructing
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a k-nearest neighbor or ϵ-neighborhood graph in which the obser-

vations (data points) correspond to nodes, and pairwise Euclidean

distances between these points correspond to the weights on the

edges. Second, the all-pairs shortest paths of the nodes in the graph

are computed. Third, the points are embedded in a lower dimen-

sional space that ideally preserves these distances. This approach

is hampered by the first step, which operates in the original high-

dimensional ambient space, because Euclidean distances often fail

to provide good estimates of distances on the manifold. Moreover,

computing all pairwise distances among n datapoints takes O(n2)
space and time and all pairwise shortest paths can require O(n3),
both of which can be cost prohibitive for large sample sizes.

Isomap is one of the few manifold learning algorithms that has

theoretical guarantees for correctly estimating the manifold [42].

However, Isomap stores all point-to-point graph distances, which

incurs space and time complexity quadratic in the sample size.

Laplacian eigenmaps [4], Hessian eigenmaps [19], and diffusion

maps [12] try to address the limitations of Isomap by learning

embeddings that preserve other properties of the data, such as

“diffusion distance”, while maintaining some theoretical guarantees.

However, in the case of many noisy dimensions, these approaches

fail to construct accurate nearest-neighbor graphs on the latent

manifold, because they base the k-neighbor graph on Euclidean

distances in the observed space.

UMAP is an algorithm for dimensionality reduction that reduces

high-dimensional data to a low dimension using a fuzzy simpli-

cial set representation of the input data points [31]. Like other

nearest-neighbor based algorithms, UMAP constructs an undi-

rected, weighted k-nearest neighbor graph from the input data,

then embeds data points in a low-dimensional space using a force-

directed layout algorithm. The number of neighbors used to con-

struct the graph determines the local manifold structure that is to

be preserved in the low-dimensional layout. In the force-directed

layout, attractive forces between close vertices are iteratively bal-

anced with repulsive forces between vertices that are far apart in

the graph until convergence. UMAP builds upon the t-Distributed

Stochastic Neighbor Embedding (t-SNE) algorithm, which attempts

to preserve original interpoint distances in a lower dimensional

space [29]. The Kullback-Leibler divergence between the distribu-

tion of neighbor distances in the higher and lower dimensional

spaces is used to determine the optimal mapping of points into

the lower-dimensional space. t-SNE is primarily used to visualize

high-dimensional data [30], and cannot be used with non-metric

distances. UMAP produces similar embeddings to t-SNE in two or

three dimensions, but scales better in run-time across a wide range

of embedding dimensions [31].

Approximate nearest neighbors algorithms, such as FLANN [34],

approximate nearest-neighbors in high-dimensional data sets by

building binary space-partitioning trees, such as K-d trees. These

algorithms are designed to estimate the distances in the observed

high-dimensional space.When the truemanifold is low-dimensional

and the data are high-dimensional, the additional noise dimensions

are problematic for any of these algorithms. These approaches

achieve near linear space and time complexity.

This work is inspired by, and closely related to, random projec-

tion trees for manifold learning [15] and vector quantization [16].

The main differences between our approach and theirs is (1) that

they use random splits, rather than optimizing the splits; and (2)

they use a single tree, whereas GF uses a forest of many trees.

Nonetheless, their theoretical analysis motivates the geodesic pre-

cision metric that we establish for quantifying the performance of

geodesic learning.

Finally, most closely related to our method are unsupervised

random forest methods. The construction of manifold forests as

described by Criminisi et al. [13] is an unsupervised random forest

approach. To find the best split at each internal node, an information

gain measure based on the differential entropy of a multivariate

Gaussian is optimized, leading to a computationally expensive pro-

cedure. In addition, to our knowledge, this approach has not been

thoroughly evaluated on highly noisy data sets. The most popular

unsupervised random forest method is included in Cutler’s Random-

Forest R package [40]. It proceeds by generating a synthetic copy of

the data by randomly permuting each feature independently of the

others and then attempts to classify the real versus the synthetic

dataset. We will show below that this approach can miss simple

latent structures.

3 GEODESIC FORESTS
A random forest is an ensemble of decision trees in which each tree

is created from bootstrapped samples of the training dataset; that is,

each tree is built from a random subset of training data. Each tree

{h(x,θt )}, t ∈ {1, 2, . . . ,T } has parameters θt that characterize the
tree structure, and can be learned from the dataset. Given a set of

trees, and a new point x , each tree casts a unit vote for its predictions
given the input x. Typically, random forests are used in supervised

machine learning tasks, specifically classification and regression.

There have been a few papers reporting on unsupervised random

forests for certain tasks [41].

Our geodesic forest algorithm is based on the original Random

Forest algorithm [7] with a few key distinctions. First, GF uses a new

splitting criteria, Fast-BIC, that efficiently and exactly computes an

approximate Bayesian Information Criterion for a GaussianMixture

model in one dimension. Second, we use the term randomer to label
our technique, as our splitting methods are based on random sparse

linear combinations of features to strengthen each tree, as originally

proposed by Breiman [7], and later studied further by Tomita et

al. [47, 48] Third, we correctly implement a previously proposed

method for generating proximity matrices from random forests. In

one of the most widely used implementations of Random Forest

[28], the aggregated normalized proximity matrices of F Random

Forests with T trees each is not stochastically equivalent to the

aggregated normalized proximity matrices of T Random Forests

with F trees each. Our implementation does not suffer from this

bug. Furthermore, it is computationally more efficient than previous

implementations. These three changes enable GF to achieve state-

of-the-art performance on both simulated and real data.

3.1 GF Algorithm Overview
Here, we describe the geodesic forest algorithm in detail. Given

an input data set x = {x1, . . . ,xN }, where xn ∈ R
p
, GF builds

T decision trees, each from a random sample of size m < N . In

each tree, GF recursively splits a parent node into its two child

nodes until some termination specification is met. At each node,
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GF generates d features to search over. Each feature is evaluated

based on the splitting criteria described in Section 3.3, and the

feature with the best score is selected to split the data points into

two daughter nodes. Algorithm 1 describes the procedure used to

build unsupervised decision trees (all algorithms are relegated to

the appendix). To evaluate the forest, a proximity matrix is then

generated by computing the fraction of the trees in which every

pair of elements reside in the same leaf node (Section 3.4).

3.2 Node-Wise Feature Generation
Unlike Breiman’s original random forest algorithm, GF does not

choose split points in the original feature space. Instead, we follow

the random projection framework of Tomita et al. [47, 48]. For p-
dimensional input data, we sample ap×d matrixA distributed as fA,
where fA is the projection distribution and d is the dimensionality

of the projected space. We chose to use the fA that Tomita et al.

empirically found to produce the best performance in the supervised

setting: A is generated by randomly sampling from {−1,+1} λpd
times, then distributing these values uniformly at random in A
[48]. The λ parameter is used to control the sparsity of A, and is

set to
1

20
, again following the convention of Tomita et al. Using

the randomly sampled p × d matrix A, the data associated with

the given node, X ′, which is a subsample of the original data, is

transformed into a d-dimensional feature space, where each of

the d new features is now a sparse linear combination of the p
original features. In other words, each row of X̃ = ATX ′ represents
a projection of the data into a one-dimensional space that is a

sparse linear combination of the original feature space. Each of the

d rows X̃ [i, :], i ∈ {1, 2, ...,d} is then inspected for the best split

point. The optimal split point and splitting dimension are chosen

according to which point/dimension pair minimizes the splitting

criteria described in the following section.

3.3 Splitting Criteria
We present three alternatives for choosing the best split among the

one-dimensional set of points associated with a GF tree node.

1-Fast, Exact, Univariate, Two-Means Splitting. This method seeks

to find the cutpoint that minimizes the one-dimensional 2-means

objective. This splitting criteria [15] is:

min

s

s∑
n=1
(xn − µ̂1)

2 +

N∑
n=s+1

(xn − µ̂2)
2. (1)

The goal is to find the split that minimizes the sum of the intra-

cluster variance on the projected dimension. Typically, k-means

problems are solved via Ward’s or Hardigan’s algorithms [26, 50].

Because k-means is NP-hard, in general, these algorithms lack

strong theoretical guarantees [1]. However, in one-dimension, for

two-means, there is an exact solution that is much faster and simpler.

This is available because each decision tree always operates on one-

dimensional marginals which represent the probability specific to a

single dimension. First, sort the data points. Then, consider splitting

between all sequential pairs of points; that is, letting x(s) denote the

sth smallest sample, consider splitting between x(s) and x(s+1) for
all s < N . The samples to the left of the split point form one cluster,

and those to the right form the other cluster. Estimate the means for

each of the clusters using the maximum likelihood estimate (MLE).

An immediate limitation of this approach is that it fails to con-

sider feature-wise variance, which can lead to undesirable proper-

ties. For example, if any feature has zero variance, it will always

achieve the minimum possible score. Although one can rescale each

feature independently, doing so can cause problems in unsupervised

learning problems when the relative scale of features is important,

and the details of how to rescale introduce an undesirable algorithm

parameter to tune.

2-Gaussian Mixture Model Splitting with Mclust-BIC. For each
feature, we fit the data to a two-component Gaussian mixture model

(GMM). An expectation-maximization (EM) is used to jointly esti-

mate all the parameters and latent variables [21]. The latent vari-

ables, {zn, j }, denote the probability that sample n is in cluster j.
Letting N be the number of observations and J be the number

of Gaussian clusters (in this case, J = 2), and introducing nota-

tion x = (x1, . . . ,xN ), and z = {z1,1, z1,2, . . . , zN , J }, the complete

likelihood (including the latent variables) is

P(x , z; µ,σ ,π ) =
N∏
n=1

J∏
j=1
{πjN(xn ; µ j ,σ

2

j )}
zn, j . (2)

Each feature is evaluated using the Bayesian Information Criterion

(BIC). BIC is based on the log likelihood of the model given the

data, with a regularization term penalizing complex models with

many parameters. Concretely, letting L̂M denote the maximum

log likelihood function of a particular model M , L̂M = p(x ; ˆθM ),

where
ˆθM are the parameters that maximize the likelihood function

for modelM , and x is the observed data. Letting N be the sample

size (number of data points) and dM be the number of parameters

estimated by themodel, then the BIC score can be defined as follows:

BIC(M) = −2 ln(L̂M ) + ln(N )dM . (3)

The feature that maximizes the BIC score for a two-component

GMM is selected for splitting at each node. The split occurs at the

midpoint where the two Gaussians are equally likely. Because this

approach is standard in the literature, we do not provide pseudocode.

Note that the EM approximates the actual log likelihood and is only

guaranteed to find a local maximum, not the global maximum. Thus,

it is sensitive to initialization. Moreover, the EM algorithm suffers

from poor convergence properties in certain settings [32].

2-GMM Splitting with Fast-BIC. Our new Fast-BIC method com-

bines the speed of two-means with the model flexibility of Mclust-

BIC. As in two-means, for each feature, we sort all the data and try

all possible splits. For each split, we assign all points below the split

to one Gaussian and all points above the split to the other Gaussian.

We estimate the prior, means and variances for both clusters using

the MLE. For j = 1, they are defined by

µ̂1 =
1

s

∑
n≤s

xn , σ̂1 =
1

s

∑
n≤s
| |xn − µ̂ j | |

2, π̂1 =
s

N
,

and similarly for j = 2. Under the above assumption, zn, j is an
indicator that data point xn is in cluster j. In other words, rather

than the soft clustering of GMM, Fast-BIC performs a hard cluster-

ing, as in two-means. Thus, if xn is in cluster j, then zn, j = 1 and
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zn, j′ = 0 for all j , j ′. Given this approximation, the likelihood can

be obtained by summing over the z’s

P(x ; µ,σ ,π ) =
∑
z

N∏
n=1

J∏
j=1
{πjN(xn ; µ j ,σ

2

j )}
zn, j . (4)

Noting that z(n∈(0,s],k=0) = z(n∈[s+1,N ),k=1) = 1 and zn, j = 0

otherwise, Equation (4) can be simplified to

P(x ; µ,σ ,π ) =
s∏

n=1
π1N(xn ; µ̂1,σ

2

1
)

N∏
n=s+1

π2N(xn ; µ̂2,σ
2

2
).

Plugging in the MLE for all the parameters, the maximum log

likelihood function L̂ = log P(x ; µ̂, σ̂ , π̂ ) is

L̂ =
s∑

n=1
[log π̂1 + logN(xn ; µ̂1, σ̂1

2)] +

N∑
n=s+1

[log π̂2 + logN(xn ; µ̂2, σ̂2
2)],

(5)

Substituting into Equation 5 and simplifying, we get the following

expression for the log likelihood for any given s:

−2L̂s = s log 2π̂1σ̂
2

1
+(N−s) log 2π̂2σ̂

2

2
−s log µ̂1−(N−s) log µ̂2, (6)

in which we have dropped terms that are not functions of the pa-

rameters. We further test for the single variance case (σ1 = σ2) and
use the BIC formula to determine the best case. Fast-BIC chooses

the dimension and split-point that maximizes L̂s . Pseudocode for
this approach is provided in Algorithm 3.

Fast-BIC is guaranteed to obtain the global maximum likelihood

estimator, whereas the Mclust-BIC is liable to find only a local

maximum. Moreover, Fast-BIC is substantially faster. This Fast-BIC

procedure is, to our knowledge, novel, and of independent interest.

3.4 Proximity Matrix Construction
One can build a similarity matrix from any decision tree by assert-

ing that similarity between two points xn and x j is related to some

“tree distance” between the pair of points in a given tree. Although

this is the case for both supervised an unsupervised decision trees,

to our knowledge this approach has not yet been explored for un-

supervised trees. When using a forest, it is natural to average the

similarity matrices to obtain the forest’s estimate of similarity. A

simple tree distance to use is the 0−1 loss onwhether a pair of points

is in the same leaf node. This approach to computing similarities

has previously been studied in several supervised random forest pa-

pers, connecting random forests to kernel learning [3, 6, 17, 38, 39].

However, the connection between these similarities and geodesic

distances has not yet been established.

More concretely, the proximity matrix S for input data D ∈

Rn×d is estimated using the geodesic forest by simply counting the

fraction of times that a pair of points occurs in the same leaf node

in the forest. Thus, S(i, j) = Si j =
Li j
Ti j , where L(i, j) is the number

of occurrences of points i and j in the same leaf node, andTi j is the
number of trees in which both point i and point j were included in

the bootstrap sample that was used to build the tree. We use both

the in-bag and out-of-bag samples to estimate the proximity.

Figure 1: Synthetic datasets for all experiments. In each case,
there are 1000 points in 3 signal dimensions, as shown.

3.5 Geodesic Precision and Recall
We present the novel geodesic precision and geodesic recall evalua-
tion metrics to determine how well a method estimates geodesic

distances. With these metrics, we can compare the geodesic dis-

tances for points on the latent manifold to the estimated distances

produced by GF. Geodesic precision and recall differ from “classical”

precision and recall by virtue of defining the neighbors based on

the true latent low-dimensional manifold, rather than the observed

(typically higher-dimensional) space. The typical definitions of pre-

cision and recall are defined relative to a query. The relevant samples
are those that are “correct” in the sense that they are truly relevant

to the query, where as the retrieved samples are those that are re-
turned by the query. For geodesic learning, given a data point x , a
data corpus DN = {x1, . . . ,xN }, and a query size k , the relevant
samples are the k samples from DN that are nearest to x based on

the true (but unknown) geodesic distance. In other words, relevant
neighbors are those points that are nearest on the latent, noise-free,

manifold, rather than the observed, typically higher dimensional

space. Given a geodesic learner, the retrieved neighbors are the k
samples that the learner reports are nearest. Letting ∩ denote set

intersection, and | · | denote the cardinality of the set, geodesic

precision and recall are defined as:

geodesic precision =
|{manifold neighbors} ∩ {retrieved neighbors}|

|{retrieved neighbors}|
,

geodesic recall =
|{manifold neighbors} ∩ {retrieved neighbors}|

|{manifold neighbors}|
.

To compute the geodesic precision and recall for a given learner

on a given dataset, we average the geodesic precision and recall

over each sample point. Higher precision and lower recall indicate

a better estimation of geodesic distances.

We consider two distinct cases: a continuous geodesic in which

there is a finite geodesic distance between all pairs of points and

a discrete geodesic in which there are clusters of points that are

not connected at all to other points. In the latter case (such as a

union of spheres), we denote all the points within a given connected

component as its neighbors, and all points outside its connected

component as not neighbors. In the disconnected setting, geodesic

precision and recall are identical to one another.
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Figure 2: Geodesic precision curves for the three different
splitting criteria using both axis-aligned splits (URF; solid
lines) and sparse oblique spits (GF; dashed lines). In each
case there are 1000 points and 3 signal dimensions (no noise
dimensions). In general, GF with Fast-BIC performs the best
or nearly so.

4 NUMERICAL RESULTS
4.1 Four Multivariate Manifold Simulation

Settings
We explore geodesic learning using the following four simulations

settings, as shown in Figure 1, each of which span a complemen-

tary and interesting case. In the linear case, where learning the

geodesic should be relatively easy, Euclidean distance will com-

pletely recover the geodesics with no noise. It therefore sets an

upper bound on performance. The helix setting is reminiscent of

the typical “swiss jelly roll” setting popular in manifold learning,

but the latent submanifold is one-dimensional embedded into a

three-dimensional space. Here, Euclidean will perform poorly, but

various manifold learning algorithms should perform well, as they

are designed for this kind of scenario. The sphere case is interesting

because unlike the helix, the true manifold is two-dimensional and

could easily be extended to higher dimensions. Finally, the Gauss-

ian mixture model can be particularly challenging for the manifold

learning algorithms, which typically lack theoretical guarantees for

graphs with disconnected components. Appendix C provides the

mathematical details for the four different settings.

4.2 Choosing the Splitting Criteria and
Robustness to Algorithm Parameters

For each of the above simulation settings, we sample a thousands

points and calculate the geodesic precision using different geodesic

random forest variants. Figure 2 shows an empirical comparison of

the three different splitting criteria when used in an unsupervised

random forest (URF) that chooses split points in the original feature

space and in GF. The BIC approaches (red and blue) outperform

two-means splitting criteria (green) in most cases. The solid and

dashed lines show the relative performance of URF as compared to

GF. GF uses sparse oblique splits, i.e., it splits on linear combinations

of the original features. In most cases, GF outperforms URF. This is

expected based on previous comparisons of sparse oblique splits

to axis-aligned splits in supervised random forest [7, 47, 48]. In all

cases, GF using Fast-BIC performs as well, or nearly as well, as the

other options. Because it performs as well as other options and

Figure 3: Top Geodesic precision versus k for different val-
ues of minparent (the smallest splittable node size). Mtry is
set to be equal to the square root of the number of features.
Bottom Geodesic precision versus k for different values of
mtry (the number of features to test at each node). Minpar-
ent was set to be equal to 100. Geodesic precision is robust
to large variations in these parameters

runs as fast as two-means, we elect to use GF+Fast-BIC (hereafter,

simply GF) as our unsupervised decision forest splitting criteria.

In addition to the splitting criteria, each decision tree has two

other important algorithm parameters. First, minparent, which sets

the cardinality of the smallest node that might be split. Second, mtry,

which is the number of features to test at each node. Figure 3 shows

the geodesic precision for different values of minparent and mtry.

Geodesic precision using GF is robust to hyperparameter changes,

obviating the need for tuning hyperparameters via a grid search,

which can be computationally intensive. For all future experiments,

we set minparent to 100 and mtry to

√
d .

4.3 GF is Robust to Noise Dimensions
To see that GF is robust to high dimensional noise, Gaussian noise

with varying dimensions d ′ are concatenated onto the simulated

datasets. Specifically, for each data point xn ∈ R
d
, generated noise

yn
iid
∼ N(0, cI) where yn ∈ R

d ′
is concatenated onto xn , (c = 70 in

the following experiments), and I is the d ′ ×d ′ identity matrix. The

new data points with noise are thus: x̃n = [x
⊤
n |y
⊤
n ]
⊤ ∈ Rd+d

′

. Each

algorithm’s proximity matrices are computed on the x̃ ’s and com-

pared with geodesic distance matrices to obtain geodesic precision

and recall.

Figure 4 shows the geodesic precision @ k=50 as a function of

the number noise dimensions for Isomap, UMAP, random forests,

Euclidean distance, FLANN, and GF. GF performs well even with

the addition of high dimensional noise dimensions. The other algo-

rithms achieve a higher geodesic recall than GF in the absence of

noise dimensions, but degrade much more quickly than GF upon

the addition of noise dimensions. FLANN and Euclidean distance
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Figure 4: Top Geodesic precision at k=50 varying the noise
dimensions from 2 to 10,000 with N = 1000 samples. Previ-
ous algorithms degrade to chance levels in all settings as the
number of noise dimensions increases, GFmaintains perfor-
mance in all of the settings. Bottom Same as top, but each
dimension is linearly rescaled to be between 0 and 1, and x-
axis shows a smaller number of dimensions (from 0 to 10).
Although rescaling greatly improves geodesic precision and
recall for most algorithms, GF still achieves much larger ge-
odesic precision in the presence of noise.

degrade the fastest, followed by Isomap and UMAP. This suggests

that typical approximate nearest neighbor algorithms (which are

approximating the distance in the ambient space) will perform

poorly on recalling the desired items when the data live near a low-

dimensional manifold. The top panel shows the geodesic precision

curves for adding up to 10,000 dimensions. The performance of all

the algorithms except GF degrades to chance levels in all four set-

tings, whereas GF maintains a geodesic precision far above chance

levels. The bottom panel shows geodesic precision after normaliz-

ing each of the dimensions (i.e., linearly rescaling each feature to

be between 0 and 1). Other algorithms are sensitive to dimension

rescaling and performance may improve as a result. However, GF

consistently performs better, even without rescaling.

4.4 GF Estimates Geodesic Recall on
Drosophila Connectome

The study of brain networks, or connectomics, is quickly emerging

as an important source of real world data challenges [49]. Recently,

the entire larval Drosophila mushroom body connectome–the learn-

ing and memory system of the fly—was estimated and released [20].

It was obtained via manual labeling and semi-automatic machine

vision segmentation of serial section transmission electron mi-

croscopy. The 200 nodes of this connectome correspond to 200

distinct neurons in the mushroom body. There are roughly 75000

edges, defined as present between a pair of neurons whenever

Figure 5: Top The right Drosophila connectome after adja-
cency spectral embedding into six-dimensional space just
showing two of the dimensions, with colors correspond-
ing to different cell types: Kenyon Cells (KC), Input Neu-
rons (MBIN), Output Neurons (MBON), and Projection Neu-
rons (PN). Bottom Geodesic precision versus geodesic recall
for various algorithms using cell type as the true label. GF
achieves a higher recall for essentially all precisions. The
values of k for this experiment range from 50 to 250 with
increments of 50

there exists as least one synapse between them. The edges con-

nect vertices in four known classes of cells: kenyon cells, input

neurons, output neurons, and projection neurons [35]. A semi-

parametric analysis of the connectome, using adjacency spectral

embedding [44], results in a six-dimensional latent representation

of each node [35]. Because this connectome is directed, the first

three dimensions correspond to “outgoing” latent features, whereas

the next three correspond to “incoming” latent features. Figure 5

(top) shows two of the six dimensions. The bottom panel of Figure

5 shows the geodesic precision versus geodesic recall for various

algorithms using cell type as the true label. GF achieves a higher

recall at essentially all precision levels.

5 DISCUSSION
We present a geodesic distance learning method using Geodesic

Forests (GF) with a novel splitting rule called Fast-BIC. We also

introduce the geodesic precision and recall evaluation metrics. GF is
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empircally robust to noise dimensions, as demonstrated by several

different simulation settings, many different added noise dimen-

sions, and the real-world Drosophila connectome. Geodesic learning

is an essential statistical primitive for many subsequent inference

tasks. For example, manifold learning, high-dimensional clustering,

anomaly detection, and vertex nomination [52] all rely on geodesic

learning. More generally, any Learning to rank (LTR) problem can

be formulated as a geodesic learning problem. An LTR problem

aims to provide an optimal ordering of a collection of items. Rather

than computing an absolute score for each item, it computes a rela-

tive score between two or more items. This score is often a function

of some distance between the two items. In LTR problems such as

recommendation systems, the items to recommend often live in a

high dimensional noisy space. In such a case, we hypothesize that

the geodesic distance is an appropriate distance measure. Moreover,

while we only considered unsupervised geodesic learning, the ideas

presented here immediately lend themselves to supervised geodesic

learning as well.

We did not explore any theoretical claims associated with the al-

gorithms presented here. Indeed, we did not even evaluate whether

any of these algorithms approximate the precise geodesic. Rather,

our metric is concerned purely with getting the geodesic neighbors

correct. However, prior work using random projections to learn

low-dimensional manifolds [15] and for vector quantization [16]

have theoretical guarantees associated with the intrinsic dimension

of an assumed latent manifold. We posit that those guarantees could

be transferred to this setting. Another potential direction would be

to address the theoretical bounds that geodesic learning can provide

with respect to Bayes optimal performance on both unsupervised

and supervised learning problems. For example, 1-nearest neighbor

provides tight bounds on Bayes optimal classification [5, 18]. Ideas

presented in previous work on bounding Bayes performance using

ranking algorithms could also extend to this setting.

GF is available as part of the open source package “SPORF” which

includes a Python as well as an R package, available at https://

neurodata.io/sporf/.
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A SUPPLEMENTAL FIGURES
Additional experiments demonstrating GF’s ability to correctly esti-

mate geodesic distances are provided in Figure 6. Here, we further

explore the effect of low-level noise, similar to the experiments pre-

sented in Section 4. We vary the number of noise dimensions from

2 to 10, and compare GF to the same algorithms as in Section 4, but

this time on unnormalized data. GF achieves high geodesic precision

for all simulation settings, while the remaining algorithms degrade

in performance significantly, even in this setting of low-level noise.

Figure 6: Geodesic precision at k=50 with varying noise di-
mension d ′ from 2 to 10, using N = 1000 samples, and p = 3

non-noisy dimensions. GF is robust to adding noise dimen-
sions while the other algorithms deteriorate to chance in
performance.

B ALGORITHMS
The pseudocode used to build each tree in a geodesic forest is

given in Algorithm 1. The splitting methods used in this paper are

described in algorithms 2 and 3.

Algorithm 1 Build a geodesic decision tree. Using sparse linear

combinations of features for 1-dimensional projections, find the

best splitting point among d of such projections.

1: procedure BuildTree(X ,d,Θ)
2: Input:
3: X : a subset the of training data of dimension p
4: d : dimensionality of the projected space

5: Θ: set of split eligibility criteria

Output: a tree t
6:

7: if Θ not satisfied then
8: return LeafNode(X ) ▷ Create a leaf node

9: else
10: A←

[
a1...ap

]
∼ fA ▷ sample random p × d matrix

11: X̃ = ATX ▷ random projection into new feature space

12: min_t*←∞

13: for i ∈ {1, ...,d} do ▷ test each projected dimension

for optimal split

14: X̃ (i) ← X̃ [:, i]
15: (midpt, t*) = ChooseSplit(X̃ (i)) ▷ Use either

Algorithm 2 or 3

16: if (t* <min_t*) then ▷ store best splitting

dimension and split point

17: bestDim = i

18: splitPoint = midpt

19: end if
20: end for
21: X

left
= {x ∈ X |x(bestDim) < splitPoint}

22: X
right
= {x ∈ X |x(bestDim) ≥ splitPoint}

23: Daughters.Left = BuildTree(X
left
,d,Θ)

24: Daughters.Right = BuildTree(X
right
,d,Θ)

25: return Daughters

26: end if
27: end procedure
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Algorithm 2 Find the optimal split of one-dimensional data, in

terms of the two-means objective.

1: procedure TwoMeans1D(Z )
2: Input: Z ∈ Rn : set of one-dimensional input values, one per

n data points

3: Output: Optimal two-means split point, splitPoint, between

points in Z and the corresponding sum of squared distances to

the two means, minVars

4: µ̂1 ← min(Z )
5: C1 ← {µ̂1}
6: C2 ← Z\ C1
7: µ̂2 ←

1

n2

∑
zi ∈C2 zi ▷ mean of C2

8: vars←
∑
2

j=1
∑
zi ∈Cj (zi − µ̂ j )

2 ▷ sum of variances

9: minVars← vars

10: while C2 , ∅ do
11: z ← min(C2)

12: C1 ← C1 ∪ {z}
13: C2 ← C2 \ {z}
14: µ̂1 ←

1

n1

∑
zi ∈C1 zi ▷ mean of C1

15: µ̂2 ←
1

n2

∑
zi ∈C2 zi ▷ mean of C2

16: vars←
∑
2

j=1
∑
zi ∈Cj (zi − µ̂ j )

2

17: if vars < minVars then
18: minVars← vars

19: splitPoint← (max(C1) +min(C2))/2 ▷ Midpoint

between C1 and C2

20: end if
21: end while
22: return (splitPoint, minVars)

23: end procedure

Algorithm 3 Fast-BIC1D: Find the optimal split, in terms of BIC

score, of one-dimensional data with two classes.

1: procedure Fast-BIC1D(Z )
2: Input: Z ∈ Rn : data matrix containingn points in 1 dimension

3: Output: (splitPoint, minBIC): The midpoint and estimated BIC

score that correspond to the best partition between the points

in Z
4: µ̂1 ← min(Z )
5: C1 ← {µ̂1}
6: C2 ← Z\ C1
7: µ̂2 ←

1

|C2 |

∑
zi ∈C2 zi ▷ mean of C2

8: BIC_curr←
∑
2

j=1
∑
zn ∈Cj (zn − µ j )

2

9: minBIC_curr← dists_sq

10: while C2 , ∅ do
11: z ← min(C2)

12: C1 ← C1 ∪ {z}
13: C2 ← C2 \ {z}
14: for j = 1, 2 do
15: nj = |Cj |
16: ŵ j = nj/n

17: µ̂ j ←
1

nj
∑
zi ∈Cj zi ▷ mean of Cj

18: σ̂j
2 ← 1

nj
∑
zi ∈Cj (zi − µ̂ j )

2 ▷ variance of Cj

19: end for
20: σ̂ 2

comb
← 1

n
∑
2

j=1
∑
zi ∈Cj (zi − µ̂ j )

2

21: BIC_diff_var← −2(n1 log ŵ1−
n1

2
log 2πσ̂ 2

1
−n2 log ŵ2+

n2

2
log 2πσ̂2

2)

22: BIC_same_var ← −2(n1 log ŵ1 −
n1

2
log 2πσ̂ 2

comb
−

n2 log ŵ2 +
n2

2
log 2πσ̂ 2

comb
)

23: BIC_curr← min (BIC_same_var, BIC_diff_var)

24: if BIC_curr < minBIC then
25: minBIC← BIC_curr

26: splitPoint← (max(C1) +min(C2))/2 ▷ Midpoint

between C1 and C2

27: end if
28: end while
29: return (splitPoint, minBIC)

30: end procedure

C SIMULATION SETTINGS
Here we detail how each synthetic data set used in numerical ex-

periments was generated. These data sets were chosen to capture

a range of interesting cases that can illuminate the challenges of

geodesic distance estimation in noisy settings.

• Linear: each point x is parameterized by p = (4t , 6t , 9t),
with t ∈ (0, 1) where t is sampled from a grid with equal

spacing.

• Helix: each pointx is parameterized byp = (t cos(t), t sin(t), t),
with t ∈ (2π , 9π ) on an equally spaced grid.

• Sphere: each point x is parameterized by

p = (r cos(u) sin(v), r sin(u) sin(v), r cos(v)), withu ∈ (0, 2π ),
v ∈ (0,π ) and r = 9 where u, v are sampled form a grid with

equal spacing.
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• GaussianMixture: each point x is drawn from a mixture of

Gaussian distributions:

3∑
j=1

ŵ jN(µ j , Σ), with (π1,π2,π3) =

(0.3, 0.3, 0.4), (µ̂1, µ̂2, µ3) = (


−3

−3

−3

 ,

0

0

0

 ,

3

3

3

) and Σ = I is the

identity matrix.

D FAST-BIC1D DERIVATION
The BIC test is an alternative to the twomeans split criteria.We rank

potential splits on the BIC score obtained assuming a model with a

mixture of two Gaussians; the elements along a given dimension to

the left of the cut point belong to one Gaussian and the elements

to the right belong to another Gaussian (the elements are in sorted

order). For example, if the elements are [1, 3, 4, 6] along a dimension,

possible splits are [[1],[3, 4, 6]] , [[1, 3],[4, 6]] , [[1, 3, 4],[6]]. In

the case [[1, 3],[4, 6]], we assume the model to comprise of two

Gaussians, where [1,3] are sampled from the first and [4,6] are

sampled from the second. We choose the split that results in the

lowest BIC score. We then repeat the process for all dimensions and

choose the dimension that gives the split resulting in the lowest

BIC score. We use the following notation in the below derivation:

• Z : the set of n points in one-dimension

• s : the current split point
• nj : Number of elements in cluster j

• w j : probability of choosing cluster j,w j =
nj
n

• µ j ,σ
2

j : mean and variance of cluster j

Computing the log likelihood is slightly different here than for

the regular GMM. This is because we already know which element

belongs in which cluster, so we can compute the log likelihood

directly, without the EM step.

log ℓ(Z ) = log ℓ({zn }n<s ) + log ℓ({zn }n>s )

log

∏
n

P(xn ; µ,σ
2,w) =

∑
n<s
[logw1 + logN(xn ; µ1,σ

2

1
I )]+∑

n>s
[logw2 + logN(xn ; µ2,σ

2

2
I )] (7)

Substituting the expression forw1 andw2 and expanding the log

Gaussian, we get the following:

log

∏
n

P(xn ; µ,σ
2,w) = n1 logw1−

n1
2

log 2πσ 2

1
−
∑
n1

| |xn1
− µ1 | |

2

2σ 2

1

+

n2 logw2 −
n2
2

log 2πσ 2

2
−
∑
n2

| |xn2
− µ2 | |

2

2σ 2

2

(8)

The parametersw1,w2, µ1, µ2, σ1 and σ2 are unknown. We use

the maximum likelihood estimates as a plug-in for each:

ŵ1 = n1/N ,

µ̂1 =
1

n1

∑
n<s

xn ,

σ̂1 =
1

n1

∑
n<s
| |xn − µ̂1 | |

2,

with the parameters for j = 2 defined equivalently. Thus the right

hand side of Equation (8) can be expressed as

n1 logw1 −
n1
2

log 2πσ̂ 2

1
−
n1
2

+ n2 logw2 −
n2
2

log 2πσ̂ 2

2
−
n2
2

(9)

In the BIC formula, we compute the negative log likelihood. -

log

∏
n P(xn ; µ̂, σ̂

2, ŵ) = −n1 log ŵ1 +
n1

2
log 2πσ̂ 2

1
+

n1

2
−n2 log ŵ2

+
n2

2
log 2πσ̂ 2

2
+

n2

2
.
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