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ABSTRACT
Protein interactions are important in a broad range of biological
processes. Traditionally, computational methods have been devel-
oped to automatically predict protein interface from hand-crafted
features. Recent approaches employ deep neural networks and
predict the interaction of each amino acid pair independently. How-
ever, these methods do not incorporate the important sequential
information from amino acid chains and the high-order pairwise
interactions. Intuitively, the prediction of an amino acid pair should
depend on both their features and the information of other amino
acid pairs. In this work, we propose to formulate the protein in-
terface prediction as a 2D dense prediction problem. In addition,
we propose a novel deep model to incorporate the sequential infor-
mation and high-order pairwise interactions to perform interface
predictions. We represent proteins as graphs and employ graph neu-
ral networks to learn node features. Then we propose the sequential
modeling method to incorporate the sequential information and re-
order the feature matrix. Next, we incorporate high-order pairwise
interactions to generate a 3D tensor containing different pairwise
interactions. Finally, we employ convolutional neural networks to
perform 2D dense predictions. Experimental results on multiple
benchmarks demonstrate that our proposed method can consis-
tently improve the protein interface prediction performance.

CCS CONCEPTS
• Applied computing → Bioinformatics; Computational biol-
ogy; • Computing methodologies → Neural networks.
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protein interface prediction, graphs neural networks, structural in-
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1 INTRODUCTION
Protein interactions play an important role in biological processes.
Interacted proteins form complicated protein networks known as
protein complexes, which can perform a vast range of biological
functions [43]. Protein interactions occur via interfaces, bonds
of amino acids from different proteins. Locating protein inter-
faces requires to identify all amino acid pairs, which is an im-
portant yet challenging problem [17, 25]. Experimental identifi-
cation is expensive and time-consuming [11]. Computational meth-
ods [2, 5, 21, 31, 35, 40] have been proposed to automatically pre-
dict protein interfaces. These methods focus on constructing hand-
crafted features from different domains, then applying conventional
machine learning approaches for interface prediction.

Deep learning methods have shown great success on grid-like
data such as texts [22? ], images [23, 29, 36], and non-grid data such
as graphs [13, 19, 42]. Following the success, recent studies [12, 37]
propose to apply deep learning methods to learn features for amino
acids and perform interaction predictions. Existing work [37] folds
proteins into 4D grid-like data and employ 3D Convolutional Neu-
ral Networks (CNNs) for feature learning. This is followed by dense
layers to determine whether the two amino acids interact with each
other. However, the topological structure information is ignored by
representing proteins as grid-like data. Such information is impor-
tant to decide the inherent properties of amino acids and proteins.
In addition, recent work [12] represents proteins as graphs, where
nodes are amino acids and edges are affinities between nodes. Then
it applies Graph Neural Networks (GNNs) to learn node features.
For any amino acid pair, the node features are concatenated and
a classifier is built based on these features. However, the original
sequential information from amino acid chains is ignored when
converting from proteins to graphs. In addition, existing studies
predict each amino acid pair separately such that only the infor-
mation from the input amino acid pair is considered. Due to the
complex structure of proteins, the prediction of a amino acid pair
may also depend on other amino acids. Such relations in known as
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the high-order pairwise interactions while none of existing work
explicitly incorporate them.

To overcome these limitations, we propose a novel framework
to solve the protein interface prediction problem. Instead of identi-
fying each amino acid pair independently, we formulate it as a 2D
dense prediction problem, which predicts all possible pairs simul-
taneously. In addition, we propose a novel deep learning model to
solve it. Similar to existing work [12], we also represent proteins as
graphs and employ GNNs to aggregate neighborhood information
and learn node features. To incorporate the sequential informa-
tion of amino acid chains, we propose the sequential modeling to
reorder the features and preserve original sequential information.
Such a step also enables the use of convolution operations in the
latter stage. Next, we construct the high-order pairwise feature in-
teractions based on node features, resulting in a 3D tensor. For each
location, it stores the feature interaction of the corresponding amino
acid pair. Note that the sequential information is also preserved in
this tensor. Then 2D CNNs are employed to extract high-level pair-
wise interaction patterns and make predictions for all pairs as a 2D
dense prediction task. Furthermore, to address the data imbalance
problem, we not only incorporate cross-protein amino acid pairs
for training, but also involve in-protein amino acid pairs. We eval-
uate our methods on the three cross-protein docking and binding
affinity benchmarks [15, 16, 39]. Experimental results show that
our methods consistently outperform all state-of-the-art methods
and achieve over 3% performance improvement. The results demon-
strate the effectiveness of our proposed sequential modeling and
high-order pairwise interaction method that incorporate both se-
quential information and high-order pairwise interaction patterns.
Overall, our major contributions are summarized as follows:

• We propose a novel formulation for the protein interface
prediction problem. We consider it as a 2D dense predic-
tion problem, which is a structured prediction problem and
predicts all amino acid pair simultaneously.

• We propose a novel deep learning method, which captures
structural information from protein graphs, sequential in-
formation from original amino acid chains, and high-order
pairwise interaction information between different amino
acid pairs.

• We obtain the new state-of-the-art performance on three pro-
tein docking and binding affinity benchmarks. Experimental
results show the effectiveness of our proposed sequential
modeling and high-order pairwise interaction method.

2 RELATEDWORK
Protein interface prediction has been studied intensively. To pre-
dict protein interfaces between protein complexes, two categories
of methods have been proposed, those are, partner-independent
prediction and partner-specific prediction [1]. The former is to
predict whether there is an interaction between an amino acid in
the given protein with any other protein [8, 20, 43]. The latter is
to predict if there is an interaction between any two amino acids
from two different proteins [25, 31]. Partner-specific prediction
has been demonstrated to achieve better performance due to the
use of interaction information in protein complexes [1, 2]. In this

work, we focus on the partner-specific prediction that we predict
interactions between any two amino acids from different proteins.

There exist several families of techniques for partner-specific
prediction. Template-based methods predict interfaces in a query
complex by computing interface and structure similarities to a given
template complex [38]. One limitation is that the prediction can be
performed only when there exit template complexes. Docking meth-
ods [27, 32] typically predict several possible protein complexes
from the given proteins, then use ranking criteria to decide the
most native one. The interface is then identified after deciding the
specific complex structure. Docking methods have shown similar
performance with the template-based methods. Another big family
is the machine learning-based methods. These methods focus on
constructing features then use machine learning techniques for
classification. The features are sourced from different domains. The
used machine learning techniques include SVM [5] and random
forests [34], etc.

The latest developed methods [12, 37] emphasize the represen-
tations of proteins and amino acids and have achieved the best
reported performance. In the work [37], an amino acid is repre-
sented as 4D grid-like data. The first 3 dimensions are the spatial
coordinates of all atoms in the amino acid and the last one indicates
the types of atoms. Then 3D CNNs are employed for amino acid
feature learning and dense layers are to predict if the two amino
acids interact or not. The work [12] represents proteins as graphs
and use GNNs to aggregate structural information, followed by
the dense layers for binary classification. However, using dense
layers to classify each amino acid pair independently neglects the
important high-order pairwise interactions that the prediction of
one amino acid pairs may depend on the information from other
amino acid pairs. In addition, the former fails to consider topologi-
cal structure information by representing proteins as grid-like data,
whereas the latter does not incorporate sequential information by
representing proteins as graphs which are order-invariant.

Most methods for protein interface prediction are evaluated on
the family of Docking Benchmark (DB) datasets, which contain
DB2 [24], DB3 [15], DB4 [16] and DB5 [39]. The first three are all
the subsets of DB5, which is the largest and most recent benchmark
dataset for interface prediction. It also contains the most labeled
examples for the problem. There are 230 protein complexes in
total, and the the number of labeled interacted amino acid pairs is
20875. All the proteins carry structural and sequential information.
Currently, DB5 is the most popular dataset for protein interface
prediction, like the ImageNet [30] in the computer vision domain.
Before DB5 was generated, DB4 and DB3 were intensively used to
evaluate different methods.

To overcome limitations in existing works, we propose an end-
to-end framework that incorporates structural and sequential in-
formation and high-order pairwise interaction patterns for protein
interface prediction. We conduct experiments on three Docking
Benchmark datasets to demonstrate the effectiveness of our pro-
posed methods.

3 METHODS
The structural and sequential information are both important to
determine the properties of proteins. However, existing work [12]
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represents proteins as graphs which can only capture structural
information but neglect the sequential information of the original
amino acid chains. In addition, existing methods [12, 31, 37] classify
each amino acid pair separately, through which only the informa-
tion of input amino acid pair is considered. However, the prediction
of an input amino acid pair may also depend on the information
of other amino acid pairs. Such relations are known as high-order
pairwise interactions, and none of existing work explicitly consid-
ers them. To incorporate all of structural information, sequential
information, and high-order pairwise interactions, we propose a
novel formulation for the protein interface prediction problem and
a novel deep learning method to solve it.

3.1 Problem Formulation
A protein complex is composed of two proteins, known as the
ligand protein and the receptor protein. Suppose the ligand pro-
tein has nl amino acids and the receptor protein has nr amino
acids, there are nl × nr possible amino acids pairs. Protein in-
terface prediction problem aims at predicting if there exists an
interaction within each amino acid pair. Following the existing
work [12], we represent proteins as graphs, where nodes repre-
sent amino acids and edges indicate affinities between amino acids.
Formally, we define the feature matrix of the ligand protein as
Ĥ l = [ĥl1, ĥ

l
2, · · · , ĥ

l
nl ] ∈ R

d×nl and the feature matrix of the re-
ceptor protein as Ĥ r = [ĥr1 , ĥ

r
2 , · · · , ĥ

r
nr ] ∈ R

d×nr where d denotes
that each node has a d-dimensional feature vector.

The existing work [12] formulates it as a binary classification
problem that predicts the interaction between each node pair sepa-
rately. Specifically, for the the i-th node in Ĥ l and the j-th node in
Ĥ r , it concatenates the corresponding feature vectors ĥli and ĥrj ,
then uses dense layers as a binary classifier to determine whether
the two nodes interact with each other. However, such a formula-
tion ignores high-order pairwise interactions that the interaction
prediction of an amino acid pair may also depend on the informa-
tion of other amino acid pairs. In addition, converting amino acids
to graphs loses the sequential information of the original amino
acid chains.

To address these issues, we incorporate the sequential informa-
tion and formulate the protein interface prediction as a 2D dense
prediction problem. First, given the node feature matrices Ĥ l and
Ĥ r , we propose the sequential modeling (SM) to restore the sequen-
tial information, which results in the order-preserved node feature
matrix H l = [hl1, h

l
2, · · · , h

l
nl ] ∈ R

d×nl for the ligand protein and
H r = [hr1 , h

r
2 , · · · , h

r
nr ] ∈ R

d×nr for the receptor protein. Next, we
propose the high-order pairwise interaction (HOPI) to generate a
3D tensor Q ∈ Rnl×nr×c where each Qi j ∈ R

c denotes the feature
combination of the i-th node in H l and the j-th node in H r . Finally,
based on the tensor Q , the protein interface prediction problem
predicts a 2D matrix O ∈ {0, 1}nl×nr . Each element of O can be
either 0 or 1. For location Oi, j , 1 means there exists an interaction
between i-th amino acid of the ligand protein and j-th amino acid
of the receptor protein, while 0 indicates there is no interaction.
Since the predictions O is generated based on the whole tensor Q ,
both sequential information and high-order pairwise interactions
are incorporated.

(a) (b)

Figure 1: Structure view and sequence view of the protein
complex 2B42. The protein complex contains two proteins,
know as the ligand protein and the receptor protein. (a) is
the structure view, where the red one denotes the ligand pro-
tein and the blue one denotes the receptor protein. (b) shows
the first 80 amino acids in the amino acid sequence chains
of the ligand protein and the receptor protein at the top and
bottom, respectively. The figures are sourced from the Pro-
tein Data Bank website https://www.rcsb.org/ and [9, 28].

3.2 Sequential Modeling
Both structural and sequential information are important for study-
ing properties of protein complexes. As shown in Figure 1, represent-
ing proteins as graphs can well-convey the structural information.
It is a popular way since we can employ graph neural networks
to pass, transform and aggregate structural information across
graphs [41]. However, the sequential information from the origi-
nal amino acid chains is lost when converting proteins to graphs
because of order-invariant property of graphs. Such a sequential
structure is the primary structure of a protein, which is unique to
other proteins and defines important functions of the protein.

To overcome this limitation, we propose the sequential modeling
to preserve the sequential information of the original input amino
acid chains for a given protein. Formally, given an input protein
withm amino acids, we first record the original sequential order
set I = (1, 2, · · · ,m). Then we formulate it as graphs and map each
node in the graph with the index in I . Next, we employ graph neural
networks to learn node features, denoted as Ĥ = [ĥ1, ĥ2, · · · , ĥm ] ∈

Rd×m , where d is the dimension of a node feature vector. Then we
reorder the feature matrix Ĥ based on the order set I as

H = reorder(Ĥ , I ) ∈ Rd×m . (1)

Then the node feature vectors in the new feature matrix H has a
consistent order with the original amino acid sequential order. In
this way, feature matrix H successfully captures both structural
information from the protein graph and the sequential information
from the amino acid chains. We believe such a reordering operation
helps capture complex inherent relationships among amino acids,
thereby resulting in more accurate interface prediction.

Research Track Paper  KDD '20, August 23–27, 2020, Virtual Event, USA

681

https://www.rcsb.org/


2

1
4

3

2 4

3

5

1

2

1
4

3

2 4

3

5

1

Weights Sharing

SM

SM

CNN Layers

GNN Layers

GNN Layers

Prediction

HOPI

1

1
1

1 32 4

1 2 3 4 5

Figure 2: The overall architecture of our proposedmethods. Given a ligand protein and a receptor protein, the task is to predict
the interface between them. The two proteins are represented as graphs, where nodes represent amino acids and edges indicate
affinities between nodes. Here we use the example that one graph contains 4 nodes and the other contains 5, and each node
has 2 features. GNN layers are used to aggregate structural information and the weighs are shared by the two graphs. After
that, sequential modeling (SM) is used to restore the sequential information from the original amino acid chains, resulting
in two node feature matrices with the dimensions of 2 × 4 and 2 × 5, respectively. Then the high-order pairwise interaction
(HOPI) is performed on these two matrices to build pairwise interactions for any two amino acids from different proteins.
Concatenation is used to build interactions between two amino acids. The achieved 3D tensor is with the dimension of 4× 5× 4
and stores in-protein structural and sequential information and cross-protein pairwise interactions. Then 2D CNN layers are
used for dense prediction, which produces the output feature map with the dimension of 4 × 5. The pixel value of each pixel
on the output is either 1 or 0 to indicate an interaction for the corresponding amino acid pair.

3.3 High-Order Pairwise Interactions
Protein interface prediction aims at determining interactions be-
tween two amino acids from different proteins. The protein struc-
ture is the 3D arrangements in amino acid chains and always
folds into specific spatial conformations to enable biological func-
tions [26]. It is possible that any two amino acids from different
proteins can interact with each other. Existing methods [12, 31, 37]
predict the interaction for each amino acid pair separately. One
amino acid is picked from the ligand protein graph and the other
is from the receptor protein graph. The features of the two amino
acids are concatenated and passed to dense layers for binary clas-
sification. However, high-order context for amino acid pairs are
ignored, which can help extract the important high-level interaction
patterns. Hence, we propose the high-order pairwise interactions
to learn complex interaction patterns for interface prediction.

Suppose we have the sequence-preserved node feature matrix
H l = [hl1, h

l
2, · · · , h

l
nl ] ∈ R

d×nl for the ligand protein and H r =

[hr1 , h
r
2 , · · · , h

r
nr ] ∈ R

d×nr for the receptor protein. We compute
a third-order tensor Q ∈ Rnl×nr×c . Each Qi j ∈ Rc in Q is the

transformation of hli and hrj . It can be computed by either summa-
tion of hli and hrj or the concatenation of hli and hrj . The proposed
HOPI allows the tensorQ to store structural information, sequential
information, and inherent high-order pairwise interactions infor-
mation. Then we employ convolutional neural networks (CNNs)
to perform 2D dense predictions based on the tensor Q. Stacking
several CNN layers extracts high-level pairwise interaction patterns
from a region containing a subsequence from the ligand protein,
a subsequence from the receptor protein, and inherent high-order
pairwise interactions from the two subsequences. Finally, the out-
putO ∈ {0, 1}nl×nr indicates the interactions between any possible
amino acid pairs. Note that the prediction of Oi, j depends not only
on Qi j but also on all feature interactions within its receptive field.

The overall architecture is illustrated in Figure 2. Given a ligand
protein and a receptor protein, GNNs are used to pass, transform
and aggregate the structural information in protein graphs. All
GNN layers are shared by the two proteins. Then the proposed
sequential modeling performs reordering to preserves the sequen-
tial information of the original amino acid chains for both proteins.
Next, the proposed high-order pairwise interaction method produce
a 3D tensor containing feature interactions for all amino acid pairs.
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Finally, the tensor is passed to 2D CNNs for 2D dense prediction.
The output map contains interaction predictions for all amino acid
pairs. Note that any modern CNN architecture such as ResNet [14],
UNet [29] or DeepLab [6] can be flexibly integrated into our frame-
work to perform dense prediction and the whole system can be
trained end-to-end.

3.4 Graph Neural Networks
We employ graph neural networks to aggregate structural infor-
mation. Suppose a node hi in the protein graph has n nodes in its
neighborhood. The neighboring node featurematrix isHi ∈ R

dN ×n ,
and the neighboring edge feature matrix is Ei ∈ Rd

E×n , where dN
is the dimension of node feature vectors and dE is the dimension
of edge feature vectors. We first aggregate both node and edge
features from neighborhood as

Zi = tanh(W NHi +W
EEi ) ∈ R

dN ×n , (2)

whereW N ∈ Rd
N ×dN ,W E ∈ Rd

N ×dE , and tanh(·) is an element-
wise operation.W N andW E are used to perform linear transfor-
mation on the neighboring node features and edge features, respec-
tively. The node feature matrix Hi and edge feature matrix Ei can
be treated as a set of node vectors [hi1, · · · , hi j , · · · , hin ] and a set
of edge vectors [ei1, · · · , ei j , · · · , ein ], respectively. Note that node
vectors in Hi and edge vectors in Ei are in a consistent order. An
edge ei j links the center node hi to the corresponding node hi j . The
achieved matrix Zi aggregates information from both nodes and
edges within the neighborhood. Each vector zi j ∈ Rd

N
contains

information from the node hi j and the edge ei j .
We use two methods to transform neighborhood information to

the center node. The first one is to simply perform average on all
neighboring vectors zi j , j = 1, · · · ,n, namely neighborhood aver-
age (NeiA). Another approach is neighborhood weighted average
(NeiWA), which essentially assigns relatively larger weights to these
important vectors while smaller weights to the ones that are less
important, then performs the weighted average on the neighboring
nodes and edges. We introduce the two approaches below.

3.4.1 Neighborhood Average. For a node hi in the protein graph,
the output of a GNN layer with NeiA is computed as

ĥi = hi +
1
n
Zi1n ∈ Rd

N
, (3)

where 1n ∈ Rn denotes a vector of all ones of dimension n. Essen-
tially, we perform average across all the vectors in Zi , and the final
output is obtained by adding it with the residual identity map of
the input.

3.4.2 NeighborhoodWeighted Average. It is natural to consider that
not all entries in Zi contribute equally when aggregating neighbor-
ing information.Wewant to grant larger weights to these important
node and edges for the center node. Formally, for a given node hi ,
the node-wise forward propagation of a GNN layer with NeiWA is
computed as

a = softmax(ZTi q) ∈ R
n , (4)

ĥi = hi +
1
n
Zia ∈ Rd

N
, (5)

!$

!$ !%

!%

"

Figure 3: An illustration of incorporating in-protein pair-
wise information to the tensor Q. nl denotes the number of
nodes in the ligand protein and nr denotes the number of
nodes in the receptor protein. c is the number of channels.
The nl × nl patch stores in-protein structural and sequen-
tial information and in-protein pairwise interactions in the
ligand protein. The nr × nr patch is similar for the receptor
protein. Two nl × nr patches store in-protein structural and
sequential information and cross-protein pairwise interac-
tions.

where q ∈ Rd
N
is a trainable vector which is trained during the

whole training process, and softmax(·) is an element-wise softmax
operation. Basically, projection from each vector in Zi to the train-
able vector q is performed to compute the weight vector a, in which
each entry is the importance score for the corresponding vector in
Zi . After this, the weighted average is performed onZi to aggregate
information from more informative nodes and edges to the center
node. The final output is achieved by adding back the input node
features.

3.5 Incorporating In-Protein Pairwise
Interactions

Protein interface prediction is to determine whether there are in-
teractions between amino acids from two different proteins. Es-
sentially, it investigates cross-protein pairwise interactions. The
interactions can be partly determined by features and inherent
properties of amino acids in both proteins. We name an interacted
amino acid pair as a positive sample and a non-interacted pair as a
negative sample. Generally, the number of positive samples is sig-
nificant less than that of the negative samples in a protein complex.
Hence, it causes the data unbalance problem. To address this issue,
we propose to incorporate in-protein interaction information to
increase the number of positive examples, and hence improve the
predictions of cross-protein interactions.

Specifically, we propose to use HOPI to capture both in-protein
and cross-protein pairwise interactions. Given the sequence-reserved
node feature matrix H l ∈ Rd×nl for the ligand protein and H r ∈

Rd×nr for the receptor protein, the achieved tensor Q is expanded
to the size of (nl +nr )× (nl +nr )×c . An illustration of the tensor Q
is provided in Figure 3. Either of the two regions nl ×nl and nr ×nr
contains in-protein structural and sequential information, and in-
protein pairwise interactions. The two regions nl × nr are same
as those introduced in Section 3.3, which contain cross-protein in-
teractions. 2D CNNs are performed such that in-protein structural
and sequential information, in-protein pairwise interactions, and
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cross-protein pairwise interactions are all captured for interface
prediction.

3.6 Training Strategies
We define a training sample as a pair of amino acids and is labeled
by their interaction. All samples in a protein complex can be treated
as a sub-epoch. During one iteration, the network is trained on a
part of samples in a protein complex. In this way, two subgraphs on
the ligand and the receptor graphs are updated when aggregating
neighboring structural information using GNNs. A small patch is
updated on the tensor Q when performing dense prediction using
CNNs. A sub-epoch is finished when all training samples in one
graph complex are used. And an epoch is finished when all training
samples in all graph complexes in the dataset are passed to the
network.

When considering the cross-protein pairwise interactions only,
a common situation is that the number of positive samples is much
less than that of the negative samples in a protein complex. Down-
sampling on the negative samples is usually required to reach a
reasonable predefined positive-negative (PN) ratio, which allows
the training of the network. However, all negative samples are
kept in the prediction phase. One way for data augmentation is to
incorporate in-protein pairwise interactions. By doing this, some in-
protein positive samples could be added in the training process. This
is expected to compensate the small PN ratio in the cross-protein
pairwise interactions.

4 EXPERIMENTAL STUDIES
4.1 Datasets
We use three datasets to evaluate our proposed methods. They all
come from the popular Docking Benchmarks, which include several
protein-protein docking and binding affinity benchmarks. The first
one is generated from Docking Benchmarks version 5 (DB5) [12,
39]. It is the largest and the most recent dataset which contains
complicated protein structures for protein interface prediction. The
dataset was originally split into training, validation and test sets [12,
31, 37]. The training set contains 140 complexes, the validation set
contains 35, and the test set contains 55 complexes. Each complex
is a pair of ligand and receptor proteins. A data sample is a pair of
amino acids from different proteins and their interaction. The total
number of positive samples in the dataset is 20857, which is much
less than the number of negative samples. The PN ratio is around
1:1000. The Docking Benchmark version 4 (DB4) [16] and Docking
Benchmark version 3 (DB3) [15] are two subsets of the DB5. The
DB4 contains 175 complexes and 16004 positive samples, and the
DB3 contains 127 complexes and 12335 positive samples in total.

All dataset are mined from the Protein Data Back [4]. Each pro-
tein has original sequential information from amino acid chains.
The numbers of amino acid in protein sequences ranges from tens
to thousands. The protein structures are obtained from X-ray crys-
tallography or biological mutagenesis experiments [1]. In protein
graphs, nodes are amino acid and edges are affinities between nodes.
both nodes and edges contain features from protein structures and
sequences.

We use the same node features as in [1, 12]. The node features
are computed based on different properties of amino acid. The

residue depth is defined as the minimal distance for an amino acid
to the protein’s surface. It’s normalized in the range from 0 to 1 and
has been demonstrated to carry valuable information for amino
acid interactions. The amino acid composition defines the count
of a specific amino acid in the direction and opposite direction
of the side chain for the amino acid of interest. The threshold
along two directions is the minimal atomic distance of 8A. The
amino acid composition varies dramatically among amino acids,
which is vital to determine the properties of an amino acid. The
protrusion index for an amino acid is a collection of statistics of
protrusion values for all atoms along its side chain. These features
deliver important inherent structural information and properties
for the amino acid of interest. They are combined and concatenated
together in a consistent order, which results in the total number
of node features to be 76. We use the same edge features as in the
work [12]. Each edge feature vector contains 2 features. One is the
normalized distance between two amino acids and the other is the
angle between two normal vectors for the two amino acid planes.

Recently a larger dataset Database of Interacting Protein Struc-
tures (DIPS) is created by [37]. An amino acid is represented as 4D
grid-like data, which contains spatial information at the atom level
and types of all atoms in the amino acid. However, the structural
information is not considered in the dataset, thus the proteins can
not be represented as graphs.

4.2 Baselines
The baseline methods could be grouped into three categories, these
are, the state-of-the-art conventional machine learning method
BIPSPI [31], the CNN-based method SASNet[37] and the GNN-
based methods DCNN [3], NGF [10], DTNN [33] and NEA [12].
Particularly, the GNN-based baselines use different graph neural
architectures for node feature learning, but use the same dense
layers as binary classifiers to predict the interaction for each pair
of amino acid separately.
BIPSPI is the abbreviation for xgBoost Interface Prediction of
Specific-Partner Interactions. The method combines both struc-
ture and sequence features and uses Extreme Gradient Boosting [7]
with a novel scoring function for protein interface prediction.
SASNet is the Siamese Atomic Surfacelet Network, which uses
only spatial coordinates and types of all atoms in amino acids and
voxelizes all amino acids into a 4D-grid manner. The first three
dimensions deliver the spatial information of an amino acid and
the last dimension is the one-hot representation of types for all
atoms in the amino acid. The paired two amino acid representa-
tions are then passed to 3D CNN with weights sharing, followed
by concatenation operation and dense layers for binary classifica-
tion to decide whether the two amino acids interact with each other.
DCNNs is diffusion-convolutional neural networks for graph-structured
data applying diffusion-convolution operators k times (k-hops) for
node feature learning. A diffusion-convolution operator scans a
diffusion process for each node. For a node of interest, k diffusion-
convolution operators gather information from all nodes that each
of those can connect to the node of interest through k steps. Then
several dense layers are used as a binary classifier to predict the
interactions of two nodes.
NGF is the commonly used graph convolutional networks, which
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first aggregates node information in neighborhood by multiplying
the adjacency matrix to the node feature matrix, and then performs
linear transformations on node features, followed by a nonlinear
function for node feature learning.
DTNN is deep tensor neural networks, which aggregates both node
and edge information in neighborhood. Linear transformations are
applied to node features and edge features separately. After that,
element-wise multiplication on the corresponding node features
and edge features is performed to achieve the final feature vector
for the node of interest. Intuitively, edges serve as gates to help
control information from the corresponding nodes.
NEA is Node and Edge Average, the state-of-the-art GNN-based
method on the used DB5 dataset. Similar as DTNN, it performs
aggregation and linear transformation on both nodes and edge
features in neighborhood. Then node and edge features are aver-
aged and summed together, followed by a residual connection and
nonlinear activation to generate node features.

4.3 Experimental Setup
We use the same data splitting as in all the baseline methods [12,
31, 37] for the DB5 datasets. For the DB4 and DB3 datasets, we first
randomly split each dataset with a ratio of 6:2:2 for the training,
validation and test samples, then fix the splitting in all experiments.
We first only consider the cross-protein pairwise interactions for
training. Similar to the work [12], we keep all the positive examples
and perform down-sampling on the negative samples, resulting in
the PN ratio of 1:10 during the training phase. We maintain the
original PN ratio in the validation and test phases.

For three GNN-based baselines, different numbers of GNN layers
are designed and explored in [12]. We also conduct experiments
using the same numbers of GNN layers for fair comparisons. Our
proposed GNN layer has two variants, neighborhood average and
neighborhood weighted average. We conduct experiments on both
for clear comparisons. For high-order pairwise interaction, we per-
form concatenation on the feature vectors of two nodes from dif-
ferent proteins. Several residual blocks are employed for dense
prediction. A residual block contains two 2D convolutional layers,
the first of which is followed by ReLU as the activation function.
The number of intermediate channels of the first convolutional
layer is set as a hyperparameter. The identity map of the input is
summed to the output of the second convolutional layer, followed
by ReLU to generate the final output.

We use the grid search to tune hyperparameters. The search
space for all hyperparameters is provided in Table 1. Adam Opti-
mizer [18] is employed for training and ReLU is used as the acti-
vation function. Each experimental setting is conducted to run 10
times with different random seeds. All hyperparameters are tuned
based on the validation set. Optimal hyperparameters are tuned on
one run and used across all the 10 runs.

As positive examples and negative examples are not balanced,
we use Receiver operating characteristic (ROC) curve for evaluation.
Specifically, we calculate Area Under the ROC Curve (AUC) based
on the ROC curve for each complex. Then median AUC (MedAUC)
for all the complexes in the test sets is used to evaluate the perfor-
mance of different models. The used MedAUC can grantee very

Table 1: The search space for hyperparameters.

Hyperparameters Search Space
# of the Res. Blocks 3, 4, 5
# of Intermediate Channels 128, 192, 256
Learning Rate e-1, 1e-2, 5e-3, 1e-3
Batch Size 32, 64, 128
# of Epochs 50, 80, 100
Weight Decay 1e-3, 1e-4, 1e-5
Dropout 0.3, 0.5, 0.8

Table 2: Comparison among different models in terms of
MedAUC. All the GNN-based methods apply one GNN layer
for fair and convenient comparison. For the DB5 dataset, re-
sults for all the baselines are directly reported from the pa-
pers [12, 37]. The best performance is in bold.

Method DB5 DB4 DB3
BIPSPI 0.878 (0.003) 0.882 (0.004) 0.891 (0.016)
SASNet 0.876 (0.037) 0.866 (0.025) 0.862 (0.011)
DCNN 0.828 (0.018) 0.843 (0.022) 0.858 (0.015)
NGF 0.865 (0.007) 0.879 (0.017) 0.867 (0.016)
DTNN 0.867 (0.007) 0.868 (0.013) 0.883 (0.008)
NEA 0.876 (0.005) 0.884 (0.009) 0.881 (0.014)
NeiA+HOPI 0.902 (0.012) 0.916 (0.014) 0.910 (0.009)
NeiWA+HOPI 0.908 (0.019) 0.921 (0.018) 0.913 (0.013))

large or very small proteins will not have dramatic effects on the
performance on the whole dataset.

4.4 Results
4.4.1 Performance Study. We apply both variants of our GNN lay-
ers with the same sequential modeling and high-order pairwise
interaction methods, denoted as NeiA+HOPI and NeiWA+HOPI,
respectively. In this section, we compare our approaches with sev-
eral baselines in terms of MedAUC on the three datasets. We fix
the number of GNN layers for all GNN-based methods to be 1 for
convenient comparisons, and the results are reported in Table 2.
Note that for all baseline approaches on the DB5 dataset, we re-
port the results taken from papers [12, 37]. As the results for DB4
and DB3 are not reported in the related papers, we use the same
data splitting and run experiments for all methods. All experiments
run 10 times with random seeds. The average and the standard
deviation of testing MedAUCs across the 10 runs are reported.

We can observe that our proposed approaches outperform all
the baselines significantly. Specifically, the performance of our
NeiA+HOPI is 2.6%, 3.2%, 2.9% higher than the previous best GNN-
based method NEA method over three datasets. Surprisingly, our
proposed NeiWA+HOPI outperforms NEA by a larger margin of
3.2%, 3.7% and 3.2% on the three datasets, respectively. TheNeiA+HOPI
and NeiWA+HOPI also exhibit considerable improvement com-
pared with the conventional machine learning method BIPSPI and
CNN-based method SASNet. Note that the main difference of the
NeiA+HOPI compared with NEA is the use of our proposed SM and
HOPI methods. We preserve the original sequential information in
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Table 3: Comparison among the GNN-based methods in terms of MedAUC on the DB5 dataset. The number of GNN layers
varies from 1 to 4. For all baseline methods, We report the results taken from the paper [12]. The best performance is in bold.

Method Number of GNN Layers
1 2 3 4

NGF 0.865 (0.007) 0.871 (0.013) 0.873 (0.017) 0.869 (0.017)
DTNN 0.867 (0.007) 0.880 (0.007) 0.882 (0.008) 0.873 (0.012)
Node and Edge Average 0.876 (0.005) 0.898 (0.005) 0.895 (0.006) 0.889 (0.007)
NeiA+HOPI 0.902 (0.012) 0.919 (0.015) 0.921 (0.009) 0.915 (0.009)
NeiWA+HOPI 0.908 (0.019) 0.930 (0.016) 0.924 (0.011) 0.914 (0.013)

proteins and use CNNs to capture the high-level pairwise interac-
tion patterns. The superior performance of the NeiA+HOPI demon-
strates the effectiveness of our proposed SM and HOPI methods.
Different from the GNN-based methods, SASNet uses 3D convolu-
tion layers for feature extraction and then applies dense layers for
binary classification. It leverages 3D spatial information of amino
acids at the atom level but ignores the structural information. Our
methods explicitly consider the structural and sequential informa-
tion and high-order pairwise interactions, thereby leading to much
better performance for protein interface prediction.

The four GNN-based methods use the same dense layers for
binary classification but differ in graph neural architectures. Com-
pared with NGF and DTNN, NEA incorporates additional edge
information from neighborhood. DTNN performs element-wise
multiplication but NEA performs summation over a node feature
matrix and the corresponding edge feature matrix. Our methods
make use of the information from edges by adding it to node fea-
tures for powerful node representations. Basically, NEA computes
the feature vector for the node of interest by averaging nodes and
edges from its neighborhood. The assumption here is that all nodes
and edges contribute equally to the center node. The NeiWA+HOPI
selects more important nodes and edges by assigning larger weights
to them, resulting in a slight improvement in performance com-
pared with the NeiA+HOPI.

Table 4: Performance of incorporating in-protein pairwise
interactions on the DB5 dataset. The original NeiA+HOPI
and NeiWA+HOPI methods without in-protein pairwise in-
teractions serve as baselines. ‘w/o’ denotes ‘without’ and ‘w’
denotes ‘with’.

Method Ratio MedAUC
NeiA+HOPI w/o in-protein 1:10 0.902 (0.012)

NeiA+HOPI w in-protein

1:7 0.911 (0.017)
1:5 0.910 (0.017)
1:3 0.901 (0.014)
1:1 0.896 (0.013)

NeiWA+HOPI w/o in-protein 1:10 0.908 (0.019)

NeiWA+HOPI w in-protein

1:7 0.915 (0.021)
1:5 0.913 (0.017)
1:3 0.910 (0.018)
1:1 0.898 (0.013)

4.4.2 Comparison with GNN-based Methods. One GNN layer can
incorporate 1-hop information from neighborhood to node features.
Stacking k GCN layers is capable of enlarging receptive fields by ag-
gregating k-hops information. It’s suggested that applying several
GCNs layers can improve the interface prediction for some graph
neural architectures [12]. To explore such properties in our models
and provide fair comparisons, we apply different numbers of GNN
layers and conduct experiments on the DB5 dataset. The results are
reported in Table 3. We can observe from the table that our methods
achieve the best performance despite the number of GNN layers.
This again demonstrates the effectiveness of our proposed SM and
HOPI methods. Note that the other three GNN-based methods give
better results when the number of GNN layers increases to 2 and 3,
but start to harm the performance when it reaches 4. Consistent ob-
servations are shown in our models. Apparently, the model capacity
of graph neural architectures can reach the upper bound but the
proposed SM and HOPI help extract the sequential information and
explore the inherent high-order pairwise interactions for accurate
interface prediction.

4.4.3 Affect of In-Protein Pairwise Interactions. As the number of
positive examples is relatively small in cross-protein amino acid
pairs, we conduct experiments on the DB5 dataset and add some
positive in-protein pairs in the training process. We keep the num-
ber of positive cross-protein pairs unchanged. For each complex,
we randomly select the same number of positive examples in the
ligand protein and the receptor protein. The final PN ration is set
to be 1:7, 1:5, 1:3 and 1:1, respectively. The experimental results
are shown in Table 4. We can observe from the results that the
performance increases when adding positive in-protein examples
and making the PN ratios to be 1:7 and 1:5. When more positive
in-protein examples are added for training and the PN ratio reaches
1:1, the performance starts to decrease and becomes worse than that
without in-protein pairs. This indicates that the inherent properties
of amino acids may affect the interactions between them. These in-
protein interactions are beneficial to the prediction of cross-protein
interactions. However, when the in-protein interactions become
dominant through adding too much positive in-protein examples,
the prediction of cross-protein interactions is somehow interfered
and harmed.

5 CONCLUSION
We study protein interface prediction. The latest state-of-the-art
method represents proteins as graphs, but fails to consider sequen-
tial information from amino acid chains. We propose a novel model
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to incorporate both structural and sequential information, and high-
order pairwise interactions for accurate interface prediction. We
generate a 3D tensor to store these information. The output is
adapted to a 2Dmap containing interactions for all amino acid pairs.
The task becomes a 2D dense prediction task, where 2D convolu-
tional neural networks are employed to learn high-level interaction
patterns. We evaluate our methods over different datasets. The ex-
perimental results demonstrate the effectiveness of our proposed
approach.
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