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ABSTRACT
Given the historical movement trajectories of a set of individual
human agents (e.g., pedestrians, taxi drivers) and a set of new tra-
jectories claimed to be generated by a specific agent, the Human
Mobility Signature Identification (HuMID) problem aims at vali-
dating if the incoming trajectories were indeed generated by the
claimed agent. This problem is important in many real-world ap-
plications such as driver verification in ride-sharing services, risk
analysis for auto insurance companies, and criminal identification.
Prior work on identifying human mobility behaviors requires addi-
tional data from other sources besides the trajectories, e.g., sensor
readings in the vehicle for driving behavior identification. However,
these data might not be universally available and is costly to obtain.
To deal with this challenge, in this work, we make the first attempt
tomatch identities of human agents only from the observed location
trajectory data by proposing a novel and efficient framework named
Spatio-temporal Siamese Networks (ST-SiameseNet). For each hu-
man agent, we extract a set of profile and online features from
his/her trajectories. We train ST-SiameseNet to predict the mobility
signature similarity between each pair of agents, where each agent
is represented by his/her trajectories and the extracted features.
Experimental results on a real-world taxi trajectory dataset show
that our proposed ST-SiamesNet can achieve an F1 score of 0.8508,
which significantly outperforms the state-of-the-art techniques.
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• Computing methodologies→ Supervised learning by clas-
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Figure 1: Applications of HuMID problem
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1 INTRODUCTION
Given the historical movement trajectories of a set of individual
human agents (e.g., pedestrians, taxi drivers) and a set of new tra-
jectories claimed to be generated by a specific agent, the Human
Mobility Signature Identification (HuMID) problem aims at validat-
ing if the incoming trajectory was indeed generated by the claimed
agent. The HuMID problem has many real-world applications. Fig. 1
shows a few such examples. One of the major applications is au-
tomatic driver identification for taxi and rider-sharing services.
According to the New York City Taxi and Limousine Commission
(TLC) released statistics, there were on average 850, 000 trips taken
by taxis and ride-sharing services per day in New York City in
2018 [2]. Meanwhile, the safety concerns have been raised by peo-
ple recently. For example, some unauthorised drivers are reported
to have taken the place of authorised drivers, and behave offensively
towards passengers. Companies like Uber have taken actions to
ensure the safety of passengers by enabling on-trip reporting from
the APP [24, 30]. HuMID can help identify the above illegal driver
substitutions as early as possible and help improve the safety of the
passengers. Another example is insurer identification in the auto
insurance industry. Insurance companies need to make sure that a
vehicle was driven by the insured driver rather than others when
the insurer filed a claim. All of these examples are downstream
applications of and can benefit from solving HuMID problems.

Many prior works pay attention to the driving behavior iden-
tification problem, an instance of the HuMID problem. Hallac et
al. [10] identified driver using automobile sensor data from a sin-
gle turn. They monitored 12 sensors installed inside and outside
the vehicle and implemented a hand-crafted rule-based classifier,
which classifies up to 5 drivers. Chowdhury et al. [6] extracted 137
statistical features from smartphone sensors and used a random
forest classifier to classify trajectories into small groups of 4 to 5
drivers. Kieu et al. [17] presented a multi-task learning model which
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captured geographic features and driving behavior features of tra-
jectories in 3D images as input to perform trajectory clustering
and driver identification. Oh and Iyengar [25] used inverse rein-
forcement learning in sequential anomaly detection problem. They
estimated reward function for each driver and evaluated 10 individ-
uals from GeoLife-GPS dataset and aggregated normal behaviors
of taxi drivers from Taxi Service Trajectory dataset.

Nonetheless, there exist significant limitations when implement-
ing these methods in real-world applications. First, some of these
works require additional data rather than the GPS records by in-
stalling sensors on the vehicles, for example, 12 sensors in Hallac
et al.’s work [10]. However, few vehicles is equipped with these
additional sensors, and it will be costly to install sensors to the
vehicles. Second, most existing works can only deal with a small
group of drivers because they employ classification or clustering
approaches. For example, Chowdhury et al. [6] employed random
forest to classify the trajectories of 4 to 5 drivers, and Oh et al.
[25] estimated 10 reward functions for 10 drivers by using inverse
reinforcement learning. In real-world cases, the pool of drivers is
large. Thus, these methods are hard to be implemented. Third, a
group of previous works require that all the drivers be known in
advance [6, 10, 25]. Those methods are unsuitable for applications
where only a subset of the drivers is known at training.

To address these limitations, in this paper we propose a Spatio-
temporal Siamese networks (ST-SiameseNet) framework to identify
the behavior of a large group of human agents (e.g., drivers) by using
only their movement trajectory data. Since GPS devices are widely
equipped on vehicles and smart phones nowadays, the data ST-
SiameseNet requires can be easily collected. Also, ST-SiameseNet
can deal with large groups of human agents in a single model and be
used on new agents who are previously-unseen from training pool.
To be more specific, we first extract different transit modes of the
agents from the trajectory data. For example, there are two transit
modes in taxi driving, i.e., the seeking trajectory where the vehicle
has no passengers on-board, and the driving trajectory where the
vehicle has passengers on-board. Besides, we extract different pro-
file features and online features from the historical trajectories of
each agent to augment the performance of ST-SiameseNet. Then,
we input the trajectories together with the profile features to ST-
SiameseNet pair-wisely and train the ST-SiameseNet to identify
the similarity of each pair of inputs. Experiments on a real-world
taxi trajectory dataset show that ST-SiameseNet outperforms all
baselines in identification performances. Our main contributions
are summarized as follows:

• We formulate the Human Mobility Signature Identification
(HuMID) problem as a predictive analysis problem and, for
the first time, employ the idea of the Siamese network to
identify agents by their “mobility signatures” from solely
their trajectory data.
• We design a novel ST-SiameseNet framework that can han-
dle multimodal trajectory data. We also utilize both profile
features and online features extracted from the agents’ tra-
jectory data to train ST-SiameseNet.
• We conduct substantial experiments using a real-world taxi
trajectory dataset to evaluate the performance of our pro-
posed ST-SiameseNet.

The remainder of the paper is organized as follows. Section 2
presents an overview of the key ideas of our research problem.
Section 3 provides detailed methodology of our proposed model.
We discuss the experimental results on different datasets and the
related work in sections 4 and 5. Section 6 concludes the paper.

2 OVERVIEW
2.1 Problem Definition
In this section, we introduce some important definitions and for-
mally define the problem.

Definition 2.1. Human-generated spatio-temporal trajectory
tr . With the wide use of GPS sets, people can generate massive
spatio-temporal data while they are using the devices equipped
with GPS sets, e.g., the GPS records of vehicles, smartphones, smart
watches, etc. Each GPS point p consists of a location in latitude
lat and longitude lnд, and a time stamp t , i.e. p = ⟨lat, lnд, t⟩. A
trajectory tr is a sequence of GPS points with a label of the agent a
who generated the data, denoted as tr = {a, ⟨p1,p2, ...,pn⟩}, where
the set of trajectories is T .

Definition 2.2. Transit mode. Transit modes are defined as a
set of categories of trajectories, where each category is generated
under a different mobility pattern. For example, taxi driving trajec-
tories can be categorized into two modes, i.e., with and without any
passenger on-board. Private car trajectories can be grouped into
commute and recreational driving trajectories, etc. In this paper,
we use taxi driving as the application. The seeking trajectory Ts
is the sequence of GPS records while the vehicle is without any
passengers on-board, and the driver is seeking for passengers to
serve. The driving trajectory Td is the sequence of GPS records
while the vehicle is with passengers on-board, and the driver is
taking the passengers to the destination.

Definition 2.3. Profile feature fp . Each agent has unique per-
sonal (or profile) characteristics which can be extracted from his/
her trajectory data, such as frequent start/end locations, average
trip time duration, and preferred geographic area, working as dif-
ferent dimensions fp,i of the profile features, where i is the i-th
dimension of these features. The profile features of each agent can
be extracted in different time period. Here we denote time period
as T , where T can be one hour, one day or one week, etc.

Definition 2.4. Online feature fo . Online features represent
agents’ mobility patterns resulting from the agent’s personal judg-
ment, experience and skills, such as speed, acceleration, turning
left, turning right of each grid cell, working as different dimensions
fo,i of the online features, where i is the i-th dimension of these
features. For each trajectory, we build the online features.

Problem definition. Given a set of historical trajectories T col-
lected from a group of agents A in time periods T0,T1, ...,Tt , we
aim to develop a framework to verify if the incoming trajectories
T t+1 which are claimed being collected from an agent a’s vehicle
in Tt+1 are indeed matching the agent a’s behavior.

2.2 Data Description
The purpose of our framework is to recognize human mobility
signatures with GPS records. In this paper, we use taxi driving
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Figure 2: Solution framework
scenario as an example to demonstrate our techniques. However,
the proposed solution can be easily generalized to other types of
agents and trajectories. Our analytical framework takes two urban
data sources as input, including (1) taxi trajectory data and (2) road
map data. For consistency, both datasets are collected in Shenzhen,
China in July 2016.

Taxi trajectory data contains GPS records collected from taxis
in Shenzhen, China during July 2016. There were in total 17, 877
taxis equipped with GPS sets, where each GPS set generates a GPS
point every 40 seconds on average. Overall, a total of 51, 485, 760
GPS records are collected on each day, and each record contains five
key data fields, including taxi ID, time stamp, passenger indicator,
latitude and longitude. The passenger indicator field is a binary
value, indicating if a passenger is aboard or not.

Road map data of Shenzhen covers the area defined between
22.44◦ to 22.87◦ in latitude and 113.75◦ to 114.63◦ in longitude. The
data is from OpenStreetMap [1] and has 21, 000 roads of six levels.

2.3 Solution Framework
Our proposed solution framework is outlined in Fig. 2, which takes
two sources of urban data as inputs and contains two stages: (1)
extracting trajectories and profile features in section 3.1, (2) identi-
fying driving behavior in section 3.2.

3 METHODOLOGY
3.1 Data Preprocessing
In this stage, we employ the GPS trajectory data and the road
map data to extract the seeking and driving trajectories and online
features, together with the profile features of each human agent in
each time period.

3.1.1 Map Gridding and Time Quantization. We use a standard
quantization trick to reduce the size of the location space. Specifi-
cally, we divide the study area into equally-sized grid cells with a
given side-length s in latitude and longitude. Our method has two
advantages: (i) we have the flexibility to adjust the side-length to
achieve different granularity, and (ii) it is easy to implement and

highly scalable in practice [18, 19, 26]. Fig. 17b shows the actual
grid in Shenzhen, China with a side-length l = 0.01◦ in latitude
and longitude. Eliminating cells in the ocean, those unreachable
from the city, and other irrelevant cells gives a total of 1,934 valid
cells. We denote each grid cell as дi , with 1 ≤ дi ≤ 1, 934, and
the complete grid cell set as G = {дi }. We divide each day into
five-minute intervals for a total of 288 intervals per day, denoted as
I = {t̃j }, with 1 ≤ j ≤ 288. A spatio-temporal region r is a pair of
a grid cell s and a time interval t̃ . Each GPS record p = ⟨lat, lnд, t⟩
and be represented as an aggregated state s = ⟨д, t̃⟩, where the
location (lat, lnд) ∈ д, the time stamp t ∈ t̃ . A trajectory of agent
a then can be mapped to sequences of spatio-temporal regions,
tr = {a, ⟨s1, s2, ..., sn⟩}.

3.1.2 Transit Modes Extraction. Different transit modes can show
different patterns of driving behavior. In the taxi driving scenario,
seeking and driving trajectories reflect different characteristics
for each human agent taxi driver. Thus, we split the trajectories
into seeking Ts and driving trajectories Td based on the status of
the vehicle whether there are passengers on board. Fig. 3b and
3a illustrate the distribution of the number of driving trajectories
and the length of each driving trajectory for each agent in each
day, respectively. Here, T = 1 day. The distributions suggest that
most agents have 20 seeking trajectories every day, and the average
length of each seeking trajectory is around 14.03 km. The ratio
between driving and seeking trips per day is approximately 1:1.

3.1.3 Features Extraction. Each agent has unique personal (or pro-
file) characteristics, such as the location with the longest stay (pos-
sibly home location), daily working schedule (time duration), pre-
ferred geographic area, etc. These characteristics can be the statis-
tical values extracted from their trajectory data. In this work, to
augment the performance of driving behavior identification, we
extracted the following 11 profile features for each agent in each
time period of analysis. Moreover, we extract one online feature,
i.e., speed, over time for each trajectory.
fp,1 & fp,2: The coordinates (in longitude and latitude direction) of
the longest-staying grid. Each agent can have his/her own prefer-
ence on where to take a break during work, thus we extract fp,1
& fp,2: longest-staying grid to represent the place where an agent
takes a break. The longest staying grid is the grid where the GPS
records remain unchanged for the longest time.
fp,3 & fp,4: Break start & end time. Similarly, each agent can have
his/her own preference on when to take a break during work, thus
we extract fp,3 & fp,4: Break start & end time to capture the schedule
when an agent takes a break.
fp,5 & fp,6: The coordinates of the most frequently visited grid. Each
agent has his/her own favorite region to go, which can help identify
the agent. Thus, we extract fp,5 & fp,6: most frequently visited grid
to capture the region that an agent visits the most frequently in T.
fp,7 & fp,8: Average seeking trip distance & time. Each agent has his/her
own efficiency on looking for passengers. The experienced agents
can find passengers quickly after serving a trip, while the new
agents may take longer time and distance to find a new passenger.
Thus, we extract fp,7 & fp,8: Average seeking trip time & distance
to capture their efficiency on finding new passengers. The distribu-
tion of these two features are shown in Fig. 3c and 3d, respectively,
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(a) No. of seeking trajectories (b) Length of seeking trajectories (c) Mean seek time (d) Mean seek distance

Figure 3: Profile features analysis

Figure 4: Siamese Network

where the x-axis the average seeking distance (in km) and the aver-
age seeking time (in min) for an agent in a day, and the y-axis is
the number of driver-day’s. Here T = 1 day. From the figures, we
can see that averagely agents spend 15 minutes to seek passengers
within 3 km from his/her current location.
fp,9 & fp,10: Average driving trip time & distance. Each of the agent
can have his/her own preference on the length of trips that he/
she serves. For example, some agents prefer to serve long trips,
because they think they can earn much more at a time, and they
may look for passengers near the airport or train station where the
passengers have higher probabilities of asking for long trips. Some
other agents prefer to look for short trips because they think they
can earn money more efficiently by serving short trips. Thus, we
calculate the average driving trip time and distance to capture each
agent’s unique preference on the length of driving trips.
fp,11: Number of trips served. Each agent has his/ her own strategy
on looking for passengers. The experienced agents may serve more
trips in T than the new agents. Thus, we count the number of trips
served of each agent in T to capture each agent’s level of experience.
This feature is just the number of driving trajectories in T.
fo,1: Speed. Given a trajectory tr = {a, ⟨(д1, t̃1)...(дn, t̃n )⟩}, we also
extract an online feature by calculating the speed information,
denoted as v , for each data point in each trajectory to extract more
information about driving behavior. The updated trajectory would
be τ = ⟨(д1, t̃1,v1)...(дn, t̃n,vn )⟩, where the set of trajectories is T̃ .

3.2 Data Driven Modeling
The increasingly pervasiveness of GPS sensors has accumulated
large scale driving behavior data, whichmakes it possible to identify
human mobility signature from trajectories. However, two chal-
lenges arise in achieving this goal. First, the pool of agents is large
but the number of trajectories per agent is limited and a large num-
ber of new agents rise up every day, thus the data is sparse and
maybe only subset of the data can be seen during training. Second,
as a type of sequential data, trajectories has temporal dependencies
which needs to be learned. We outline how we tackle these two
main challenges next.

3.2.1 Siamese networks. To address the first challenge, we employ
the siamese networks[5, 32]. Siamese networks train a metric to
measure the similarity (or dissimilarity) from data, where the num-
ber of categories is very large or even not known during training,
and where the size of training samples for a single category is very
small. The key idea of the siamese networks is to find a function
that maps the input patterns X into a lower-dimensional target
space Eθ to approximate the “semantic” distance in the input space,
where similar inputs are closer and dissimilar inputs are separated
by a margin. Learning the dissimilarity metric is done by training a
network, which consists of two identical sub-networks with shared
weights. Fig. 4 shows an illustration of this structure. In particular,
the end-to-end dissimilarity metric learning is replicated twice (one
for each input) and the representationsGθ (X1),Gθ (X2) are used to
predict whether the two inputs belong to the same category. A com-
monly used optimization function for siamese networks training[5]
is :

min
θ
−((1 − Y )Ls (Eθ (X1,X2)

i ) + YLd (Eθ (X1,X2)
i ))

s.t. Eθ (X1,X2) = ∥Gθ (X1) −Gθ (X2)∥,
(1)

where θ is the weights of the neural network, Y = 0 if the inputs
X1 and X2 belong to the same category and Y = 1 otherwise,
Eθ (X1,X2)i is the i-th sample, which consists of a pair of inputs
and a label (similar or dissimilar), Ls is the partial loss function for
a similar pair, Ld is the partial loss function for an dissimilar pair.

3.2.2 Long short-term memory (LSTM) networks. The second chal-
lenge is that trajectory data has temporal dependencies. Therefore,
we employ LSTM networks[11], which are capable of learning
long-term dependencies for sequential data (x1, x2, ..., xT ). LSTM
sequentially updates a hidden-state representation by introducing
a memory stateCt and input gate it , output gate ot and forget gate
ft to control the flow of information through the time steps. At
each time step t ∈ {1, 2, ...,T }, the hidden-state vector ht as:

it = σ (Wi · [ht−1, xt ] + bi )

ft = σ (Wf · [ht−1, xt ] + bf )

ot = σ (Wo · [ht−1, xt ] + bo )

C̃t = tanh(WC · [ht−1, xt ] + bC )

Ct = σ (ft ∗Ct−1 + it ∗ C̃t )

ht = tanh(Ct ) ∗ ot ,

(2)

whereWx represents the weights for the respective gate(x ) neurons
andbx is the bias for the respective gate(x ). Since the trajectory data
is a sequence of (д, t̃,v), we employ LSTM to learn the embeddings
of trajectories in the framework of siamese networks.
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Figure 5: ST-SiameseNet framework

3.2.3 ST-SiameseNet. Given those two challenges, we present a
spatio-temporal representation learning method to verify human
mobility signature identity by implementing siamese networks with
LSTM, named as ST-SiameseNet. The purpose of this paper is to
learn the representation of trajectory with limited data and to use
representation of trajectory data to compare or match new samples
from previously-unseen categories (e.g. trajectories from agents
not seen during training). To represent the feature of trajectory
and learn the dissimilarity of driving behavior, we incorporate
LSTM and fully-connected networks (FCN) into the middle layer
of ST-SiameseNet, which is briefly depicted in Fig. 5.

We first extract profile features for each agent and the online fea-
ture for each data point in the trajectory. And then randomly select
a pair of seeking trajectories T̃s ,1 and T̃s ,2, a pair of driving trajec-
tories T̃d ,1 and T̃d ,2 (all the trajectories contain the online feature)
and a pair of profile features fp,1 and fp,2 in each time period. In the
original siamese networks, there are two sub-networks with identi-
cal weights. To a further step, we introduce six sub-networks where
each two identical sub-networks share the set of weights since we
have three types of inputs, i.e., T̃s ,1 and T̃s ,2 would share the weights
of LSTMS , while T̃d ,1 and T̃d ,2 use the same LSTMD to learn the
representation. Since each agent has a vectorized profile features
in each time period, here we implement fully-connected layers as a
profile-learner to project the profile features. ST-SiameseNet learns
the driving behavior from seeking, driving trajectories and profile
features respectively and aggregates the embedding layers with a
sequence of fully-connected layers, i.e. dissimilarity-learner as the
dissimilarity metric. Differing from previous works [5] that use the
L1 norm to approximate the “semantic” distance, we utilize neural
networks (as a more powerful function) to learn the dissimilarity.

The learning processminimizes the binary cross entropy loss that
drives the dissimilarity metric to be small for pairs of trajectories
from the same agent, and large for those from different agents.
To achieve this property, we pose the following ST-SiameseNet
optimization problem:

min
θ
−(y log(Dθ (X1,X2)) + (1 − y) log(1 − Dθ (X1,X2))),

s.t. X1 = (T̃s ,1, T̃d ,1, fp,1),X2 = (T̃s ,2, T̃d ,2, fp,2),
(3)

where y = 0 if the trajectories belong to the same agent and y = 1
if the trajectories come from two different agents, Dθ (X1,X2) is the

prediction probability of how likely the trajectories are from two
different agents.

Algorithm 1 shows the training process of the ST-SiameseNet
model. During the training process, we apply the gradient descent
approach to update parameters θ , with learning rate α and a pre-
defined imax , (i.e. the total number of iterations). We first extract
profile features fp from trajectories T for each agent. And then
compute the online feature fo,1, i.e. speed information in each grid
cell and update trajectories with the online feature from T to T̃ .
Moreover, we split trajectories into seeking trajectories T̃s and driv-
ing trajectories T̃d for each agent. Since ST-SiameseNet pair-wisely
trains the data, we randomly select a pair of trajectories, either from
the same agent or from different agents in two time periods, with
equal probability in each iteration. Next, we update ST-SiameseNet
parameters θ by using Eq 3, with α as the step size (Line 7).
Algorithm 1 ST-SiameseNet Training
Require: Trajectories T , initialized parameters θ , learning rate α ,

max iteration imax .
Ensure: A well trained ST-SiameseNet with parameters θ .
1: Extract profile feature expectation vector fp .
2: Calculate the online feature fo,1 and update trajectories from
T to T̃ .

3: Split seeking T̃s and driving T̃d trajectories.
4: Sample a pair of trajectories with the online feature T̃s ,i , T̃d ,i

and a pair of profile features fp,i .
5: while iter < imax do
6: Calculate gradient ∇д(θ ) using Eq 3.
7: Update θ ← θ + α∇д(θ ).
8: end while

4 EXPERIMENTAL EVALUATION
In this section, we demonstrate the effectiveness of our proposed
method by utilizing GPS records collected 10 workdays from 2197
taxis in Shenzhen, China in July 2016. We compare our model with
other baseline methods, analyze the generalization of our approach
and evaluate the importance of transit modes and profile features
for each agent. To support the reproducibility of the results in this
paper, we have released our code at Github 1.

4.1 Evaluation Metrics
To evaluate the performance of our proposed model and base-
line methods, we measure accuracy, precision, recall and F1 score
against the ground truth among labels. In our implementation, the
dissimilarity score threshold is set to 0.5. If it is less than 0.5, we
consider that the trajectories belong to the same agent. Otherwise
they are from different agents. Note the threshold can be tuned on
different datasets. In particular, precision is intuitively the ability
of the classifier not to confuse different agents. Recall shows the
ability of the classifier not to miss pairs of different drivers. The F1
score is a weighted average of the precision and recall.

4.2 Baseline Algorithms
We compare the performances of our method against the following
baseline algorithms.
1https://github.com/huiminren/ST-SiameseNet
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(a) Models accuracy across days (b) Models accuracy across agents

Figure 6: Accuracy across days and agents

(a) Transit modes across days (b) Transit modes across agents

Figure 7: Model comparison among transit modes
(1) Support VectorMachine (SVM). Taigman et al. [32] tested

the similarity between faces using a linear SVM. Here we uti-
lize the set of profile features as input, described in section 3.1.
We conduct absolute difference between profile feature vec-
tors of two agents and then employ SVM to classify whether
these two agents are same.

(2) Fully-connectedNeuralNetwork (FNN). Fully-connected
neural network is a basic classification or regression model
in deep learning. Here we concatenate all the trajectories
in two time periods from two agents together as the inputs
of the neural network. In addition, we compare the model
accuracy with and without features.

(3) Naive Siamese Network. Chopra et al. [5] used a Siamese
architecture for face verification. Here we train a network
which consists of two identical fully connected networks
that share the same set of weights. We concatenate all the
trajectories in two time periods from each agent and evaluate
the baseline with and without features.

(4) ST-SiameseNet-L1. To evaluate the advantages of using
FCN than a predefined function in learning dissimilarity, we
replace FCN with the L1-norm distance to approximate the
”semantic“ distance.

4.3 Results
4.3.1 Comparison results. We compare our ST-SiameseNet with
the baseline models in terms of precision, recall and F1 score. All the
models train with trajectories from 500 agents in 5 days, validate
with trajectories from the same agents as training set but in another
5 days and test with trajectories from 197 new agents in the latter 5
days. Similar to the training dataset, we uniformly sample two sets
of trajectories from the same agent or different agents in two time
periods during validation and testing. Table 1 shows the evaluation
metrics from all the methods. It is clear that our approach achieves
the best performance. SVM outperforms other baseline models
using profile features but is worse than our model. This is because
SVM is not able to model sequential inputs and the aggregation will
lose information of driving behavior. With profile and basic features
added, both FNN and Siamese FNN work better, indicating that
features can provide useful information in both models. However,
all of the deep learning andmachine learningmodels performworse
than our model, since ST-SiameseNet has a more effective ability
to capture the information of sequential inputs by using LSTM. In
addition, ST-SiameseNet-L1 performs worse than ST-SiameseNet
with FCN to learn the dissimilarity, showing that L1 norm has
limited ability to learn the dissimilarity between two identities.
In particular, the F1 score of ST-SiameseNet is over 0.85, which is
significantly higher than all baselines.

Table 1: Average F1, recall and precision on real-world
dataset and comparison with baselines

Methods Precision Recall F1 score
ST-SiameseNet 0.8710 0.8317 0.8508
SVM 0.8100 0.7661 0.7874
FNN (with features) 0.6112 0.6298 0.6195
FNN (without features) 0.5266 0.5470 0.5365
Naive Siamese (with features) 0.6137 0.6707 0.6407
Naive Siamese (without features) 0.5580 0.5657 0.5617
ST-SiameseNet-L1 0.8052 0.7775 0.7910

4.3.2 Model generalization. We evaluate different design choices
of our model on classification accuracy. Similar to the previous
experiments, we use the trajectories of the first 500 agents in 10
consecutive days as training and validation sets and vary the split
ratio.
Impact of different number of days. First, we vary the number
of days in the training set of the 500 agents to Nday = 3, 5, 7 and
9 respectively. We train trajectories of 500 agents from Day 1 to
Day Nday , validate trajectories of the same 500 agents from Day
(Nday + 1) to Day 10, test trajectories of the new 197 agents from
Day (Nday + 1) to Day 10. Fig. 6a depicts the training, validation
and test accuracy across different days. As more days are added
to the training dataset, the training accuracy decreases slightly,
while validation and test accuracy gradually increase, indicating
that larger datasets can help with over-fitting problem. In addition,
when the number of days extending from 3 to 5, both the validation
and test accuracy have a dramatically increase, while the validation
and test accuracy have a small increase after adding more days, in-
dicating that trajectories of 500 agents from 5 days contain enough
information to learn the similarity of agents.
Impact of different number of agents. we also vary the train-
ing dataset size by using a subset of the agents. Subsets of sizes
Naдents = 100, 500, 1000, 1500 and 2000 agents in 5 days are used.
We train trajectories of Naдents agents from Day 1 to Day 5, val-
idate trajectories of the same Naдents agents from Day 6 to Day
10, test trajectories of new 197 agents from Day 6 to Day 10. Fig.
6b shows the training, validation and test accuracy across different
number of agents. With more agents added to the training dataset,
the neural networks have better generalizability and can have a
better performance when seeing new data. There is an enormous in-
crease of validation and test accuracy when the number of training
agents growing from 100 to 500, indicating that the neural networks
benefits from the increase of diversity of agents. However, similar
to the impact of different number of days, the validation and test ac-
curacy are flattening when adding more agents to the training pool,
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(a) Mean serving time (b) Number of serves per day

Figure 8: Analysis of profile features
(a) Features across days (b) Features across agents

Figure 9: Model comparison among features
showing that trajectories of 500 agents from 5 days are sufficient
to learn the mobility signatures of agents.
4.3.3 Importance of transit modes. Transit modes can show dif-
ferent driving habits among different agents. Seeking and driving
trajectories are two typical transit modes, defined based on the
situation of the vehicle whether any passenger on-board. Different
agents would have different strategies to seek passengers [26]. In
this section, we would test if each of the transit mode can con-
tribute to identify the drivers’ behavior. As can be seen from Fig.
7a and 7b, both seeking and driving trajectories have the ability of
discriminating the same and different agents. All the accuracy of
seeking trajectories are higher than driving trajectories, which is
consistent with human intuition that different agents have differ-
ent strategies when seeking passengers, while agents do not have
the choice of destination when passengers on board. With both
seeking and driving trajectories included, ST-SiameseNet performs
the best by integrating the information of both seeking and driving
trajectories. Fig. 7a and 7b also show the same trend as Fig. 6a and
6b that models of seeking trajectories only and driving trajectories
only benefit from larger dataset.
4.3.4 Importance of features. In this section, we evaluate the im-
portance of features by comparing our model with and without
features. Each agent has unique personal characteristics which can
be extracted from his/her trajectory data over a time period [26]. In
addition, Speed information of each trajectory are able to capture
agents’ driving behavior [8]. Fig.8a and 8b describe the distribution
of two profile features, mean serving time and number of service
trips. The orange bar depicts the absolute difference of profile fea-
tures between same agents, while the blue bar otherwise. There is
an obvious difference between same agents and different agents,
indicating the profile features are able to identify the similarity of
driving behavior.

From Fig. 9a and 9b, we can see that our ST-SiameseNet with
trajectories and features works the best comparing with the model
with profile features only as well as with trajectories only in dif-
ferent number of training days and different number of training
agents. In particular, the model with profile features only gets the
worst performance, indicating that the aggregation may lose infor-
mation of driving behavior. Besides, if we only use trajectories as
inputs i.e. tr = ⟨s1, s2...sn⟩ (s = ⟨д, t̃⟩), all the test accuracy across
days and agents are also lower than our ST-SiameseNet with both
trajectories and features included, probably because some statistical
information, such as mean seeking distance, mean seeking time,
number of serves, cannot be captured by LSTM. In addition, Fig.
9a and 9b shows the same trend as Fig. 6a and 6b that the neural
networks benefit from larger datasets. Overall, with raw trajectory

data and extracted features working together, we can learn the
driving patterns from trajectory data more effectively and verify
the agent more accurately. Note that we only extract 11 profile
features and 1 online feature, which requires little human work
of feature engineering comparing with [6], which extracted 137
statistical human-defined features.

4.4 Case Studies
To further understand how ST-SiameseNet identifies agents’ behav-
iors, we investigate individual agents’ cases to show what factors
ST-SiameseNet considers when identifying the agents. Four case
studies are presented.
4.4.1 Cases of identifying different drivers. First, we show an exam-
ple of two randomly selected human agent taxi driver, driver 1 and
driver 2. We extract their trajectories and profile features on July
4th , 2016, then, our proposed ST-SiameseNet consumes the trajecto-
ries and features and produces a dissimilarity score of 0.99, which
means ST-SiameseNet identifies that this pair of inputs is from two
different agents. To figure out what factors that ST-SiameseNet con-
sider to identify them, we visualize the heat map of their visitation
frequency on that day to each grid of the city in Fig.10a&10b. The
darker red color in the grid indicates higher visitation frequency.
Fig.10a&10b illustrate that driver 1 and driver 2 have significantly
different active regions. Driver 1 likes working in the west part of
the city, especially near the airport, while driver 2 prefers to work in
the east part near the downtown area. The difference in the active
regions of driver 1 and driver 2 helps ST-SiameseNet identify them.
Fig.12a shows the comparison of the profile features of driver 1
and driver 2, which illustrates that they have significantly different
feature values on fp,2: the longest staying grid id in latitude direction
and fp,6: the most frequently visited grid id in latitude direction. This
is consistent with the finding from the heat map, i.e., the difference
in their active regions.

ST-SiameseNet can also identify different drivers even if their
active regions are similar to each other. We select another case of
identifying different drivers from our data randomly. Fig.11a&11b
show the heat map of the visitation frequency of driver 3 and dri-
ver 4, which indicate that driver 3 has similar active region as
driver 4. They both like working near the downtown area. And
our proposed ST-SiameseNet successfully identifies them with a
dissimilarity score of 0.88, which means they are significantly dif-
ferent. Fig.11a&11b show that driver 3 and driver 4 have similar
active region near the downtown area, and the difference on fp,2:
the longest staying grid id in longitude direction and fp,6: the most
frequently visited grid id in longitude direction is small as shown in
Fig.12b. However, they have significantly different profile feature
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(a) Driver 1 (b) Driver 2

Figure 10: Case 1 of identifying different drivers

(a) Driver 3 (b) Driver 4

Figure 11: Case 2 of identifying different drivers

(a) Driver 1 & driver 2 (b) Driver 3 & driver 4

Figure 12: Profile feature comparison
Figure 13: Case 3 profile
features

Figure 14: Case 4 profile
features

values on fp,3 & fp,4: Break start & end time., and this information
has been discovered by ST-SiameseNet, thus driver 3 and driver 4
can be identified by ST-SiameseNet.
4.4.2 Case of identifying abnormal behavior of one driver ID.
Apart from the case of identifying different drivers, ST-SiameseNet
can deal with the case of identifying abnormal driving behavior of
"one" driver. Our dataset contains only the licence plate of each ve-
hicle. Therefore, abnormal behaviors of the same vehicle can might
suggest a change of driver. Here, we study a driver’s behavior in
2 days from July 5th to July 6th 2016. Let’s call this driver "John".
Our ST-SiameseNet produces a dissimilarity score of 0.84 for the
trajectories in these 2 days, which indicates that John’s behavior
changes significantly from day 1 to day 2. To figure out how John’s
behavior changed significantly, we plot the heat map of his visita-
tion frequency in Fig.15, from which, we find that his active region
changes from the west part of the city in day 1 to the east part in
day 2. Also, Fig.13 shows the profile features in these 2 days. Most
of the profile features change significantly, e.g., fp,2: the longest
staying grid id in longitude direction, fp,6: the most frequently visited
grid id in longitude direction, fp,3 & fp,4: Break start & end time.We
also study a few more days after day2, the behaviors are similar to
that in day2, thus, this abnormal behavior after day 1 appears to be
the result of a new driver operating the vehicle after day 1.
4.4.3 Case of identifying normal behavior of one driver ID. For
the normal behavior of a driver, ST-SiameseNet can identify it
correctly. Here, we study a driver’s behavior in 2 days from July 5th
to July 6th 2016. Let’s call this driver "Mike". Our ST-SiameseNet
produces a dissimilarity score of 0.03, which indicates that Mike’s
behavior remains consistent from day 1 to day 2. The heat map of
his visitation frequency in Fig.16 illustrates his active region does
not change. Also, his profile features in these 2 days as shown in
Fig.14 remain stable.
5 RELATEDWORK
Human mobility signature identification has been extensively stud-
ied in recent years due to the emergence of the ride-sharing business
model and urban intelligence[7, 18, 33, 38]. However, to the best of
our knowledge, we make the first attempt to employ siamese network

to verify human mobility signature identification. Related work are
summarized below.

Urban computing. Urban computing is a general research area
which integrates urban sensing, data management and data analytic
together [16, 20, 22, 23, 37]. In particular, a group of work focus
on taxi operation management, such as dispatching [14, 29] and
passenger seeking [34–36]. They aim at finding an optimal action-
able solution to improve the performance/revenue of individual
taxi drivers or the entire fleet. Rong et al.[28] solved the passenger
seeking problem by giving direction recommendations to drivers.
However, all of these works focus on finding “what” are the best
driving strategies (as an optimization problem), rather than consid-
ering the benefits of passengers. By contrast, our work focuses on
driver identification, which can enhance the safety of passengers.

Driver behavior learning. Most existing literature on human
driving behavior rely on human-defined driving style feature set.
These handcrafted vehicle movement features derived from sen-
sor data or constructed from real-world GPS data [6, 9, 10, 21, 38].
They used supervised classification, unsupervised clustering or
reinforcement learning to solve problems as such driver identifica-
tion, sequential anomaly detection,etc [8, 17, 21, 25, 38]. Ezzini et al.
[9] addressed the driver identification problem using real driving
datasets consisting of measurements taken from in-vehicle sensors,
such as driver camera, smartphone are placed within the car and
the driver is connected to electrodes and skin conductance response.
However, such existing work require expensive sensor installed in
the vehicle or excessively rely on human-defined features. Dong
et al. [8] proposed a deep-learning framework to driving behavior
analysis based on GPS data. They used CNN and RNN respectively
to predict driver identity among 50 and 1000 drivers for a given
trajectory. Such frameworks is generally require all the categories
be known in advance as well as the training examples be available
for all the categories, as opposed to our objective which only a
subset of the categories is known at the time of training.

Siamese network. The siamese network [3] is an architecture
for similarity learning of inputs, which has been widely used in
multiple applications, namely but a few, vision area, unsupervised
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(a) day 1 (b) day 2

Figure 15: Case 3: Abnormal driving behavior

(a) day 1 (b) day 2

Figure 16: Case 4: Normal driving behavior
acoustic modelling, natural language processing [5, 12, 13, 15, 31].
Chopra et al.[5] learned complex similarity metrics of face verifica-
tion by introducing convolutional networks to siamese networks.
Hoffer and Ailon [12] proposed a variant of siamese networks,
triplet networks to learn an image similarity. Hu et al.[13] applied
siamese networks with convolutional layers to match two sentences.
However, to our best knowledge, we are the first one to employ
siamese network to human-generated spatio-temporal data.
6 CONCLUSION
In this paper, we propose the Spatio-temporal Siamese Networks
(ST-SiameseNet) to solve the Human Mobility Signature Identifi-
cation (HuMID) problem. The HuMID problem aims at validating
if an income set of trajectories belong to a certain agent based
on historical trajectory data. ST-SiameseNet can deal with large
group of agents in a single model. Also, we extract several effective
profile features from the trajectories to augment the performance
of the ST-SiameseNet. The experimental results illustrate that ST-
SiameseNet outperforms state-of-the-art works and achieves an F1
score of 0.8508 on a real-world taxi trajectory dataset. Our proposed
ST-SiameseNet framework can be applied to many other real-world
cases with human-generated spatio-temporal data other than the
ride-sharing and taxi case. In the future, we will continue studying
the driver identification problem with multiple inputs rather than
pairwise inputs.
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A APPENDIX FOR REPRODUCIBILITY
In this section, we provide detailed information to support the
reproducibility of the results in this paper. We implement deep
neural network with machine learning library Keras, version 2.3.0
[4] and using scikit-learn, version 0.22 [27] to implement SVM. Our
experiments run on a virtual machine running Red Hat Enterprise
Linux 7.2 with 8 GPUs and 32 GB memory.

A.1 Preprocessing of Data
The road map data includes 21, 000 road segments with six levels as
shown in Fig. 17a. In this paper, we utilize GPS records from 2197
taxis in Shenzhen, China from July 4th to July 15th (10 workdays)
2016. To keep enough information in each trajectory, we filter
out the trajectory which length is less than 10 steps, where each
step is a tuple of a grid and a time slot. After filtering out those
grids that taxis cannot reach, there are 1934 valid grids as shown in
Fig. 17b. For each driver, we randomly select 5 seeking and 5 driving
trajectories in each work day as partial inputs of our ST-Siamese.
11 profile features and 1 online feature are extracted from the GPS
records data.

(a) Shenzhen road map (b) Map gridding

Figure 17: Shenzhen map data

A.2 Settings of Baselines
• SVM.We use the default hyper-parameters of SVM in scikit-
learn, i.e. C = 1.0 and radial basis function is used as kernel
function.

• FNN. In the FNN experiments, we set 7 layers as [2000, 1500,
1000, 500, 100, 50, 10, 1]. We use ReLU activation functions
for all hidden layers and sigmoid activation at the output
layer.
• Naive Siamese. In the experiments, the neuron sizes in
each layer are [1000, 500, 100, 50, 10, 1] with ReLU activation
function and we also use sigmoid activation at the output
layer.

A.3 Settings of ST-Siamese
We train our model on Shenzhen taxi dataset as a balanced binary
class classification problem, since we randomly select a pair of tra-
jectories with equal probability in each iteration. To predict whether
the trajectories from two time periods belong to the same driver,
we implement the standard back-propagation on feed-forward net-
works by adaptive moment estimation (Adam) with first momentum
(set to 0.9) and second momentum (set to 0.999). Our mini-batch size
is 1 since each trajectory has variable length sequences. The learn-
ing rate is 0.00006. We trained the network for 1000000 iterations
which took 2 days.

The following is the structure of ST-SiameseNet for human mo-
bility signature identification:
• LSTMS . The trajectories are embedded by two hidden layers,
which contains 200 and 100 units respectively.
• LSTMD . The LSTMD has the same components of neurons
as LSTMS
• Profile-learner. The features are embedded by a three-layer
fully-connected network with hidden units [64,32,8]. We use
ReLU activation functions for all hidden layers.
• Similarity-learner. It’s a three-layer fully-connected network
with hidden units [64,32,8,1]. We use ReLU activation func-
tions for all hidden layers and sigmoid activation at the
output layer.
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