
Multi-level Graph Convolutional Networks for Cross-platform
Anchor Link Prediction

Hongxu Chen
University of Technology Sydney

Sydney, Australia
hongxu.chen@uts.edu.au

Hongzhi Yin
The University of Queensland

Brisbane, Australia
h.yin1@uq.edu.au

Xiangguo Sun
Southeast University

Nanjing, China
sunxiangguo@seu.edu.cn

Tong Chen
The University of Queensland

Brisbane, Australia
tong.chen@uq.edu.au

Bogdan Gabrys
University of Technology Sydney

Sydney, Australia
Bogdan.Gabrys@uts.edu.au

Katarzyna Musial
University of Technology Sydney

Sydney, Australia
Katarzyna.Musial-
Gabrys@uts.edu.au

ABSTRACT
Cross-platform account matching plays a significant role in social
network analytics, and is beneficial for a wide range of applications.
However, existing methods either heavily rely on high-quality user
generated content (including user profiles) or suffer from data in-
sufficiency problem if only focusing on network topology, which
brings researchers into an insoluble dilemma of model selection.
In this paper, to address this problem, we propose a novel frame-
work that considers multi-level graph convolutions on both local
network structure and hypergraph structure in a unified manner.
The proposed method overcomes data insufficiency problem of
existing work and does not necessarily rely on user demographic
information. Moreover, to adapt the proposed method to be capable
of handling large-scale social networks, we propose a two-phase
space reconciliation mechanism to align the embedding spaces
in both network partitioning based parallel training and account
matching across different social networks. Extensive experiments
have been conducted on two large-scale real-life social networks.
The experimental results demonstrate that the proposed method
outperforms the state-of-the-art models with a big margin.

CCS CONCEPTS
• Information systems→ Data mining.

KEYWORDS
Data Mining, Social Networks, Anchor Link Prediction, Account
Matching, Network Embedding, GCNs.

ACM Reference Format:
Hongxu Chen, Hongzhi Yin, Xiangguo Sun, Tong Chen, Bogdan Gabrys,
and Katarzyna Musial. 2020. Multi-level Graph Convolutional Networks
for Cross-platform Anchor Link Prediction. In Proceedings of the 26th ACM
SIGKDD Conference on Knowledge Discovery and Data Mining (KDD ’20),
August 23–27, 2020, Virtual Event, CA, USA. ACM, New York, NY, USA,
11 pages. https://doi.org/10.1145/3394486.3403201

1 INTRODUCTION
Nowadays, most people participate in more than one Online So-
cial Network (OSN), such as Facebook, Twitter, Weibo, Linkedin.
More often than not, users sign up at different OSNs for different
purposes, and different OSNs show different views and aspects

of people. For example, a user makes connections to their friends
on Facebook, but uses Linkedin to connect to his/her colleagues,
interested companies and seek job opportunities. Though different
OSNs exhibit distinct features and functionalities, a large portion
of overlapping individual user accounts across different social plat-
forms have been always witnessed. However, the information about
multiple accounts that belong to the same individual is not explic-
itly given in most social networks due to either privacy concerns
or lack of motivation [24].

The problem of matching accounts that belong to the same
individual from different social networks is defined as Account
Mapping [32], Social Network De-anonymization[25, 40, 42]
or Social Anchor Link Prediction [8, 21, 24, 38] in Data Mining
research field. Account Matching across different social platforms
plays a fundamental and significant role in social network analytics
as it helps improve many downstream applications, such as online
personalized services [6], cross network information diffusion [27],
link prediction [1], recommender systems [23, 33], biology protein-
protein alignment for ageing related complexes [10], and criminal
behaviour detection [32]. Although much attention has been dedi-
cated to this challenging subject, there is still plenty of room for
improvement. Previous studies [16, 19, 22, 29] proposed to solve
this problem by exploiting available auxiliary information such
as self-generated user profiles, daily generated content and other
demographic features (e.g., user name, profile picture, location, gen-
der, post, blogs, reviews, etc.). However, with the increased public
awareness of privacy and information rights, these information is
becoming less available and accessible.

Recently, with the advances in Network Embedding (NE) tech-
niques, research attention related to this problem has been shifted
to focus on mining network structure information [8, 20, 24, 32]
as it has been claimed that the social network structural data is
much more reliable in terms of correctness and completeness. How-
ever, only focusing on modelling the network structure itself makes
almost all existing methods suffer from data insufficiency prob-
lems, especially in small-scale networks and cold-start settings (i.e.,
a user is new to the network). Therefore, it has been a dilemma
confronting practitioners in the real-world scenarios, and effective
solutions are urgently needed.

https://doi.org/10.1145/3394486.3403201

KDD ’20, August 23–27, 2020, Virtual Event, CA, USA H. Chen, H. Yin, et al.

In light of this, we propose to exploit and integrate the hyper-
graph information distilled from the original network for data en-
hancement. In the rest of the paper, we use the terms “simple graph”
and “hypergraph” to denote original network and hypergraphs ex-
tracted from original network, respectively. Compared to simple
graphs, hypergraphs allow one edge (a.k.a., heperedge) to connect
multiple nodes (more than two nodes) simultaneously. This means
non-pairwise relations among nodes in a graph can be easily orga-
nized and represented as hyperedges. Moreover, hypergraphs are
robust, flexible and can fit a wide variety of social networks, no mat-
ter the given networks are pure social networks or heterogenous
social networks with various types of attributes and links.

More specifically, we propose a novel embedding framework
Multi-level Graph Convolutional Networks, namely MGCN,
to jointly learn embeddings for network vertices at different lev-
els of granularity w.r.t. flexible GCN kernels (i.e., simple graph
GCN, hypergraph GCN). Simple graph structure information of
social networks reveals relationships among users (e.g., friendships,
followers), while hypergraphs carry different semantic meanings
depending on their specific definitions in a social network. For
example, N-hop neighbour-based hypergraphs (N-hop neighbours
of a user are connected via a same hyperedge) represent friends
circle in some extent. Centrality-based hypergraphs represent dif-
ferent social levels (users with similar centrality values may be of
same social status). Therefore, by defining various hypergraphs
and intergating them into network embedding learning will fa-
cilitate learning better user representations. To support this, our
proposed MGCN framework is flexible and can incorporate various
hypergraph definitions, which can take any hypergraphs as vector
representations, making the model structure invariant to various
hypergraph definitions.

The rationale behind exploiting and integrating hypergraphs by
extending GCN is that hypergraphs provide a more flexible network
representation that can contain additional and richer information
compared to individual, single graph GCNs on local network topol-
ogy. It has been found that the optimal number of GCN layers is
always set to two in most cases because adding more layers cannot
significantly improve the performance [14]. As a result, GCNs are
only able to capture the local information around a node in net-
works. This phenomenon also makes solo GCN contradictory and
thus perform mediocrely on account matching task as the key to
the task is to explore more and deeper information to make the
predictions. Intuitively, defining GCNs on hypergrpahs extracted
from original networks will be complementary to the limitations
of existing GCN-based network embedding models.

Nevertheless, it is still a challenging task because social networks
are large-scale with millions of nodes and billions of edges. Tra-
ditional centralized training methods fail to scale for such large
networks, due to high computation demands. To adapt MGCN for
large scale social networks, and improve its scalability and
efficiency, we propose a novel training method that first partitions
the large-scale social networks into clusters and learns network
embeddings in a fully decentralized way. To align the learned em-
bedding spaces of different clusters, we propose a novel two-phase
space reconciliation mechanism. At the first stage, we align the em-
bedding spaces learned from each cluster within the same network.
In addition to the alignment between different subnetworks in the

same network, the second-phase space reconciliation aligns two dif-
ferent networks through a small number of observed anchor nodes,
which makes our MGCN framework achieve more accurate anchor
link prediction than state-of-the-art models and high efficiency on
large social networks.

The main contributions of this paper are summrized as follows:

• We propose a novel framework for the challenging task of
predicting anchor links across different social networks. The
proposed method MGCN takes both local and hypergraph
level graph convolutions into consideration to learn network
embeddings, which is able to capture wider and richer net-
work information for the task.

• In order to adapt the proposed framework to be able to cope
with large scale social networks, we propose a series of treat-
ments including network partitioning and space reconcilia-
tion to handle the distributed training process.

• Extensive evaluations on large-scale real-world datasets have
been conducted, and the experimental results demonstrate
the superiority of the proposed MGCN model against state-
of-the-art models.

2 PROPOSED METHODOLOGY
2.1 Preliminaries
2.1.1 ProblemDefinition. Given a pair of networksG1 = {V1, E1}
and G2 = {V2, E2}, and a set of observed anchor links S𝑎𝑛𝑐ℎ𝑜𝑟 =

{(𝑢, 𝑣) |𝑢 ∈ V1, 𝑣 ∈ V2}, our goal is to predict those unobserved
anchor links across G1 and G2. We treat this task as binary classifi-
cation, that is, given a pair of nodes (𝑢, 𝑣) where 𝑢 ∈ V1, 𝑣 ∈ V2,
we predict if there is a link between them.

2.1.2 Hypergraph. In simple graphs, an edge only connects two
nodes, while an edge in a hypergraph (i.e. hyperedge) can connect
more than two nodes. We denote a hypergraph by Gℎ = {V, Eℎ},
where V is the node set, and Eℎ is the hyperedge set. For each
hyperedge 𝑒 ∈ Eℎ , we have 𝑒 = {𝑣1, · · · , 𝑣𝑝 }, 𝑣𝑖 ∈ V, 2 < 𝑝 ≤ |V|.

2.2 Model Overview
To predict anchor links, we introduce a novel multi-level graph
convolutional network (MGCN) to learn the embeddings of each
network. Figure 1 is an illustration of our proposed MGCN frame-
work, which consists of two levels of graph convolution operations.
It firstly performs convolution on simple graphs (i.e., the original so-
cial network in our case). After obtaining the node embeddings from
the simple graph convolution, the node embeddings are refined
by an innovative convolution operation defined on hypergraphs.
With the final embeddings of two social networks obtained, we
align the latent space of two networks via an embedding recon-
ciliation process. Lastly, we deploy a fully connected network to
predict whether an anchor link exists between any arbitrary pair
of nodes from two networks. In addition, we present a paralleliz-
able scheme that allows MGCN to efficiently handle large-scale
networks through graph partitioning.

2.3 Convolution on Simple Graphs
Given an original social network G = {V, E} (i.e., simple graph),
assume that we have constructed a hypergraph Gℎ from G, where

Multi-level Graph Convolutional Networks for Cross-platform Anchor Link Prediction KDD ’20, August 23–27, 2020, Virtual Event, CA, USA

Figure 1: Multi-level graph Convolution

each hyperedge 𝑒 ∈ Eℎ, 𝑒 = {𝑣1, 𝑣2, · · · , 𝑣𝑛}, 𝑣𝑖 ∈ V . We first per-
form simple graph convolutions in order to obtain the base em-
beddings of all nodes, denoted by X ∈ R |V×𝑑 | , where 𝑑 is the
dimension of each node embedding vector. We start with a simple
graph convolution within hyperedge 𝑒 by:

X𝑘+1𝑒 = 𝜎 (A𝑒X𝑘𝑒W𝑘) (1)

where A𝑒 ∈ R |V |×|V | is the adjacency matrix within hyperedge,
𝜎 (·) denotes the non-linear activation function such as 𝑅𝑒𝐿𝑈 (·) =
max(0, ·), while X𝑘𝑒 and W𝑘 carry the latent representations and the
shared trainable weights in the 𝑘-th convolution layer. Specifically,
in contrast to the plain GCN [18] that simply operates on the entire
graph, we perform the convolution operation on each hyperedge
individually. The rationale is that we can incorporate fine-grained
local structural information from the hyperedges into the learned
node embeddings. To achieve this, we define a diagonal matrix
S𝑒 ∈ R |V |×|V | for hyperedge 𝑒 , where each entry S𝑒 (𝑣𝑖 , 𝑣 𝑗) is:

S𝑒 (𝑣𝑖 , 𝑣 𝑗) =
{
𝑝 (𝑣, 𝑒), if 𝑣𝑖 = 𝑣 𝑗 , 𝑣𝑖 ∈ 𝑒
0, otherwise (2)

where 𝑝 (𝑣, 𝑒) stands for the possibility of observing node 𝑣 in hy-
peredge 𝑒 , and its calculation depends on particular definitions of
hyperedges (see Section 3.6 for possible options). Then, let Â =

I |V | + D− 1
2 AD− 1

2 where D ∈ R |V |×|V | is a diagonal matrix con-
taining each node’s degree in simple graph G, A is the adjacency
matrix of the simple graph G, and I |V | is the identity matrix. Then,
the local adjacency matrix A𝑒 for hyperedge 𝑒 can be calculated
via:

A𝑒 = S𝑒 ÂS𝑒 (3)

Intuitively, A𝑒 can be viewed as an adjacency matrix for the
directly connected nodes in hyperedge 𝑒 , which is further weighted
by the hyperedge connectivity in S𝑒 (𝑣𝑖 , 𝑣 𝑗). As a result, when per-
forming simple graph convolutions, we can simultaneously take
two types of local node-node structural information into considera-
tion, making the learned base embeddings more expressive. Based
on Equation 1, the convolution operation on the entire simple graph
G can be obtained through the summation across all hyperedges:

X𝑘+1
𝑠𝑖𝑚𝑝𝑙𝑒

= 𝑓 (⊕𝑒∈EℎX𝑘+1𝑒) (4)

where ⊕ means the concatenation of the output for each hyper-
edge 𝑒 , and 𝑓 (·) denotes a dense layer that maps the concatenated
embeddings back to a 𝑑-dimensional space.

2.4 Convolution on Hypergraphs
With the base embeddings X𝐾

𝑠𝑖𝑚𝑝𝑙𝑒
learned in the simple graph

convolution stage for the final 𝐾-th convolution layer, we further
infuse the structural information of the constructed hypergraph Gℎ
into every node’s latent representation. In recent years, hypergraph
convolution network has started to attract attention from the net-
work embedding research community [11, 17, 37]. Different from
most related works that deduce hypergraph convolution using the
spectral convolution theory, we derive the mathematical form of
hypergraph convolution by treating it as a generalized version of
simple graph convolution, which makes the inference process more
intuitive and natural to understand.

Given a hypergraph Gℎ = {V, Eℎ}, let H ∈ R |V |×|Eℎ | be an
incidence matrix where each entry H(𝑣, 𝑒) is determined by:

H(𝑣, 𝑒) =
{
𝑝 (𝑣, 𝑒), if 𝑣 ∈ 𝑒
0, otherwise (5)

where 𝑝 (𝑣, 𝑒) indicates the possibility that node 𝑣 belongs to hyper-
edge 𝑒 . Let the diagonal matrix D𝑛 ∈ R |V |×|V | denoting the degree
of nodes in the hypergraph such that D𝑛 (𝑣, 𝑣) =

∑
𝑒∈Eℎ H(𝑣, 𝑒).

Similarly, the degree of hyperedges can be denoted by a diagonal
matrix D𝑒 ∈ R |Eℎ |× |Eℎ | where D𝑒 (𝑒, 𝑒) =

∑
𝑣∈V H(𝑣, 𝑒). Since H

indicates the correlation between nodes and hyperedges, we can use
HH⊤ to quantify the pairwise relationships between nodes. Then,
the weighted adjacency matrix Aℎ ∈ R |V |×|V | of hypergraph Gℎ
can be derived as:

Aℎ = HH⊤ − D𝑛 (6)
Having acquired the adjacency matrix of hypergraph, we can

naturally extend simple graph convolution to hypergraph Gℎ . Re-
call that in the typical GCN framework presented in [18], for a
simple graph G𝑠 = {V𝑠 , E𝑠 }, the standard graph convolution is
defined as:

X𝑘+1𝑠 = 𝜎

((
I |V𝑠 | + D

− 1
2

𝑠 A𝑠D
− 1

2
𝑠

)
X𝑘𝑠 W𝑘

𝑠

)
(7)

where D𝑠 contains all nodes’ degree of G𝑠 , A𝑠 is the adjacency
matrix of G𝑠 . Apart from the identity matrix I |V𝑠 | , the above stan-
dard graph convolution, at its core, are dependent on the node
relationships encoded in the degree and adjacency matrices D𝑠
and A𝑠 . Therefore, by replacing its input with the corresponding
information extracted from the hypergraph Gℎ , we can effectively
model hypergraph convolution in a similar way to the standard
GCN at each layer 𝑘 :

X𝑘+1 =𝜎
((

I |V | + D
− 1

2
𝑛 AℎD

− 1
2

𝑛

)
X𝑘W𝑘

)
=𝜎

((
I |V | + D

− 1
2

𝑛

(
HH⊤ − D𝑛

)
D
− 1

2
𝑛

)
X𝑘W𝑘

)
=𝜎

(
D
− 1

2
𝑛 HH⊤D

− 1
2

𝑛 X𝑘W𝑘
) (8)

Let Θ = D
− 1

2
𝑣 HH𝑇D

− 1
2

𝑣 , then we have:

X𝑘+1 = 𝜎 (ΘX𝑘W𝑘) (9)

KDD ’20, August 23–27, 2020, Virtual Event, CA, USA H. Chen, H. Yin, et al.

where X𝑘 = X𝐾
𝑠𝑖𝑚𝑝𝑙𝑒

when 𝑘 = 0. Suppose we also adopt𝐾 layers of
convolution on hypergraph, then the final output of the multi-level
graph convolutional network is denoted by X𝐾 . By this mean, the
generated node embeddings in X𝑘+1

𝑠𝑖𝑚𝑝𝑙𝑒
can both capture pairwise

relations (i.e., 1-hop neighbourhood) and high-order non-pairwise
relations (i.e., hyperedges). As we will further discuss in Section
3.5.1, this is especially important when the number of observed
anchor nodes for training are limited.

2.5 Learning Network Embeddings
For network embedding, the output embeddings from Equation 9
are learned by maximizing the probability of positive edges and
minimizing the probability of negative ones:

O𝑒𝑚𝑏𝑒𝑑𝑑𝑖𝑛𝑔 =
∑

(𝑣𝑖 ,𝑣𝑗) ∈E
log𝜂 (x𝐾⊤𝑖 x𝐾𝑗).

+
𝑀∑
𝑘=1

𝐸𝑣𝑘∝𝑃 (𝑣)
[
log

(
1 − 𝜎 (x𝐾⊤𝑖 x𝐾

𝑘
)
)]

+
𝑀∑
𝑘=1

𝐸𝑣𝑘∝𝑃 (𝑣)
[
log

(
1 − 𝜎 (x𝐾⊤𝑗 x𝐾

𝑘
)
)]

(10)

where 𝜂 (·, ·) is the sigmoid function to calculate the probability
of observing edge (𝑣𝑖 , 𝑣 𝑗).

For a given positive edge (𝑣𝑖 , 𝑣 𝑗) in the training set, we use bidi-
rectional negative sampling strategy [7] to draw negative edges
for training. Specifically, we fix 𝑣𝑖 and generate𝑀 negative nodes
𝑣𝑘 via a noise distribution 𝑃𝑛 (𝑣) ∼ 𝑑0.75𝑣 , where 𝑑𝑣 is the degree of
node 𝑣 . Then we fix 𝑣 𝑗 and sample𝑀 negative nodes with the same
process. By optimizing Equation 10, we can obtain optimal embed-
dings in X𝐾 from the last layer𝐾 . Afterwards, the final embeddings
are further leveraged for downstream anchor link prediction task.

2.6 Anchor Link Prediction
Note that after acquiring the final representations X𝐾1 and X𝐾2
of two networks G1 and G2, we should not directly use them for
anchor link prediction because the node representations are learned
in two different latent spaces, which may vary a lot in terms of
semantic contexts. Instead, we first reconcile both of them into the
same latent space, and then use the aligned embeddings for anchor
link prediction. To reconcile X𝐾1 and X𝐾2 into the same space, we
fix X𝐾1 and project X𝐾2 into the same space as X𝐾1 . Let 𝛾 (.|Γ, b) be
a projection function with a projection matrix Γ and bias b. Then,
by aligning the embedding vectors of the anchor nodes in both
graphs, we can learn the parameters in the projection function,
thus ensuring accurate reconciliation for two latent spaces:

O𝑎𝑛𝑐ℎ𝑜𝑟 =
∑

(𝑣,𝑢) ∈S𝑎𝑛𝑐ℎ𝑜𝑟

∥X𝐾1 [𝑣, :] − 𝜙 (X𝐾2 [𝑢, :] |Θ, b)∥2 (11)

where 𝛾 (x|Γ, b) = xΓ + b, and S𝑎𝑛𝑐ℎ𝑜𝑟 is the labeled anchor links.
Then, for any pair of nodes (𝑣𝑖 , 𝑣 𝑗), 𝑣𝑖 ∈ G1, 𝑣 𝑗 ∈ G2, the represen-
tation of this pair can be denoted by the concatenation of their
corresponding embeddings. We sent these pair embeddings into
a fully connected network and finally output the prediction of
whether they are anchor link, and use cross entropy as the loss
function of anchor link prediction.

2.7 Handling Large-Scale Networks
Although GCN-based methods have been widely used in various
tasks, most related methods still suffer from the “last mile” technol-
ogy when we deal with large-scale networks because most GCN-
based methods need the global adjacency matrix as their inputs,
and this easily causes out of memory issues for GPU computa-
tion. Besides, when the network scale increases, it will also lead
to growth in computation time. Thus, we need an effective graph
partition strategy so that we can deploy the proposed MGCN in
parallel. To this end, we first present a graph partitioning approach
via Algorithm 1, and propose a two-phase reconciliation mecha-
nism as shown in Figure 2. Specifically, we split the large network
into several partitions according to modularity maximization, and
then deploy our model in every single partition. For each graph,
we reconcile the latent spaces of all its partitions into the same
one using the reserved anchor nodes when partitioning the whole
graph. Then, we align the embeddings of G1 and G2 into the same
latent space using observed anchor nodes from two graphs.

Algorithm 1: Graph Partition
Input: graph G(V, E), the upper bound of each partition

𝑁𝑚𝑎𝑥 , the lower bound of each partition 𝑁𝑚𝑖𝑛 ,
iteration 𝑇 .

Output: partitions 𝑃 = {G1 (V1, E1), · · · ,G𝑛 (V𝑛, E𝑛)}.
1 𝑃 = Louvain(G) //Generating partitions 𝑃 from G

according to Louvain algorithm[5].
2 for iter from 1 to 𝑇 do
3 for partition G′ ∈ 𝑃 do
4 if |V′ | < 𝑁𝑚𝑖𝑛 then
5 add nodes of V′

into other partitions and delete
G′

.
6 else if 𝑁𝑚𝑖𝑛 < |V′ | <= 𝑁𝑚𝑎𝑥 then
7 continue
8 else
9 𝑃𝑡 = Louvain(G′) //Generating partitions 𝑃𝑡

from subgraph G′
according to Louvain

algorithm[5].
10 𝑃 = 𝑃 ∪ 𝑃𝑡
11 end
12 end
13 end
14 return 𝑃

2.7.1 Graph Partition. As Algorithm 1 depicts, to split the large
network into several partitions with acceptable size (from 𝑁𝑚𝑖𝑛
nodes to 𝑁𝑚𝑎𝑥 nodes, for example), we first compute the partition
of the network which maximises the modularity using the Louvain
algorithm[5]. For each partition G′

= {V′
, E′}, if the size is larger

than the upper bound, that is |V′ | > 𝑁𝑚𝑎𝑥 , we put G
′
as the input

again and repeat the algorithm to further split G′
into more smaller

partitions. If |V′ | < 𝑁𝑚𝑖𝑛 , we randomly assign it to other created
partitions.
2.7.2 Reconcile Latent Embedding Spaces. We have noticed
that to deploy our model into different partitions independently

Multi-level Graph Convolutional Networks for Cross-platform Anchor Link Prediction KDD ’20, August 23–27, 2020, Virtual Event, CA, USA

Reconcile

Reconcile

Reconcile

Embedding of
partition 1

Network 1

Embedding of
partition 1

Embedding of
partition 2

Embedding of
partition 2

Network 1

Network 2Network 2

Embedding of
partition 1

Embedding of
partition 2

Embedding of
partition 2 Embedding of

partition 1

Network 2
Network 1

Phase-1 Space Reconciliation Phase-2 Space Reconciliation

Figure 2: Two-phase embedding space reconciliation

actually produce the embeddings in different latent spaces. There-
fore we need to further match different partitions into the same
representation space. Here, we select 𝑁 nodes from the network as
shared nodes across all partitions, and append these𝑁 nodes as well
as their associated edges into all partitions. Then we select one of
the partitions as a fixed one, and reconcile the others into the same
space with it. For example, for all 𝑃 partitions {G1,G2, · · · ,G𝑃 },
we fix partition G1 and all other partitions’ embeddings are trans-
formed via a linear function 𝑔(.). We maximize the following target:

O𝑝𝑎𝑟𝑡𝑖𝑡𝑖𝑜𝑛 =

𝑃∑
𝑝=2

∑
𝑣𝑖 ∈V𝑠ℎ𝑎𝑟𝑒𝑑

log𝜎
(
(𝑓𝑝 (x(𝑝)

𝑖
))⊤x(1)

𝑖

)
(12)

whereV𝑠ℎ𝑎𝑟𝑒𝑑 is the set of shared nodes appearing in all partitions,
and x(𝑝)

𝑖
is the representation of node 𝑣𝑖 in partition 𝑝 . Having

matched each partition into the same space, we can get the final
network embeddings in a uniform space, we can eventually use
them as described in Section 2.6 to predict the anchor links.

2.8 Optimization Strategy
We train MGCN model in a step-by-step manner. Specifically, we
first train MGCN by optimizing the graph embedding objective
function O𝑒𝑚𝑏𝑒𝑑𝑑𝑖𝑛𝑔 . Then, we optimize the graph partition recon-
ciliation objective function O𝑝𝑎𝑟𝑡𝑖𝑡𝑖𝑜𝑛 (i.e., phase-1 space reconcili-
ation), then optimize the reconciliation objective function O𝑎𝑛𝑐ℎ𝑜𝑟
(i.e., phase-2 space reconciliation). Lastly, with the fully aligned
node embeddings from both graphs, we optimize MGCN for the
anchor link prediction task by minimizing the cross-entropy loss.
3 EXPERIMENTS
3.1 Datasets
For anchor link prediction, we use two cross-platform datasets col-
lected and published in previous research on aligning heterogenous
social networks [6]. One is the Facebook-Twitter dataset, and the
other is the Douban-Weibo dataset. Facebook-Twitter contains
1,091,489 nodes, where the Facebook network has 422,291 nodes and
3,710,789 social links while the Twitter network contains 669,198

nodes that are connected by 12,749,257 social links. In Facebook-
Twitter, 328,224 aligned user pairs are identified across two net-
works. Douban-Weibo bridges two popular social media platforms
in China, namely Douban1 with 141,614 nodes and 2,700,602 social
links and Weibo2 with 141,614 nodes with 6,280,561 social links.
There are 141,614 aligned users in the total 283,228 nodes across
these two networks in the Douban-Weibo dataset.

For parameter sensitivity and robustness analysis on anchor
link prediction, we follow [24] to generate two sub-networks from
Facebook. Specifically, we define a sparsity parameter 𝛼𝑠 to control
the sample ratio of edges from the original Facebook network, and
𝛼𝑐 to control the ratio of shared edges in two sub-networks. For each
edge, we generate a random value 𝑝 in [0, 1]. If 𝑝 <= 1−2𝛼𝑠 +𝛼𝑠𝛼𝑐 ,
the edge is discarded; If 1−2𝛼𝑠+𝛼𝑠𝛼𝑐 < 𝑝 <= 1−𝛼𝑠 , it is added in the
1st sub-network; If 1−𝛼𝑠 < 𝑝 <= 1−𝛼𝑠𝛼𝑐 , it is only kept in the 2nd
sub-network; Otherwise, the edge is added in both sub-networks.
The reason of using extracted sub-networks instead of the full
dataset is that we can customize the network sparsity via 𝛼𝑠 , and
the node overlap level via 𝛼𝑐 . Hence, the flexible compositions of
generated datasets can simulate awide range of different application
scenarios for testing different models’ performance. Besides, they
are relatively smaller than Facebook-Twitter and Douban-Weibo,
thus enabling running time reduction for parameter sensitivity
analysis.

3.2 Baseline Methods
We compare our method against the following baselines:

• Autoencoder [30]. This method uses one-hot encodings
of nodes as the input and learns node representations by
optimizing the mean square error loss function.

• MAH [32]. This method enforces that a pair of nodes in the
same hyperedge should come closer to learn node represen-
tations for anchor link prediction.

1https://www.douban.com/
2www.weibo.com

KDD ’20, August 23–27, 2020, Virtual Event, CA, USA H. Chen, H. Yin, et al.

(a) Anchor Link Prediction on Facebook-Twitter (b) Anchor Link Prediction on Douban-Weibo

Figure 3: Results on anchor link prediction.
• DeepWalk [28]. This method uses random walk to sample
node sequences, and then learns node embeddings with the
word2vec model.

• GCN [9]. This method defines convolutional networks on
graphs for node representation learning.

• PALE [24]. This method predicts anchor links via network
embedding by maximizing the log likelihood of observed
edges and latent space matching.

• HGNN [11]. This method proposes hypergraph convolu-
tional networks for network embedding.

It is worth mentioning that the baselines we have chosen are all
network embedding-based. In both evaluation datasets, the user
profile and content information are unavailable, making traditional
methods [16, 19, 22] that rely on auxiliary data sources inapplicable.
3.3 Experimental Settings
3.3.1 Evaluation Metrics. Following related works [19, 24], we
treat anchor link prediction as a binary classification task. Specifi-
cally, with a pair of nodes (𝑢, 𝑣) as input, we aim to predict whether
they represent the same entity in two networks or not. As such, we
leverage three widely-used classification metrics, namely Macro
Precision, Macro Recall, and Macro F1.
3.3.2 Parameter Settings. For anchor link prediction, the ratio
of positive and negative anchor links is set to 1 : 1 for both the
training and test. We train all methods using 50% of the positive
and negative links and test them on the remaining portion. In
the graph partition and reconciliation step, we set 𝑁𝑚𝑖𝑛 = 1, 000,
𝑁𝑚𝑎𝑥 = 15, 000, and 𝑁 = 1, 000. The layer size 𝐾 is 2 in our model.
We construct the hypergraph via each node’s 10 hop neighbors.
That is, we connect each node and its 10 hop neighbors with one
hyperedge. Note that we also adopt three other hypergraph con-
struction strategies, and their impact will be discussed in section
3.6. The learning rate and embedding dimension are respectively
fixed to 0.01 and 200 in our model. The negative link number in
Equation (10) is set to 𝑀 = 5. For all baseline methods, we adopt
their reported optimal parameters by default.
3.4 Performance on Anchor Link Prediction
In this section, we evaluate all models’ performance on anchor link
prediction on Facebook-Twitter and Douban-Weibo datasets. We
report Macro Precision, F1, and Recall in Figure 3. Based on the ex-
perimental results in Figure 3, we draw the following observations.

Firstly, in terms of all evaluation metrics, our method has consis-
tently and significantly outperformed all baselines on both datasets.
Specifically, compared with the second best results on Macro Preci-
sion, Macro F1 and Macro Recall, our proposed MGCN achieves an
improvement of 9.7%, 9.1%, and 9.0% on Facebook-Twitter, and 0.6%,

2.7%, 2.6% on Douban-Weibo, respectively. On one hand, MGCN
performs both local graph convolution and hypergraph convolution
operations on social networks, so it can effectively preserve the
structural information in the learned node embeddings, leading to
superior classification performance. On the other hand, traditional
network embedding-based methods (e.g., DeepWalk and PALE) are
unable to capture the complex, high-order node relationships, and
tend to underperform on large-scale networks.

Secondly, as hypergraph-based baseline methods, HGNN shows
stronger performance than MAH on both datasets. This is because
HGNN largely benefits from the nonlinearity of neural networks,
which offers higher model expressiveness while modeling hyper-
edges. Compared with GCN or PALE that only consider pairwise re-
lations, both ourmethod andHGNN can achieve better performance
regarding Macro Precision and Macro Recall. This observation in-
dicates the advantages of exploring hypergraphs for anchor link
prediction. However, compared with both baselines, MGCN further
incorporates node information extracted from local neighbourhood,
thus enriching the granularity of learned node embeddings and
yielding more competitive anchor link prediction results.

Thirdly, we also notice that our method is more advantageous
on Facebook-Twitter than on Douban-Weibo. One possible reason
is that the Douban-Weibo dataset has relatively higher density
compared with Facebook-Twitter. When handling sparser datasets,
GCN, DeepWalk and PALE suffer from severe performance decrease
because they heavily rely on sufficient observed pairwise relations
for node representation learning. This further demonstrates that
our proposed MGCN maintains high-level performance and shows
promising robustness in the presence of data sparsity problem.
3.5 Analysis on Model Robustness
As we have previously mentioned, existing anchor link prediction
methods are prone to suffer from performance downgrade when
exposed to sparse datasets, and our proposed MGCN alleviates
this problem by thoroughly investigating structural information
within both simple graphs and the extracted hypergraphs. To test
the robustness of our model, we carry out further comparisons
with baselines on the two subnetworks extracted from Facebook
network. To be specific, we vary the data compositions in these two
subnetworks by adjusting the proportions of training labels (i.e.,
observed anchor links), edges (i.e., user-user pairwise interactions)
and network overlaps (i.e., shared same nodes), and record the per-
formance fluctuations of different models. We choose Autoencoder,
GCN, HGNN and PALE in this analysis as they have competitive
overall effectiveness and are relatively stable on large-scale datasets.

Multi-level Graph Convolutional Networks for Cross-platform Anchor Link Prediction KDD ’20, August 23–27, 2020, Virtual Event, CA, USA

(a) Macro Precision (b) Macro F1 (c) Macro Recall

Figure 4: Results w.r.t. observed anchor link percentage. (horizontal axis: labeled anchor links ratio.)
Table 1: Experimental results under different sparsity levels.

sparsity level 𝛼𝑠
Metric Model 10% 20% 30% 40% 50% 60% 70% 80% 90%

Macro Precision

Our method 0.8620 0.9071 0.9353 0.9345 0.9440 0.9631 0.9638 0.9624 0.9638
Autoencoder 0.8338 0.8455 0.8601 0.8195 0.8336 0.8590 0.9204 0.9255 0.8819

GCN 0.8340 0.8457 0.8881 0.8862 0.9115 0.9252 0.9366 0.9359 0.9434
HGNN 0.7295 0.8334 0.8340 0.8351 0.8376 0.8770 0.9025 0.8787 0.8850
PALE 0.8334 0.8337 0.7333 0.8337 0.8337 0.8338 0.8336 0.7648 0.7711

Macro F1

Our method 0.8602 0.9110 0.9418 0.9438 0.9523 0.9701 0.9705 0.9698 0.9713
Autoencoder 0.7450 0.8499 0.8603 0.8273 0.8377 0.8685 0.9247 0.9337 0.8924

GCN 0.7351 0.8030 0.8583 0.8721 0.9101 0.9250 0.9347 0.9386 0.9406
HGNN 0.6667 0.7634 0.8064 0.8394 0.8459 0.8849 0.9123 0.8881 0.8954
PALE 0.6584 0.7078 0.7141 0.7327 0.7496 0.7534 0.7457 0.7581 0.7512

Macro Recall

Our method 0.8615 0.9158 0.9512 0.9570 0.9660 0.9788 0.9788 0.9790 0.9805
Autoencoder 0.7608 0.8635 0.8760 0.8562 0.8715 0.8955 0.9337 0.9477 0.9165

GCN 0.7190 0.7897 0.8448 0.8678 0.9087 0.9247 0.9345 0.9423 0.9393
HGNN 0.6600 0.7705 0.8225 0.8570 0.8633 0.9005 0.9292 0.9067 0.9153
PALE 0.6502 0.6993 0.7065 0.7283 0.7430 0.7470 0.7372 0.7550 0.7417

Entries in bold are the best results. For the sparsity level, a lower 𝛼𝑠 leads to a sparser dataset. 𝛼𝑐 is fixed to 0.6 in this test.

3.5.1 Effect of Anchor Link Percentage. In practice, the avail-
ability of the observed anchor nodes between two social networks
that can be used for training are usually very limited. To test the
impact of available anchor links, we firstly hold out 10% of the
observed anchor links for test, and change the ratio of anchor links
from 10% to 90% for training. Note that two parameters 𝛼𝑠 and 𝛼𝑐
are both fixed to 0.9 during this test. All experiments including the
sampling are executed five times. We report the average results
of our method and baselines in Figure 4, from which we can see
that even with a small portion of training labels, our method still
performs the best compared with other baselines. This is particu-
larly important because in the real-world, anchor links are often
sparsely observed, thus our method is the most competitive choice
when there are insufficient labels for training.

3.5.2 Effect of Edge Percentage. While most GCN-based meth-
ods heavily rely on the information passed along edges for node
representation learning, most real-life networks are naturally sparse
in terms of the number of edges. So, we evaluate our method and
baselines by adjusting the sparsity parameter 𝛼𝑠 mentioned in sec-
tion 3.1 from 10% to 90%, and report the everage results achieved in
five executions as well. Note that we still use the same evaluation
set as in Section 3.5.1. As shown in Table 1, our method keeps stable
w.r.t. different values of 𝛼𝑠 . The reason is that modeling hyper-
graphs on top of simple graphs with MGCN can provide additional
structural information when the availability of edges in physical
networks is limited.

Figure 5: Performance w.r.t. different hypergraph construc-
tion methods
3.5.3 Effect of Network Overlap Percentage. Network over-
lap refers to shared entities (users in our case) in two different
networks, and the shared entities tend to have similar local neigh-
borhood structures [4] in both networks. It characterizes the homo-
geneity of two independent networks. In this section, we change
the parameter 𝛼𝑐 from 10% to 90% and show the average results
of five executions in Table 2, from which we notice even in 10%
overlap level, our method still keeps the best performance, and the
superiority of our method becomes more obvious when 𝛼𝑐 is larger.

3.6 Impact of Hypergraph Construction
Strategies

We supply four methods for extracting hypergraphs from original
networks, and compare their impacts to model performance below.

KDD ’20, August 23–27, 2020, Virtual Event, CA, USA H. Chen, H. Yin, et al.

Table 2: Experimental results under different overlap levels.

overlap level 𝛼𝑐
Metric Model 10% 20% 30% 40% 50% 60% 70% 80% 90%

Macro Precision

Our method 0.8719 0.9176 0.9414 0.9495 0.9557 0.9613 0.9587 0.9641 0.9541
Autoencoder 0.8334 0.8799 0.8501 0.9100 0.9112 0.8600 0.8683 0.8784 0.8969
GCN 0.8336 0.8726 0.9023 0.9016 0.9276 0.9318 0.9270 0.9427 0.9381
HGNN 0.8015 0.8343 0.8259 0.8615 0.8548 0.8848 0.8993 0.8850 0.8902
PALE 0.8340 0.8015 0.8334 0.8334 0.8337 0.8336 0.7623 0.8334 0.8334

Macro F1

Our method 0.8779 0.9256 0.9499 0.9570 0.9640 0.9691 0.9670 0.9713 0.9630
Autoencoder 0.8250 0.8872 0.8592 0.9171 0.9134 0.8697 0.8781 0.8885 0.9074
GCN 0.7795 0.8436 0.8864 0.8920 0.9228 0.9319 0.9282 0.9448 0.9378
HGNN 0.6537 0.7968 0.8330 0.8706 0.8642 0.8954 0.9100 0.8942 0.9007
PALE 0.6966 0.7407 0.7542 0.7467 0.7612 0.7616 0.7554 0.7668 0.7655

Macro Recall

Our method 0.8870 0.9363 0.9617 0.9665 0.9748 0.9790 0.9775 0.9800 0.9748
Autoencoder 0.8560 0.8980 0.8822 0.9312 0.9272 0.8935 0.9005 0.9107 0.9260
GCN 0.7762 0.8337 0.8787 0.8842 0.9213 0.9330 0.9295 0.9470 0.9380
HGNN 0.6465 0.8088 0.8515 0.8880 0.8850 0.9167 0.9290 0.9113 0.9210
PALE 0.6885 0.7325 0.7480 0.7400 0.7590 0.7558 0.7520 0.7615 0.7632

Entries in bold are the best results. For the overlap level, a higher 𝛼𝑐 leads to more overlaps in two networks. 𝛼𝑠 is fixed to 0.6 in this test.

(1) Neighborhood-based hypergraph construction. This is
the default hypergraph construction method we use for our
experiment in Section 3.4. For each node, we collect its𝜙-hop
neighbors and connect them in one hyperedge. As such, for
a sub-graph with 𝑁 nodes, we finally have 𝑁 hyperedges. 𝜙
is optimized via grid search in {4, 6, 8, 10, 12} and is set to 10
in our experiments.

(2) Anchor-based hypergraph construction. This method is
similar to the first one but we only consider the 10-hop neigh-
bours of anchor nodes. That means, for a given sub-graph
with 𝑁 nodes and𝑀 observed anchor nodes, we will result
in𝑀 hyperedges. Since𝑀 ≪ 𝑁 usually holds, this method
is more practical when graph partitions are not applied on
large-scale graphs.

(3) Centrality-based hypergraph construction. We compute
the following centrality values for each node: degree, be-
tweenness, clustering coefficient, eigenvector, page rank,
closeness centrality, node clique number, and communities
a node belongs to. With these centrality-based properties,
we generate a 20-dimensional vector (8-bit centrality-based
features and 12-bit one-hot community encodings) for each
node. By treating each dimension of the vector as a hyper-
edge, then each node’s value on a specific dimension denotes
the probability that this node belongs to the hyperedge.

(4) Latent feature-basedhypergraph construction. This Strat-
egy uses Autoencoder to extract dense latent representations
of nodes (we set the latent dimension to 200), where each
latent dimension serves as a hyperedge.

The performance w.r.t. different hypergraph construction strategies
are shown in Figure 5. We set 𝛼𝑐 = 𝛼𝑠 = 0.3 for this test. In general,
neighbor-based, anchor-based, and centrality-based hypergraphs
lead to very close results. Surprisingly, though centrality-based
hypergraph construction strategy involves carefully handcrafted
features, it falls short in terms of Macro F1 and Macro Recall. This
suggests that we do not have to design specific features to obtain
performance improvements, which makes our method more practi-
cal for large datasets.

Figure 6: Forward propagation time w.r.t. network scales (x-
axis: number of nodes. y-axis: running time in seconds).
3.7 Analysis on Model Efficiency
To showcase the efficiency of MGCN, we calculate the running time
of forward propagation for 1,000 epochs w.r.t. an increasing scale
of the Facebook subnetworks and compare it with GCN and HGNN.
The results are shown in Figure 6. From the model architecture
perspective, our method involves two GCN operations on both
simple graphs and hypergraphs. However, compared with GCN
and HGNN that only models simple graphs or hypergraphs, we
can find that there is only a little additional time consumption of
MGCN. This verifies the necessity and efficacy of modeling hyper-
edges in parallel. As a result, though MGCN achieves significant
performance gain over all baselines, it still has very close efficiency
to GCN and HGNN. Hence, for even larger datasets, our method
can offer state-of-the-art anchor link prediction performance while
retaining high-level scalability.
4 RELATEDWORK
We briefly review and summarize related literatures in this section.
4.1 Anchor Link Prediction in Social Networks
Traditional methods. Traditionally, early studies solve the prob-
lem of account matching by leveraging user profile (e.g., user name,
age, location) and their generated contents such as textual reviews
and posts [12, 16, 19, 22]. However, due to the difficulty of obtaining
high-quality and credible data from the Internet, these methods
inevitably suffer from the data insufficiency problem. As a result,
these methods cannot achieve satisfactory results, and are subject
to constrained generalizability in practice. Other techniques adopt
matrix factorization to directly compute an alignment matrix [36],

Multi-level Graph Convolutional Networks for Cross-platform Anchor Link Prediction KDD ’20, August 23–27, 2020, Virtual Event, CA, USA

such as IsoRank [31], NetAligh [4], FINAL[39], and REGAL[15].
However, such approaches can hardly scale up to very large net-
works, because they take the entire adjacency matrices of networks
as their input, which is highly demanding on storage and com-
puting resources. Furthermore, they are prone to struggle when
handling higher sparsity that comes with large-scale networks.
Embedding-based approaches. There have been applications of
account matching by using network embedding techniques. PALE
[24] learns node embedding by maximizing the co-occurrence like-
lihood of connected vertices, then applies linear projection or multi-
layer perceptron (MLP) as the mapping function. Similar methods
also include IONE [20] which addresses this problem by model-
ing user-user following relationships in social networks. Though
DALAUP [8] further employs active learning to learn node embed-
dings, it is limited by its scalability as the active learning scheme
can be time-consuming on large-scale social networks. DeepLink
[41] employs unbiased random walk to generate embeddings us-
ing skip-gram, then adopts auto-encoder and MLP as the mapping
function. Manifold Alignment on Hypergraph (MAH) [32] uses hy-
pergraphs to model high-order relations by exploiting the idea that
a pair of nodes in the same hyperedge should come closer. MAH
is a pure hypergraph-based approach, which is simple and effec-
tive. However, it only considers sub-space learning for hyperedges,
and is therefore vulnerable to noises and the loss of important un-
derlying network structure information. In contrast, our proposed
method proposes a decentralized hypergraph representation learn-
ing scheme, thus being able to handle large-scale social networks
with a novel subgraph reconciliation mechanism.

4.2 Network Embedding
Network embedding aims to learn low dimensional node represen-
tations that can preserve the majority of network structural infor-
mation [14, 28, 34]. Mainstream network embedding approaches
include matrix factorization-based methods, such as Multi Dimen-
sional Scaling (MDS) [43], IsoMap [3], Spectral Clustering [26],
Laplacian Eigenmap [35], Graph Factorization [2], etc., as well as
random walk-based methods [13, 28] which firstly sample random
walk node sequences, and then learn node embeddings via the well-
established skip-gram model. The recently proposed Graph Convo-
lutional Networks (GCNs) [14] successfully define convolutional
kernels on graph-structured data to learn node representations by
aggregating information passed from its surrounding neighbours.
More recently, different from traditional GCNs that only model
simple graphs, hypergraphs have been infused into the context of
graph convolutions [11, 37], enabling the learning of richer struc-
tural information. HGCN [11] introduces the concept of hypergraph
Laplacian, and then proposes a hypergraph-based extension to the
original convolution on simple graphs. HyperGCN [37] also trains
GCNs on hypergraphs with the utilization of hypergraph spectral
theory. In this paper, we develop a specific GCN-like model that
innovatively facilitates GCN operations at both hypergraph-level
and simple graph-level in a unified framework to allow for compre-
hensive node representation learning.

5 CONCLUSION
In this paper, we propose a multi-level graph convolution networks
and anchor link prediction framework. Through the fusion of simple

graph and hypergraph, our method steadily outperform state-of-
the-art methods. To handle large scale dataset, we also design a
framework include network partitioning and two-phases reconcil-
iation. Extensive evaluations confirms our the advantages of our
methods.The future work would suggest to explore the automatic
discovery of hypergraphs for account matching problems, as well
as scaling our framework to multiple social networks.

ACKNOWLEDGMENT
The work has been supported by Australian Research Council
(Grant No. DP190101087, DP190101985, DP170103954 and FT200100825).

REFERENCES
[1] M. A. Ahmad, Z. Borbora, J. Srivastava, and N. Contractor. Link prediction across

multiple social networks. In ICDMW. IEEE, 2010.
[2] A. Ahmed, N. Shervashidze, S. Narayanamurthy, V. Josifovski, and A. J. Smola.

Distributed large-scale natural graph factorization. In WWW13.
[3] M. Balasubramanian and E. L. Schwartz. The isomap algorithm and topological

stability. Science, 2002.
[4] M. Bayati, M. Gerritsen, D. F. Gleich, A. Saberi, and Y. Wang. Algorithms for

large, sparse network alignment problems. In ICDM. IEEE, 2009.
[5] V. D. Blondel, J.-L. Guillaume, R. Lambiotte, and E. Lefebvre. Fast unfolding

of communities in large networks. Journal of statistical mechanics: theory and
experiment, 2008.

[6] X. Cao and Y. Yu. Bass: A bootstrapping approach for aligning heterogenous
social networks. In Joint European Conference onMachine Learning and Knowledge
Discovery in Databases. Springer, 2016.

[7] H. Chen, H. Yin, W. Wang, H. Wang, Q. V. H. Nguyen, and X. Li. Pme: projected
metric embedding on heterogeneous networks for link prediction. In KDD, 2018.

[8] A. Cheng, C. Zhou, H. Yang, J. Wu, L. Li, J. Tan, and L. Guo. Deep active learning
for anchor user prediction. IJCAI, 2019.

[9] M. Defferrard, X. Bresson, and P. Vandergheynst. Convolutional neural networks
on graphs with fast localized spectral filtering. In NIPS, 2016.

[10] F. E. Faisal, H. Zhao, and T. Milenković. Global network alignment in the context
of aging. Transactions on Computational Biology and Bioinformatics, 2014.

[11] Y. Feng, H. You, Z. Zhang, R. Ji, and Y. Gao. Hypergraph neural networks. In
Proceedings of the AAAI Conference on Artificial Intelligence, 2019.

[12] O. Goga, P. Loiseau, R. Sommer, R. Teixeira, and K. P. Gummadi. On the reliability
of profile matching across large online social networks. In KDD, 2015.

[13] A. Grover and J. Leskovec. node2vec: Scalable feature learning for networks. In
KDD, 2016.

[14] W. Hamilton, Z. Ying, and J. Leskovec. Inductive representation learning on large
graphs. In NIPS, 2017.

[15] M. Heimann, H. Shen, T. Safavi, and D. Koutra. Regal: Representation learning-
based graph alignment. In CIKM, 2018.

[16] T. Iofciu, P. Fankhauser, F. Abel, and K. Bischoff. Identifying users across social
tagging systems. In AAAI Conference on Weblogs and Social Media, 2011.

[17] J. Jiang, Y. Wei, Y. Feng, J. Cao, and Y. Gao. Dynamic hypergraph neural networks.
In IJCAI, pages 2635–2641, 2019.

[18] T. N. Kipf and M. Welling. Semi-supervised classification with graph convolu-
tional networks. ICLR, 2017.

[19] J. Liu, F. Zhang, X. Song, Y.-I. Song, C.-Y. Lin, and H.-W. Hon. What’s in a name?
an unsupervised approach to link users across communities. In WSDM, 2013.

[20] L. Liu, W. K. Cheung, X. Li, and L. Liao. Aligning users across social networks
using network embedding. In Ijcai, pages 1774–1780, 2016.

[21] S. Liu, S. Wang, F. Zhu, J. Zhang, and R. Krishnan. Hydra: Large-scale social
identity linkage via heterogeneous behavior modeling. In SIGMOD, 2014.

[22] A. Malhotra, L. Totti, W. Meira Jr, P. Kumaraguru, and V. Almeida. Studying user
footprints in different online social networks. In ASONAM. IEEE, 2012.

[23] T. Man, H. Shen, J. Huang, and X. Cheng. Context-adaptive matrix factorization
for multi-context recommendation. In CIKM, 2015.

[24] T. Man, H. Shen, S. Liu, X. Jin, and X. Cheng. Predict anchor links across social
networks via an embedding approach. In IJCAI, 2016.

[25] A. Narayanan and V. Shmatikov. De-anonymizing social networks. In 2009 30th
IEEE symposium on security and privacy. IEEE, 2009.

[26] A. Y. Ng, M. I. Jordan, and Y. Weiss. On spectral clustering: Analysis and an
algorithm. In NIPS, 2002.

[27] C. Peng, K. Xu, F. Wang, and H. Wang. Predicting information diffusion initiated
from multiple sources in online social networks. In International Symposium on
Computational Intelligence and Design. IEEE, 2013.

KDD ’20, August 23–27, 2020, Virtual Event, CA, USA H. Chen, H. Yin, et al.

[28] B. Perozzi, R. Al-Rfou, and S. Skiena. Deepwalk: Online learning of social repre-
sentations. In KDD, 2014.

[29] C. Riederer, Y. Kim, A. Chaintreau, N. Korula, and S. Lattanzi. Linking users
across domains with location data: Theory and validation. In WWW, 2016.

[30] G. Salha, S. Limnios, R. Hennequin, V.-A. Tran, and M. Vazirgiannis. Gravity-
inspired graph autoencoders for directed link prediction. In CIKM, 2019.

[31] R. Singh, J. Xu, and B. Berger. Global alignment of multiple protein interaction
networks with application to functional orthology detection. Proceedings of the
National Academy of Sciences, 2008.

[32] S. Tan, Z. Guan, D. Cai, X. Qin, J. Bu, and C. Chen. Mapping users across networks
by manifold alignment on hypergraph. In AAAI, 2014.

[33] J. Tang, H. Gao, H. Liu, and A. Das Sarma. etrust: Understanding trust evolution
in an online world. In KDD, 2012.

[34] J. Tang, M. Qu, M. Wang, M. Zhang, J. Yan, and Q. Mei. Line: Large-scale infor-
mation network embedding. In WWW, 2015.

[35] M. Thida, H.-L. Eng, and P. Remagnino. Laplacian eigenmap with temporal
constraints for local abnormality detection in crowded scenes. IEEE Transactions
on Cybernetics, 2013.

[36] H. T. Trung, N. T. Toan, T. Van Vinh, H. T. Dat, D. C. Thang, N. Q. V. Hung, and
A. Sattar. A comparative study on network alignment techniques. Expert Systems
with Applications, 2020.

[37] N. Yadati, M. Nimishakavi, P. Yadav, V. Nitin, A. Louis, and P. Talukdar. Hypergcn:
A new method for training graph convolutional networks on hypergraphs. In
NIPS, 2019.

[38] J. Zhang and S. Y. Philip. Integrated anchor and social link predictions across
social networks. In AAAI, 2015.

[39] S. Zhang and H. Tong. Final: Fast attributed network alignment. In KDD, 2016.
[40] Y. Zhang, J. Tang, Z. Yang, J. Pei, and P. S. Yu. Cosnet: Connecting heterogeneous

social networks with local and global consistency. In KDD, 2015.
[41] F. Zhou, L. Liu, K. Zhang, G. Trajcevski, J. Wu, and T. Zhong. Deeplink: A deep

learning approach for user identity linkage. In IEEE INFOCOM. IEEE, 2018.
[42] X. Zhou, X. Liang, H. Zhang, and Y. Ma. Cross-platform identification of anony-

mous identical users in multiple social media networks. TKDE, 2015.
[43] L. Zlatkov. Multidimensional scaling (mds). 1978.

Multi-level Graph Convolutional Networks for Cross-platform Anchor Link Prediction KDD ’20, August 23–27, 2020, Virtual Event, CA, USA

A APPENDIX

Table 3: Performancew.r.t. different initialization strategies.

Metric Model random one-hot latent centrality-based

Macro Precision
Our method 0.9143 0.9303 0.9128 0.9056

GCN 0.8515 0.8336 0.7402 0.8985
HGNN 0.8343 0.9202 0.9093 0.8339

Macro F1
Our method 0.9188 0.9065 0.9183 0.9112

GCN 0.8511 0.7788 0.7380 0.8997
HGNN 0.7882 0.9248 0.9151 0.7512

Macro Recall
Our method 0.9246 0.9174 0.9259 0.9187

GCN 0.8515 0.7839 0.7610 0.9014
HGNN 0.7889 0.9309 0.9223 0.7463

Entries in bold are the best results.

A.1 Impact of Embedding Initialization
Strategies

In all previous experiments, we initial all node embeddings with
randomized values. In this section, we discuss the impact of dif-
ferent initialization strategies to model performance. To achieve

this, we have tried three types of features for initialization: one-hot
features, latent features, and centrality-based features. One-hot fea-
tures are the one-hot encodings taken from the graph adjacency
matrices, which are then used as the initial node embeddings. Latent
features mean that we use the output of Autoencoder, i.e., latent
representations as the initial states. As for centrality-based features,
we calculate the features as in Section 3.6 for initialization.

We compare our MGCN model with baselines having similar
GCN-based architectures, i.e., GCN and HGNN. All variants are
examined on the Facebook subnetworks (𝛼𝑠 = 𝛼𝑐 = 0.3) with a
training-test split ratio of 1:1. As shown in Table 3, in contrast to
GCN and HGNN, our method shows minimal performance changes
w.r.t. different initialization methods. Furthermore, except for the
initialization via one-hot features, all other initialization strategies
lead to advantageous anchor link prediction results from MGCN.
This reflects that our method is non-sensitive to the initialization
strategies of node embeddings. Meanwhile, the strong performance
from randomly initialized node embeddings further proves that our
method does not rely on manually crafted features, and can learn
expressive embeddings solely from the network structure.

	Abstract
	1 Introduction
	2 Proposed Methodology
	2.1 Preliminaries
	2.2 Model Overview
	2.3 Convolution on Simple Graphs
	2.4 Convolution on Hypergraphs
	2.5 Learning Network Embeddings
	2.6 Anchor Link Prediction
	2.7 Handling Large-Scale Networks
	2.8 Optimization Strategy

	3 Experiments
	3.1 Datasets
	3.2 Baseline Methods
	3.3 Experimental Settings
	3.4 Performance on Anchor Link Prediction
	3.5 Analysis on Model Robustness
	3.6 Impact of Hypergraph Construction Strategies
	3.7 Analysis on Model Efficiency

	4 Related work
	4.1 Anchor Link Prediction in Social Networks
	4.2 Network Embedding

	5 Conclusion
	References
	A appendix
	A.1 Impact of Embedding Initialization Strategies

