2008.04063v1 [cs.LG] 10 Aug 2020

arxXiv

HOLMES: Health OnLine Model Ensemble Serving for
Deep Learning Models in Intensive Care Units

Shenda Hong!*, Yanbo Xu!*, Alind Khare!**, Satria Priambadal**, Kevin Maher?, Alaa Aljiffry?,

Jimeng Sun®, Alexey Tumanov!
!Georgia Institute of Technology, 2Childrens Healthcare of Atlanta, *University of Illinois at Urbana-Champaign

ABSTRACT

Deep learning models have achieved expert-level performance in
healthcare with an exclusive focus on training accurate models.
However, in many clinical environments such as intensive care unit
(ICU), real-time model serving is equally if not more important
than accuracy, because in ICU patient care is simultaneously more
urgent and more expensive. Clinical decisions and their timeliness,
therefore, directly affect both the patient outcome and the cost of
care. To make timely decisions, we argue the underlying serving
system must be latency-aware. To compound the challenge, health
analytic applications often require a combination of models instead
of a single model, to better specialize individual models for differ-
ent targets, multi-modal data, different prediction windows, and
potentially personalized predictions To address these challenges,
we propose HOLMES—an online model ensemble serving framework
for healthcare applications. HOLMES dynamically identifies the best
performing set of models to ensemble for highest accuracy, while
also satisfying sub-second latency constraints on end-to-end pre-
diction. We demonstrate that HOLMES is able to navigate the accu-
racy/latency tradeoff efficiently, compose the ensemble, and serve
the model ensemble pipeline, scaling to simultaneously streaming
data from 100 patients, each producing waveform data at 250 Hz.
HOLMES outperforms the conventional offline batch-processed in-
ference for the same clinical task in terms of accuracy and latency
(by order of magnitude). HOLMES is tested on risk prediction task
on pediatric cardio ICU data with above 95% prediction accuracy
and sub-second latency on 64-bed simulation.

CCS CONCEPTS

» Computing methodologies — Neural networks; Supervised
learning by classification; « Applied computing — Health in-
formatics.

KEYWORDS
Healthcare; Health Informatics; Data Mining System; Software

* Authors contributed equally to this research.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

KDD °20, August 23-27, 2020, Virtual Event, CA, USA

© 2020 Association for Computing Machinery.

ACM ISBN 978-1-4503-7998-4/20/08....$15.00
https://doi.org/10.1145/3394486.3403212

ACM Reference Format:

Shenda Hongl’ * Yanbo Xu'>*, Alind Khare®-*, Satria Priambadal®>*, Kevin Maher?,

Alaa Aljiffry?, Jimeng Sun®, Alexey Tumanov!. 2020. HOLMES: Health OnLine
Model Ensemble Serving for Deep Learning Models in Intensive Care Units.
In Proceedings of the 26th ACM SIGKDD Conference on Knowledge Discovery
and Data Mining (KDD ’20), August 23-27, 2020, Virtual Event, CA, USA. ACM,
New York, NY, USA, 11 pages. https://doi.org/10.1145/3394486.3403212

1 INTRODUCTION

Vast amount of real-time monitoring data such as electrocardiogram
(ECG) and electroencephalogram (EEG) are being observed and col-
lected especially in intensive care units (ICUs), which provides
invaluable input for training deep learning (DL) models [21, 29, 37].
In fact deep learning models have achieved state-of-the-art perfor-
mance in many healthcare and medical applications such as Radiol-
ogy [30], Ophthalmology [12], and Cardiology [14, 16]. Almost all
previous works focused on optimizing deep neural networks for
prediction accuracy [35]. However, in a high stakes environment
such as ICUs serving these trained machine learning models in real
time is an equally important but hitherto largely overlooked require-
ment. In general, a computational graph of stateful and stateless
components responsible for capturing and performing prediction on
multi-modal sensory inputs must be provisioned to perform high
accuracy predictions with low latency on a dynamic stream of
multi-patient data.

Although recent work on prediction serving systems like Ten-
sorFlow Serving [27] and Clipper [9] have proposed general frame-
works for serving deep models at the system level, they are unable
to support the complex needs of health predictive models. First,
these model serving platforms primarily target single model serving
and can be thought of as the physical execution layer at the lower
level of the stack. The complexity of health predictive pipelines
involves capturing and pre-processing multi-modal sensory data,
arriving at different frequencies, and performing periodic inference
on this multi-rate, multi-modal stream of data under the constraint
of soft real-time latency Service Level Objectives (SLOs). Second, in

4
®

4
o

0.4

Latency (Seconds)

e
~

14
o

Best HOLMES Random Best Best HOLMES Random Best
Accuracy Latency Accuracy Latency
Figure 1: HOLMES finds a better balance between accuracy
(ROC-AUC) and latency. HOLMES reaches competitive accu-
racy within the 200ms latency budget.

https://doi.org/10.1145/3394486.3403212
https://doi.org/10.1145/3394486.3403212

0.82 4

ROC-AUC
° o

e
9
o

-12 -10 -8 -6 -4 -2 0
Prediction Delay in Hours

Figure 2: Accuracy decreases with prediction delay. Predic-
tion accuracy plotted for CICU patient’s readiness for step-
down transfer based on 3-lead continuous ECG waveforms.

a hospital setting often due to privacy/legal requirements, machine
learning (ML) serving systems operate under the constraints of a
fixed set of limited on-premises resources. This necessitates a care-
ful exploration of the accuracy/latency tradeoff, whereby higher
accuracy can be achieved at the expense of prohibitively high la-
tency. Thus, the soft real-time serving platform needs to be able
to explore this tradeoff and navigate it to find the right pipeline
configuration for a specific clinical use case at hand. For example, in
ICU environments, a large number of DL predictive models can be
constructed based on different data modalities (e.g., ECG, heart rate,
blood pressure), different prediction windows (e.g., 30 sec, 10 min,
1 hour, 1 day) and different patient data (e.g., models are retrained
every week based on data from new patients).

Application 1: Length of Stay prediction (Accuracy first) ICU
beds are limited and expensive resources to be managed effectively.
It is estimated that there are 14.98 beds on average at each ICU !
[13], median daily cost of ICU ranges from $6,318 (Medical Surgical
ICU) to $10,382 (Cardiac Surgical ICU) 2 [11]. Accurate real-time
prediction of length of stay and readiness for discharge of a patient
is an important capability for ICU resource optimization. Model
accuracy is essential as a wrong prediction will lead to inadequate
resource allocation and sub-optimal care to critical patients.
Application 2: Mortality prediction (Latency first) ICU patients
are vulnerable and unstable. Patient conditions may change quickly
over time. Rapid response is the key to save a life. For example,
accurate predicting cardiac arrest will happen even in the next
10 minutes can save lives. In this rapidly changing situation, the
latency of the prediction is crucial. We want to be able to utilize
most recently patient data to perform the prediction.

Deep learning models for ICU environments have drawn much
more attention including risk prediction [37] and treatment recom-
mendation [33]. However, it is difficult to support real-time model
serving in ICU due to the following challenges:

e Multiple data modalities: Many different data modalities are
captured in ICUs. Some modalities like Electrocardiogram (ECG)
signals have high sampling frequency up to 1,000 Hz, while
other modalities like medication only occurs once a few hours.
It is unnecessary and nearly impossible to train and serve a
unified model that serves all data modalities.

e Noisy environment: ICUs are highly dynamic environments.
Data collections can be unreliable especially for sicker patients

1Using data from American Hospital Association (AHA) statistics. Healthcare Cost
Report Information System (HCRIS) data is unavailable.
?Data from Montefiore Medical Center in the Bronx, New York during 2013.

as more interventions can happen to them which often affect the
monitoring device (e.g., sensors fall off or are removed during
interventions)

e Heterogeneous conditions: Diverse patients with very dif-
ferent conditions are present in ICU, which leads to different
risk and monitoring needs. For example, complex patients after
surgery may need to be monitored and assessed more frequently
by multiple models, compared to stable patients who are close
to being moved out of the ICU.

e Limited computational resources: Hospital is a typical re-
source constrained environment including computing. Most
of the bedside computing or local clusters are limited in com-
puting capability (e.g., the limited number of GPUs and mem-
ory). Real-time data capturing and model serving workload can
be overwhelming for that hardware. While recent works can
achieve predictive accuracy in ICU applications, those models
can often be too heavy and inflexible to deploy. Since conditions
of ICU patients often change quickly, a small latency for model
serving is required especially for latency first tasks like cardiac
arrest prediction.

We propose HOLMES—a novel real-time model ensemble compo-
sition and serving system for deep learning models with clinical
applications in the ICU with the following contributions:

e Model zoo: Instead of the common approach to train one uni-
fied model serving all patients with the same set of data modal-
ities, HOLMES trains a set of models (called model zoo). Each
model can be specialized for one particular task using one data
modality with a certain, independently chosen time window.

¢ Ensemble composer: HOLMES leverages sequential model-based
Bayesian optimization with genetic exploration to select a sub-
set of models from the model zoo for serving different patients
under a restricted set of computational resources and within a
specified latency budget.

o Real-time model serving: HOLMES extends the Ray [25] frame-

work with a real-time model pipeline serving functionality.

Real-data experiment: We extensively evaluate HOLMES on

real ICU data in a realistic simulated streaming environment.

Our experiments confirm HOLMES can simultaneously serve up

to 100 beds of streaming data while achieving 95% accuracy for

stepdown readiness prediction with sub-second latency.

In summary, HOLMES’ combination of the model ensemble search
algorithm and a latency-aware, soft real-time model pipeline serv-
ing framework enables exploration of the accuracy/latency tradeoff
space for a variety of relevant clinical use cases.

2 RELATED WORK

HOLMES draws its benefits from a combination of the automatic
model ensemble composition algorithm and the underlying latency-
sensitive model pipeline serving framework. In this section, we
show how HOLMES builds on and compares to the state-of-the-art
for both. The key takeaway in this comparison is two-fold. First,
HOLMES proposes automatic model ensemble construction from
specialized models that can individually be more narrowly trained
to specialize in different data modalities and observation windows.
This is a departure from a body of literature that depends on a
single model. Second, HOLMES builds on a latency-aware system

that is simultaneously capable of serving clinical use cases across
the spectrum of prediction latency requirements. Different clinical
applications can interact with different auto-constructed ensembles
served by the same serving framework. We take a closer look at
the state-of-the-art model development for the ICU application
targeted in this paper, describe existing model serving platforms
and optimization strategies.

Deep Models for ICUs. Deep models, a.k.a. deep neural networks,
have achieved state-of-the-art performance in many application
areas due to their ability to automatically learning effective features
from large scale data [19]. ICU is one of the typical environment
that generated large scale multi-modality data everyday [1, 8], so
that design accurate deep models [15] in ICU has drawn a lot of
attention from researchers in recent years.

For example, in [37], they proposed a unified recurrent attentive

and intensive deep neural network for predicting decompensation
and length of stay, by modeling high-frequency physiological sig-
nals, low-frequency vital signs, irregular lab measurements and
discrete medication together. In [33], they built a recurrent neural
network and learned with supervised reinforcement learning for
treatment recommendation in ICU, by modeling static variables and
low-frequency time-series variables. Other work applies temporal
convolutions on the vital signs and lab sequences to predict decom-
pensation [26]. The common characteristic of the above methods is
that they aim to build unified models that serve all patients using
the same data modalities. They are inflexible when encountering
data heterogeneity. Besides, none of them move one step forward
to serving in the real world.
Deep Models Serving. Training is only a fraction of the end-to-
end Machine Learning lifecycle and has dominated the focus of
much of the literature in model development for healthcare. While
great results have been achieved in terms of accuracy, not as much
work focused on the difficulties and importance of efficiently deploy-
ing trained healthcare models on a platform that provides unified
support for a variety of clinical use cases.

Google’s TensorFlow Serving [27] is a well-recognized open
source distributed framework for Machine Learning inference and
is widely used to serve deep learning models. Despite its popularity
and impact, the framework has some limitations for the purposes of
our target application domain. First, TensorFlow Serving provides
support for single model serving. While it is possible to write addi-
tional code and integrate inference to several models, it becomes
a single unit of deployment and is configured as a black box. The
clinical use cases that deal with multi-modal heterogeneous models
depend on first-class support for multiple models composed in a
pipeline at the framework level. This is one of the key contributions
of HOLMES. Second, models trained in other frameworks, such as
PyTorch [28] cannot easily be supported by TensorFlow Serving.

Ray [25] is a distributed framework that provides low-level sup-
port for a combination of stateful and stateless (side-effect free)
computation, suitable by design for a variety of computational pat-
terns that appear in ML workflows, including training and serving.
We build on Ray as the underlying platform and provide ML pipeline
serving functionality on top—a feature Ray does not provide out of
the box. Ray’s tasteful choice of primitives and focus on ML and
low system overhead is better suited for soft real-time serving than
Apache Spark MLIib [23].

=)

—
acculiia

~&= NPO
o nouves [\ 2
© \’nl;d(:tmn
data
s

Latency
Profiler

Patients Data Aggregators

Ensemble

> Aggrogator | |

Ensemble

Figure 3: HOLMES system architecture: model zoo, ensemble
composer and real-time serving system: the ensemble com-

poser produces a model ensemble captured by l_;; the real-
time serving serves the ensemble as a mix of stateful and
stateless actors connected into a queueing pipeline.

Optimization Strategies. Finally, neural architecture search [7,
10, 22, 39] is an emerging area of research that targets efficient
model composition at the operator level. While our work composes
and serves optimal combinations of models as the fundamental
building blocks. Besides, Bayesian optimization [31, 32] has been
used to reduce experimental costs in hyper-parameter optimiza-
tion to select the best single model [3, 4], or building a fixed-size
ensemble learning [20]. It is a sequential design strategy for global
optimization of black-box functions that doesn’t require derivatives
[24]. In this paper, we solve model ensemble problem by extending
Bayesian Optimization to Sequential Model-Based (Bayesian) Opti-
mization (SMBO) [17] to further reduce the trial costs. Besides, we
also introduce genetic algorithm to boost exploration.

3 HOLMES: HEALTH ONLINE MODEL
ENSEMBLE SERVING

3.1 Overview

HOLMES consists of three main components illustrated in Figure 3:
the model zoo, the ensemble composer, and the real-time serving
system. The model zoo is populated with models trained with dif-
ferent model hyperparameters and different input data modalities.
The ensemble composer optimizes for validation accuracy sub-
ject to latency constraints. It selects an optimal model set given the
number of patients and the resource constraints. Then the serving
pipeline is deployed with the chosen ensemble and the sensory
data aggregators and is configured to operate on a large amount of
streaming data and many ensemble queries in real-time.

3.2 Model Zoo

Model zoo is a repository of various prediction models that are
already trained and ready for deployment.

ICU monitoring data are usually continuous and multimodal.
They include but are not limited to dense signals like Electrocardio-
gram (ECG), sampled at frequencies ranging from 125 to 1,000 Hz,
vitals signs like Blood Pressure sampled per second, and sequential
discrete events like laboratory test or medication administration
charted irregularly. Therefore, the deep learning models in model
zoo are trained for each of the data modalities with short seg-
mentation windows. A final prediction score will be generated by
ensembling (i.e., aggregating predictions from multiple) individual
scores across different data modalities as well as across different
time segmentations within the observation window.

The model zoo approach makes it possible to specialize in the
models to different data modalities. Adding new data modalities is
then simplified. Instead of retraining the whole monolithic model
from scratch and replacing the model running in production com-
pletely, a new model can be added to the model zoo and automati-
cally chosen by the ensemble composer. The ensemble composer is
triggered when any of the input conditions are changed: (a) changes
in the model zoo, (b) the number of patients to serve, (c) resource
constraints.

In addition, we also consider different sizes of deep models by
varying the architecture hyperparameters. Instead of training one
accurate but large-sized deep model, we train a set of less accurate
but smaller sized models by borrowing the prediction strength from
ensemble modeling [38]. By breaking models down to smaller sizes,
our model zoo is more flexible and enables the feasibility that scores
can serve still (even less accurate) given limited computational
resources, while more accurate scores from ensemble models will
be served given adequate resources.

Models in the model zoo are trained offline using previously
collected ICU data, tuned and validated on an independent data
from new patients. We store the pre-trained models along with their
profiles. As shown in Table 3, one example model profile v € R™ (m
as the number of fields specified in a profile) can contain model size
details such as depth, width, number of multiply and accumulate
operations and GPU memory usages, input data information such
as data modality and length of data segmentation that models were
trained on, and model performance on the validation set such as
ROC-AUC scores, etc. Fields in model profiles can vary case by case.
Table 3 in the Appendix lists those used in this paper.

3.3 Ensemble Composer

In this section we describe the second component of HOLMES—the
ensemble composer. Model composition into ensembles has been
known to improve performance, but focused primarily on accu-
racy [38]. Unconstrained, ensemble size can easily absorb all models
in the model zoo (Sec. 3.1). The latency of deploying large ensembles
on limited computational resources can be prohibitive, particularly
for real-time serving scenarios.

To address this, we propose a latency-aware ensemble compo-
sition method. In Fig. 11, we show that the range of possible la-
tency/accuracy outcomes for arbitrary ensembles drawn from the
model zoo is large. The best performing method must achieve the

Table 1: Notations.

Notation ‘ Definition

n Number of models in model zoo

m Number of fields for model description
d Number of fields for system configuration
M ={mq,my,...,mp} | Model zoo

V e Rm Model description

ceR? System configuration

B2 {0,1}" Exploration space

B Profile set

be8B Model selector

fa(V,b) Accuracy profiler

fi(V,e,b) Latency profiler

highest accuracy for any specified latency threshold. Below we
formulate ensemble composition as an optimization problem and
propose an efficient search algorithm within Bayesian optimization
framework to find an optimal solution.

3.3.1 Problem setup. Suppose we have Mj, Ma,..., up to M, models
in the model zoo with each model having a profile v; € R™, then
we can represent the entire model zoo as V € R™ ™, We denote one
system configuration as a vector ¢ € R?, where d is the total number
of items needed to be configured in a system. They include but are
not limited to the number of GPUs, memory size, or number of
clients in the system. Lastly a model ensemble is uniquely identified
using a binary indicator vector b € 8 £ {0, 1}" such that b; = 1
indicates model M; is selected for ensembling and 0 otherwise.
Accuracy and latency trade-off. Our goal of ensemble composer
is to find the b* such that
b* = arg max
be{o,1}"

fa(V.b)
——
Accuracy profiler
s.t. filV,e,b) <1,
| —
Latency profiler

(1)

where f,(V,b) is an accuracy profiler that produces prediction ac-
curacy on the validation set given an model ensemble b selected
from the model zoo V, f;(V, ¢, b) is a latency profiler that computes
the latency of serving the ensemble b under a certain system con-
figuration ¢, and L is the latency constraint required by a real-time
serving system. We introduce a function é and rewrite the above
optimization problem in the following equation

max Lq(b) = fa(V,b) + (L - f1(V,c, b)), @)

be{o,1}"

where § is an activation function. If § is a linear function, then the
above Eq. (2) converges to the common Lagrange multiplier setting
that supports soft constraint. If § is a step function specified below,
we reach a hard constraint on latency instead:

5(x)={_inf’ if x<0 3)

0, otherwise

Alternatively, we can switch the objective function and con-
straint in Eq. (1) and minimize the latency subject to a minimum
accuracy requirement given any accuracy sensitive task. It’s be-
yond the scope of this paper, but its formulation is similar (listed

in the supplementary material) and can be solved using the same
searching algorithm we introduce below.

3.3.2 Ensemble Composer exploration. There exist two main chal-
lenges for solving the Eq. (2) optimization problem: 1) unknown
accuracy profiler f;(V,b) and latency profiler f;(V, ¢, b) for all en-
semble choices when model zoo size n is large (|b| = 2"!); and 2)
high dimensional binary searching space as opposed to continuous.

To tackle the first challenge, we adapt the widely known black-
box searching algorithm — Bayesian optimization — into our search-
ing algorithm, in which surrogate probability models [18] are used
for approximating the accuracy and latency profilers. For the sec-
ond challenge, as typical Bayesian exploration functions (such as
Gaussian process regression) usually searches parameters in con-
tinuous space, we propose to use Genetic search algorithm [34]
for exploration so that our method can support efficient search in
high-dimensional binary space.

Under the Bayesian Optimization framework, our goal is to it-

eratively enrich a true valued set B € B, in which accuracy and
latency are truly profiled by f,(V,b) and f;(V,b), and then update
the objective Ly (b) in Eq. (2) given all the available b’s in the set.
When it reaches the budget of N profiler calls, a b* that maximizes
Lq4(b) over the current set B is returned as the optimal solution.
The crucial step in the framework is how to smartly explore the
searching space at each iteration, and pick the right vector into
set B so that we don’t waste the budget of calling the profilers for
evaluating the true accuracy and latency.
a) Genetic algorithm for exploring binary parameter space.
The key idea of exploration is to search new b’s towards the opti-
mal b* and efficiently enlarge the set B. Usually, when searching
domain is continuous [2], random exploration would be better than
grid search. However, when searching domain is binary as in our
case, the benefit of randomness from dimensionality combination is
low — there are only two values for each dimension of b. Thus, we
borrow the ideas from Genetic Algorithm (GA) [34], in which each
b in the explore space B can be naturally represented as a genotype.
Hence, genetic operators such as recombination and mutation can
be utilized to explore our binary parameters. In detail, we define

Recombination(by, by): b = concate(b[: i], ba[i + 1 :]),

1, if bs[lil=0 (4
0, if b3li]=1,

where i is a random number from {1, 2, ..., n}. We perform S times
of mutations (called mutation degree) on b3, i.e., randomly sample
a new vector from the neighborhood of b3 within a Manhattan
distance of S, and denote the newly formed candidate set as B'.

b) Surrogate models for approximating accuracy and latency
profilers. For selecting the right points into B, we aim to build
less expensive surrogate probability models for approximating
fa(V,b) and f;(V,c,b). That is, based on the current true value
set B, we fit separated latency surrogate probability model fl using
{(b, fi(V,¢,b)) : for all b € B}, and a accuracy surrogate proba-
bility model fa using {(b, fa(V, b)) : for all b € B}. Given a new
candidate b’ € B’, we can evaluate their approximated latency
as fl(V, b’) and approximated accuracy as fl(V, b’) using the sur-
rogate models. Then we pick K candidates whose approximated

Mutation(bs, 1): b = bs[i] = {

Algorithm 1 Ensemble Composer exploration in HOLMES

1: Input: V model zoo, ¢ system constraint, L latency constraint

2: Parameters: A, N number of search iterations, Ny number of
warm start samples, M number of explore samples, K number
of newly added samples for profiling, S degree of mutation, p
probability of genetic explore, q probability of mutation.

: Output: b*

: Initialize surrogate models fa and ﬁ

: /* Warm start to get some seed solutions */

. Warm start to get an initial B € {0, 1}N*IV|

:B=0UB,Y,=0,Y,=0

: for i=1:N do

/* Profile accuracy and latency in B */

10: Profile Y, = {f4(V,b),¥b € B}, Y; = {fi(V,¢c,b), Vb € B}

11: Ya:YaUYa;Yl:YlUYl

122 /* Fit surrogate models on profiled results */

13: Fit fa using B and Y,, and fit fl using B and Y;

14: /% Genetic exploration, details in Algo.2 */

15 B’ = Explore(B,M, S, p,q)

16: /% Approx. accuracy and latency in B’ %/

17 Approx. La(B’) = {fa(V.b) + AL — f;(V,c,b)),Vb € B’}

18: /% Pick top-K highest valued vectors to get B */

190 B = argsortg(Lqa(B’))

20: /* Add seed solutions to profile set *x/

211 B=BUB

22: end for

23: /* Get the optimal solution from B x/

24: b* = argmaxy g La(b)

o B - NS, BT O

objective values computed by Eq. (2) have ranked top K among
the set B/, add them into the current set B and evaluate their true
values using the accuracy and latency profilers.

We summarize our algorithm in Algorithm 1 (pseudo code of
function Explore is given in supplementary material Algorithm 2).

3.3.3 Prediction ensemble. Given the optimal solution b*, we make
our final prediction using bagging ensemble [5]:

E[Ylx] = = 3" BB, [Yix] (5)
i=1

where Y is the outcome measure of interest for a given prediction
task, and x is an instance of ICU data input.

3.4 Real-time Serving

Overview. The third component of HOLMES is the real-time serving
system used to serve the model ensemble as part of the end-to-end
ensemble pipeline. It serves two purposes: (1) ensemble candidate
latency profiling (Fig. 3) and (2) real-time ensemble pipeline serving.

The served pipeline consists of four main components: the source
of streaming data (typically bed-side patient monitoring data), the
HTTP server that simplifies data ingest into the serving system,
patient data accumulators that buffer the data, and the ensemble
itself. The HOLMES pipeline is implemented by deploying the data
aggregators and ensemble models as actors on top of Ray [25]. The
ensemble queries are routed through multi-modal queues, with
each queue corresponding to the appropriate data modality.

Data
Aggregator

Actors Multi
Modal

Queues

Ensemble

Ensemble
Aggregator

—
~CD)
o

Figure 4: HOLMES Ensemble Serving System: requires a com-
bination of stateful and stateless components, buffers multi-
modal and multi-frequency sensory data in data aggrega-
tors, conditionally queries the ensemble, and returns the ag-
gregated ensemble result to the patient monitoring system.

g
joamy

=

Support for stateful compute. The aggregator actors make it
possible to deliver synchronized, coordinated buffers of streaming
data to the ensemble. While the data stream may come at different
frequencies and modalities, the input supplied to the ensemble must
correspond to the same observation window across all sensors (to
capture sensory correlations). E.g., ECG produces waveforms at 250
samples per second (250qps), while BP monitor outputs 1 sample
per second (1qps). The data aggregator actors buffer this data for
the same interval of time AT before the ensemble is queried. This
requires a platform that’s capable of supporting stateful compute.

Support for stateless compute. Ensemble models are deployed
as actors with a queue. Inference performed on the ensemble models
implies that the models themselves can be stateless. This simpli-
fies model lifecycle management and deployment and makes it
possible to horizontally scale individual ensemble models as the
load on the system increases. It is, therefore, imperative that the
serving platform natively supports a combination of both stateful
and stateless compute—a property HOLMES borrows from Ray [25]
in its implementation of the ensemble serving platform.

Latency profiling. The latency profiling component is exposed
to the ensemble composer (Sec. 3.3) through the API f;(V,c, l;l)
where b; corresponds to the model zoo subset choice considered
at iteration i. Given the frequency of interaction with the latency
profiler, it must be highly performing. Ensemble serving latency
reported by the latency profiler consists of two constituent com-
ponents: the queueing delay T, and the serving latency of the
ensemble Ts. Thus, T = Tq + Ts, where T is the estimate of end-to-
end response time, Ty denotes queueing delays in the system, and
T denotes serving delay of the ensemble. This breakdown is funda-
mental as Ty depends on the characteristics of the client load (i.e.,
ingest rate, number of clients, inter-arrival process characteristics),
while Ts depends on the characteristics of the ensemble and the
resources used. As such, the methodology for estimating Ty and Ts
is completely different.

Estimating T; and Tj. To estimate ensemble latency Ts, we
measure its throughput capacity u (qps) by directly performing
inference on the ensemble in a closed-loop fashion and averaging
over a statistically significant number of queries. T is then esti-
mated by configuring the clients to generate queries at the ingest
rate A < p1 and taking the 95th g-ile latency. This provides enough
information to estimate Ty.

T4 depends on query inter-arrival distribution and, thus, indi-
rectly depends on the number of patients generating query load
on the ensemble. To estimate Ty we rely on network calculus. As
profiling queries are generated, we construct two curves: an arrival
and service curve. The arrival curve captures the max number of
queries that have thus far been observed within any time interval
of length At. The service curve captures the number of queries that
can be serviced within an interval of time At-long. The maximum
horizontal distance between these two curves (Fig. 5) is a known
tight upper bound on the queueing latency for such a system.

Arrival
Curve

Number of Queries

Service
Curve

'T_: AT
Figure 5: HOLMES latency estimator: latency estimation lever-
ages network calculus. The arrival curve is constructed from
query data observed at runtime during profiling. The service
curve is constructed analytically. The maximum distance be-
tween the curves is known as a tight upper bound on queue-
ing latency Ty.

4 EXPERIMENTAL EVALUATION
4.1 Experimental Setup

4.1.1 Model zoo training. Given a specific prediction task, model
zoo needs to be populated with pre-trained models for subsequent
ensemble composition. Here we describe what prediction task is
targeted in our experiments, what ICU data is used, and what/how
candidate models are trained.

Task. We focus on a binary classification task that predicts if a post-
surgical (specifically the Norwood surgery) patient is getting stable
or stay still critical in the Cardiac Intensive Care Units (CICUs).
Data. We have collected multimodal ICU data from 57 children
who had undergone the Norwood procedure between 2016/10 and
2019/09 in the Cardiac Intensive Care Unit (CICU) at Children
Healthcare of Atlanta (CHOA). These patients stayed at the CICU
after the operation from 4 days up to 30 days, with 45 (78.9%)
being successfully discharged to the general care cardiology floor,
6 (10.5%) deceased and 6 (10.5%) transferred for other operations.
We extract data from the first two days of post-op CICU stays from
all the 57 patients, and label them as 0 (critical); we extract data
from the last day prior to floor transfer from the 45 successfully
discharged patients, and label them as 1 (stable).

Modalities in this data include 3-lead (I, II, and IIT) ECG wave-
forms sampled at 250 Hz, 7 vital signs (mean blood pressure, SpO2,
etc) sampled per second and 8 discrete lab results (pH, lactic acid,
etc) measured when needed. We segment the continuous signals
(waveforms and vital signs) into 30 second clips, and result at vec-
tors of length 7,500 per single lead waveform and length 30 per
single vital sign. There are in total of 328, 320 data points per each
signal labelled as 0 and 129, 600 per signal labelled as 1.

Training details. We first split the cohort by putting 47 earlier
patients into training set and 10 recent patients into test set. We
train a state-of-art convolutional neural network, by modifying
the kernel in the convolutional layer in ResNeXt [36] from 2-D
patch to 1D stripe, individually for each single lead ECG clips. By
filtering out missing signals, we obtain 164,972 training samples
and 71,342 validation samples for lead-I ECG, 230,046 training and
71,364 validation samples for lead-II, and 130,564 training and 60,785
validation samples for lead-IIL

We train differently sized networks per each ECG lead, particu-
larly varying the number of filters in the first convolutional layer
of the network between {8, 16, 32, 64, 128} and number of residual
blocks between {2, 4, 8,16}. As a result, we reach at a deep model
200 of size |V| = 3 (ECG leads) x 5 (filters) x 4 (blocks) = 60. As
there is no need to train deep models on low resolution data like
vital signs or lab measurements, we simply train a random forest for
each vital sign, and a Logistic regression for labs. Since inference
from these models using CPUs is negligible compared to inference
from deep models using GPUs, we do not include them into the
model zoo and don’t take their inference time into account for sys-
tem latency. But prediction accuracy ensembles the optimal deep
models selected from the model zoo with these ML models.

4.1.2 System setup details. We specify system configuration ¢ € R?
to include number of GPUs and number of patients. We use 2
NVIDIA Tesla V100s with 32GB RAM as ensemble serving node
in our experimental setup. In order to simulate the client request,
we build a data generator to simulate the data flow in ICU which
generate requests at a frequency of 250qps from a client node. We
connect the serving node and client node via HTTP and RPC. The
serving node can start RPC call to client node to start a simulation
to generate client requests. The data generated will then be sent by
the client node and captured by the HTTP server. The data captured
is passed on and stored inside accumulators running on the serving
node (Figure 3). When the observation window is reached the data
will then be further passed on for inference to the ensemble queue.
The ensemble models dequeue queries and perform prediction on
query data. The end-to-end latency that we profile is the latency
of serving system from the moment the data is captured by HTTP
server until the prediction results are finished by the ensemble 3.

4.2 End-to-end HOLMES Performance

In this section we evaluate the performance of HOLMES’ ensemble
composition component with respect to the prediction accuracy
and latency. We report prediction accuracy in terms of area under
receiver operating characteristic curve (ROC-AUC), area under
precision recall curve (PR-AUC), F1 score, and accuracy. We report
system efficiency in terms of latency (second). We compare HOLMES
with the following baselines:

e Random (RD) iteratively chooses one random single model
from model zoo without replacement, and adds it to the current
model set, till the ensemble model exceeds latency constraint.

e Accuracy First (AF) iteratively chooses the next most accurate
single model from model zoo, and adds it to the current model
set, till the ensemble model exceeds latency constraint.

30ur code can be found at https://github.com/hsd1503/HOLMES

o
w
S

0.950

o
N
a

0.925 4

£ 0.900 1 / /
b

8 0.875 1

o

o
h
@

Latency (seconds)
°o
N
S
=

0.850 1 —¥— RD - NPO
0.825 —— AF —®— HOLMES 0.10
—— IF
0.800 0.05
2 4 6 8 10 0 2 4 6 8 10

Number of Iterations Number of Iterations

Figure 6: Search trajectory: accuracy (left) and latency (right)
as a function of iteration.

e Latency First (LF) iteratively chooses the next lowest latency
single model from model zoo, and adds it to the current model
set, till the ensemble model exceeds latency constraint.

e Non-Parametric Optimization (NPO) (modified based on
[32]) iteratively chooses a random subset B (size bounded by
the number of models selected by LF) from model zoo, and
merges them to the current model set, till the number of profiler
calls exceeds the budget N; returns the b* that maximizes the
objective function in Eq. (2) over the final explored model set.

For both NPO and HOLMES, we also add solutions from RD, AF
and LF as their initial profiling. The budget N to profiler calls is the
same for NPO and HOLMES. In HOLMES, we build two random forest
[6] as the surrogate models for accuracy and latency.

4.2.1 Overall performance compared with baselines. Table 2 sum-
marizes the prediction performance from all methods under a 200ms
latency constraint. HOLMES achieves the best performance for all
measurements within the same latency constraint.

Table 2: Comparison results.

Method ROC-AUC PR-AUC F1 Accuracy

RD 0.8758 £ 0.1334 0.8198 + 0.2404 0.6887 + 0.2246 0.7760 + 0.1311
AF 0.9307 + 0.0862 0.9025 £ 0.0791 0.7426 + 0.2920 0.8526 + 0.1113
LF 0.9135 + 0.1020 0.8755 £ 0.1093 0.8302 + 0.1387 0.8695 + 0.1083
NPO 0.9343 + 0.0741 0.9078 + 0.1418 0.8237 + 0.1828 0.8756 + 0.0941

HOLMES 0.9551 + 0.0521 0.9349 + 0.0834 0.8501 + 0.1054 0.8837 + 0.0815

4.2.2 Tradeoff space exploration efficacy. First, we track the search
trajectory through the accuracy/latency tradeoff space in Figure
6, tracking incremental changes in accuracy (Left) and latency
(Right). HOLMES is able to quickly reach the 200ms latency constraint,
but continuing model selection, packing a more accurate model
ensemble within the latency budget. RD, AF, and LF stop after
exceeding the latency budget (higher than the 200ms horizontal
line) and don’t reach optimality w.r.t. AUC-ROC scores. NPO search
trajectory stays under the latency budget, but doesn’t reach optimal
ROC-AUC, due to inefficient random exploration.

Second, we show that HOLMES finds ensembles with accuracy/latency

on the Pareto frontier of the tradeoff space. Namely, for a range
of fixed latency budgets, HOLMES consistently composes ensembles
that outperform NPO (the highest performing baseline) w.r.t. ROC-
AUC (Figure 7). Furthermore, NPO ROC-AUC variance is higher
due to the unstable random search/exploration. In contrast HOLMES
produces narrower ROC-AUC distribution as the ensemble models
it explores have smaller ROC-AUC variance.

Third, we validate the efficacy of our exploration algorithm in
HOLMES by showing the two surrogate models improve when the

https://github.com/hsd1503/HOLMES

I = ol =
0.9 0.9 0.9
[e]
O O [}
2 081 2 081 l 2038
9] O Q
e e e
0.7 0.7
8 o 074 g
o
0.6 0.6
[©] o [¢]
NPO HOLMES NPO HOLMES NPO HOLMES

Latency = 0.15s Latency = 0.20s Latency = 0.25s

Figure 7: HOLMES overall finds more accurate ensemble mod-
els than NPO under different latency constraints.

0.94

0.92 -

R2 Score
o
o
o
L

0.88 -

—%¥— Accuracy Surrogate

0.86 1 —4— Latency Surrogate

0 2 4 6
Number of Iterations

Figure 8: Surrogate models’ performances increasing with
the number of profiler interactions.

number of exploration steps increases. In Figure 8, we plot Rz score
at each iteration step. Ry measures the differences between the
predicted accuracy/latency by the surrogate model and the true
accuracy/latency profiled by the profiler on an independent valida-
tion set that has not been explored by the algorithm. We can tell
both models’ predictions get improved as their Ry scores increase.
This result explains why HOLMES finds more accurate ensemble
models than NPO, even if they have the same number of iterations
— HOLMES can explore and predict more promising ensemble models
using surrogates before actually profiling them.

4.3 Ensemble Serving System Performance

4.3.1 Online vs. offline inference latency. We now evaluate the
serving system performance. First, we demonstrate the benefit
of using an online serving system relative to the conventionally
adopted approach of periodically re-evaluating patient condition
offline. In Figure 9, we plot the ensemble query latency over time for
HOLMES and the conventional batching method commonly adopted
in hospital ICUs for patient discharge evaluation.

The experiment is carried out for a single patient over the period
of 60 minutes. There’s a single periodic spike at the end of the 60min
time window corresponding to the latency of evaluating patient’s
condition on accumulated stale data. This approach affects both the
accuracy (see Figure 2) and latency. It can be seen that the batching
approach incurs inference latency that’s an order of magnitude
higher than HOLMES (log y-axis).

HOLMES, on the other hand performs evaluation every 30s, cor-
responding to the periodic spikes up to an order of magnitude of
10~ 1s. The smaller latency in between the spikes correspond to
just the sensory data collection part of the pipeline (Figure 4). As

the system is well-provisioned, we expect the online sensory data
collection and aggregation latency not to diverge and remain ap-
proximately at the same level, in this case, at the order of magnitude
of 1-10ms. For the purposes of this evaluation, the highest accuracy
model was chosen as the prediction model.

Thus, we observe that by reducing data staleness, we not only
gain in terms of accuracy but also achieve an order of magnitude
faster inference latency for patient condition re-evaluation.

1-hr Batching
.4 g g g gy g g g
Ts
10ms
>
o
e ; ;
Q
® 1 HOLMES
-
1s 4
L N R R CTTTTTT
10ms
1ms beJdbedad el dad bl bl L bbb del el e,
0 Inference query timeline 60 mins

Figure 9: Comparison of an end-to-end timeline from the
batching solution (every 1 hour) and HOLMES.

4.3.2 Varying resource constraints. We use the ensemble models
selected by HOLMES to perform the scalability experiments.

In Figure 10 (left) we vary throughput by changing the number
of patients and keeping the number of GPUs fixed (2 NVIDIA V100
GPUs). We generate a throughput of 250 qps from each patient in
an open loop arrival process (i.e., not blocking on the results of
prior queries). Throughput is then linear in the number of patients.
Throughput increase contributes to (a) higher queueing delays and
(b) more contention for the GPUs, increasing the end-to-end system
response T plotted on the y-axis.

As the number of patients increases, the throughput gets higher.
Higher throughput leads to higher queueing delays which increases
latency. HOLMES serving system is able to perform inference of a 10
model ensemble within 1.15 seconds (95th percentile) even when
the ingest throughput is high (64 patients * 250 gps = 16000 queries
per second). In Figure 10 (right), we vary number of GPUs, keeping
throughput fixed (16000 qps) to gauge its effect on latency. Due to
less resource contention, ensemble served on two GPUs provides a
lower latency compared to one GPU.

8
~ | oso
O Zo0.75
> Vi\ >
2 P = 20.70
g © g
3 E 50.65 H
IS N o
g o T §0.60
g (
= il — 055
\?f’ °
o . 0.50
Q L QO Q QL Q Q 1 2
DR B RS NQ,& Num of GPUs

Throughput (gps)
Figure 10: Latency scalability. (Left): latency scales linearly
with ingest rate from an increasing number of patients.
(Right): latency improves with more GPUs.

5 CONCLUSION

ICU environment necessitates both timely and accurate decisions
to manage patients’ standard of care and cost of care. Clinical tasks,
such as timely patient discharge, require expert medical staff. Deep
learning models have achieved high accuracy of prediction on these
tasks, but neglected latency implications. In this paper, we propose
HOLMES—an online model ensemble serving system for DL models in
ICU. HOLMES navigates the accuracy/latency tradeoff space, achiev-
ing the highest accuracy within specified sub-second latency targets.
HOLMES’s Ensemble Composer automatically constructs a model
ensemble from a set of models trained for different sensory data
modalities and, potentially, observation windows. HOLMES provides
areal-time serving platform built on top of an open-source Ray [25]
framework, with support for serving pipelines that consist of a com-
bination of stateful (e.g., data aggregation) and stateless (e.g. model
serving) components to achieve sub-second, latency SLO-aware
performance. HOLMES is shown to outperform the conventional of-
fline batched inference both on clinical prediction accuracy and
latency (by order of magnitude).

6 ACKNOWLEDGEMENTS

This work was in part supported by the National Science Foun-
dation award IIS-1418511, CCF-1533768 and 1IS-1838042, the Na-
tional Institute of Health award NIH R01 1R01NS107291-01 and
R56HL138415.

REFERENCES

[1] Sébastien Bailly, Geert Meyfroidt, and Jean-Francois Timsit. 2018. WhataAZs
new in ICU in 2050: big data and machine learning. Intensive care medicine 44, 9
(2018), 1524-1527.

[2] James Bergstra and Yoshua Bengio. 2012. Random search for hyper-parameter
optimization. Journal of machine learning research 13, Feb (2012), 281-305.

[3] James Bergstra, Daniel Yamins, and David Daniel Cox. 2013. Making a science
of model search: Hyperparameter optimization in hundreds of dimensions for
vision architectures. JMLR (2013).

[4] James S Bergstra, Rémi Bardenet, Yoshua Bengio, and Balazs Kégl. 2011. Al-
gorithms for hyper-parameter optimization. In Advances in neural information
processing systems. 2546-2554.

[5] Leo Breiman. 1996. Bagging Predictors. Mach. Learn. 24, 2 (Aug. 1996), 1234A$140.
https://doi.org/10.1023/A:1018054314350

[6] Leo Breiman. 2001. Random forests. Machine learning 45, 1 (2001), 5-32.

] Han Cai, Ligeng Zhu, and Song Han. 2018. Proxylessnas: Direct neural architec-

ture search on target task and hardware. arXiv:1812.00332 (2018).

[8] Leo Anthony Celi, Roger G Mark, David J Stone, and Robert A Montgomery.
2013. 4AIBig dataaAl in the intensive care unit. Closing the data loop. American
Jjournal of respiratory and critical care medicine 187, 11 (2013), 1157.

[9] Daniel Crankshaw, Xin Wang, Giulio Zhou, Michael J. Franklin, Joseph E. Gon-

zalez, and Ion Stoica. 2016. Clipper: A Low-Latency Online Prediction Serving

System. CoRR abs/1612.03079 (2016). arXiv:1612.03079 http://arxiv.org/abs/1612.

03079

Thomas Elsken, Jan Hendrik Metzen, and Frank Hutter. 2018. Neural architecture

search: A survey. arXiv preprint arXiv:1808.05377 (2018).

Hayley B Gershengorn, Allan Garland, and Michelle N Gong. 2015. Patterns of

daily costs differ for medical and surgical intensive care unit patients. Annals of

the American Thoracic Society 12, 12 (2015), 1831-1836.

Varun Gulshan, Lily Peng, Marc Coram, Martin C. Stumpe, Derek Wu, Arunacha-

lam Narayanaswamy, Subhashini Venugopalan, Kasumi Widner, Tom Madams,

Jorge Cuadros, Ramasamy Kim, Rajiv Raman, Philip C. Nelson, Jessica L. Mega,

and Dale R. Webster. 2016. Development and Validation of a Deep Learning

Algorithm for Detection of Diabetic Retinopathy in Retinal Fundus Photographs.

JAMA 316, 22 (12 2016), 2402-2410. https://doi.org/10.1001/jama.2016.17216

arXiv:https://jamanetwork.com/journals/jama/articlepdf/2588763/j0i160132.pdf
[13] Neil A Halpern and Stephen M Pastores. 2015. Critical care medicine beds, use,
occupancy and costs in the United States: a methodological review. Critical care
medicine 43, 11 (2015), 2452.

[14] Awni Y Hannun, Pranav Rajpurkar, Masoumeh Haghpanahi, Geoffrey H Tison,
Codie Bourn, Mintu P Turakhia, and Andrew Y Ng. 2019. Cardiologist-level

[10

[11

[12

[16

(17

oy
&

[19

[20

[21

[22

[23

[24

[25

[26

[27

[29

[30

[31

[33

(34]

[35

[36

@
=

[38

[39

arrhythmia detection and classification in ambulatory electrocardiograms using
a deep neural network. Nature medicine 25, 1 (2019), 65.

Hrayr Harutyunyan, Hrant Khachatrian, David C Kale, Greg Ver Steeg, and Aram
Galstyan. 2017. Multitask learning and benchmarking with clinical time series
data. arXiv preprint arXiv:1703.07771 (2017).

Shenda Hong, Yuxi Zhou, Junyuan Shang, Cao Xiao, and Jimeng Sun. 2020.
Opportunities and challenges of deep learning methods for electrocardiogram
data: A systematic review. Computers in Biology and Medicine (2020), 103801.
Frank Hutter, Holger H Hoos, and Kevin Leyton-Brown. 2011. Sequential model-
based optimization for general algorithm configuration. In International confer-
ence on learning and intelligent optimization. Springer, 507-523.

Slawomir Koziel and Leifur Leifsson. 2013. Surrogate-based modeling and opti-
mization. Springer.

Yann LeCun, Yoshua Bengio, and Geoffrey Hinton. 2015. Deep learning. nature
521, 7553 (2015), 436.

Julien-Charles Lévesque, Christian Gagné, and Robert Sabourin. 2016. Bayesian
hyperparameter optimization for ensemble learning. In Proceedings of the Thirty-
Second Conference on Uncertainty in Artificial Intelligence. 437-446.

Zachary C Lipton, David C Kale, Charles Elkan, and Randall Wetzel. 2016. Learn-
ing to diagnose with LSTM recurrent neural networks. ICLR.

Chenxi Liu, Barret Zoph, Maxim Neumann, Jonathon Shlens, Wei Hua, Li-Jia Li,
Li Fei-Fei, Alan Yuille, Jonathan Huang, and Kevin Murphy. 2018. Progressive
neural architecture search. In ECCV. 19-34.

Xiangrui Meng, Joseph Bradley, Burak Yavuz, Evan Sparks, Shivaram Venkatara-
man, Davies Liu, Jeremy Freeman, DB Tsai, Manish Amde, Sean Owen, Doris
Xin, Reynold Xin, Michael J. Franklin, Reza Zadeh, Matei Zaharia, and Ameet Tal-
walkar. 2015. MLIib: Machine Learning in Apache Spark. arXiv:1505.06807 [cs.LG]
Jonas Mockus. 2012. Bayesian approach to global optimization: theory and appli-
cations. Vol. 37. Springer Science & Business Media.

Philipp Moritz, Robert Nishihara, Stephanie Wang, Alexey Tumanov, Richard
Liaw, Eric Liang, Melih Elibol, Zongheng Yang, William Paul, Michael I Jordan,
et al. 2018. Ray: A distributed framework for emerging {Al} applications. In 13th
{USENIX} Symposium on Operating Systems Design and Implementation ({ OSDI}
18). 561-577.

Phuoc Nguyen, Truyen Tran, and Svetha Venkatesh. 2017. Deep learning to
attend to risk in ICU. arXiv preprint arXiv:1707.05010 (2017).

Christopher Olston, Noah Fiedel, Kiril Gorovoy, Jeremiah Harmsen, Li Lao, Fang-
wei Li, Vinu Rajashekhar, Sukriti Ramesh, and Jordan Soyke. 2017. Tensorflow-
serving: Flexible, high-performance ml serving. arXiv:1712.06139 (2017).

Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory
Chanan, Trevor Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, et al.
2019. PyTorch: An imperative style, high-performance deep learning library. In
Advances in Neural Information Processing Systems. 8024-8035.

Alvin Rajkomar, Eyal Oren, Kai Chen, Andrew M Dai, Nissan Hajaj, Michaela
Hardt, Peter J Liu, Xiaobing Liu, Jake Marcus, Mimi Sun, et al. 2018. Scalable and
accurate deep learning with electronic health records. NP Digital Medicine 1, 1
(2018), 18.

Pranav Rajpurkar, Jeremy Irvin, Kaylie Zhu, Brandon Yang, Hershel Mehta,
Tony Duan, Daisy Ding, Aarti Bagul, Curtis Langlotz, Katie Shpanskaya, et al.
2017. Chexnet: Radiologist-level pneumonia detection on chest x-rays with deep
learning. arXiv preprint arXiv:1711.05225 (2017).

Bobak Shahriari, Kevin Swersky, Ziyu Wang, Ryan P Adams, and Nando De Fre-
itas. 2015. Taking the human out of the loop: A review of Bayesian optimization.
Proc. IEEE 104, 1 (2015), 148-175.

Jasper Snoek, Hugo Larochelle, and Ryan P Adams. 2012. Practical bayesian
optimization of machine learning algorithms. In Advances in neural information
processing systems. 2951-2959.

Lu Wang, Wei Zhang, Xiaofeng He, and Hongyuan Zha. 2018. Supervised rein-
forcement learning with recurrent neural network for dynamic treatment recom-
mendation. In Proceedings of the 24th ACM SIGKDD International Conference on
Knowledge Discovery & Data Mining. ACM, 2447-2456.

Darrell Whitley. 1994. A genetic algorithm tutorial. Statistics and computing 4, 2
(1994), 65-85.

Cao Xiao, Edward Choi, and Jimeng Sun. 2018. Opportunities and challenges in
developing deep learning models using electronic health records data: a system-
atic review. JAMIA 25, 10 (2018), 1419-1428.

Saining Xie, Ross Girshick, Piotr Dollar, Zhuowen Tu, and Kaiming He. 2017.
Aggregated residual transformations for deep neural networks. In Proceedings of
the IEEE conference on computer vision and pattern recognition. 1492-1500.
Yanbo Xu, Siddharth Biswal, Shriprasad R Deshpande, Kevin O Maher, and Jimeng
Sun. 2018. Raim: Recurrent attentive and intensive model of multimodal patient
monitoring data. In KDD. ACM, 2565-2573.

Zhi-Hua Zhou. 2012. Ensemble methods: foundations and algorithms. Chapman
and Hall/CRC.

Barret Zoph and Quoc V Le. 2016. Neural architecture search with reinforcement
learning. arXiv preprint arXiv:1611.01578 (2016).

https://doi.org/10.1023/A:1018054314350
https://arxiv.org/abs/1612.03079
http://arxiv.org/abs/1612.03079
http://arxiv.org/abs/1612.03079
https://doi.org/10.1001/jama.2016.17216
https://arxiv.org/abs/https://jamanetwork.com/journals/jama/articlepdf/2588763/joi160132.pdf
https://arxiv.org/abs/1505.06807

SUPPLEMENTARY MATERIALS

A.

1 Exploring in HOLMES using genetic search

Al

gorithm 2 Explore using Genetic algorithm

1

2
3

25:

26

: Input: B, number of samples Nj, degree of mutation S, proba-
bility of genetic explore p, probability of mutation p;.
: Output: B/
: whilei < N; do
Uniformly random pick two numbers rnd, rnd; from [0,1]
Random pick by, bz, b3 from B
if rnd > p then
/* Random explore */
b = Random(8B)
else
if rnd; > p; then
/* Recombination explore */
b = Recombination(by, by)
else
/* Mutation explore */
b = Mutation(bs, S)
end if
end if
/* Not add duplicates */
if be Borb € B’ then
continue
else
i=i+1
/* Add it to candidates */
B’'=B'Ub
end if
. end while

A.2 Evolution of ROC-AUC and latency when exploring the
searching space using different algorithms

1.0 1

0.9 F__—A—-a._.
Q0.8+
<
S 0.7 —%¥— RD
o == AF

0.6 - == LF

—=— NPO
0.5 4 —o— HOLMES
0.050 0.075 0.100 0.125 0.150 0.175 0.200

Latency (seconds)

Figure 11: ROC-AUC vs. Latency vary by iterations in differ-
ent Explore algorithms

10

A.3 Comparison of accuracy and latency from the optimal
ensemble selected by different algorithms

0.20

Latency (Seconds)
° °
o [
& &

o
o
=

o
o
o

RD AF LF

NPO HOLMES

RD AF LF NPO HOLMES

Figure 12: Comparing under 0.2 second latency constraint.
(Left): HOLMES has comparable utility of latency with LF (La-
tency First) method. (Right): HOLMES selects higher accurate
ensemble model under that latency constraint.

A.4 Change of accuracy and latency by varying the observa-
tion window. In Figure 13, we do comparison of execution in
latency profile to show how does increase in observation window
causes a small increase in latency while leads to high latency pro-
file. Our right graph shows multiple execution of a model inside
HOLMES serving system. Timeit (Time in PyTorch) legend shows
the execution of plain PyTorch model in a GPU. TS (serving delay)
legend shows the execution of the model inside the serving system.
TQ (queuing delay) legend shows the worst analysis of a request
waiting in a queue inside the serving system. TQ + TS legend shows
end-to-end latency for a query inside the serving system.

—¥— timeit
— tq
- ts

—o— tg+ts

0.7595

-
o

0.7590

Iy
o

0.7585

Accuracy

o
0

0.7580

Latency (seconds)

0.7575

o
°

05 5 10 20
History Observed in Minutes

30 0 5 10 15 20 25 30
History Observed in Minutes

Figure 13: Effects of different history aggregation.

A.5 Deep model description in the Model Zoo.

Table 3: Deep model description in the Model Zoo.

Field ‘ Description

Depth Number of stacked layers
Width Number of convolutional filters
MACS Multiply-accumulate operations

Memory size

Input data modality
Input data length
Accuracy

GPU memory usage

ECG Lead number or vital sign names
Length of each input signal segmentation
ROC-AUC on validation set

A.6 An Alternative Formulation of Accuracy Sensitive Con-
straint.

In the main paper, as desired for a real-time serving system,
we have formulated our problem as a latency sensitive task that
aims to maximize accuracy subject to a latency upper bound L.
Alternatively, for other accuracy sensitive tasks, we can switch
the objective function and constraint in Eq. (1) and reach at a new

11

Lagrange function:

min Lj(b) = fi(V,¢,b) = 6(fa(V.b) - A),
bef0,1)n
where A is the accuracy lower bound that a model ensemble needs
to achieve at least. Although this setup is beyond the scope of this
paper, it can be equivalently solved by following the same searching
algorithm we propose in the following subsection.

	Abstract
	1 Introduction
	2 Related Work
	3 HOLMES: Health OnLine Model Ensemble Serving
	3.1 Overview
	3.2 Model Zoo
	3.3 Ensemble Composer
	3.4 Real-time Serving

	4 Experimental evaluation
	4.1 Experimental Setup
	4.2 End-to-end HOLMES Performance
	4.3 Ensemble Serving System Performance

	5 Conclusion
	6 Acknowledgements
	References

