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ABSTRACT
Domain adaptation (DA) offers a valuable means to reuse data and
models for new problem domains. However, robust techniques
have not yet been considered for time series data with varying
amounts of data availability. In this paper, we make three main
contributions to fill this gap. First, we propose a novel Convolutional
deep Domain Adaptation model for Time Series data (CoDATS) that
significantly improves accuracy and training time over state-of-the-
art DA strategies on real-world sensor data benchmarks. By utilizing
data from multiple source domains, we increase the usefulness
of CoDATS to further improve accuracy over prior single-source
methods, particularly on complex time series datasets that have high
variability between domains. Second, we propose a novel Domain
Adaptation with Weak Supervision (DA-WS) method by utilizing
weak supervision in the form of target-domain label distributions,
which may be easier to collect than additional data labels. Third, we
perform comprehensive experiments on diverse real-world datasets
to evaluate the effectiveness of our domain adaptation and weak
supervision methods. Results show that CoDATS for single-source
DA significantly improves over the state-of-the-art methods, and
we achieve additional improvements in accuracy using data from
multiple source domains and weakly supervised signals.

CCS CONCEPTS
• Computing methodologies → Transfer learning; Unsuper-
vised learning; Adversarial learning; Neural networks; • Mathemat-
ics of computing → Time series analysis.
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1 INTRODUCTION
Time series sensor data abound in many real-world settings includ-
ing human activity recognition [1], sleep stage classification [43],
gesture recognition [26], speech recognition [17], and diagnosis
and mortality prediction from medical data [32]. Labeling data in
these situations is expensive and sometimes infeasible. One way to
reduce labeling effort is to design unsupervised domain adaptation
techniques that leverage the labeled data from one or more source
domains and unlabeled data from a new target domain to build a
classifier for the target domain [12, 41].

While unsupervised domain adaptation methods have been de-
signed for image data, very limited work has focused on adaptation
approaches for time series data [40]. A few time series methods
have been introduced. However, these prior approaches utilize re-
current neural networks (RNNs) that can be very slow to train for
reasonable-sized time series arising in real-world problems. While
researchers have found that convolutional neural networks (CNNs)
can achieve the same accuracy as RNNs while being trained and
evaluated much faster [2, 28], previously-proposed domain adapta-
tion network architectures are incompatible with time series data.

In this paper, we propose a new model: Convolutional deep
Domain Adaptation model for Time Series data (CoDATS). Co-
DATS couples technical principles from domain-invariant domain
adaptation with a network design that is more efficient, accurate,
time-series compatible, and extensible than prior work. The Co-
DATS architecture exhibits three important features. First, it lever-
ages existing domain-invariant domain adaptation methods to op-
erate on time series data. Second, it outperforms existing single-
source time series adaptation models. Third, it is readily extensible
to additional situations including when data from multiple source
domains is available, which is particularly helpful for complex time
series datasets having high variability between domains, and when
the target-domain label distribution is available, which may be eas-
ier to collect than additional time series data labels.

While utilizing unlabeled target-domain data in unsupervised
domain adaptation is one way of reducing labeling effort, another
way is to use weakly-supervised information that is relatively easy
to acquire. Obtaining labels for time series sensor data is more
challenging than for image data. For example, cat vs. dog image
classification labels can be easily obtained after data collection by
having a person look at each image and determine if the image
is of a cat or a dog. In contrast, for time series human activity
recognition, it is much more difficult to identify what activity a
human was performing by looking at raw accelerometer, gyroscope,
and magnetometer sensor data. Thus, labels for time series sensor
data are instead typically recorded while performing the activity
[10, 29], which greatly limits the number of gathered labels because
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Figure 1: Illustration of our proposed CoDATSmodel that supports single- and multi-source domain adaptation in addition to
our novel problem setting of domain adaptation with weak supervision.

of the additional burden from interrupting a person’s activities.
However, other possibilities exist for obtaining information in the
form of weak supervision. For activity recognition, it may be easy
for each participant to self-report what proportion of the time they
performed each activity. For example, providing an estimate of
how many hours a day they spend cooking is easier than labeling
each data instance of cooking. We formulate this new problem
setting of Domain Adaptation with Weak Supervision (DA-WS)
and develop a novel method to effectively utilize weak supervision
in the form of label proportions. The key idea is to constrain the
space of model parameters to those which approximately matches
the label proportions on unlabeled data from the target domain.

To validate our proposed CoDATS model and weak-supervision
method, we performed comprehensive experiments on diverse real-
world time series benchmarks including gesture recognition and
human activity recognition. We compare CoDATS with prior single-
source time series methods and observe that CoDATS dramatically
outperforms previous approaches to time series domain adaptation.
Additionally, we demonstrate how CoDATS can further improve
accuracy by utilizing data from multiple sources. We also find that
coupled with our proposed CoDATS model, our DA-WS method
yields additional improvements in accuracy.
Contributions. We make three key contributions, as summarized
in Figure 1. 1) We develop a new time-series compatible model
referred as CoDATS to improve both accuracy and computational-
efficiency when compared to prior work on single-source DA. Co-
DATS supports utilizing data from multiple sources to further im-
prove accuracy. 2) We formulate a new weak supervision problem
to leverage target-domain label proportions when available and
propose a novel method referred as DA-WS to effectively solve it.
3)We perform comprehensive experimental evaluation on multiple
challenging real-world benchmarks to show the efficacy of our Co-
DATS model and weak-supervision method over state-of-the-art.1

2 RELATEDWORK
A large body of prior work has contributed numerous strategies
for single-source domain adaptation of image data. These meth-
ods learn a domain-invariant feature representation [12, 22, 33] or

1Code is available at: https://github.com/floft/codats

perform domain mapping [4, 14, 16]. Some researchers explored us-
ing separate normalization statistics for each domain [25], building
ensembles [9], or pushing decision boundaries into lower-density
regions [23, 34]. While multi-source domain adaptation, in which
multiple source domains are adapted to a single target, has not
received the same level of attention, a few methods have been
proposed. One straightforward method simply combines multiple
domains with labeled data together as a single “source” domain
[36]. More sophisticated methods take advantage of differences
among source domains or the relationship between sources and
target. Zhao et al. [42] include a separate domain classifier for each
source domain and compute a loss based on the lowest domain er-
ror among these classifiers. Xie et al. [41] instead propose using a
multi-class output for a single domain classifier, which scales better
as the number of source domains increases. These previous single-
source and multi-source adaptation algorithms cannot be directly
applied to time series data without a time-series compatible model
architecture, such as our proposed CoDATS model.

While less numerous, researchers have introduced a few time
series adaptation methods. Specifically, variational recurrent ad-
versarial deep domain adaptation (VRADA) and recurrent domain
adversarial neural network (R-DANN) explore RNNs as feature ex-
tractors. These RNNs can be combined with an adversary to make a
time series representation domain invariant [32]. R-DANN employs
a long short-term memory (LSTM) network, and VRADA uses a
variational RNN. These were tested on time series medical data,
while a variation employing gated recurrent units (GRUs) predicted
driving maneuvers [37].

A few domain adaptation methods have tackled specialized time
series tasks.These include instanceweighting for anomaly detection
[38] and a domain-invariant feature learner for inertial tracking that
combined an autoencoder, a generative adversarial network (GAN),
and RNNs [5]. Another domain-invariant method combined CNNs
and RNNs to perform domain generalization for classification of
sleep stages from radio-frequency data [43]. In a related method,
source datasets with differing label spaces were transferred to one
target dataset using pre-training and fine-tuning [6].

We include the two most related approaches, VRADA and R-
DANN, as baseline models in our empirical study validating our
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proposed CoDATS model since they were developed for time se-
ries classification and thus can be directly used for comparison.
However, we do not include the others since they solve related but
different problems or are incompatible with time series data.

Our proposed domain adaptation with weak supervision ap-
proach is inspired in part by the posterior regularization idea from
Ganchev et al., in which learning is guided to meet certain con-
straints on the unlabeled data [11]. However, our work differs from
that of Ganchev et al. in three key ways. First, they focus on devel-
oping methods for natural language processing, whereas we focus
on developing appropriate methods and models compatible with
time series. Second, they develop weak supervision for use alone or
in tandem with some additional labeled data for semi-supervised
learning, whereas we focus on coupling weak supervision with do-
main adaptation. Third, they develop a weak supervision method
based on expectation maximization, whereas because we are using
deep neural networks, we develop a weak supervision objective
that instead takes the form of a differentiable regularization term
added to the loss function. A related regularizer was used by Jiang
et al. [20], but they estimate label proportions on the source domain
data rather than using target-domain weak supervision.

A few other weak supervision methods have been proposed in
different contexts. Hu et al. [18] learn human activity recognition
models from video data that may have multiple, uncertain, or in-
complete labels. We instead propose a form of weak supervision
better suited to streams of raw sensor data that cannot be easily
visually identified. Huang et al. [19] incorporate expert-provided
biases into a hidden Markov model (HMM) for domain adaptation
in a natural language processing context. The biases provide in-
formation about a specific task in an application domain (akin to
feature engineering) rather than information about the target do-
main data, which may differ for each target domain. In the context
of semantic segmentation of images, a variety of work has explored
using weak supervision [15, 31]. However, such weak supervision
takes the form of image labels or bounding boxes, which cannot
be directly applied to time series sensor data. Despite the funda-
mental differences between these methods and the problem we are
addressing, the performance gains suggest that weak supervision
in a time series domain adaptation context may similarly yield an
improvement in accuracy.

3 PROBLEM SETUP
Domain adaptation reuses labeled data from one domain to create
a classifier for a different but related domain. In time series data
settings such as human activity recognition, this is a common prob-
lem. For example, activity-labeled sensor data may exist for person
1 while only unlabeled data is available for person 2. Because of
inherent differences (e.g., different activity patterns, sensor posi-
tions, or sampling rates), a classifier trained on person 1’s data will
likely not perform well for person 2. However, we can create a fea-
ture extractor that produces domain-invariant features. A classifier
trained on these features will generalize better to person 2 because
the features are similar in both domains.

Additionally, we may have other sources of information about
person 2’s activities. For example, they may self-report how much
time they spend on each activity, which can be interpreted as label

proportions for the target domain. This can be used as a constraint
or regularizer for the learned model: learn a model that is domain
invariant but also consistent with the known label proportions.

Below we provide definitions for two cases of unsupervised
domain adaptation: single-source domain adaptation and multi-
source domain adaptation. Following this, we formulate our novel
problem setting of domain adaptation with weak supervision.
Single/Multi-Source Domain Adaptation. Formally, given in-
put data - with ! labels . = {1, 2, . . . , !} and = source domains,
then we have several distributions over the input and label space
- × . : = source domain distributions D(8 for 8 ∈ {1, 2, . . . , =} and
a target domain distribution D) . During training, we draw labeled
samples i.i.d. from each source domain distribution D(8 and un-
labeled samples i.i.d. from D-

)
(the marginal distribution of D)

over - ). This gives us B8 source samples (8 for each source domain
8 ∈ {1, 2, . . . , =} and C target samples ) :

(8 = {(x9 , ~ 9 )}B89=1 ∼ D(8 , ∀8 ∈ {1, 2, . . . , =} (1)

) = {(x9 )}C9=1 ∼ D-
) (2)

Single-source domain adaptation corresponds to the case in
which = = 1 and multi-source domain adaptation corresponds
to the case where = > 1. During evaluation, we test the learned
model on C samples )C4BC drawn i.i.d. from D) and not seen during
training (we need ground-truth labels to compute accuracy).

)C4BC = {(x9 , ~ 9 )}C9=1 ∼ D) (3)

In this paper, we specifically investigate the case where - rep-
resents time series data. Time series can be either univariate or
multivariate. If univariate, then - = [G1, G2, . . . , G� ] consists of
� ordered real values. If multivariate, then - = [-1, -2, . . . , - ]
consists of  univariate time series, each of which contains � or-
dered real feature values [7]. For example, these features may be
accelerometer x, y, and z values, each of which is a time series of
real values.
Domain Adaptation with Weak Supervision. For weak super-
vision with known target-domain label proportions, the setup ad-
heres to the above domain adaptation definition, except additional
information is now available for training. Formally, we are pro-
vided with a discrete probability distribution % (. = ~) giving the
probability ?~ that a target-domain example will have the label ~:

.CAD4 (~) = % (. = ~) = ?~, ∀~ ∈ {1, 2, . . . , !} (4)

Note that because this is a probability distribution,
∑!
~=1 ?~ = 1

and ?~ ≥ 0 for all ~ ∈ {1, 2, . . . , !}.

4 CODATS FOR DOMAIN ADAPTATION
We propose a time series domain adaptation model to improve
adaptation performance. Here, we first summarize the proposed
adaptation method that supports both single-source and multi-
source domain adaptation. Next, we detail the network architecture
we develop that is compatible with time series data.

4.1 Adaptation Method
We propose a domain-invariant training method for CoDATS. The
goal of domain-invariant methods is to learn a feature extractor
network that produces domain-invariant features. Such features
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Figure 2: CoDATS training and testing setup. Its goal is
to learn a domain-invariant feature representation during
training that is then used during testing.

can be learned with a domain classifier (or “discriminator”) acting
as an adversary. If a classifier trained on these domain-invariant
features performs well in the source domain, then this classifier
may generalize well to the target domain due to the domain-aligned
feature distributions. Ultimately, generalization also depends on the
level of similarity between domains. If the domains are too distinct,
learning domain-invariant features can increase error [3]. The most
common domain-invariant method is the domain adversarial neural
network (DANN) [12], which is the basis of the prior time-series
adaptation works, VRADA and R-DANN. However, note that DANN
only works for single-source domain adaptation.

Xie et al. [41] extend DANN to a more general framework, sup-
porting invariance from factors or traits other than binary domain
labels. While their framework allows for multinomial variables, con-
tinuous variables, or variables with structure such as parse trees, for
multi-source domain adaptation (or single-source, which is a spe-
cial case) we are particularly interested in the case of multinomial
variables. Thus, we base our adaptation method on this framework.

Our training setup illustrated in Figure 2 consists of three neural
networks: a feature extractor � , a task classifier � , and a domain
classifier � . The feature extractor is updated in an adversarial man-
ner, with two competing objectives. The feature extractor and task
classifier are updated such that the task classifier correctly classi-
fies labeled source data. Similarly, the domain classifier is updated
in such a way that it accurately classifies data as coming from the
correct domain. At the same time, the feature extractor is also up-
dated such that the domain classifier cannot classify which domain
the data originated from (the adversarial component). The adversar-
ial step is performed via a gradient reversal layer (GRL) [12] placed
in the network between the feature extractor and domain classifier.
The GRL flips the gradient during back propagation when updating
the weights to achieve this effect.

Formally, given a discriminator � (·;\3 ) with parameters \3 ,
a feature extractor � (·;\ 5 ) with parameters \ 5 , a task classifier
� (·;\2 ) with parameters \2 , labeled source domain data D(8 from

a source domain 8 ∈ {1, 2, . . . =}, unlabeled target domain data D-
)
,

two multi-class cross entropy losses L~ and L3 for the labels and
domains respectively, and domain labels for each example where the
target domain is labeled 3) = 0 and the source domains are labeled
3(8 = 8 for 8 ∈ {1, 2, . . . =}, then the two competing objectives are:

argmin
\ 5 ,\2

=∑
8=1

E(x,~)∼D(8

[
L~ (� (� (x)), ~) − L3 (� (� (x)), 3(8 )

]
−Ex∼D-

)

[
L3 (� (� (x)), 3) )

]
(5)

argmin
\3

=∑
8=1

E(x,~)∼D(8

[
L3 (� (� (x)), 3(8 )

]
+Ex∼D-

)

[
L3 (� (� (x)), 3) )

]
(6)

To summarize, Equation 5 updates the parameters of � and �
such that � predicts the correct source task labels and � predicts
the incorrect domain labels (the L3 terms are negated), while Equa-
tion 6 updates � to correctly predict the domain labels.

However, using the gradient reversal layer, Equations 5 and 6
can be combined together into one step. The gradient reversal layer
can be represented as R(x) with different forward and backward
propagation behavior, where I is the identity matrix and _ is a
constant (possibly with a specified schedule during training):

R(x) = x;
3R
3x

= −_I (7)

Then, the optimization step becomes:

argmin
\ 5 ,\2 ,\3

=∑
8=1

E(x,~)∼D(8

[
L~ (� (� (x)), ~) + L3 (� (R(� (x))), 3(8 )

]
+ Ex∼D-

)

[
L3 (� (R(� (x))), 3) )

]
(8)

Equation 8 yields an adaptation method capable of handling both
single-source (= = 1) and multi-source (= > 1) domain adaptation.

4.2 Model
We now need to design time-series compatible network architec-
tures capable of handling the shape and temporal nature of time se-
ries data. In contrast to image data which are typically represented
by three dimensions (height, width, number of channels) having
spatial relationships along two dimensions, time series data typi-
cally have two dimensions (time series length, number of features)
with temporal relationships between sensor data across time. The
developed network must be capable of learning dependencies along
this time dimension.

Prior works used RNNs for time series because of their ability
to handle sequential data. However, RNNs pose a number of chal-
lenges: long-term dependencies are inhibited because gradients
backpropagated through time tend to vanish and training can fail if
gradients explode. Gating mechanisms have been developed to par-
tially address vanishing gradients [2], and exploding gradients can
be partially resolved by gradient clipping [30]. Others have tried
developing superior RNNs, but these have been found to not out-
perform LSTMs for many tasks [13, 21, 27]. An alternative direction
for improving sequential models is instead employing feed-forward
networks like CNNs, using 1D convolutions along the time axis.
Stable RNNs have provably-good feed-forward approximations [28],
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and researchers have empirically demonstrated the benefit of CNNs
on sequential data, for example, performing better at long-term
memory than RNNs [2].

While time-series adaptation traditionally employs RNNs, we hy-
pothesize that both accuracy and computation cost can benefit from
a CNN architecture.We propose the CoDATS networks summarized
in Figure 3. The feature extractor consists of a fully convolutional
network (FCN) [39] that is comparable to more computationally-
expensive, state-of-the-art ensemble time series classification mod-
els [7, 39]. A similar FCN model has previously been used for other
time series transfer learning tasks [6]. The single dense layer (the
last layer) of the FCN then acts as the task classifier. The domain
classifier acting as the adversary during training consists of a multi-
layer perceptron (MLP) model [39]. We employ MLP rather than
additional 1D convolutions since following the global average pool-
ing layer in the feature extractor, there is no longer any time di-
mension. Thus, additional 1D convolutions along the time axis are
not possible. Other works have similarly used multiple dense layers
for a domain classifier [12, 32].

Similar to an RNN, the proposed network can handle variable-
length time series data. RNNs handle variable-length data by pro-
cessing each time step sequentially, whereas the proposed CNN
network handles variable-length data with the global average pool-
ing layer. While the data in our experiments are of a fixed length,
the proposed model is not limited to such situations.

5 DAWITHWEAK SUPERVISION
We propose a novel method for domain adaptation with weak su-
pervision (DA-WS) based on our CoDATS model. The general prin-
ciple behind our learning approach is to use the weak supervision
information as constraints to efficiently search for good model pa-
rameters. We can devise specific learning methods depending on
the form of weak supervision by appropriately instantiating this
general principle. DA-WS incorporates the known target-domain la-
bel proportion information during training by searching for model
parameters whose predicted labels on unlabeled target domain data

approximately matches with the given label proportions. Mathe-
matically, this is done by introducing a differentiable regularization
term to the training objective.

From our formalization of the problem in Equation 4, we have
the true label proportions .CAD4 (~) available for the target domain.
Now let us define the predicted target-domain distribution from
the CoDATS task classifier. Let� (� (x))~ denote the element of the
task classifier’s softmax prediction corresponding to label ~. Then,
the predicted label distribution can be represented as a probability
distribution % (. = ~ |- = x), indicating the probability that a
target-domain instance x ∼ D-

)
will have label ~:

.?A43 (~) = % (.?A43 = ~) = � (� (x))~, ∀~ ∈ {1, 2, . . . , !} (9)

We do not want each individual prediction to have output proba-
bilities matching.CAD4 (~), whichwould regularize to always predict
the majority class (the maximum probability in the .CAD4 (~) dis-
crete distribution). Rather, we want the expected value computed
over a large number of predictions (e.g., a mini-batch) to follow
this distribution. We want � to predict a particular class for each x,
but on average the predictions should follow .CAD4 (~). This gives
us the estimated distribution .̃?A43 (~) over multiple predictions:

.̃?A43 (~) = Ex∼D-
)

[
.?A43 (~)

]
= Ex∼D-

)

[
� (� (x))

]
(10)

During training, we can align the predicted distribution .̃?A43 (~)
with the known distribution .CAD4 (~) with a distance measure such
as Kullback-Leibler (KL) divergence. Thus, we propose adding the
following weak supervision regularization term to the loss:

L,( = � !

(
.CAD4 (~)

 .̃?A43 (~))
= � !

(
.CAD4

 Ex∼D-
)

[
� (� (x))

] )
(11)

Combining our regularization term in Equation 11 with the Co-
DATS training objective in Equation 8, the entire training objective
for DA-WS becomes:

argmin
\ 5 ,\2 ,\3

=∑
8=1

E(x,~)∼D(8

[
L~ (� (� (x)), ~) + L3 (� (R(� (x))), 3(8 )

]
+ Ex∼D-

)

[
L3 (� (R(� (x))), 3) )

]
+ � !

(
.CAD4

 Ex∼D-
)

[
� (� (x))

] )
(12)

Altogether, this objective finds model parameters that: 1) predict
correct task labels using the labeled data from the source domains,
2) produce a domain-invariant feature representation among all
domains using the unlabeled target-domain data, and 3) predict
target-domain task labels that on average align well with the known
target-domain label proportions.

Note that this regularizer only has an effect when the label distri-
bution differs between the source and target domains. If the distribu-
tions are the same, thenwhen training with empirical risk minimiza-
tion, � (� (x)) will already produce a predicted label distribution
aligning with that of the source(s), making the KL divergence term
zero. We only gain information from knowing the target-domain
label distribution .CAD4 if it differs from the sources’ label distri-
bution, and thus only in such situations will we see DA-WS yield
an improvement. Indeed, our experimental results corroborate this
proposition.
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6 EXPERIMENTAL SETUP
First, to evaluate our proposed model, we compare CoDATS with
relevant prior methods and several baselines on diverse time series
adaptation benchmarks. We hypothesize that CoDATS will yield
an improvement in accuracy while also reducing training time. We
choose accuracy as the evaluation metric to afford comparison with
prior adaptation work. While we initially compare on single-source
adaptation because this is the problem studied by prior work, we
also demonstrate that our model supports multi-source adaptation,
which we hypothesize can yield additional performance gains.

Second, we perform experiments utilizing our proposed domain
adaptation with weak supervision (DA-WS) method. We hypoth-
esize that DA-WS coupled with our CoDATS model will provide
further improvements in accuracy.

6.1 Datasets
A requirement for selecting datasets to test domain adaptation is
that the dataset includes a property for splitting the data into multi-
ple domains. Such properties could include different data collection
days or different generating processes (e.g., different persons in the
case of human activity recognition data). The multi-variate time
series datasets we select include a participant identifier, and we
use this feature to split data into multiple domains. Thus, our adap-
tation problems consist of the realistic use-case adapting a model
from one or more participants’ data to another participant’s data.

We include the Human Activity Recognition (HAR) dataset [1]
due to its popularity in time series research. It contains accelerome-
ter, gyroscope, and estimated body acceleration data from 30 partic-
ipants. We also include the Heterogeneity Human Activity Recog-
nition Dataset (HHAR) dataset [35], which is more diverse than
HAR, including accelerometer data from 31 smartphones of differ-
ent manufacturers, models, etc. positioned in various orientations.
Additionally, we include 33 participants’ accelerometer data from
the WISDM activity recognition (WISDM AR) dataset [24]. Finally,
we include a gesture recognition dataset (uWave) containing ac-
celerometer data from 8 participants performing various hand ges-
tures [26]. In the single-source experiments, we pick 10 random
pairs of participants for each dataset. In the multi-source exper-
iments, for each value of =, we pick 3 random subsets of source
domains for each of the 10 random target domains. See the Appen-
dix for more details.

6.2 CoDATS Model
Single-Source Domain Adaptation. In our evaluation, we com-
pare CoDATS with several single-source domain adaptation base-
lines. First, we include no adaptation as an approximate lower
bound (No Adaptation). The lower bound gives a rough estimate
of the domain gap between the source and target distributions and
indicates how hard it will be to perform domain adaptation. We ex-
pect that domain adaptation methods will exceed this lower bound,
depending on the extent of the domain gap. Similarly, we include
models trained directly on labeled target data as an approximate
upper bound (Trained on Target). Assuming there is enough tar-
get data, then we expect these upper-bound models to perform well
when trained on this labeled data. As explained by the theory of
Ben-David et al. [3], given enough target labels, not using any of

the source domain data is actually preferable because of the pos-
sibility of negative transfer. Finally, we include R-DANN and VRADA
[32] as single-source time series adaptation baselines using their
respective network architectures. We compare these baselines with
our CoDATS model first for single-source domain adaptation to
demonstrate the superiority of our proposed model for time series.
Multi-Source Domain Adaptation. As with single-source do-
main adaptation, we include the baselines No Adaptation and
Trained on Target in the multi-source domain adaptation ex-
periments. This set of experiments demonstrate the additional per-
formance gains achievable by utilizing data from multiple people.
Our proposed CoDATS model supports such multi-source domain
adaptation, whereas prior methods do not.

6.3 Domain Adaptation with Weak Supervision
For the domain adaptation with weak supervision problem setting,
we are given additional target-domain label proportion information.
We simulate being given this information by estimating the label
proportions of the target domain data from only its training set. We
evaluate our DA-WS method with both a single source domain and
also multiple source domains. Since this is a novel problem setting,
we do not compare with prior works but rather compare with
No Adaptation, Trained on Target, and CoDATS. By comparing
with these domain adaptation methods that do not make use of the
additional weak supervision information, we determine whether
we can successfully utilize this additional information to improve
model performance. Note that because the DA-WS method also
uses the CoDATS model, we use the term CoDATS to refer to the
experiments using the model without weak supervision and the
term CoDATS-WS to refer to the experiments using the model with
weak supervision.

7 RESULTS AND DISCUSSION
Here we present experimental results along multiple dimensions.

7.1 Single-Source CoDATS
Table 1 summarizes target domain classifier performance on all
the benchmark datasets for single-source domain adaptation. To
compare training cost, the training times are listed in Table 2.
Lower and Upper Bounds. As expected, the lower bound (No
Adaptation) performs poorly, providing evidence that target do-
main data differ from source domain data. Though, two notable
exceptions are uWave 1 to 8 and uWave 4 to 8, where the lower
bound reaches 100%. In this case, adaptation should not yield a neg-
ative effect. On uWave 1 to 8, CoDATS does achieve 100% accuracy.
However, on uWave 4 to 8, it is close but not quite perfect accuracy
– though, it is far closer than either R-DANN or VRADA. This find-
ing may indicate that CoDATS is more resistant to negative transfer
than previous approaches (though further exploration is necessary).
As for the upper bound, there is nearly always a sufficient amount
of labeled target data to achieve close to 100% accuracy.
Prior Methods. R-DANN and VRADA exhibit lower performance
on the uWave dataset than the others. While the other datasets
contain only 128 time steps, uWave contains 315. This result may
indicate that RNN models experience difficulty adapting long time
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Problem No Adaptation R-DANN VRADA CoDATS CoDATS-WS Train on Target

HAR 2 → 11 83.3 ± 0.7 80.7 ± 5.2 64.1 ± 5.6 74.5 ± 4.5 74.5 ± 6.0 100.0 ± 0.0
HAR 7 → 13 89.9 ± 3.6 75.3 ± 5.8 78.3 ± 5.2 96.5 ± 0.7 96.5 ± 0.7 100.0 ± 0.0
HAR 12 → 16 41.9 ± 0.0 35.1 ± 2.9 61.7 ± 7.5 77.5 ± 0.6 75.2 ± 3.5 100.0 ± 0.0
HAR 12 → 18 90.0 ± 1.7 74.9 ± 0.6 74.4 ± 6.7 100.0 ± 0.0 100.0 ± 0.0 100.0 ± 0.0
HAR 9 → 18 31.1 ± 1.7 56.6 ± 6.4 59.8 ± 10.1 85.8 ± 1.7 76.7 ± 6.8 100.0 ± 0.0
HAR 14 → 19 62.0 ± 4.3 71.3 ± 2.4 64.4 ± 4.7 72.2 ± 27.2 98.6 ± 1.1 100.0 ± 0.0
HAR 18 → 23 89.3 ± 5.0 78.2 ± 6.4 72.9 ± 6.0 86.2 ± 0.6 89.3 ± 1.1 100.0 ± 0.0
HAR 6 → 23 52.9 ± 2.3 79.1 ± 2.7 78.2 ± 6.4 94.7 ± 1.1 94.2 ± 1.3 100.0 ± 0.0
HAR 7 → 24 94.4 ± 2.7 84.8 ± 6.9 93.9 ± 0.6 100.0 ± 0.0 99.1 ± 0.6 100.0 ± 0.0
HAR 17 → 25 57.3 ± 5.5 66.3 ± 5.8 52.0 ± 1.1 96.7 ± 1.5 97.6 ± 1.0 100.0 ± 0.0
HAR Average 69.2 ± 21.8 70.2 ± 14.0 70.0 ± 11.4 88.4 ± 10.1 90.2 ± 10.1 100.0 ± 0.0
HHAR 1 → 3 77.8 ± 4.4 85.1 ± 3.9 81.3 ± 10.6 93.2 ± 1.6 90.8 ± 2.0 99.2 ± 0.0
HHAR 3 → 5 68.8 ± 5.2 85.4 ± 1.4 82.3 ± 5.9 95.6 ± 0.9 94.3 ± 1.2 99.0 ± 0.1
HHAR 4 → 5 60.4 ± 3.0 70.4 ± 3.1 71.6 ± 3.1 94.2 ± 1.1 94.7 ± 0.5 99.0 ± 0.1
HHAR 0 → 6 33.6 ± 2.2 33.4 ± 1.8 35.6 ± 5.1 76.7 ± 1.5 74.2 ± 1.1 98.8 ± 0.1
HHAR 1 → 6 72.1 ± 3.9 81.7 ± 3.0 74.9 ± 7.2 90.5 ± 0.7 90.8 ± 0.2 98.8 ± 0.1
HHAR 4 → 6 48.0 ± 2.6 64.6 ± 5.6 62.7 ± 10.3 93.7 ± 0.4 85.3 ± 10.6 98.8 ± 0.1
HHAR 5 → 6 65.1 ± 6.9 54.4 ± 1.1 60.0 ± 2.8 90.7 ± 2.3 91.7 ± 0.4 98.8 ± 0.1
HHAR 2 → 7 49.4 ± 2.1 46.4 ± 3.0 45.0 ± 12.2 58.1 ± 4.5 56.6 ± 3.4 98.5 ± 0.5
HHAR 3 → 8 77.8 ± 2.1 82.8 ± 1.4 82.2 ± 1.7 93.4 ± 0.4 94.3 ± 1.0 99.3 ± 0.0
HHAR 5 → 8 95.3 ± 0.4 82.5 ± 2.6 87.5 ± 0.9 97.1 ± 0.3 95.8 ± 0.2 99.3 ± 0.0
HHAR Average 64.8 ± 16.9 68.7 ± 17.6 68.3 ± 16.4 88.3 ± 11.4 86.8 ± 11.8 99.0 ± 0.3

WISDM AR 1 → 11 71.7 ± 0.0 55.6 ± 6.4 55.0 ± 11.6 71.7 ± 0.0 93.3 ± 0.0 98.3 ± 0.0
WISDM AR 3 → 11 6.7 ± 4.9 28.9 ± 7.5 45.0 ± 4.9 47.8 ± 0.8 46.7 ± 0.0 98.3 ± 0.0
WISDM AR 4 → 15 78.2 ± 4.5 69.2 ± 5.7 82.7 ± 2.7 81.4 ± 8.9 75.6 ± 6.3 100.0 ± 0.0
WISDM AR 2 → 25 81.1 ± 2.8 57.8 ± 5.5 72.2 ± 10.3 90.6 ± 1.6 97.8 ± 0.8 100.0 ± 0.0
WISDM AR 25 → 29 47.1 ± 8.2 61.6 ± 5.4 81.9 ± 2.7 74.6 ± 7.4 84.8 ± 1.8 95.7 ± 0.0
WISDM AR 7 → 30 62.5 ± 0.0 41.7 ± 5.1 61.9 ± 4.7 73.2 ± 16.2 70.2 ± 9.9 100.0 ± 0.0
WISDM AR 21 → 31 57.1 ± 0.0 61.0 ± 8.8 68.6 ± 8.1 68.6 ± 4.0 92.4 ± 1.3 97.1 ± 0.0
WISDM AR 2 → 32 60.1 ± 9.1 49.0 ± 16.2 66.7 ± 4.2 67.3 ± 0.9 68.6 ± 1.6 100.0 ± 0.0
WISDM AR 1 → 7 68.5 ± 2.3 44.8 ± 5.6 63.0 ± 6.0 70.9 ± 0.0 66.1 ± 6.9 96.4 ± 0.0
WISDM AR 0 → 8 34.7 ± 9.3 13.3 ± 2.5 14.7 ± 8.1 54.0 ± 15.6 62.0 ± 15.7 99.3 ± 0.9
WISDM AR Average 56.8 ± 21.3 48.3 ± 16.0 61.2 ± 18.9 70.0 ± 11.6 75.8 ± 15.4 98.5 ± 1.6

uWave 2 → 5 86.3 ± 1.8 33.3 ± 12.0 18.5 ± 8.4 83.6 ± 12.1 98.2 ± 1.9 100.0 ± 0.0
uWave 3 → 5 82.7 ± 1.1 63.7 ± 5.3 32.4 ± 14.3 93.8 ± 5.1 92.9 ± 2.5 100.0 ± 0.0
uWave 4 → 5 83.3 ± 0.4 35.4 ± 19.2 12.8 ± 0.4 99.1 ± 0.7 90.2 ± 0.7 100.0 ± 0.0
uWave 2 → 6 86.0 ± 0.8 34.5 ± 13.1 25.3 ± 16.2 93.8 ± 1.5 91.4 ± 1.1 100.0 ± 0.0
uWave 1 → 7 95.2 ± 1.1 26.8 ± 13.1 29.2 ± 23.6 98.5 ± 0.4 91.1 ± 4.1 100.0 ± 0.0
uWave 2 → 7 85.1 ± 2.2 53.9 ± 27.4 12.2 ± 0.4 91.4 ± 6.6 98.2 ± 0.7 100.0 ± 0.0
uWave 3 → 7 95.5 ± 0.7 64.0 ± 4.9 30.4 ± 23.4 92.0 ± 8.8 97.6 ± 1.5 100.0 ± 0.0
uWave 1 → 8 100.0 ± 0.0 78.6 ± 9.1 11.0 ± 2.9 100.0 ± 0.0 93.8 ± 3.2 100.0 ± 0.0
uWave 4 → 8 100.0 ± 0.0 44.0 ± 25.6 12.5 ± 0.0 96.7 ± 1.1 93.2 ± 5.9 100.0 ± 0.0
uWave 7 → 8 95.2 ± 0.4 49.7 ± 20.4 12.5 ± 0.0 93.8 ± 4.8 95.2 ± 2.3 100.0 ± 0.0
uWave Average 91.0 ± 6.5 48.4 ± 15.8 19.7 ± 8.3 94.3 ± 4.6 94.2 ± 2.9 100.0 ± 0.0

Table 1: Target classification accuracy (source → target, mean ± std%) on 10 randomly-chosen problems for each dataset,
adapting between users. The results of our proposed CoDATS model and DA-WS method are underlined when statistically
significantly better (paired C-test with ? < 0.05) than both R-DANN and VRADA. The highest accuracy in each row is bold.

series. Also, on average, R-DANN accuracy on WISDM AR and
uWave is lower than that of the (approximate) lower bound. Simi-
larly, VRADA accuracy on uWave is lower than the lower bound.
These results indicate that even using the CoDATS model without
applying any adaptation sometimes yields an improvement over
prior work for time series sensor data.
CoDATS vs. Prior Methods. We compare CoDATS with prior
methods in terms of both accuracy and training-time efficiency.
The CoDATS model improves in accuracy and consistency over

the lower bound and prior methods. On average and on all but
4 of the 40 adaptation problems (one of which is a tie), CoDATS
outperformed both of the prior works. On average and on all but
8 of the 40 adaptation problems (two of which are ties), CoDATS
outperformed the lower bound. Since the prior baselines also use
a domain-adversarial method for adaptation, the results indicate
that the performance gains stem from our proposed model architec-
ture. In addition to better performance, CoDATS typically exhibits
greater consistency across random initializations as shown by the
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Method
HAR 2→11
� = 128

HHAR 1→3
� = 128

uWave 2→5
� = 315

No Adaptation 0.016 ± 0.020 0.016 ± 0.026 0.036 ± 0.022
R-DANN 0.145 ± 0.029 0.143 ± 0.032 0.307 ± 0.057
VRADA 0.478 ± 0.050 0.452 ± 0.054 1.057 ± 0.048
CoDATS 0.029 ± 0.032 0.029 ± 0.032 0.067 ± 0.031

CoDATS-WS 0.029 ± 0.039 0.029 ± 0.036 0.068 ± 0.039

Table 2: Training times per iteration (seconds) on a Nvidia
Tesla K80 on three of the datasets, arranged by time series
length. The lowest training time in each column is bold.

lower standard deviations on average and for all but 14 of the 40
adaptation problems than both R-DANN and VRADA.

In addition to the improvements in accuracy, Table 2 indicates
that CoDATS also greatly reduces training time. While the differ-
ence between CoDATS and the baseline methods depends to an
extent on the number of time steps, CoDATS demonstrates faster
training than R-DANN and VRADA on all datasets. We note that
CoDATS requires only 20-22% of the R-DANN training time and
only 6% of the VRADA training time for these datasets. Interest-
ingly, CoDATS is less than twice the training time of the lower
bound, indicating that adaptation can be performed with a large
increase in accuracy while minimally impacting training time.

7.2 Multi-Source CoDATS
Figure 4 summarizes target domain classification performance as a
function of =, the number of source domains. For each data point,
we averaged over 10 random target domains for each data point in
addition to 3 different random subsets of source domains.
Lower and Upper Bounds. In agreement with the single-source
results, the lower bound performs poorly with one source domain.
Given additional source domains, its performance improves, indi-
cating that additional domains better cover the space of the possible
ways to perform each activity/gesture and thus improve model
performance. Also as in single-source adaptation, the upper bound
again yields nearly 100% accuracy on all targets for all datasets.
CoDATS vs. Lower/Upper Bounds.The gap between the lower
bound and CoDATS is much larger at small values of =, as the
benefit of performing domain adaptation by utilizing target domain
unlabeled data has diminishing returns once more labeled source
domains become available. For the highest value of = on HHAR
and uWave, domain adaptation still outperforms the lower bound.

The slight downturn of the CoDATS curve in HHAR and the
more noticeable one in WISDM AR may stem from negative trans-
fer. Additional domains better cover the space of possible ways
of performing each activity/gesture, which yields a monotonically
increasing lower bound. However, we are performing domain adap-
tation by learning a domain-invariant feature representation. A few
people may perform activities highly different than others, mean-
ing that if we force the representation to be invariant with respect
to all of the domains, our representation may lose some ability to
be discriminative. Note though that there is no downturn on the
other two datasets, and the most significant drop is in the case of
WISDM AR only after over 20 source domains. Thus, it is likely that
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CoDATS CoDATS-WS No Adaptation Train on Target

Figure 4: Target classification accuracy when varying the
number of source domains = (best viewed in color).

Number of Sources No Adaptation CoDATS CoDATS-WS

= = 1 50.3 ± 25.7 60.5 ± 26.1 73.3 ± 18.8
= = 7 66.4 ± 20.9 77.3 ± 19.1 83.1 ± 14.2
= = 13 76.2 ± 15.8 82.5 ± 15.4 86.7 ± 14.5
= = 19 77.9 ± 16.3 84.3 ± 13.6 87.7 ± 11.6
= = 25 79.1 ± 17.8 80.7 ± 19.9 80.8 ± 16.8

Table 3: CoDATS-WS improvement over CoDATS for classi-
fication ofWISDM.The highest accuracy in each row is bold.

in a human activity or gesture recognition settings where domain
adaptation is applied, there may be fewer than 20 participants and
this effect may not be noticed.

Regardless, performing multi-source adaptation on average al-
ways increases performance when compared with using only a
single source – when looking from left to right, the CoDATS curves
rise, always staying above the left-most point that represents single-
source adaptation performance. Thus, not only does CoDATS im-
prove over prior single-source work, but it also facilitates utilizing
data from multiple sources to further improve accuracy.

7.3 Domain Adaptation with Weak Supervision
While domain adaptation with weak supervision (DA-WS) repre-
sents a different scenario than single/multi-source domain adap-
tation due to the availability of label proportions, we include the
CoDATS-WS results in Table 1 and Figure 4 to facilitate comparing
with CoDATS, which does not have label information available. A
detailed view of the WISDM AR results from Figure 4 is shown in
Table 3.
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Single-SourceDomainAdaptation.We expect that CoDATS-WS
will offer limited benefit when the source and target domains are
class-balanced as for the HAR, HHAR, and uWave datasets, because
CoDATS-WS capitalizes on the target label distribution differing
from the source. However, it should not yield a performance degra-
dation. Additionally, it should increase in performance on datasets
with high class imbalances in the target data and between domains
as in the WISDM dataset (see the Appendix for plots of class bal-
ance). The largest performance difference is on WISDM, with a 5.8%
increase. For the already-balanced datasets, CoDATS-WS yields a
slight improvement on HAR (+1.8%), a slight degradation on HHAR
(-1.5%), and nearly equal performance on uWave (-0.1%). This in-
dicates that in situations where target-domain label proportions
are available, CoDATS-WS can improve accuracy, with the same
training efficiency (Table 2).
Multi-Source DomainAdaptation.While using multi-source do-
main adaptation yields an improvement over single-source domain
adaptation, CoDATS-WS combined with multi-source domain adap-
tation performs even better. On WISDM AR, CoDATS-WS yields
a model accuracy improvement over CoDATS for all values of =:
an increase of 12.8% for ==1, 5.8% for ==7, 4.2% for ==13, 3.4% for
==19, and 0.1% for ==25, as shown in Table 3. Aligning with in-
tuition, CoDATS-WS and CoDATS perform equally on the other
three balanced datasets, as shown in Figure 4. Thus, it is evident
that CoDATS-WS can yield accuracy improvements on datasets
exhibiting non-uniform class distributions, which is common in
real-world data.

8 CONCLUSIONS AND FUTUREWORK
In this paper, we introduced CoDATS, a model architecture that
supports time series domain adaptation. From the experimental
results, it is clear that this new time series model architecture im-
proves over prior time series adaptation work in terms of both
accuracy and training time efficiency. We also demonstrated that
additional accuracy gains can be achieved by utilizing data from
multiple source domains and by utilizing weak supervision data
from known target-domain label proportions. Future work includes
extending CoDATS to support heterogeneous feature sets, devel-
oping methods to handle additional forms of weak supervision
relevant for time series data, and further model improvements such
as incorporating insights from InceptionTime [8].
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A REPRODUCIBILITY
Here we provide additional details to aid in reproducing our results.

A.1 Experimental Setup
We train each model for 30,000 iterations using the Adam optimiza-
tion algorithm with a learning rate of 0.0001 and a batch size of 128.
We employ the DANN learning rate schedule [12] for adversarial
training. Because VRADA and R-DANN have no publicly available
code, we use our own implementation for each method as per the
details in the original papers.

We split the data from each dataset into training, validation, and
test sets. The training-test split was 80% and 20% respectively, and
the training data was further split into training-validation with
the same proportions. The datasets were stratified by the labels
to maintain the same label proportions for training, validation,
and testing sets. Each method we evaluate only has access to the
training dataset: labeled data for the sources and unlabeled data for
the target. The test data is only used for the final evaluation used to
create our plots. All data is normalized to have zero mean and unit
variance based on statistics computed from just the training set.

Each dataset consists of data from a number of participants. In
the single-source experiments, we randomly select 10 of the possi-
ble adaptation problems between two domains (excluding adapting
a domain to itself). For each data point, we average and compute
standard deviation over three different random initializations of
the network weights on the holdout test set. In the multi-source ex-
periments, we vary the number of source domains when adapting
to a separate target domain. For each data point, we average and
compute standard deviation over three different random subsets
of source domains on the holdout test set. Since these are trained
separately, they also are trained with three different random initial-
izations of the network weights. Then, we average over 10 different
random target domains. We select more targets than source domain
subsets because we expect there to be more variance among indi-
vidual domains than among random subsets of multiple domains.

During training, we perform model selection by picking the
model that performs best on the holdout validation set. We evaluate
the model every 4,000 iterations in addition to at the end of training.
The models are trained for a total of 30,000 iterations, meaning
the best model is selected from a total of 9 models. The reported
accuracies reflect evaluating models that performed best on this
holdout validation set. Since unsupervised domain adaptation does
not use any labeled target data, these results can be interpreted as an
approximate upper bound on how well these methods can perform.
However, labeled target data can be employed in this manner for
tuning and model selection [23, 34, 40].

For single-source adaptation, DANN splits the batch size: half
for the source domain and half for the target domain [12]. However,
for multi-source domain adaptation, we have additional source do-
mains. We divided the batch size evenly among all domains, thereby
weighting domains uniformly. On the other hand, for domain adap-
tation with weak supervision (DA-WS), our method depends on es-
timating predicted label proportions in each batch, which requires
a sufficient number of target domain predictions. For the DA-WS
multi-source experiments, if we divide the batch size equally among
all domains, the number of target domain predictions decreases
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Figure 5: Label proportions for the participants of the
relatively-balanced datasets, the first two single-source do-
main adaptation problems of each (best viewed in color)

with increasing =, yielding an extreme decrease in performance.
Thus, we instead evenly split half of the batch size among the source
domains and the other half for the target domain. Note another
method that would fix this issue is gradient accumulation.

A.2 Datasets
HAR [1] comes normalized and bounded to be between -1 and 1.
Three-axis accelerometer, gyroscope, and estimated body accelera-
tion were collected from 30 participants sampled at 50 Hz and come
segmented into windows of 128 time steps.
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Figure 6: Label proportions for the participants of the imbal-
anced dataset WISDM AR, domains used for single-source
domain adaptation (best viewed in color)

The authors providing HHAR only train models with either data
from one sensor or the other (not both) and found models trained
with the accelerometer data to have superior performance [35], so
we similarly use the accelerometer data. The sensors were sampled
at the highest rate each device would support, and we segment this
data into non-overlapping windows of 128 time steps. We include
the data collected from the 31 smartphones in our experiments.

For WISDM AR [24], we include data from the 33 participants
who have enough labeled data to yield at least 30 examples for
the test set (with an 80%-20% train-test split). The accelerometer
is sampled at 20 Hz, and we segment this into non-overlapping
windows of 128 time steps.

uWave data were collected from 8 participants over 7 days, and
on each day each participant performed every gesture 10 times
[26]. The data was sampled at 100 Hz. The maximum number of
time steps for a gesture is 315, so we right zero-pad all gestures
to this length so that all batches have a consistent size. We pad
rather than segment this data because the gesture as a whole needs
to be recognized, unlike in the other datasets where the activities
typically consist of repetitious movements.

To show the differences in class balance, the label proportions
from a few UCI HAR, UCI HHAR, and uWave participants are
shown in Figure 5, which are relatively balanced between domains,
and the label proportions from WISDM AR are shown in Figure 6,
which have large differences between domains.
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