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Abstract

The betweenness centrality of a graph vertex measures how often this vertex is visited on
shortest paths between other vertices of the graph. In the analysis of many real-world graphs or
networks, the betweenness centrality of a vertex is used as an indicator for its relative importance
in the network. In particular, it is among the most popular tools in social network analysis.
In recent years, a growing number of real-world networks has been modeled as temporal graphs
instead of conventional (static) graphs. In a temporal graph, we have a fixed set of vertices
and there is a finite discrete set of time steps and every edge might be present only at some
time steps. While shortest paths are straightforward to define in static graphs, temporal paths
can be considered “optimal” with respect to many different criteria, including length, arrival
time, and overall travel time (shortest, foremost, and fastest paths). This leads to different
concepts of temporal betweenness centrality, posing new challenges on the algorithmic side.
We provide a systematic study of temporal betweenness variants based on various concepts
of optimal temporal paths.

Computing the betweenness centrality for vertices in a graph is closely related to counting
the number of optimal paths between vertex pairs. While in static graphs computing the num-
ber of shortest paths is easily doable in polynomial time, we show that counting foremost and
fastest paths is computationally intractable (#P-hard) and hence the computation of the corre-
sponding temporal betweenness values is intractable as well. For shortest paths and two selected
special cases of foremost paths, we devise polynomial-time algorithms for temporal betweenness
computation. Moreover, we also explore the distinction between strict (ascending time labels)
and non-strict (non-descending time labels) time labels in temporal paths. In our experiments
with established real-world temporal networks, we demonstrate the practical effectiveness of our
algorithms, compare the various betweenness concepts, and derive recommendations on their
practical use.

Keywords: network science, network centrality, temporal walks, temporal paths, counting
complexity, static expansion, experimental analysis

1 Introduction

Graph metrics such as betweenness centrality are studied and applied in many application areas,
including social and technological network analysis [24, 34], wireless routing [9], machine learning
[31], and neuroscience [38]. The betweenness centrality of a vertex in a graph measures how often

∗Supported by the DFG, project MATE (NI 369/17).
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this vertex is visited by a shortest (or optimal) path. High betweenness centrality scores are usu-
ally associated with vertices that can be seen as more important for the network. In static graphs,
betweenness centrality is a well-studied concept. It is well-known that Brandes’ algorithm [5]1 com-
putes the betweenness centrality of all vertices of a given (unweighted) static graph with n vertices
and m edges in O(n ·m) time and O(n + m) space.

In temporal graphs, that is, graphs with fixed vertex set and edge set(s) varying over discrete
time steps, the notion of betweenness centrality can be defined in a similar fashion. However, there
are more options how to choose “optimal” paths. Depending on the application, a path may be
optimal if it minimizes the number of edges (“shortest”), the arrival time (“foremost”), or the overall
travel time (“fastest”). For any of these path types we can define and study a variant of temporal
betweenness centrality. In addition, combinations of optimality criteria such as shortest foremost
temporal paths can be considered. Furthermore, we will distinguish between temporal paths with
strictly or non-strictly ascending time labels on the edges. We investigate algorithmic aspects
of temporal betweenness variants based on, strict and non-strict, shortest, foremost, and fastest
paths. In addition, we also consider two subtypes of foremost paths, namely shortest foremost and
prefix-foremost paths.

Related work. There is an enormous amount of work on the concept of betweenness centrality in
static graphs, as already indicated by the huge citation numbers concerning Brandes path-breaking
algorithm [5]. Betweenness centrality was defined in 1977 by Freeman [11]. We refrain from further
discussing the static case which is already treated in many textbooks.

The theory of temporal graphs is comparatively young [16, 17, 18, 23, 26] but strongly growing
in many directions. We focus our discussion of related work on temporal walks, paths, and the
computation of temporal betweenness centrality.

Bui-Xuan et al. [6] did an early work on algorithms that find optimal temporal paths (called
“journeys” there). In particular, they presented algorithms for shortest, fastest, and foremost tem-
poral paths. Afterwards, Wu et al. [40] provided state-of-the-art algorithms for optimal temporal
paths. Based on breadth-first search which finds shortest paths in static graphs, Wu et al. [40]
showed that shortest, foremost, fastest and reverse-foremost (strict) temporal paths can be found
in a similar fashion. Bentert et al. [4] and Casteigts et al. [8] expanded on the work of Wu et al. [40]
and studied a more complex variation of temporal paths and walks with constraints on the waiting
time in each vertex. Bentert et al. [4] contributed efficient algorithms to find optimal temporal
walks but Casteigts et al. [8] showed that finding optimal temporal paths is NP-hard in settings
with upper bounds on the waiting time.

While betweenness centrality in static graphs is a well studied concept, the study of betweenness
centrality in temporal graphs is rather young. Tang et al. [35] argued that temporal graphs are more
suitable to represent the dynamics of social and technical networks and introduced temporal variants
of centrality metrics such as closeness and betweenness centrality based on foremost temporal
paths. Building on this, Tang et al. [33] used their notion of temporal closeness to analyze the
containment of malware in mobile phone networks. Nicosia et al. [28] also discussed temporal
variants of betweenness and closeness centralities, as well as other temporal graph metrics. They
mostly give an overview on different definitions. Kim and Anderson [21] defined the temporal
betweenness centrality of a vertex based on shortest paths in the so-called static expansion, which
is a (static) directed graph that models the connectivity properties of the corresponding temporal

1According to Google Scholar, accessed December 2020, the paper is cited more than 4200 times.
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strict non-strict

Shortest O(n3 · T 2) O(n3 · T 2)
Foremost #P-hard #P-hard
Fastest #P-hard #P-hard
Prefix-foremost O(n ·M · logM) #P-hard
Shortest foremost O(n3 · T 2) O(n3 · T 2)

Table 1: An overview of the computational complexity of the temporal betweenness variants we
consider, both for the strict and the non-strict case. Here, n refers to the number of vertices, M
refers to the total number of time edges, and T refers to the total number of time steps.

graph. They give a polynomial-time algorithm for computing the temporal betweeness values.
Afrasiabi Rad et al. [30] studied foremost walk temporal betweenness and observed #P-hardness,
presented an exponential-time algorithm and conducted corresponding experiments. Tsalouchidou
et al. [36] consider an arbitrary linear combination of a path’s length and duration as an optimality
criterion and compute the temporal betweenness centrality with respect to such paths and the help
of static expansions.

We finish with pointing to several temporal graph surveys [16, 17, 18, 23] that already provide
some definitions of temporal betweenness centrality. We point out that most works on temporal
betweenness [2, 14, 21, 30, 35, 36] employ static expansions and do not directly work on the
temporal graphs. Also, they usually do not make the point of distinguishing between strict and
non-strict paths. To the best of our knowledge, there is no work on systematically classifying the
computational complexity of temporal betweenness computation.

Our contributions. Our main research question is as follows: How hard—theoretically and
practically—is the computation of the different variants of temporal betweenness centrality and
what does this imply for their usefulness and applicability in practice? For the polynomial-time-
solvable variants of temporal betweenness we aim to provide algorithms inspired by Brandes’ algo-
rithm [5] that directly work on the temporal graph rather than on its static expansion. Adapting
algorithms from the static directly to the temporal setting has proven successful also in other
contexts, such as for example clique enumeration [3, 15, 27]. We empirically compare our direct
approach to static-expansion-based algorithms and observe that our algorithms are faster on large
instances.

The various betweenness variants show remarkable differences in their computational complex-
ity: while some of them can be computed in polynomial time, others are computationally hard.
Note that computing betweenness values is closely related to counting optimal paths since, infor-
mally speaking, the betweenness value of a vertex quantifies how many optimal paths go through
this vertex. We show that counting foremost and fastest temporal paths is #P-hard, implying the
same hardness result for the computation of corresponding betweenness concepts. Since temporal
betweenness based on foremost temporal paths is arguably the best motivated variant in many
application areas [30, 35] and we obtain intractability, we investigate two modifications, namely
shortest foremost and (strict) prefix foremost temporal paths. For temporal betweeness based on
these modified versions of foremost temporal paths as well as shortest temporal paths, we obtain
tractability results.
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Figure 1: Assume V1 and V2 are sets of vertices that are adjacent to v1 and v2 at time steps 1 and T ,
respectively. Then v1 and v2 are vertices with high temporal betweenness based on temporal paths
whereas v3 has very low temporal betweenness based on temporal paths. However for e.g. foremost
temporal walks, v3 would also have a high temporal betweenness.

In Table 1, we give an overview of our theoretical findings. We present formal (worst-case) com-
putational hardness proofs (Section 3). In the cases where we state polynomial-time computability,
we provide algorithms that compute the temporal betweenness scores of all vertices in a given
temporal graph (Sections 4 and 5). When developing the algorithms, our main approach was to
direcly apply the ideas behind Brandes’ algorithm [5] in the temporal setting.

We remark that in contrast to the static setting, temporal walks (visiting vertices multiple
times) can also be optimal for certain canonical optimality criteria. In our definition of temporal
betweenness centrality we use the number of optimal temporal paths as opposed to the number of
optimal temporal walks. This is natural for static graphs because static shortest walks are always
paths. In the temporal case, this is not always true—it is possible that there is a non-path temporal
walk (visiting vertices multiple times) that arrives at the same time as the foremost temporal path,
so the number of foremost temporal paths and foremost temporal walks between two vertices can
be different. Consider the graph shown in Figure 1. Clearly, every walk from the left half to the
right passes either v1 or v2 and since the edges on the right are only present at exactly one time
step, every walk going from left to right is a foremost walk. Intuitively, v1 and v2 should have very
similar, high betweenness scores, whereas v3 should be close to zero. But if we use walks instead
of paths for our definitions, we get a very high number of walks alternating between v2 and v3
before arriving on the right side, so v2 and v3 would get a high centrality score. We conclude that
paths are more suitable than walks for defining temporal betweenness centrality. Furthermore, we
distinguish between strict and non-strict temporal paths.

We provide a thorough formal study of the computational complexity landscape of temporal
betweenness centrality, altogether obtaining a fairly complete picture concerning the computation
of temporal betweenness. We implemented and compared several of our algorithms (in terms of run-
ning time, distribution of the betweenness values, and vertex rankings induced by the betweenness
values). We also compared our algorithms (in terms of running time) to the alternative approach
of computing betweenness values on a suitable static expansion.

From our experimental results we derive conclusions for working with temporal betweenness
centrality in applications. Our freely available implementations and the experimental investigations
are based on our theoretical findings and provide guidelines for future work with one of the perhaps
most fundamental network analysis concepts in a temporal context.

An extended abstract of this paper appeared in the proceedings of the 26th ACM SIGKDD
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International Conference on Knowledge Discovery & Data Mining (KDD ’20) [7]. This version
contains full proof details and an empirical comparison of our algorithms (in terms of running
time) to the alternative approach of computing betweenness values on a suitable static expansion.

Organization of the paper. In Section 2, we provide the basic notation used in this paper as
well as some preliminary observations. In Section 3, we prove computational hardness for some
variants of temporal betweenness (see Table 1) and in Sections 4 and 5, we provide theoretical
foundations and algorithms for the remaining temporal betweenness concepts. In Section 6, we
present our experimental evaluation of the algorithms described in Section 5. We conclude in
Section 7.

2 Preliminaries & Basic Observations

In this section, we introduce the most important mathematical definitions and terminology used in
our work. We further present some basic observations.

2.1 Temporal Graphs and Paths

The fundamental mathematical object we are concerned with are temporal graphs.

Definition 2.1 (Temporal Graph). An undirected temporal graph is a triple (V, E , T ) such that V

is a set of vertices, E ⊆ {({u, v}, t) | u, v ∈ V, u 6= v, t ∈ [T ]} is a set of time edges, and T ∈ N,
where [T ] = {1, . . . , T} is a set of time steps.

For a temporal graph G, we use V (G) to denote the set of vertices, E(G) for the set of time
edges, and Et(G) to denote the set of edges of G which are present at time step t, i.e., Et(G) :=
{{u, v} | ({u, v}, t) ∈ E(G)}. For a time edge e, we use t(e) to denote the time label of e. We call
V (G) × [T ] the set of vertex appearances.

We only consider undirected temporal graphs. However, temporal paths and walks are implicitly
directed because of the ascending time labels. Hence, we need a notion for directed transitions on a
temporal path or walk which indicate not only which time edge is used but also in which direction.
For any time edge e = ({v,w}, t) we call (v,w, t) the transition from v to w at time step t. We call
v the starting point and w the endpoint of the transition. Using this, we can now define temporal
walks and temporal paths.

Definition 2.2 (Temporal Walk). A temporal walk W on a temporal graph G from vertex s to
vertex z is an ordered sequence of transitions (e1, . . . , ek) ∈ Ek such that the endpoint of ei is the
starting point of ei+1 and t(ei) ≤ t(ei+1) for each i ∈ {1, . . . , k− 1}. We call a temporal walk strict
if t(ei) < t(ei+1) for each i ∈ {1, . . . , k − 1}.

A temporal walk may visit the same vertex more than once. In contrast to that, a temporal
path visits each vertex at most once. This is analogous to the definitions for static graphs.

Definition 2.3 (Temporal Path). A temporal path P = (ei)i∈[k] is a temporal walk such that
every vertex v ∈ V (G) is starting point of at most one transition ei and endpoint of at most one
transition ei′ for some i, i′ ∈ [k].

5
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Figure 2: This temporal graph features a shortest, a foremost, and a fastest temporal path from s

to z.

For readability, we use the notation v
t
→ w instead of the triple (v,w, t). Since the endpoint of

a transition is equal to the starting point of the next one for any walk, we use a shortened notation
omitting the doubled vertices. For instance, we denote the “middle” temporal path from s to z in
Figure 2 by:

P = (s
1
→ b1

2
→ b2

3
→ b3

4
→ z).

In this example, P is a temporal path since all involved vertices are visited only once. More-
over, P is a strict temporal path because the time labels are strictly ascending.

2.2 Optimality of Temporal Walks and Paths

In static graphs, shortest paths are a central concept. In temporal graphs, there are different
concepts of optimal paths. Figure 2 illustrates three of the most common optimization criteria:
shortest, foremost, and fastest [6].

• P1 = (s
1
→ a

5
→ z) is shortest,

• P2 = (s
1
→ b1

2
→ b2

3
→ b3

4
→ z) is foremost, and

• P3 = (s
3
→ c1

4
→ c2

5
→ z) is fastest.

More formally, we use the following definitions:

Definition 2.4. Let G = (V, E , T ) be a temporal graph. Let s, z ∈ V and let W be a temporal
walk from s to z.

• W is a shortest walk if there is no walk W ′ from s to z such that W ′ contains less transitions
than W .

• W is a foremost walk if there is no walk W ′ from s to z such that W ′ has an earlier arrival
time than W .

• W is a fastest walk if there is no walk W ′ from s to z such that the difference between arrival
and start time is smaller for W ′ than it is for W .
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A temporal path is shortest, foremost, or fastest if it is a shortest, foremost, or fastest temporal
walk, respectively. Note that for the optimality criteria “foremost” and “fastest” optimal temporal
walks are not necessarily temporal paths. Imagine a temporal graph where all time edges incident
to s have the same time label and also all time edges incident to z have the same time label. Then
every walk from s to z (if it exists) is foremost and fastest, since all walks leave s at the same time
and arrive at z at the same time.

Together with the distinction between strict and non-strict, this gives us six different types of
optimal temporal paths. In the following, we use the term “⋆-optimal” temporal path, where ⋆

denotes the type.
Next, we introduce terminology and notation for counting optimal temporal paths.

Definition 2.5. Let G be a temporal graph. For any s, z ∈ V (G), σ
(⋆)
sz is the number of ⋆-optimal

temporal paths from s to z.

We set σ
(⋆)
vv := 1. We further introduce terminology and notation for counting optimal temporal

paths that visit a certain vertex or a certain vertex appearance.

Definition 2.6. Let v ∈ V be any vertex and let t ∈ [T ] be a time step. Then,

• σ
(⋆)
sz (v) is the number of ⋆-optimal paths that pass through v, and

• σ
(⋆)
sz (v, t) is the number of ⋆-optimal paths that arrive at v exactly at time step t, that is, the

paths that contain the transition u
t
→ v for some u ∈ V .

We set σ
(⋆)
sz (s) := σ

(⋆)
sz and σ

(⋆)
sz (z) := σ

(⋆)
sz . We define σ

(⋆)
sz (s, 0) := σ

(⋆)
sz , σ

(⋆)
sz (s, t) := 0 for all

t 6= 0, and σ
(⋆)
sz (v, 0) := 0 for all v 6= s. Defining these corner cases as above allows us to keep certain

proofs simpler by avoiding to discuss the corner cases explicitely. Intuitively, we assume that we
have a dummy vertex appearance (s, 0) for every temporal path starting at s that we consider to
be the vertex appearance that the path arrives at at time step zero.

2.3 Temporal Betweenness Centrality

In static graphs, the betweenness centrality of a vertex measures how often this vertex is passed
on shortest paths between pairs of vertices in the graph. Freeman [11] defines the betweenness
centrality CB(v) of a vertex v (in a connected graph) as

CB(v) :=
∑

s 6=v 6=z

σsz(v)

σsz
.

As we have seen above, there are different notions of optimal paths (for example, fastest,
shortest, foremost) in temporal graphs. Thus, there are several options how to define temporal
betweenness centrality based on any of these notions. Moreover, we do not want to assume that
there is a temporal path from any vertex to any other vertex in the graph. That is, we assume
that there are vertex pairs s, z with σsz = 0 which we want to leave out when summing over all
vertex pairs. To formalize this, we use a connectivity matrix A of the temporal graph: let A be a
|V | × |V | matrix, where for every v,w ∈ V we have that Av,w = 1 if there is a temporal path from
v to w, and Av,w = 0 otherwise. Note that As,z = 1 implies that σsz 6= 0.

Formally, temporal betweenness based on these different concepts of path optimality is defined
as follows.

7



Definition 2.7 (Temporal Betweenness). The temporal betweenness of any vertex v ∈ V is given
by:

C
(⋆)
B (v) :=

∑

s 6=v 6=z and As,z=1

σ
(⋆)
sz (v)

σ
(⋆)
sz

.

For our work, we use a slightly different version of temporal betweenness which is defined
for vertex appearances and show that the temporal betweenness as defined above can be easily
computed from the modified version. This allows us to simplify some of our proofs. We drop the
condition that, when summing over all vertex pairs, these vertices have to be different from the
vertex of which we want to know the betweenness. Formally, we define

Ĉ
(⋆)
B (v, t) :=

∑

s,z∈V and As,z=1

σ
(⋆)
sz (v, t)

σ
(⋆)
sz

.

We can observe that using the connectivity matrix A for the temporal graph, we can compute

the temporal betweenness C
(⋆)
B (v) from the modified temporal betweenness values of the vertex

appearances (v, t).

Lemma 2.8. For any vertex v ∈ V it holds

C
(⋆)
B (v) =

∑

t∈[T ]∪{0}

Ĉ
(⋆)
B (v, t) −

∑

w∈V

(Av,w + Aw,v) + 1.

Proof. We show the claim as follows.

C
(⋆)
B (v) =

∑

s 6=v 6=z and As,z=1

σ
(⋆)
sz (v)

σ
(⋆)
sz

=
∑

s,z∈V and As,z=1

σ
(⋆)
sz (v)

σ
(⋆)
sz

−
∑

s∈V and As,v=1

σ
(⋆)
sv (v)

σ
(⋆)
sv

−
∑

z∈V and Av,z=1

σ
(⋆)
vz (v)

σ
(⋆)
vz

+
σ
(⋆)
vv (v)

σ
(⋆)
vv

=
∑

s,z∈V and As,z=1

∑

t∈[T ]∪{0}

σ
(⋆)
sz (v, t)

σ
(⋆)
sz

−
∑

s∈V

As,v −
∑

z∈V

Av,z + 1

=
∑

t∈[T ]∪{0}

Ĉ
(⋆)
B (v, t) −

∑

w∈V

(Av,w + Aw,v) + 1

3 Computationally Hard Temporal Betweenness Variants

In this section, we present counting problems closely related to temporal betweenness, including
the computation of temporal betweenness itself, and show that they are #P-hard. In particular,
we will show that counting all temporal paths is #P-hard for both strict and non-strict paths. The
same holds true for foremost and fastest temporal paths, but not for shortest temporal paths. Our
hardness results are based on the following two counting problems for which Valiant [37] showed
#P-completeness:2

2Intuitively speaking, #P is the counting analogue of NP for decision problems.
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Paths
Input:A static graph G = (V,E), two vertices s, z ∈ V .
Task: Count the number of different paths from s to z in G.

Imperfect Matchings
Input:A bipartite static graph.
Task: Count the number of different matchings (of any size) in G.

We use polynomial-time counting reductions3 from the two problems above to prove that count-
ing problems related to temporal betweennes are #P-hard. More specifically, we show the #P-
hardness of the following problems:

(Strict) Temporal Paths

Input:A temporal graph G = (V, E , T ), two vertices s, z ∈ V .
Task: Count the number of (strict) temporal paths from s to z in G.

Foremost (Strict) Paths

Input:A temporal graph G = (V, E , T ), two vertices s, z ∈ V .
Task: Count the number of foremost (strict) temporal paths from s to z in G.

Fastest (Strict) Paths

Input:A temporal graph G = (V, E , T ), two vertices s, z ∈ V .
Task: Count the number of fastest (strict) temporal paths from s to z in G.

(Foremost/Fastest) (Strict) Temporal Betweenness

Input:A temporal graph G = (V, E , T ), a vertex v ∈ V .
Task: Compute the betweenness centrality of v in G.

As also observed by Afrasiabi Rad et al. [30], for non-strict paths the #P-hard problem Paths
is contained as a special case in Temporal Paths, since any static graph can be transformed
into an equivalent temporal graph with lifetime T = 1. Furthermore, each temporal path in this
instance is also foremost and fastest. Hence, we have the following:

Proposition 3.1. Temporal Paths, Foremost Paths, and Fastest Paths are #P-hard.

The counting problem Strict Temporal Paths is #P-hard as well, but the proof is more
demanding since strict paths are fundamentally different from static paths, whereas non-strict paths
could be regarded as a generalization of static paths, allowing for the simple argument used above.
We show the #P-hardness of Strict Temporal Paths by a polynomial-time counting reduction
from Imperfect Matchings.

3A polynomial-time counting reduction transforms instances IA of a counting problem A to instances IB of a
counting problem B such that number of solutions of IA can be computed in polynomial time from the number of
solutions of IB .
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Figure 3: Given a static bipartite graph G, we construct a temporal graph G such that the number
of matchings in G equals the number of strict paths from a′ to b′ in G. In this example, the matching

{{a1, b2}, {a3, b3}} (highlighted in bold) translates to the path (a′
1
→ a1

2
→ b2

5
→ a3

6
→ b3

7
→ b′).

Theorem 3.2. Strict Temporal Paths is #P-hard.

Proof. We reduce from the #P-complete problem Imperfect Matchings [37]. Given a bipartite
graph G = (A ∪ B,E), we construct a temporal graph G = (A ∪ B ∪ {a′, b′}, E , T ) such that the
number of non-empty matchings in G is equal to the number of strict temporal paths from a′ to b′

in G. An example for the transformation is shown in Figure 3 and it is easy to check that the
transformation can be computed in polynomial time.

The temporal edge set E is constructed as follows: For each edge {ai, bj} ∈ E, we create a
temporal edge ({ai, bj}, 2 · i). These edges are meant to represent the edges of the original graph
and will be called forward-edges. The vertices ai ∈ A are connected to a′ at time step 2 · i − 1.
All bj ∈ B are connected to b at the last time step T . For i > 1 we connect each ai to each bj at
time step 2 · i− 1; these edges are drawn dashed in orange in Figure 3 and we will refer to them as
back-edges.

We justify the terms forward-edge and back-edge by showing that for any temporal path from a′

to b′, every transition with an even time label goes from an a ∈ A to a b ∈ B (forward) and exactly
the other way from a b ∈ B to an a ∈ A (back) for every transition with an odd time label. By
construction, each vertex ai ∈ A is incident to time edges with at most two time labels: 2 · i − 1

and 2 · i. Hence, any temporal path containing a transition bj
2·i
→ ai ends in ai since no time edge

with a higher time label will be available. By an anologous argument, back-edges cannot be used
forwardly because it is impossible to arrive in ai before time 2 · i− 1.

As a consequence, on any temporal path from a′ to b′, every back-edge is followed by a forward-
edge and every forward-edge is followed either by a back-edge or by the final edge to b′. Thus, for
any matching M = {{ai1 , bj1}, . . . , {aim , bjm}} of size m ∈ N

+ there is exactly one temporal path
from a′ to b′ containing exactly the forward edges corresponding to M , and conversely, for each
temporal path P from a′ to b′ there is exactly one matching corresponding to the forward-edges
in P . Thus, the number of non-empty matchings in G equals the number of temporal paths from a′

to b′ in G which implies that we have a polynomial-time counting reduction.

Analogously to the case of non-strict paths, the #P-hardness of Strict temporal paths
implies the #P-hardness of Strict Foremost Paths and Strict Fastest Paths.

10



a ba′ b′

v′

[2, T + 1]
1 T + 2

1 T + 2

Figure 4: Given a temporal graph G, we construct a temporal graph G′ such that we can compute
the number of a-b-paths in G from the betweenness of v in G′.

Corollary 3.3. Strict Foremost Paths and Strict Fastest Paths are #P-hard.

We have shown that counting strict and non-strict temporal paths is #P-hard. This allows us
to prove this section’s main result.

Theorem 3.4. Temporal Betweenness based on foremost or fastest, strict or non-strict paths
is #P-hard.

Proof. We prove the #P-hardness by a polynomial-time counting reduction from (Strict) Tem-
poral Paths. Let G = (V, E , T ) be a temporal graph with vertices a and b. Let p be the number
of (strict) temporal paths from a to b. We construct a temporal graph G′ = (V ′, E ′, T ′) with V ′ =

V ∪ {a′, b′, v′}, lifetime T ′ = T + 2, and E ′ = {u
t+1
—v | u

t
—v ∈ E} ∪ {a′

1
—a, a′

1
—v′, v′

T+2
— b′, b

T+2
— b′}.

The construction is illustrated in Figure 4 and can clearly be computed in polynomial time.
By construction, every temporal path from a′ to b′ is both fastest and foremost and there are

exactly four (fastest/foremost) temporal paths going through v′, connecting the pairs (a, b), (a, b′),
(a′, b), and (a′, b′), respectively:

1. (a′
1
→ v′

T+2
→ b′),

2. (a
1
→ a′

1
→ v′

T+2
→ b′),

3. (a
1
→ a′

1
→ v′

T+2
→ b′

T+2
→ b), and

4. (a′
1
→ v′

3
→ b′

T+2
→ b).

We observe that for each of these four pairs, there are p+1 foremost (and fastest) (strict) temporal
paths, and for any other pair of vertices, no temporal path goes through v at all. This allows
us to compute p from the temporal betweenness centrality based on foremost (fm) or fastest (fa)
temporal paths of v:

C
(fa)
B (v) = C

(fm)
B (v) =

∑

s 6=v 6=z

δ(fm)
sz (v) = 4 · δ

(fm)
ab (v) =

4

p + 1

⇒ p =
4

C
(fm)
B (v)

− 1.

This implies that we have a polynomial-time counting reduction.
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4 Counting Temporal Paths and Temporal Dependencies

In the previous section, we have shown that computing the temporal betweenness centrality based on
fastest or foremost paths is #P-hard. Now we investigate ways to extend the approach of Brandes’
algorithm [5] for static graphs to variants of temporal betweenness based on types of optimal
temporal paths for which the counting problem is not intractable. In this section, we provide
the theoretical foundations for designing efficient algorithms to compute temporal betweenness
centrality.

4.1 Counting Shortest Temporal Paths

We first show how we can count shortest temporal paths efficiently. Our results from Section 3
indicate that this is not possible for the case of foremost and fastest temporal paths.

As it turns out, what we need to count is a slightly different version of shortest temporal paths,
which we call t-shortest temporal paths. A temporal path P from s to z is a t-shortest temporal
path if it arrives at time t and if there is no temporal path P ′ from s to z which arrives at time t

and is shorter than P . We show that similarly to the static case, t-shortest temporal paths P have
the property that every prefix is a t′-shortest temporal path, where t′ is the time when the prefix
arrives at its last vertex. Formally, we show the following.

Lemma 4.1. Let P = (s
t1→ . . .

t′
→ v

t′′
→ s′

t′′′
→ . . .

t
→ z) be a t-shortest temporal path from s to z.

Then P ′ = (s
t1→ . . .

t′
→ v) is a t′-shortest temporal path from s to v.

Proof. Assume that P = (s
t1→ . . .

t
→ z) is a t-shortest temporal path but P ′ = (s

t1→ . . .
t′
→ v) is

not a t′-shortest temporal path. Then there is a shorter temporal path P ′′ = (s
t′1→ . . .

t′
→ v) which

implies that (P ′′ t′′
→ s′

t′′′
→ . . .

t
→ z) is shorter than P , a contradiction.

Lemma 4.1 allows us to formulate a recursive relation of the number of shortest temporal paths.
To do this, we need to define the predecessor of a vertex appearance (v, t) on a temporal path.

Definition 4.2. Let P be a temporal starting at s that contains the transitions w′ t′
→ w

t
→ v.

Then (w, t′) is the predecessor of (v, t) on P . Let P also contain the transition s
t′′
→ v′. Then (s, 0)

is the predecessor of (v′, t′′).

Let s ∈ V be any vertex and (v, t) ∈ V × [T ] any vertex appearance. Then P
(⋆)
s (v, t) denotes

the set of predecessors of (v, t) on ⋆-optimal temporal paths starting at s.

If we want to use the predecessor relation to formulate recursive function, then we need that
the relation is acyclic, otherwise we are not guaranteed to reach a base case. To show this formally,
we define the directed predecessor graph for ⋆-optimal temporal paths starting at some vertex
s ∈ V as follows. Given a temporal graph G, the vertex set of the predecessor graph is the set of
vertex appearances in G. The arc set is given by the ordered pairs of vertex appearances such that
there is a ⋆-optimal temporal path starting at s that arrives in these vertex appearances in that
order, that is, we add an arc from a vertex appearance (v, t) to another vertex appearance (w, t′)

if (v, t) ∈ P
(⋆)
s (w, t′).
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Definition 4.3 (Predecessor Graph). Let G = (V, E , T ) be a temporal graph. Let s ∈ V . The
predecessor graph of G is the directed static graph given by

G(⋆)
pre(s) := (V × ([T ] ∪ {0}), E),

where

E := {((v, t), (w, t′)) | (v, t) ∈ P (⋆)
s (w, t′)}.

It is easy to observe that the predecessor graph is acyclic for all strict optimal temporal path
versions, since the time stamps of the vertex appearances are strictly increasing along the arcs
of the graph. In the case of t-shortest temporal paths, we show next that this also holds in the
non-strict case.

Lemma 4.4. Let G = (V, E , T ) be a temporal graph. The predecessor graph G
(n-t-sh)
pre (s) for non-

strict t-shortest (n-t-sh) temporal paths is acyclic for all s ∈ V and all t ∈ T .

Proof. Proof by contradiction. Let G = (V, E , T ) be a temporal graph with source s. Let dist :
V × [T ] → N be the function that returns the length of the shortest path in the predecessor graph

G
(n-t-sh)
pre (s) from (s, 0) to any vertex appearance. Note that for any vertex appearance (v, t′) we

have that dist(v, t′) is also the length of a t′-shortest temporal path from s to v. Hence, for any
vertex appearances (v, t′) and (w, t′′), if the predecessor graph contains the arc ((v, t′), (w, t′′)), then

dist(v, t′) < dist(w, t′′). Assume that G
(n-t-sh)
pre (s) contains a cycle C = ((v, t′), . . . , (v, t′)). Then

dist(v, t′) < dist(v, t′), a contradiction.

By an analogous argument, we get the following, which we need in the next subsection.

Lemma 4.5. Let G = (V, E , T ) be a temporal graph. The predecessor graph G
(n-sh)
pre (s) for non-strict

shortest temporal paths is acyclic for all s ∈ V .

With the help of this notation and Lemma 4.1 (and Lemma 4.4 for the non-strict case), we can
formulate the following recursion for the number of t-shortest temporal paths.

Corollary 4.6 (Counting of t-Shortest Temporal Paths). Let s be a source and let z be a vertex
with s 6= z. The number of t-shortest temporal paths (t-sh) from s to z is given by:

σ(t−sh)
sz =

∑

(v,t′)∈P t−sh
s (z,t)

σ(t′−sh)
sv .

4.2 Temporal Dependencies

Similarly to Brandes [5] we introduce so-called dependencies to obtain an alternative formulation
for the betweenness which we then use for the actual computation. Recall the definition of (static)
betweenness centrality

CB(v) =
∑

s,z∈V

σsz(v)

σsz
,

where σsz is the number of all shortest paths from s to z and σsz(v) is the fraction of these paths
which pass through v. Brandes [5] calls the latter the pair-dependency of s and z on v. Brandes’
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central observation is that the betweenness centrality can be computed faster by first computing
partial sums of the form

δs•(v) =
∑

z∈V

σsz(v)

σsz
,

the dependency of s on v. He showed that the dependencies obey a recursive relation which can be
exploited algorithmically.

Both concepts, dependencies and pair-dependencies, naturally generalize to optimal paths in
temporal graphs. In some cases, we may be interested in the dependency on a vertex at a specific
time instead of the whole lifetime. Hence, we introduce temporal dependencies of vertex appear-
ances:

Definition 4.7 (Temporal Dependency). Let s be a source and let z be a target vertex. Let v 6= s

and v 6= z. For any t ∈ [T ], the temporal pair-dependency of s and z on (v, t) and the dependency
of s on (v, t) are given by:

δ(⋆)sz (v, t) :=







0, if σ
(⋆)
sz = 0

σ
(⋆)
sz (v,t)

σ
(⋆)
sz

, otherwise,

δ
(⋆)
s• (v, t) :=

∑

z∈V

δ(⋆)sz (v, t).

From our definition of the modified temporal betweenness of a vertex appearance it follows that
we can use the temporal dependencies to compute it.

Observation 4.8. For any vertex appearance (v, t) ∈ V × [T ] it holds:

Ĉ
(⋆)
B (v, t) =

∑

s∈V

δ
(⋆)
s• (v, t).

Now we state our central result allowing us to design algorithms to compute the temporal
betweenness centrality based on shortest temporal paths.

Lemma 4.9 (Temporal Dependency Accumulation). Fix a source s ∈ V . For any vertex appear-
ance (v, t) ∈ V × [T ] it holds:

δ
(sh)
s• (v, t) = δ(sh)sv (v, t) +

∑

(w,t′):(v,t)∈P sh
s (w,t′)

σ
(t−sh)
sv

σ
(t′−sh)
sw

· δ
(sh)
s• (w, t′).

Proof. We start by rewriting the pair-dependency of a vertex appearance as the summed fractions
of shortest temporal paths using a specific transition from v to some vertex w at some time step:

δ
(sh)
s• (v, t) =

∑

z∈V

δ(sh)sz (v, t)

= δ(sh)sv (v, t) +
∑

z∈V

∑

(w,t′):(v,t)∈P sh
s (w,t′)

δ(sh)sz ((v, t), ({v,w}, t′)),

where δ
(sh)
sz ((v, t), ({v,w}, t′)) is the fraction of shortest temporal paths from vertex s to z that use

the transitions v′
t
→ v

t′
→ w for some v′. Note that for the case that z = v there is no vertex
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appearance (w, t′) such that (v, t) ∈ P sh
s (w, t′), hence we need δ

(sh)
sv (v, t) as an additional summand.

Furthermore, we have that

δ(sh)sz ((v, t), ({v,w}, t′)) =
σ
(t−sh)
sv

σ
(t′−sh)
sw

·
σ
(sh)
sz (w, t′)

σ
(sh)
sz

.

Inserting these cases into the double sum above yields the following:

∑

z∈V

∑

(w,t′):(v,t)∈P sh
s (w,t′)

δ(sh)sz ((v, t), ({v,w}, t′))

=
∑

(w,t′):(v,t)∈P sh
s (w,t′)

∑

z∈V

δ(sh)sz ((v, t), ({v,w}, t′))

=
∑

(w,t′):(v,t)∈P sh
s (w,t′)

(

σ
(t−sh)
sv

σ
(t′−sh)
sw

·
∑

z∈V

σ
(sh)
sz (w, t′)

σ
(sh)
sz

)

=
∑

(w,t′):(v,t)∈P sh
s (w,t′)

σ
(t−sh)
sv

σ
(t′−sh)
sw

· δ
(sh)
s• (w, t′).

The lemma statement now follows immediately.

Lemma 2.8 together with Observation 4.8 show that we can use temporal dependencies to com-
pute temporal betweenness centrality. Lemma 4.9 shows that the temporal dependencies obey a
recursive relation and Lemma 4.5 shows that it is acyclic. This together with Corollary 4.6 allows
us to design a polynomial-time algorithm to compute temporal betweenness centrality based on
shortest temporal paths. Before we give the specific algorithm description and running time anal-
ysis, we describe some other temporal betweenness concepts that can be computed in a similar
fashion.

4.3 Specialized Optimality Concepts

So far, our results allow us to efficiently compute the temporal betweenness for strict and non-strict
shortest temporal paths. For all other of the six canonical variants we have shown computational
hardness results in Section 3. In the following, we show that for some specialized optimality con-
cepts for temporal paths, we can also efficiently compute the corresponding temporal betweenness.
Specifically, we consider shortest foremost temporal paths and prefix-foremost temporal paths.

Shortest foremost temporal paths. A shortest foremost path is a foremost temporal path
that is not longer than any other foremost temporal path. It may not be a shortest temporal path
overall, however, as even shorter temporal paths with higher arrival times may exist. Shortest
foremost temporal paths can be regarded as temporal paths that prioritize a low arrival time and
use a low edge count as a tie-breaker.

Definition 4.10. Let s, z ∈ V . A temporal path P from s to z is a shortest foremost temporal
path if P is a foremost temporal path from s to z and for all foremost temporal paths P ′ from s

to z it holds: |P | ≤ |P ′|.
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We observe that a shortest foremost temporal path is a t-shortest temporal path for the earliest
possible arrival time. Hence, our findings in the previous subsection translate very easily to shortest
foremost temporal paths.

Prefix foremost temporal paths. Now we consider the class of foremost temporal paths for
which every prefix of the temporal path is foremost as well. That is, every vertex that is visited by
such a temporal path is visited as soon as possible. These temporal paths are called prefix foremost
paths.

Definition 4.11. Let s, z ∈ V . A path P = (e1, . . . , ek) from s to z is a prefix foremost temporal
path if P is a foremost path and every prefix P ′ = (e1, . . . , ek′), k

′ ≤ k is a foremost temporal path
as well.

Wu et al. [40] showed that there is always at least one prefix foremost path between any
pair of vertices s and z unless z is not reachable from s at all. We can observe that in the
straightforward reduction from Paths that yields Proposition 3.1 we also get that counting non-
strict prefix foremost temporal paths is computationally hard.

Proposition 4.12. Prefix Foremost Paths is #P-hard.

The main difference between strict and non-strict prefix foremost paths foremost paths is that
in the former case, the predecessor relation is acyclic, and in the latter it is not. Intuitively, this is
the reason why we get hardness in the non-strict case and tractability for the strict version.

For strict prefix foremost paths, one can show that the counting problem and the computation
of the corresponding betweenness are solvable in polynomial time by very similar arguments as for
shortest temporal paths. The main difference is that the time stamp of a predecessor is unique,
hence we can define the set of predecessors as a set of vertices as opposed to a set of vertex
appearances, otherwise the arguments are analogous to the ones used in the proof of Lemma 4.9.
This allows us to simplify the recursive function for the temporal dependency for prefix foremost
temporal paths which also results in a faster computation.

Lemma 4.13 (Strict Prefix Foremost Dependency Accumulation). Fix a source s ∈ V . For any
vertex v ∈ V, v 6= s it holds:

δ
(pfm)
s• (v) = 1 +

∑

w:v∈P
(pfm)
s (w)

σ
(pfm)
sv

σ
(pfm)
sw

· δ
(pfm)
s• (w).

Proof. We start by rewriting the pair-dependency of a vertex appearance as the summed fractions
of prefix foremost temporal paths using a specific transition from v to some vertex w at some time
step:

δ
(pfm)
s• (v) =

∑

z∈V

δ(pfm)
sz (v)

= δ(pfm)
sv (v) +

∑

z∈V

∑

w:v∈P
(pfm)
s (w)

δ(pfm)
sz (v, {v,w}),
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where δ
(pfm)
sz (v, {v,w}) is the fraction of prefix foremost temporal paths from vertex s to z that use

the transitions v
t
→ w for some t. Note that for the case that z = v there is no vertex w such that

v ∈ P
(pfm)
s (w), hence we need δ

(pfm)
sv (v) as an additional summand. Furthermore, we have that

δ(pfm)
sz (v, {v,w}) =

σ
(pfm)
sv

σ
(pfm)
sw

·
σ
(pfm)
sz (w)

σ
(pfm)
sz

.

Inserting these cases into the double sum above yields the following:

∑

z∈V

∑

w:v∈P
(pfm)
s (w)

δ(pfm)
sz (v, {v,w})

=
∑

w:v∈P
(pfm)
s (w)

∑

z∈V

δ(pfm)
sz (v, {v,w})

=
∑

w:v∈P
(pfm)
s (w)

(

σ
(pfm)
sv

σ
(pfm)
sw

·
∑

z∈V

σ
(pfm)
sz (w)

σ
(pfm)
sz

)

=
∑

w:v∈P
(pfm)
s (w)

σ
(pfm)
sv

σ
(pfm)
sw

· δ
(pfm)
s• (w).

The lemma statement now follows immediately.

5 Algorithms and Running Time Analysis

In the following we give detailed descriptions of the algorithms we use to compute the temporal be-
tweenness variants discussed in Section 4. We first describe how to adapt Brandes’ algorithm [5] to
the temporal setting and then describe the competing approach of computing temporal betweenness
using so-called static expansions.

5.1 Algorithms Based on Adaptations of Brandes’ Algorithm to the Temporal

Setting

Brandes’ algorithm [5] (for static graphs without edge weights) is based on breadth-first search.
For each vertex, the Single-Source Shortest Paths problem is solved once. At the end of each
iteration, the dependency of the respective+s on all other vertices v is added to the betweenness
score of s.

Our algorithms for temporal betweenness will follow roughly the same structure. Instead of
breadth-first search, the appropriate algorithm for the respective temporal path class is used as
the base for the algorithm. To describe our algorithm formally, we need the notion of temporal
neighborhoods.

Definition 5.1 (Temporal Neighborhood). For a temporal graph G = (V, E , T ) and a vertex v ∈
V (G), we call N(v) := {(u, t) ∈ V (G) × [T ] | {u, v} ∈ Et(G)} the temporal neighborhood of v.
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Shortest (foremost) temporal betweenness. We have shown that the temporal dependencies
for shortest (foremost) paths follow a similar recursion as for static graphs.

Algorithm 1 uses a |V | × T -table to store the number of shortest temporal paths to all vertex
appearances. The overall structure of the algorithm is similar to Brandes’ algorithm [5]—a single-
source-all-shortest-paths traversal from each vertex to all vertex appearances is performed and
the count of shortest temporal paths is stored in the aforementioned table. At the end of each
iteration, we add the dependencies found for each vertex appearance to the betweenness score of
the respective vertex.

In order to count shortest foremost temporal paths instead of shortest temporal paths, only
the dependency accumulation needs to be changed: instead of checking whether the paths have
minimal length, the algorithm checks for minimal arrival time.

Proposition 5.2. Given a temporal graph G = (V, E , T ), Algorithm 1 computes the shortest tem-
poral betweenness and the shortest foremost temporal betweenness of all v ∈ V in O(|V |3 ·T 2) time
and O(|V | · T + |E|) space.

Proof. The correctness of Algorithm 1 follows from Lemma 2.8 together with Observation 4.8,
which show that we can use temporal dependencies to compute the temporal betweenness, and
from Corollary 4.6 and Lemma 4.9 (with Lemma 4.5) since our algorithm dynamically computes
the values given by the recursive formulas stated in the lemmas.

It is easy to check that the running time of Algorithm 1 is upper-bounded by |V | (the outer loop
in Line 1) times the total number of elements in Q (the loop from Line 10) times the maximum
size of a temporal neightborhood (the loop from Line 12). Both the total number of elements in Q

and the maximum size of a temporal neightborhood is in O(|V | · T ). The claimed running time
follows.

The space consumption of Algorithm 1 is in O(|V | · T + |E|), since we need to store matrices of
size |V | · T for the temporal path counts and the temporal dependencies.

Strict prefix foremost temporal betweenness. Algorithm 2 modifies Brandes’ algorithm [5]
to count strict prefix foremost temporal paths. The overall structure of the algorithm remains the
same. Instead of iterating over all neighbors, however, we add add all temporal edges of a vertex
into a priority queue (prioritizing early time labels). This allows us to traverse the graph in a
time-respecting manner and find the prefix foremost temporal paths.

Notably, since the time labels of predecessors are unique in prefix foremost temporal paths, we
do not have to consider vertex appearances in this case. Intuitively, this is the main reason why
we can achieve both a faster running time a lower space consumption.

Proposition 5.3. Given a temporal graph G = (V, E , T ), Algorithm 2 computes the prefix-foremost
temporal betweenness of all v ∈ V in O(|V | · |E| · log |E|) time and O(|E| + |V |) space.

Proof. The proof is essentially analogous to the correctness proof for Algorithm 1 but uses Lemma 4.13.
It is easy to check that the running time of Algorithm 2 is upper-bounded by |V | (the outer

loop in Line 1) times the size of Q (the loop from Line 9) times the time necessary to dequeue
(Line 10). The size of Q is in O(|E|) and the time to dequeue is in O(log |E|). Here, we assume
that |V | ≤ |E|. The claimed running time follows.

The space consumption of Algorithm 2 is in O(|E|+|V |) the arrays for the temporal path counts
and the temporal dependencies used in the algorithm are all of size |V |.
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Algorithm 1 Shortest (foremost) betweenness in temporal graphs

Input: A temporal graph G = (V, E , T ).

Output: Betweenness C
(sh)
B and C

(fm)
B of all vertices v ∈ V (G)

1: for s ∈ V do

2: for v ∈ V do ⊲ Initialization
3: dist[v]← −1; σ[v]← 0; tmin[v]← −1

4: for ({u, v}, t) ∈ E do

5: δsh[v, t]← 0; δfm[v, t]← 0
6: σ[v, t]← 0; P [v, t]← ∅; dist[v, t]← −1

7: dist[s]← 0; dist[s, 0]← 0; tmin[s]← 0
8: σ[s]← 1; σ[s, 0]← 1
9: S ← empty stack; Q← empty queue; Q← enqueue(s, 0)
10: while Q not empty do

11: (v, t)← dequeue(Q)
12: for (w, t′) ∈ N(v) with t < t′ do ⊲ (t ≤ t′) for n-str
13: if dist[w, t′] = −1 then ⊲ First arrival at (w, t′)
14: dist[w, t′]← dist[v, t] + 1
15: if dist[w] = −1 then ⊲ Shortest path to w
16: dist[w]← dist[v, t] + 1

17: S ← push(w, t′); Q. enqueue(w, t′)

18: if dist[w, t′] = dist[v, t] + 1 then ⊲ Shortest path to (w, t′) via (v, t)
19: σ[w, t′]← σ[w, t′] + σ[v, t]
20: P [w, t′]← P [w, t′] ∪ {(v, t)}
21: if dist[w, t′] = dist[w] then ⊲ Shortest path to w via (v, t)
22: σ[w]← σ[w] + σ[v, t]

23: if tmin[w] = −1 or t′ < tmin[w] then ⊲ Foremost shortest path to w
24: tmin[w]← t′

25: C
(sh)
B [s]← C

(sh)
B [s]− |{i | dist[i] ≥ 0}|+ 1

26: C
(fm)
B [s]← C

(fm)
B [s]− |{i | dist[i] ≥ 0}|+ 1

27: while (w, t′)← pop(S) do ⊲ Vertex appearances in order of non-increasing distance from s
28: if dist[w, t′] = dist[w] then ⊲ Shortest path to w

29: δsh[w, t′]← δsh[w, t′] + σ[w,t′]
σ[w]

30: if t′ = tmin[w] then ⊲ Foremost shortest path to w
31: δfm[w, t′]← δfm[w, t′] + 1

32: for (v, t) ∈ P [w, t′] do

33: δsh[v, t]← δsh[v, t] + σ[v,t]
σ[w,t′]

· δsh[w, t′]

34: C
(sh)
B [v]← C

(sh)
B [v] + σ[v,t]

σ[w,t′]
· δsh[w, t′]

35: δfm[v, t]← δfm[v, t] + σ[v,t]
σ[w,t′]

· δfm[w, t′]

36: C
(fm)
B [v]← C

(fm)
B [v] + σ[v,t]

σ[w,t′]
· δfm[w, t′]

37: return C
(sh)
B , C

(fm)
B

5.2 Algorithms Based on the Static Expansion

In this section, we discuss the presumably more straightforward way of computing temporal be-
tweenness, namely through the use of so-called static expansions or time-expanded temporal graphs,
which are a key tool in temporal graph algorithmics [1, 20, 25, 40, 41]. Static expansions are di-
rected graphs that have a vertex for every vertex appearance of the corresponding temporal graph
and they preserve the connectivity between vertex appearances of the temporal graph.

The main idea is to use Brandes’ algorithm [5] for (directed) static graphs on the static expan-
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Algorithm 2 Strict prefix-foremost betweenness

Input: A temporal graph G = (V, E , T ).

Output: Betweenness C
(pfm)
B of all vertices v ∈ V (G)

1: for s ∈ V do

2: for v ∈ V do ⊲ Initialization
3: P [v]← ∅; tmin[v]← −1
4: σ[v]← 0; δ[v]← 1

5: tmin[s]← 0; σ[s]← 1
6: S ← empty stack
7: Q← empty priority queue ⊲ Prioritized by time label

8: Q← enqueueAll({s
t
→ v | s

t
—v ∈ E})

9: while Q not empty do

10: v
t
→ w ← dequeue(Q)

11: if tmin[w] = −1 then ⊲ First and foremost arrival in w
12: tmin[w]← t
13: S ← push(w)

14: Q. enqueueAll({w
t′

→ x | w
t′

—x ∈ E , t < t′})

15: if tmin[w] = t then ⊲ Prefix foremost path to w via v
16: σ[w]← σ[w] + σ[v]
17: P [w]← P [w] ∪ {v}

18: C
(pfm)
B [s]← C

(pfm)
B [s]− |{i | dist[i] ≥ 0}|+ 1

19: while w← pop(S) do ⊲ Vertices in order of non-increasing distance from s
20: for v ∈ P [w] do

21: δ[v]← δ[v] + σ[v]
σ[w]
· δ[w]

22: C
(pfm)
B [v]← C

(pfm)
B [v] + σ[v]

σ[w]
· δ[w]

23: return C
(pfm)
B

sion. Of course we need to make sure that each shortest path in the static expansion corresponds
to exactly one optimal temporal path in the temporal graph for the optimality criterion that we are
interested in. To do this, it is necessary to exclude some paths from the betweenness computation.
To this end, we first give a generalized version of static betweenness. Then we present the details
on how to construct static expansions for the optimality concepts used in our work. Notably, we do
not present a static expansion for the strict prefix-foremost case, since for this case our algorithm
is significantly faster than for the other optimality concepts.

Let S ⊆ V be a set of “source” vertices and Z : S → 2V be a function that, for any s ∈ S,
returns the set of “terminal” vertices for that source. Now we define the S-Z-Betweenness of a
vertex v ∈ V to be

C
(SZ)
B (v) =

∑

s∈S\{v}

∑

z∈Z(s)\{v}

δsz(v).

The problem of computing the S-Z-Betweenness for each vertex in an arbitrary (weighted) directed
graph can be solved with a straightforwardly modified version Brandes’ algorithm [5]. We omit the
details here.

Static expansion for shortest temporal betweenness. We now describe how to construct a
static expansion of a temporal graph in order to compute (strict) shortest temporal betweenness.
Let G = (V, E , T ) be a temporal graph. We then define the static expansion graph for the (strict)
shortest betweenness as the directed unweighted graph G = (Ṽ , Ẽ), with the following sets of
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vertices and edges:
For each vertex v ∈ V of the original graph, we define T +2 vertices in the static expansion—one

for each appearance and two special vertices: a “source” and a “sink.” Formally,

Ṽ :=
⋃

v∈V

{vt | t ∈ [T + 1] ∪ {0}} .

For the edges we have three cases. The vertices vT+1 are used as sentinel “terminal” vertices
that will signify the end of a path in our betweenness computation. Hence, they do not have any
outgoing edges. Now, for any temporal edge ({v,w}, t) ∈ E and every vt′ with t′ ≤ t, we either add
the directed edge (vt′ , wt), or the edge (vt′ , wt+1)—the former in the non-strict case, the latter in
the strict case. Moreover, we also add an edge to the corresponding terminal vertex, that is, we
add the edge (vt′ , wT+1). Naturally, we also go through the same process with w as we did with v.
Formally, we have in the non-strict case:

Ẽ :=
⋃

({v,w},t)∈E

⋃

0≤t′≤t

{(vt′ , wt), (vt′ , wT+1), (wt′ , vt), (wt′ , vT+1)},

and in the strict case:

Ẽ :=
⋃

({v,w},t)∈E

⋃

0≤t′≤t

{(vt′ , wt+1), (vt′ , wT+1), (wt′ , vt+1), (wt′ , vT+1)}.

Now, to use the static expansion to compute the betweenness values in the temporal graph, we
first compute the S-Z-betweenness on the static expansion with

S := {v0 | v ∈ V },

Z(s) := {vT+1 | v ∈ V \ {s}}.

We can now compute the temporal betweenness values using the following (where ⋆ is the corre-
sponding optimality concept):

C
(⋆)
B (v) =

∑

t∈[T ]

C
(SZ)
B (vt).

Static expansion for shortest foremost temporal betweenness. This variant of static ex-
pansion will be similar as the static expansion from the previous paragraph. Indeed, for a temporal
graph G = (V, E , T ) we define the static expansion for (strict) shortest-foremost betweenness to be
the directed weighted graph G = (Ṽ , Ẽ, ω), with Ṽ and Ẽ defined exactly as in the static expansion
for (strict) shortest betweenness (see previous paragraph). Additionally, we use the edge weight
function ω to “simulate” the foremost aspect of the paths. We let all “internal” edges be of equal
weight, but let the “terminal” edges have a weight related to their timestamps. We set the weight
in such a way as to make it so that any path to an “appearance” vt is better than any path to an
“appearance” vt′ for t < t′. Formally, we have

ω(vt, wt′) =

{

1, if t′ ≤ T,

(n + 1) · (t′ + 1), otherwise.

Note that this weight function works in both the strict and the non-strict case.
The further procedure, that is, the computation of S-Z-betweenness and then the temporal

betweenness values can be done in exactly the same way as in for shortest temporal betweenness
(see the previous paragraph).
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Table 2: Statistics for the data sets used in our experiments. The lifetime T of a graph is the
difference between the largest and smallest time stamp on an edge in the graph. The resolution r

indicates how often edges were measured. The last five columns state the running times in seconds
of our implementation, where the last two correspond to the algorithms based on static expan-
sions. From left to right: non-strict shortest and shortest foremost betweenness, strict shortest and
shortest foremost betweenness, strict prefix-foremost betweenness, non-strict shortest and shortest
foremost betweenness computed with static-expansion-based algorithms, strict shortest and short-
est foremost betweenness computed with static-expansion-based algorithms. A -1 indicates that
the instance was not solved within five hours.

Data Set # Vtc’s n # Edges M Res. r Lifetime T N-Str. Sh (Fm) Str. Sh (Fm) Str. P Fm Ex N-Str. Sh (Fm) Ex Str. Sh (Fm)

highschool-2011 126 28,560 20 272,330 6.59 · 101 6.56 · 101 7.93 · 10−1 3.63 · 101 3.47 · 101

highschool-2012 180 45,047 20 729,500 1.97 · 102 1.97 · 102 2.11 · 100 1.24 · 102 1.19 · 102

highschool-2013 327 188,508 20 363,560 2.61 · 103 2.59 · 103 2.23 · 101 2.06 · 103 1.91 · 103

primaryschool 242 125,773 20 116,900 8.98 · 102 8.95 · 102 8.81 · 100 5.13 · 102 5.08 · 102

hospital-ward 75 32,424 20 347,500 9.75 · 101 9.72 · 101 4.33 · 10−1 4.89 · 101 4.67 · 101

infectious 10,972 415,912 20 6,946,340 9.95 · 102 9.42 · 102 6.94 · 100 −1 −1

hypertext 113 20,818 20 212,340 3.71 · 101 3.69 · 101 4.62 · 10−1 2.14 · 101 2.04 · 101

karlsruhe 1,870 461,661 1 123,837,267 −1 −1 311,727 −1 −1

facebook-like 1,899 59,835 1 16,736,181 1.3 · 103 1.3 · 103 2.49 · 101 8.25 · 103 8.22 · 103

6 Experimental Evaluation

In this section, we analyze the running time of our implementations of Algorithm 1 (computing
strict and non-strict shortest and shortest foremost temporal betweenness) and Algorithm 2 (com-
puting strict prefix-foremost temporal betweenness) as well as implementations of algorithms based
on static expansions (computing strict and non-strict shortest and shortest foremost temporal be-
tweenness, same as Algorithm 1) on several real-world temporal graphs and we investigate the
differences between the five different betweenness concepts our algorithms can compute.

6.1 Setup and Statistics

We implemented4 Algorithm 1 and Algorithm 2 and algorithms using the static expansions (see
Section 5.2) in C++ and we compiled our source code with GCC 7.5.0. We carried out experiments
on an Intel Xeon W-2125 computer with four cores clocked at 4.0 GHz and with 256 GB RAM,
running Linux 4.15. We did not utilize the parallel-processing capabilities.

We used the following freely available data sets for temporal graphs: Physical-proximity net-
works5 between high school students (“highschool-2011”, “highschool-2012”, “highschool-2013” [10,
12, 32]), children and teachers in a primary school (“primaryschool” [32]), patients and health-care
workers (“hospital-ward” [39]), attendees of the Infectious SocioPatterns event (“infectious” [19]),
and conference attendees of ACM Hypertext 2009 (“hypertext” [19]), and an email communica-
tion networks of the Karlsruhe Institute of Technology (KIT) (“karlsruhe” [13]), and one social
communication network (“facebook-like” [29]). We summarize some important statistics about the
different data sets in Table 2.

4The code of our implementation is available under GNU general public license version 3 at
http://fpt.akt.tu-berlin.de/software/temporal_betweenness/.

5Available at http://www.sociopatterns.org/datasets/.
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Table 3: Kendall’s tau correlation measure for each pair of vertex rankings induced by the different
temporal betweenness versions. Values close to 1 indicate strong agreement and values close to -1
indicate strong disagreement between the rankings.

Data Set

non-str.
sh vs.
non-str.
sh fm

non-str.
sh vs.
str. sh

non-str.
sh vs. str.
sh fm

non-str.
sh vs.
str. p
fm

non-str.
sh fm vs.
str. sh

non-str.
sh fm vs.
str. sh fm

non-str.
sh fm vs.
str. p fm

str.
sh vs.
str. sh
fm

str.
sh vs.
str. p
fm

str. sh
fm vs.
str. p
fm

highschool-2011 0.51 9.97 · 10−1 5.43 · 10−1 4.82 · 10−1 5.14 · 10−1 8.7 · 10−1 8.05 · 10−1 5.43 · 10−1 4.82 · 10−1 8.4 · 10−1

highschool-2012 0.49 9.94 · 10−1 4.87 · 10−1 4.31 · 10−1 4.9 · 10−1 9.31 · 10−1 8.11 · 10−1 4.88 · 10−1 4.33 · 10−1 8.2 · 10−1

highschool-2013 0.43 9.98 · 10−1 4.31 · 10−1 3.86 · 10−1 4.3 · 10−1 8.85 · 10−1 7.54 · 10−1 4.31 · 10−1 3.86 · 10−1 7.8 · 10−1

primaryschool 0.26 9.86 · 10−1 2.9 · 10−1 1.79 · 10−1 2.57 · 10−1 7.59 · 10−1 5.82 · 10−1 2.83 · 10−1 1.71 · 10−1 6.32 · 10−1

hospital-ward 0.64 9.97 · 10−1 6.31 · 10−1 5.46 · 10−1 6.38 · 10−1 9.68 · 10−1 8.16 · 10−1 6.32 · 10−1 5.48 · 10−1 8.22 · 10−1

hypertext 0.54 9.98 · 10−1 5.55 · 10−1 5.07 · 10−1 5.42 · 10−1 8.93 · 10−1 7.79 · 10−1 5.55 · 10−1 5.08 · 10−1 8.48 · 10−1

facebook-like 0.84 9.71 · 10−1 8.36 · 10−1 7.49 · 10−1 8.35 · 10−1 9.74 · 10−1 8.34 · 10−1 8.37 · 10−1 7.49 · 10−1 8.33 · 10−1

6.2 Experimental Results

We now discuss the results of our experiments. We analyzed the influence of the temporal be-
tweenness type on the running time, the distribution of the temporal betweenness values, and the
ranking of the ten vertices with the hightest temporal betweenness values.

Running time. As indicated by our theoretical running time bounds (see Table 1), Algorithm 1
(computing shortest and foremost shortest betweenness) is several orders of magnitudes slower than
Algorithm 2 (computing prefix foremost betweenness). Algorithm 1 solved all instances except
for (which was not solved within the timeout of five hours) within 45 minutes (keep in mind
that Algorithm 1 computes shortest and foremost shortest temporal betweenness simultaneously).
Algorithm 2 solved all instances except “karlsruhe” within 30 seconds. We show the specific running
times in Table 2. It is noticable that on small instances, the algorithms based on static expansions
are roughly a factor of two faster. However, on large instances, our approach seems to be better,
see for example “facebook-like”, where we are faster by a factor of roughly six, and “infectious”,
where the algorithm based on static expansions did not finish within five hours. We believe that
the static-expansion-based algorithm has higher memory requirements and more inefficient cache
usage and hence becomes significantly slower for larger instances.

Impact of temporal betweenness type on the temporal betweenness distribution. In
Figure 5 we exemplarily show histograms of the temporal betweenness values of the “highschool-
2013” data set, the “facebook-like” data set, and the “primaryschool” data set. We can observe that
the temporal betweenness centrality has a power-law-like distribution and the temporal betweenness
type does not have a strong influence on the distribution in the “highschool-2013” data set and the
“facebook-like” data set (which is the case in most data sets). In the “primaryschool” data set,
however, the distributions for non-strict shortest and strict shortest temporal betweenness are very
similar but the other ones are quite different from each other.

Impact of temporal betweenness type on the vertex ranking. In Table 3 we present
Kendall’s tau correlation measure6 [22] for each pair of vertex rankings induced by the different
temporal betweenness versions. For the temporal betweennes variants “shortest” and “shortest
foremost” we can observe that their respective non-strict and strict variants produce very similar

6The Kendall’s tau correlation measure is a measure to compare rankings. It is defined as follows:
(# concordant pairs−#discordant pairs) / #pairs.
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Figure 5: Top: Temporal betweenness histogram of “highschool-2013” data set. Vertices are col-
lected in 10 evenly distributed buckets between 0 and the highest temporal betweenness value.
The y-axis corresponds to the number of vertices. Middle: Temporal betweenness histogram of
“facebook-like” data set. The y-axis is on a log-scale. Bottom: Temporal betweenness histogram of
“primaryschool” data set. The temporal betweenness types from left to right are: non-strict short-
est, non-strict shortest foremost, strict shortest, strict shortest foremost, strict prefix foremost.
Variants of foremost betweenness are colored in shades of red; shortest betweenness is colored in
shades of blue.

Table 4: Size of the intersection of each pair of sets containing the ten vertices with highest temporal
betweenness values.

Data Set

non-str. sh
vs.
non-str. sh
fm

non-str.
sh vs.
str. sh

non-str. sh
vs. str. sh
fm

non-str.
sh vs.
str. p fm

non-str. sh
fm vs. str.
sh

non-str. sh
fm vs. str.
sh fm

non-str. sh
fm vs. str.
p fm

str. sh
vs. str.
sh fm

str. sh
vs. str.
p fm

str. sh fm
vs. str. p
fm

highschool-2011 4 10 5 4 4 8 8 5 4 9
highschool-2012 4 10 4 3 4 9 7 4 3 8
highschool-2013 4 10 4 3 4 8 5 4 3 7
primaryschool 0 9 0 0 0 9 7 0 0 8
hospital-ward 7 10 7 7 7 9 8 7 7 9
hypertext 4 10 4 4 4 10 9 4 4 9
facebook-like 9 10 9 6 9 10 7 9 6 7

rankings. We can further see that the betweenness variants “non-strict shortest foremost”, “strict
shortest foremost”, and “strict prefix foremost” are pairwise similar. Recall that strict prefix
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foremost temporal betweenness was computed significantly faster by our algorithms, hence we
can conclude that if foremost temporal paths are of interest, then the prefix foremost temporal
betweenness is much easier to compute and yields very similar results.

These findings are supported by the pairwise comparisons of the sets of the ten vertices with the
largest temporal betweenness values, which are presented in Table 4. Notably, the “primaryschool”
has quite different top ten vertex sets for all pairs of betweenness variants that do not fall into
the above mentioned pairings. We can also observe that “non-strict shortest” and “strict prefix
foremost” produce the most dissimilar vertex rankings and top ten sets.

7 Conclusion

We investigated several variants of temporal betweenness centrality based on the various optimiza-
tion criteria for temporal paths. We have shown a surprising discrepancy in their computational
complexity: while some variations are #P-hard, others can be computed in polynomial time. More
specifically, we found that counting foremost, and thus fastest paths, is #P-hard, and in turn, the
computation of the corresponding betweenness centrality scores is #P-hard as well. In contrast
to that, one can count shortest and shortest foremost temporal paths in polynomial time both for
strict and non-strict paths. In the case of prefix-foremost paths, however, we found a polynomial-
time algorithm for the strict version, whereas the non-strict version is again #P-hard. An intuitive
explanation for this behavior might be that our algorithms strongly rely on a recursive formulation
for the so-called temporal dependencies, which in turn requires that the predecessor relation of
optimal temporal paths is acyclic and that prefixes of optimal temporal paths are also optimal. For
all optimal temporal path types for which we show computational hardness of the corresponding
counting problem, one of the two mentioned requirements is not given.

As to challenges for future research, one direction is to attack the temporal betweenness central-
ity variants which we have shown to be computationally hard by means of approximation algorithms
or the development of fixed-parameter algorithms (e.g. for some structural graph parameters of the
underlying graph). Roughly in the same direction would be to undertake a closer study of the spe-
cial structures of real-world networks that might be algorithmically exploitable. A line of research
directly motivated by our experiments would be to explore how to further decrease the memory
consumption of our algorithms—the practical limitations seem to mainly come from the high space
consumption, at some point leading our algorithms to do a lot of paging (for the static-expansion
based algorithm, this point seems to be reached much earlier). Specifically, our algorithm for short-
est and shortest foremost temporal betweenness stores dependency and path count values for every
vertex-time step combination. This is major difference to the static algorithm of Brandes [5] which
is less vulnerable in this respect.

On the experimental side, we compared our the running times of our approach to static ex-
pansion based temporal betweenness algorithms. We found that for small instances, the static
expansion based temporal betweenness algorithms are faster but on large instances or algorithm
performs better. We conjecture that this is the case because our algorithm has a better memory
usage, hence the specific threshold of the input size where our algorithm is faster probably depends
heavily on the machine that is used for the computation.

We can further observe that the temporal betweenness type does not have a strong impact
on the distribution of the betweenness values. When comparing the vertex rankings produced
by the betweenness values we can observe that there is little difference between strict and the
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respective non-strict variants. Furthermore, “shortest foremost” and “prefix foremost” yield similar
results in terms of the betweenness values of the vertices, while the strict prefix foremost temporal
betweenness values can be computed significantly faster.

It would be very enlightening to compare the betweenness values of the two tractable variants of
temporal betweenness based on foremost paths (shortest foremost and prefix foremost) to the be-
tweenness values for temporal betweenness based on foremost temporal paths (which is intractable).
However, that requires a way to compute or approximate the temporal betweenness values based on
foremost temporal paths. Hence, developing efficient (parameterized exponential-time) algorithms
or approximation algorithms for the temporal betweenness based on foremost temporal paths is
also an interesting future work direction.
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