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Abstract

In a lot of real-world data mining and machine learning applications, data are provided
by multiple providers and each maintains private records of different feature sets about
common entities. It is challenging to train these vertically partitioned data effectively and
efficiently while keeping data privacy for traditional data mining and machine learning
algorithms. In this paper, we focus on nonlinear learning with kernels, and propose a
federated doubly stochastic kernel learning (FDSKL) algorithm for vertically partitioned
data. Specifically, we use random features to approximate the kernel mapping function
and use doubly stochastic gradients to update the solutions, which are all computed feder-
atedly without the disclosure of data. Importantly, we prove that FDSKL has a sublinear
convergence rate, and can guarantee the data security under the semi-honest assumption.
Extensive experimental results on a variety of benchmark datasets show that FDSKL is sig-
nificantly faster than state-of-the-art federated learning methods when dealing with kernels,
while retaining the similar generalization performance.

Keywords: Vertical federated learning, kernel learning, stochastic gradient descent, ran-
dom feature approximation, privacy

1. Introduction

Vertically partitioned data (Skillicorn and Mcconnell, 2008) widely exist in the modern data
mining and machine learning applications, where data are provided by multiple (two or
more) providers (companies, stakeholders, government departments, etc.) and each main-
tains the records of different feature sets with common entities. For example, a digital
finance company, an E-commerce company, and a bank collect different information about
the same person. The digital finance company has access to the online consumption, loan
and repayment information. The E-commerce company has access to the online shopping
information. The bank has customer information such as average monthly deposit, account
balance. If the person submit a loan application to the digital finance company, the digital
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finance company might evaluate the credit risk to this financial loan by comprehensively
utilizing the information stored in the three parts.

However, direct access to the data in other providers or sharing of the data may be
prohibited due to legal and commercial reasons. For legal reason, most countries worldwide
have made laws in protection of data security and privacy. For example, the European
Union made the General Data Protection Regulation (GDPR) (EU, 2016) to protect users’
personal privacy and data security. The recent data breach by Facebook has caused a
wide range of protests (Badshah, 2018). For commercial reason, customer data is usually a
valuable business asset for corporations. For example, the real online shopping information
of customers can be used to train a recommended model which could provide valuable
product recommendations to customers. Thus, all of these causes require federated learning
on vertically partitioned data without the disclosure of data.

Table 1: Commonly used smooth loss functions for binary classification (BC) and regression
(R).

Name of loss Type of task Convex The loss function

Square loss BC+R Yes L(f(xi), yi) = (f(xi)− yi)2
Logistic loss BC Yes L(f(xi), yi) = log(1 + exp(−yif(xi)))

Smooth hinge loss BC Yes L(f(xi), yi) =


1
2 − zi if zi ≤ 0
1
2 (1− zi)2 if 0 < zi < 1
0 if zi ≥ 1

,

where zi = yif(xi).

In the literature, there are many privacy-preserving federated learning algorithms for
vertically partitioned data in various applications, for example, cooperative statistical anal-
ysis Du and Atallah (2001), linear regression (Gascón et al., 2016; Karr et al., 2009; Sanil
et al., 2004; Gascón et al., 2017), association rule-mining (Vaidya and Clifton, 2002), k-
means clustering (Vaidya and Clifton, 2003), logistic regression (Hardy et al., 2017; Nock
et al., 2018), random forest Liu et al. (2019), XGBoost Cheng et al. (2019) and support
vector machine Yu et al. (2006). From the optimization standpoint, Wan et al. (2007)
proposed privacy-preservation gradient descent algorithm for vertically partitioned data.
Zhang et al. (2018) proposed a feature-distributed SVRG algorithm for high-dimensional
linear classification.

However, existing privacy-preservation federated learning algorithms assume the models
are implicitly linearly separable, i.e., in the form of f(x) = g◦h(x) (Wan et al., 2007), where
g is any differentiable function, {G1,G2, . . . ,Gq} is a partition of the features and h(x) is a
linearly separable function of the form of

∑q
`=1 h

`(wG` , xG`). Thus, almost all the existing
privacy-preservation federated learning algorithms are limited to linear models. However,
we know that the nonlinear models often can achieve better risk prediction performance
than linear methods. Kernel methods Gu et al. (2018b, 2008, 2018d) are an important class
of nonlinear approaches to handle linearly non-separable data. Kernel models usually take
the form of f(x) =

∑N
i αiK(xi, x) which do not satisfy the assumption of implicitly linear

separability, where K(·, ·) is a kernel function. To the best of our knowledge, PP-SVMV
(Yu et al., 2006) is the only privacy-preserving method for learning vertically partitioned
data with non-linear kernels. However, PP-SVMV (Yu et al., 2006) needs to merge the
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local kernel matrices in different workers to a global kernel matrix, which would cause a
high communication cost. It is still an open question to train the vertically partitioned data
efficiently and scalably by kernel methods while keeping data privacy.

To address this challenging problem, in this paper, we propose a new federated doubly
stochastic kernel learning (FDSKL) algorithm for vertically partitioned data. Specifically,
we use random features to approximate the kernel mapping function and use doubly stochas-
tic gradients to update kernel model, which are all computed federatedly without revealing
the whole data sample to each worker. We prove that FDSKL can converge to the optimal
solution in O(1/t), where t is the number of iterations. We also provide the analysis of
the data security under the semi-honest assumption (i.e., Assumption 2). Extensive exper-
imental results on a variety of benchmark datasets show that FDSKL is significantly faster
than state-of-the-art federated learning methods when dealing with kernels, while retaining
the similar generalization performance.

Contributions. The main contributions of this paper are summarized as follows.

1. Most of existing federated learning algorithms on vertically partitioned data are lim-
ited to linearly separable model. Our FDSKL breaks the limitation of implicitly linear
separability.

2. To the best of our knowledge, FDSKL is the first federated kernel method which can
train vertically partitioned data efficiently and scalably. We also prove that FDSKL can
guarantee data security under the semi-honest assumption.

3. Existing doubly stochastic kernel method is limited to the diminishing learning rate. We
extend it to constant learning rate. Importantly, we prove that FDSKL with constant
learning rate has a sublinear convergence rate.

2. Vertically Partitioned Federated Kernel Learning Algorithm

In this section, we first introduce the federated kernel learning problem, and then give a
brief review of doubly stochastic kernel methods. Finally, we propose our FDSKL.

2.1 Problem Statement

Given a training set S = {(xi, yi)}Ni=1, where xi ∈ Rd and yi ∈ {+1,−1} for binary classi-
fication or yi ∈ R for regression. Let L(u, y) be a scalar loss function which is convex with
respect to u ∈ R. We give several common loss functions in Table 1. Given a positive defi-
nite kernel function K(x′, x) and the associated reproducing kernel Hilbert spaces (RKHS)
H (Berlinet and Thomas-Agnan, 2011). A kernel method tries to find a function f ∈ H 1

for solving:

argmin
f∈H

R(f) = E(x,y)∈SL(f(x), y) +
λ

2
‖f‖2H (1)

where λ > 0 is a regularization parameter.

1. Because of the reproducing property (Zhang et al., 2009), ∀x ∈ Rd, ∀f ∈ H, we always have
〈f(·),K(x, ·)〉H = f(x).
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As mentioned previously, in a lot of real-world data mining and machine learning ap-
plications, the input of training sample (x, y) is partitioned vertically into q parts, i.e.,
x = [xG1 , xG2 , . . . , xGq ], and xG` ∈ Rd` is stored on the `-th worker and

∑q
`=1 d` = d. Ac-

cording to whether the label is included in a worker, we divide the workers into two types:
one is active worker and the other is passive worker, where the active worker is the data
provider who holds the label of a sample, and the passive worker only has the input of a
sample. The active worker would be a dominating server in federated learning, while passive
workers play the role of clients (Cheng et al., 2019). We let D` denote the data stored on
the `-th worker, where the labels yi are distributed on active workers. D` includes parts of
labels {yi}li=1. Thus, our goal in this paper can be presented as follows.

Goal: Make active workers to cooperate with passive workers to solve the nonlinear
learning problem (1) on the vertically partitioned data {D`}q`=1 while keeping the

vertically partitioned data private.

Principle of FDSKL. Rather than dividing a kernel into several sub-matrices, which re-
quires expensive kernel merging operation, FDSKL uses the random feature approximation
to achieve efficient computation parallelism under the federated learning setting. The ef-
ficiency of FDSKL is owing to the fact that the computation of random features can be
linearly separable. Doubly stochastic gradient (DSG) Gu et al. (2018a, 2019) is a scalable
and efficient kernel method (Dai et al., 2014; Xie et al., 2015; Gu et al., 2018c) which uses
the doubly stochastic gradients w.r.t. samples and random features to update the kernel
function. We extend DSG to the vertically partitioned data, and propose FDSKL. Specif-
ically, each FDSKL worker computes a partition of the random features using only the
partition of data it keeps. When computing the global functional gradient of the kernel, we
could efficiently reconstruct the entire random features from the local workers. Note that
although FDSKL is also a privacy-preservation gradient descent algorithm for vertically
partitioned data, FDSKL breaks the limitation of implicit linear separability used in the
existing privacy-preservation federated learning algorithms as discussed previously.

2.2 Brief Review of Doubly Stochastic Kernel Methods

We first introduce the technique of random feature approximation, and then give a brief
review of DSG algorithm.

2.2.1 Random Feature Approximation

Random feature (Rahimi and Recht, 2008, 2009; Gu et al., 2018a; Geng et al., 2019; Shi
et al., 2019, 2020) is a powerful technique to make kernel methods scalable. It uses the
intriguing duality between positive definite kernels which are continuous and shift invariant
(i.e., K(x, x′) = K(x− x′)) and stochastic processes as shown in Theorem 1.

Theorem 1 (Rudin (1962)) A continuous, real-valued, symmetric and shift-invariant
function K(x, x′) = K(x − x′) on Rd is a positive definite kernel if and only if there is
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a finite non-negative measure P(ω) on Rd, such that

K(x− x′) =

∫
Rd
eiω

T (x−x′)dP(ω) =

∫
Rd×[0,2π]

2 cos(ωTx+ b) cos(ωTx′ + b)d(P(ω)× P(b))

(2)

where P(b) is a uniform distribution on [0, 2π], and φω(x) =
√

2 cos(ωTx+ b).

According to Theorem 1, the value of the kernel function can be approximated by explicitly
computing the random feature maps φω(x) as follows.

K(x, x′) ≈ 1

m

m∑
i=1

φωi(x)φωi(x
′) (3)

where m is the number of random features and ωi are drawn from P(ω). Specifically, for
Gaussian RBF kernel K(x, x′) = exp(−||x − x′||2/2σ2), P(ω) is a Gaussian distribution
with density proportional to exp(−σ2‖ω‖2/2). For the Laplace kernel (Yang et al., 2014),
this yields a Cauchy distribution. Notice that the computation of a random feature map
φ requires to compute a linear combination of the raw input features, which can also be
partitioned vertically. This property makes random feature approximation well-suited for
the federated learning setting.

2.2.2 Doubly Stochastic Gradient

Because the functional gradient in RKHS H can be computed as ∇f(x) = K(x, ·), the
stochastic gradient of ∇f(x) w.r.t. the random feature ω can be denoted by (4).

ξ(·) = φω(x)φω(·) (4)

Given a randomly sampled data instance (x, y), and a random feature ω, the doubly stochas-
tic gradient of the loss function L(f(xi), yi) on RKHS w.r.t. the sampled instance (x, y)
and the random direction ω can be formulated as follows.

ζ(·) = L′(f(xi), yi)φω(xi)φω(·) (5)

Because ∇||f ||2H = 2f , the stochastic gradient of R(f) can be formulated as follows.

ζ̂(·) = ζ(·) + λf(·) = L′(f(xi), yi)φωi(xi)φωi(·) + λf(·) (6)

Note that we have E(x,y)Eω ζ̂(·) = ∇R(f). According to the stochastic gradient (6), we can
update the solution by stepsize γt. Then, let f1(·) = 0, we have that

ft+1(·) =ft(·)− γt (ζ(·) + λf(·)) =
t∑
i=1

−γi
t∏

j=i+1

(1− γjλ)ζi(·) (7)

=
t∑
i=1

−γi
t∏

j=i+1

(1− γjλ)L′(f(xi), yi)φωi(xi)︸ ︷︷ ︸
αti

φωi(·)

From (7), αti are the important coefficients which defines the model of f(·). Note that the
model f(x) in (7) do not satisfy the assumption of implicitly linear separability same to the
kernel model f(x) =

∑N
i αiK(xi, x) as mentioned in the first section.
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2.3 Federated Doubly Stochastic Kernel Learning Algorithm

We first present the system structure of FDSKL, and then give a detailed description of
FDSKL.

2.3.1 System Structure

As mentioned before, FDSKL is a federated learning algorithm where each worker keeps
its local vertically partitioned data. Figure 1 presents the system structure of FDSKL.
The main idea behind FDSKL’s parallelism is to vertically divide the computation of the
random features. Specifically, we give detailed descriptions of data privacy, model privacy
and tree-structured communication, respectively, as follows.

Worker 1 Worker q

Data privacy

Model privacy

Tree-structured 
communication

Worker 2

CoordinatorActive

Passive

Figure 1: System structure of FDSKL.
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(b) Tree structure T2 on workers {1, . . . , 3}

Figure 2: Illustration of tree-structured communication with two totally different tree struc-
tures T1 and T2.

1. Data Privacy: To keep the vertically partitioned data privacy, we need to divide the
computation of the value of φωi(xi) =

√
2 cos(ωTi xi + b) to avoid transferring the local
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data (xi)G` to other workers. Specifically, we send a random seed to the `-th worker.
Once the `-th worker receive the random seed, it can generate the random direction ωi
uniquely according to the random seed. Thus, we can locally compute (ωi)

T
G`(xi)G` + b

which avoids directly transferring the local data (xi)G` to other workers for computing
ωTi xi + b. In the next section, we will discuss it is hard to infer any (xi)G` according to
the value of (ωi)

T
G`(xi)G` + b from other workers.

2. Model Privacy: In addition to keep the vertically partitioned data privacy, we also
keep the model privacy. Specifically, the model coefficients αi are stored in different
workers separately and privately. According to the location of the model coefficients αi,
we partition the model coefficients {αi}Ti=1 as {αΛ`}

q
`=1, where αΛ` denotes the model

coefficients at the `-th worker, and Λ` is the set of corresponding iteration indices. We
do not directly transfer the local model coefficients αΛ` to other workers. To compute
f(x), we locally compute f `(x) =

∑
i∈Λ` αiφωi(x) and transfer it to other worker, and

f(x) can be reconstructed by summing over all the f `(x). It is difficult to infer the the
local model coefficients αΛ` based on the value of f `(x) if |Λ`| ≥ 2. Thus, we achieve the
model privacy.

3. Tree-Structured Communication: In order to obtain ωTi xi and f(xi), we need to
accumulate the local results from different workers. Zhang et al. (2018) proposed an
efficient tree-structured communication scheme to get the global sum which is faster
than the simple strategies of star-structured communication (Wan et al., 2007) and ring-
structured communication (Yu et al., 2006). Take 4 workers as an example, we pair the
workers so that while worker 1 adds the result from worker 2, worker 3 can add the result
from worker 4 simultaneously. Finally, the results from the two pairs of workers are sent
to the coordinator and we obtain the global sum (please see Figure 2a). If the above
procedure is in a reverse order, we call it a reverse-order tree-structured communication.
Note that both of the tree-structured communication scheme and its reverse-order scheme
are synchronous procedures.

2.3.2 Algorithm

To extend DSG to federated learning on vertically partitioned data while keeping data
privacy, we need to carefully design the procedures of computing ωTi xi + b, f(xi) and the
solution updates, which are presented in detail as follows.

1. Computing ωTi xi+b: We generate the random direction ωi according to a same random
seed i and a probability measure P for each worker. Thus, we can locally compute
(ωi)

T
G`(xi)G` . To keep (xi)G` private, instead of directly transferring (ωi)

T
G`(xi)G` to other

workers, we randomly generate b` uniformly from [0, 2π], and transfer (ωi)
T
G`(xi)G` + b`

to another worker. After all workers have calculated (ωi)
T
G`(xi)G` + b` locally, we can get

the global sum
∑q

ˆ̀=1

(
(ωi)

T
Gˆ̀(xi)Gˆ̀ + b

ˆ̀
)

efficiently and safely by using a tree-structured

communication scheme based on the tree structure T1 for workers {1, . . . , q} (Zhang
et al., 2018).

Currently, for the `-th worker, we get multiple values of b with q times. To recover the

value of
∑q

ˆ̀=1

(
(ωi)

T
Gˆ̀(xi)Gˆ̀

)
+ b, we pick up one b`

′
from {1, . . . , q} − {`} as the value
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of b by removing other values of b` (i.e., removing b
`′

=
∑

ˆ̀6=`′ b
ˆ̀
). In order to prevent

leaking any information of b`, we use a totally different tree structure T2 for workers

{1, . . . , q} − {`′} (please see Definition 2 and Figure 2) to compute b
`′

=
∑

ˆ̀6=`′ b
ˆ̀
. The

detailed procedure of computing ωTi xi + b is summarized in Algorithm 3.

Definition 2 (Two totally different tree structures) For two tree structures T1 and
T2, they are totally different if there does not exist a subtree with more than one leaf which
belongs to both of T1 and T2.

2. Computing f(xi): According to (7), we have that f(xi) =
∑t

i=1 α
t
iφωi(xi). However,

αti and φωi(xi) are stored in different workers. Thus, we first locally compute f `(xi) =∑
i∈Λ` α

t
iφωi(xi) which is summarized in Algorithm 2. By using a tree-structured com-

munication scheme (Zhang et al., 2018), we can get the global sum
∑q

`=1 f
`(xi) efficiently

which is equal to f(xi) (please see Line 7 in Algorithm 1).

3. Updating Rules: Because αti are stored in different workers, we use a communication
scheme (Zhang et al., 2018) with a reverse-order tree structure to update αti in each
workers by the coefficient (1− γλ) (please see Line 10 in Algorithm 1).

Based on these key procedures, we summarize our FDSKL algorithm in Algorithm 1.
Different to the diminishing learning rate used in DSG, our FDSKL uses a constant learn-
ing rate γ which can be implemented more easily in the parallel computing environment.
However, the convergence analysis for constant learning rate is more difficult than the one
for diminishing learning rate. We give the theoretic analysis in the following section.

Algorithm 1 Vertically Partitioned Federated Kernel Learning Algorithm (FDSKL) on
the `-th active worker

Input: P(ω), local normalized data D`, regularization parameter λ, constant learning rate
γ.

1: keep doing in parallel
2: Pick up an instance (xi)G` from the local data D` with index i.
3: Send i to other workers using a reverse-order tree structure T0.
4: Sample ωi ∼ P(ω) with the random seed i for all workers.
5: Use Algorithm 3 to compute ωTi xi + b and locally save it.
6: Compute f `

′
(xi) for `′ = 1, . . . , q by calling Algorithm 2.

7: Use tree-structured communication scheme based on T0 to compute f(xi) =∑q
`=1 f

`(xi).
8: Compute φωi(xi) according to ωTi xi + b.
9: Compute αi = −γ (L′(f(xi), yi)φωi(xi)) and locally save αi.

10: Update αj = (1− γλ)αj for all previous j in the `-th worker and other workers.
11: end parallel loop
Output: αΛ` .
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Algorithm 2 Compute f `(x) on the `-th active worker

Input: P(ω), αΛ` , Λ`, x.
1: Set f `(x) = 0.
2: for each i ∈ Λ` do
3: Sample ωi ∼ P(ω) with the random seed i for all workers.
4: Obtain ωTi x+ b if it is locally saved, otherwise compute ωTi x+ b by using Algorithm

3.
5: Compute φωi(x) according to ωTi x+ b.
6: f `(x) = f `(x) + αiφωi(x)
7: end for

Output: f `(x)

Algorithm 3 Compute ωTi xi + b on the `-th active worker

Input: ωi, xi
{// This loop asks multiple workers running in parallel.}

1: for ˆ̀= 1, . . . , q do

2: Compute (ωi)
T
Gˆ̀(xi)Gˆ̀ and randomly generate a uniform number b

ˆ̀
from [0, 2π] with

the seed σ
ˆ̀
(i).

3: Calculate (ωi)
T
Gˆ̀(xi)Gˆ̀ + b

ˆ̀
.

4: end for
5: Use tree-structured communication scheme based on the tree structure T1 for workers

{1, . . . , q} to compute ξ =
∑q

ˆ̀=1

(
(ωi)

T
Gˆ̀(xi)Gˆ̀ + b

ˆ̀
)

.

6: Pick up `′ ∈ {1, . . . , q} − {`} uniformly at random.
7: Use tree-structured communication scheme based on the totally different tree structure

T2 for workers {1, . . . , q} − {`′} to compute b
`′

=
∑

ˆ̀6=`′ b
ˆ̀
.

Output: ξ − b`
′
.

3. Theoretical Analysis

In this section, we provide the convergence, security and complexity analyses to FDSKL.

3.1 Convergence Analysis

As the basis of our analysis, our first lemma states that the output of Algorithm 3 is actually
equal to ωTi x+ b. The proofs are provided in Appendix.

Lemma 3 The output of Algorithm 3 ( i.e.,
∑q

ˆ̀=1

(
(ωi)

T
Gˆ̀(x)Gˆ̀ + b

ˆ̀
)
−b`

′
is equal to ωTi x+b,

where each b
ˆ̀

and b are drawn from a uniform distribution on [0, 2π], b
`′

=
∑

ˆ̀6=`′ b
ˆ̀
, and

`′ ∈ {1, . . . , q} − {`}.

Based on Lemma 1, we can conclude that the federated learning algorithm (i.e., FDSKL)
can produce the same doubly stochastic gradients as that of a DSG algorithm with constant
learning rate. Thus, under Assumption 1, we can prove that FDSKL converges to the
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optimal solution almost at a rate of O(1/t) as shown in Theorem 4. The proof is provided
in Appendix, Note that the convergence proof of the original DSG algorithm in (Dai et al.,
2014) is limited to diminishing learning rate.

Assumption 1 Suppose the following conditions hold.

1. There exists an optimal solution, denoted as f∗, to the problem (1).

2. We have an upper bound for the derivative of L(u, y) w.r.t. its 1st argument, i.e.,
|L′(u, y)| < M .

3. The loss function L(u, y) and its first-order derivative are L-Lipschitz continuous in
terms of the first argument.

4. We have an upper bound κ for the kernel value, i.e., K(x, x′) ≤ κ. We have an upper
bound φ for random feature mapping, i.e., |φω(x)φω(x′)| ≤ φ.

Theorem 4 Set ε > 0, min{ 1
λ ,

ελ
4M2(

√
κ+
√
φ)2
} > γ > 0, for Algorithm 1, with γ = εϑ

8κB for

ϑ ∈ ( 0, 1 ], under Assumption 1, we will reach E
[
|ft(x)− f∗(x)|2

]
≤ ε after

t ≥ 8κB log(8κe1/ε)

ϑελ
(8)

iterations, where B =
[√

G2
2 +G1 +G2

]2
, G1 = 2κM2

λ , G2 = κ1/2M(
√
κ+
√
φ)

2λ3/2
and e1 =

E[‖h1 − f∗‖2H].

Remark 5 Based on Theorem 4, we have that for any given data x, the evaluated value of
ft+1 at x will converge to that of a solution close to f∗ in terms of the Euclidean distance.
The rate of convergence is almost O(1/t), if eliminating the log(1/ε) factor. Even though
our algorithm has included more randomness by using random features, this rate is nearly the
same as standard SGD. As a result, this guarantees the efficiency of the proposed algorithm.

Table 2: The state-of-the-art kernel methods compared in our experiments. (BC=binary
classification, R=regression)

Algorithm Reference Problem Vertically Partitioned Data Doubly Stochastic
LIBSVM Chang and Lin (2011) BC+R No No

DSG Dai et al. (2014) BC+R No Yes
PP-SVMV Yu et al. (2006) BC+R Yes No

FDSKL Our BC+R Yes Yes

3.2 Security Analysis

We discuss the data security (in other words, prevent local data on one worker leaked to
or inferred by other workers) of FDSKL under the semi-honest assumption. Note that the
semi-honest assumption is commonly used in in security analysis (Wan et al., 2007; Hardy
et al., 2017; Cheng et al., 2019).

10



Assumption 2 (Semi-honest security) All workers will follow the protocol or algorithm
to perform the correct computations. However, they may retain records of the intermediate
computation results which they may use later to infer the data of other workers.

Because each worker knows the parameter ω given a random seed, we can have a linear
system of oj = (ωj)

T
G`(xi)G` with a sequence of trials of ωj and oj . It has the potential to

infer (xi)G` from the linear system of oj = (ωj)
T
G`(xi)G` if the sequence of oj is also known2.

We call it inference attack. Please see its formal definition in Definition 6. In this part, we
will prove that FDSKL can prevent inference attack (i.e., Theorem 7).

Definition 6 (Inference attack) An inference attack on the `-th worker is to infer a
certain feature group G of sample xi which belongs to other workers without directly accessing
it.

Theorem 7 Under the semi-honest assumption, the FDSKL algorithm can prevent infer-
ence attack.

As discussed above, the key of preventing the inference attack is to mask the value of oj . As

described in lines 2-3 of Algorithm 3, we add an extra random variable b
ˆ̀

into (ωj)
T
G`(xi)G` .

Each time, the algorithm only transfers the value of (ωi)
T
G`(xi)G` + b

ˆ̀
to another worker.

Thus, it is impossible for the receiver worker to directly infer the value of oj . Finally, the

`-th active worker gets the global sum
∑q

ˆ̀=1

(
(ωi)

T
Gˆ̀(xi)Gˆ̀ + b

ˆ̀
)

by using a tree-structured

communication scheme based on the tree structure T1. Thus, lines 2-4 of Algorithm 3 keeps
data privacy.

As proved in Lemma 1, lines 5-7 of Algorithm 3 is to get ωTi x + b by removing b
`′

=∑
ˆ̀6=`′ b

ˆ̀
from the sum

∑q
ˆ̀=1

(
(ωi)

T
Gˆ̀(xi)Gˆ̀ + b

ˆ̀
)

. To prove that FDSKL can prevent the

inference attack, we only need to prove that the calculation of b
`′

=
∑

ˆ̀6=`′ b
ˆ̀

in line 7 of

Algorithm 3 does not disclose the value of b
ˆ̀

or the sum of b
ˆ̀

on a node of tree T1, which
is indicated in Lemma 2 (the proof is provided in Appendix).

Lemma 8 In Algorithm 3, if T1 and T2 are totally different tree structures, for any worker
ˆ̀, there is no risk to disclose the value of b

ˆ̀
or the sum of b

ˆ̀
to other workers.

3.3 Complexity Analysis

The computational complexity for one iteration of FDSKL is O(dqt). The total computa-
tional complexity of FDSKL is O(dqt2). Further, the communication cost for one iteration
of FDSKL is O(qt), and the total communication cost of FDSKL is O(qt2). The details of
deriving the computational complexity and communication cost of FDSKL are provided in
Appendix.

2. oj could be between an interval according to Algorithm 3, we can guarantee the privacy of sample xi
by enforcing the value of each element of xi into a small range. Thus, we use normalized data in our
algorithm.
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4. Experiments

In this section, we first present the experimental setup, and then provide the experimental
results and discussions.

4.1 Experimental Setup

4.1.1 Design of Experiments

To demonstrate the superiority of FDSKL on federated kernel learning with vertically par-
titioned data, we compare FDSKL with PP-SVMV (Yu et al., 2006), which is the state-
of-the-art algorithm of the field. Additionally, we also compare with SecureBoost (Cheng
et al., 2019), which is recently proposed to generalize the gradient tree-boosting algorithm
to federated scenarios. Moreover, to verify the predictive accuracy of FDSKL on vertically
partitioned data, we compare with oracle learners that can access the whole data samples
without the federated learning constraint. For the oracle learners, we use state-of-the-art
kernel classification solvers, including LIBSVM (Chang and Lin, 2011) and DSG (Dai et al.,
2014). Finally, we include FD-SVRG (Wan et al., 2007), which uses a linear model, to com-
paratively verify the accuracy of FDSKL.

Table 3: The benchmark datasets used in the experiments.

Datasets Features Sample size

gisette 5,000 6,000
phishing 68 11,055

a9a 123 48,842
ijcnn1 22 49,990

cod-rna 8 59,535
w8a 300 64,700

real-sim 20,958 72,309
epsilon 2,000 400,000

defaultcredit 23 30,000
givemecredit 10 150,000

4.1.2 Implementation Details

Our experiments were performed on a 24-core two-socket Intel Xeon CPU E5-2650 v4 ma-
chine with 256GB RAM. We implemented our FDSKL in python, where the parallel compu-
tation was handled via MPI4py (Dalcin et al., 2011). We utilized the SecureBoost algorithm
through the official unified framework 3. The code of LIBSVM is provided by Chang and
Lin (2011). We used the implementation4 provided by Dai et al. (2014) for DSG. We mod-
ified the implementation of DSG such that it uses constant learning rate. Our experiments
use the following binary classification datasets as described below.

3. The code is available at https://github.com/FederatedAI/FATE.
4. The DSG code is available at https://github.com/zixu1986/Doubly_Stochastic_Gradients.
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4.1.3 Datasets

Table 3 summarizes the eight benchmark binary classification datasets and two real-world
financial datasets used in our experiments. The first eight benchmark datasets are obtained
from LIBSVM website 5, the defaultcredit dataset is from the UCI 6 website, and the
givemecredit dataset is from the Kaggle 7 website. We split the dataset as 3 : 1 for training
and testing, respectively. Note that in the experiments of the w8a, real-sim, givemecredit
and epsilon datasets, PP-SVMV always runs out of memory, which means this method only
works when the number of instance is below around 45,000 when using the computation
resources specified above. Since the training time is over 15 hours, the result of SecureBoost
algorithm on epsilon dataset is absent.
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Figure 3: The results of binary classification above the comparison methods.

4.2 Results and Discussions

We provide the test errors v.s. training time plot on four state-of-the-art kernel methods
in Figure 3. It is evident that our algorithm always achieves fastest convergence rate

5. These datasets are from https://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/.
6. https://archive.ics.uci.edu/ml/datasets/default+of+credit+card+clients.
7. https://www.kaggle.com/c/GiveMeSomeCredit/data.
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Figure 4: The elapsed time of different structures on four datasets.
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Figure 5: The change of training time when increasing the number of training instances.

compared to other state-of-art kernel methods. In Figure 5, we demonstrate the training
time v.s. different training sizes of FDSKL and PP-SVMV. Again, the absence of the
results in Figures 5b, 5c and 5d for PP-SVMV is because of out of memory. It is obvious
that our method has much better scalability than PP-SVMV. The reason for this edge
of scalability is comprehensive, mostly because FDSKL have adopted the random feature
approach, which is efficient and easily parallelizable. Besides, we could also demonstrate
that the communication structure used in PP-SVMV is not optimal, which means more
time spent in sending and receiving the partitioned kernel matrix.

As mentioned in previous section, FDSKL used a tree-structured communication scheme
to distribute and aggregate computation. To verify such a systematic design, we compare
the efficiency of 3 commonly used communication structures, i.e., cycle-based, tree-based
and star-based communication structures. The goal of the comparison task is to compute
the kernel matrix (linear kernel) of the training set of four datasets. Specifically, each node
maintains a feature subset of the training set, and is asked to compute the kernel matrix
using the feature subset only. The computed local kernel matrices on each node are then
summed by using one of the three communication structures. Our experiment compares
the efficiency (elapsed communication time) of obtaining the final kernel matrix, and the
results are given in Figure 4. From Figure 4, we could make a statement that with the in-
crease of nodes, our tree-based communication structure has the lowest communication cost.
This explains the poor efficiency of PP-SVMV, which used a cycle-based communication
structure, as given in Figure 5.

Since the official implementation of SecureBoost algorithm did not provide the elapsed
time of each iteration, we present the total training time between our FDSKL and Se-
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Figure 6: The boxplot of test errors of three state-of-the-art kernel methods, tree-boosting
method (SecureBoost), linear method (FD-SVRG) and our FDSKL.

Table 4: The comparison of total training time between our FDSKL and SecureBoost
algorithm.

Datasets FDSKL (min) SecureBoost (min)

gisette 1 46
phishing 1 10

a9a 2 15
ijcnn1 1 17

cod-rna 1 16
w8a 1 17

real-sim 14 65
epsilon 29 >900

defaultcredit 1 13
givemecredit 3 32

cureBoost in Table 4. From these results, we could make a statement that SecureBoost
algorithm is not suitable for the high dimension or large scale datasets which limits its
generalization.

Finally, we present the test errors of three state-of-the-art kernel methods, tree-boosting
method (SecureBoost), linear method (FD-SVRG) and our FDSKL in Figure 6. All results
are averaged over 10 different train-test split trials (Gu and Ling, 2015). From the results,
we find that our FDSKL always has the lowest test error and variance. In addition, tree-
boosting method SecureBoost performs poor in high-dimensional datasets such as real-sim.
And the linear method normally has worse results than other kernel methods.

5. Conclusion

Privacy-preservation federated learning for vertically partitioned data is urgent currently in
data mining and machine learning. In this paper, we proposed a federated doubly stochastic
kernel learning (i.e., FDSKL) algorithm for vertically partitioned data, which breaks the
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limitation of implicitly linear separability used in the existing privacy-preservation feder-
ated learning algorithms. We proved that FDSKL has a sublinear convergence rate, and
can guarantee data security under the semi-honest assumption. To the best of our knowl-
edge, FDSKL is the first efficient and scalable privacy-preservation federated kernel method.
Extensive experimental results show that FDSKL is more efficient than the existing state-of-
the-art kernel methods for high dimensional data while retaining the similar generalization
performance.

Appendix A: Proof of Theorem 4

We first prove that the output of Algorithm 3 is actually ωTi x+ b in Lemma 1 which is the
basis of FDSKL.

Lemma 1 The output of Algorithm 3 ( i.e.,
∑q

ˆ̀=1

(
(ωi)

T
Gˆ̀(x)Gˆ̀ + b

ˆ̀
)
−b`

′
is equal to ωTi x+b,

where each b
ˆ̀

and b are drawn from a uniform distribution on [0, 2π], b
`′

=
∑

ˆ̀6=`′ b
ˆ̀
, and

`′ ∈ {1, . . . , q} − {`}.

Proof The proof has two parts: 1) Because each worker knows the same probability mea-
sure P(ω), and has a same random seed i, each worker can generate the same random
feature ω according to the same random seed i. Thus, we can locally compute (ωi)

T
G`(x)G` ,

and get
∑q

`=1(ωi)
T
G`(x)G` = ωTi x. 2) Because each b

ˆ̀
is drawn from a uniform distribution

on [0, 2π], we can have that
∑q

ˆ̀=1
b

ˆ̀− b`
′

=
∑q

`=1 b
ˆ̀−
∑

ˆ̀6=`′ b
ˆ̀

is also drawn from a uniform

distribution on [0, 2π]. This completes the proof.

Based on Lemma 1, we can conclude that the federated learning algorithm (i.e., FDSKL)
can produce the doubly stochastic gradients exactly same to the ones of DSG algorithm with
constant learning rate. Thus, under Assumption 1, we can prove that FDSKL converges to
the optimal solution almost at a rate of O(1/t) as shown in Theorem 4.

Now we will show that Algorithm 1 with constant stepsize is convergent in terms of
||f − f∗||2H with a rate of near O(1/t), where f∗ is the minimizer of problem. And then we
decompose the error according to its sources, which include the error from random features
|ft(x)− ht(x)|2, and the error from data randomness ||ht(x)− f∗(x)||2H, that is:

|ft(x)− f∗(x)|2 ≤ 2|ft(x)− ht(x)|2 + 2κ||ht − f∗||2H (9)

Before we show the main Theorem 2, we first give several following lemmas. Note that,
different from the proof of (Dai et al., 2014), we obtain the Lemma 3 by the summation
formula of geometric progression and the Lemma 4 inspired by the proof of the recursive
formula in (Recht et al., 2011). Firstly, we give the convergence analysis of error due to
random feature. Let Dt denote the subset of S which have been picked up at the t-th
iteration of FDSKL.

Lemma 3 For any x ∈ X and 1
λ > γ > 0,

EDt,ωt
[∣∣∣ft+1(x)− ht+1(x)

∣∣∣2] ≤ C2 (10)
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where C2 := M2(
√
κ+
√
φ)2γ/λ.

Proof We denote Wi(x) = Wi(x;Di, ωi) := αti(ζi(x) − ξi(x)). According to the above
assumptions, Wi(x) have a bound:

|Wi(x)| ≤ ci = |αti|(|ζi(x)|+ |ξi(x)|) = M(
√
κ+

√
φ)|αti|

Obviously, |αtt| ≤ γ, and |αti| ≤ γ
∏t
j=i+1(1−γc) ≤ γ where (1−γλ) ≤ 1. Considering the

summation formula of geometric progression,
∑t

i=1 |αti| ≤
1
λ . Consequently,

∑t
i=1 |αti|2 ≤

γ
λ .

Then we have: EDt,ωt
[∣∣∣ft+1(x)−ht+1(x)

∣∣∣2] =
∑t

i=1 |Wi(x)|2 ≤M2(
√
κ+
√
φ)2

∑t
i=1 |αti|2 ≤

M2(
√
κ+
√
φ)2γ/λ.

we obtain the above lemma.

The next lemma gives the convergence analysis of error due to random data, whose
derivation actually depends on the results of the previous lemmas.

Lemma 4 Set 1
λ > γ > 0, with γ = εϑ

2B for ϑ ∈ ( 0, 1 ], we will reach E
[
||ht − f∗||2H

]
≤ ε

after

t ≥ 2B log(2e1/ε)

ϑελ
(11)

iterations, where B =
[√

G2
2 +G1 +G2

]2
, G1 = 2κM2

λ , G2 = κ1/2M(
√
κ+
√
φ)

2λ3/2
and e1 =

E[‖h1 − f∗‖2H].

Proof In order to simplify the notations, let us denote the following three different gradient
terms, they are:

gt = ξt + cht = L′t(ft)k(xt, ·) + λht

ĝt = ξ̂t + λht = L′t(ht)k(xt, ·) + λht

ḡt = EDt [ĝt] = EDt [L′t(ht)k(xt, ·)] + λht

From previous definition, we have ht+1 = ht − γgt, ∀t ≥ 1.
We denote At = ‖ht − f∗‖2H, then we have

At+1 = ‖ht − f∗ − γgt‖2H
= At + γ2‖gt‖2H − 2γ〈ht − f∗, gt〉H
= At + γ2‖gt‖ − 2γ〈ht − f∗, ḡt〉H + 2γ〈ht − f∗, ḡt − ĝt〉H + 2γ〈ht − f∗, ĝt − gt〉H

Cause the strongly convexity of objective and optimality condition, we have

〈ht − f∗, ḡt〉H ≥ λ‖ht − f∗‖2H

Hence, we have

At+1 ≤ (1− 2γλ)At + γ2‖gt‖2H + 2γ〈ht − f∗, ḡt − ĝt〉H + 2γ〈ht − f∗, ĝt − gt〉H, ∀t ≥ 1 (12)
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Let us denote Mt = ‖gt‖2H,Nt = 〈ht − f∗, ḡt − ĝt〉H,Rt = 〈ht − f∗, ĝt − gt〉H. According
to Lemma 3, Mt,Nt,Rt can be bounded. Then we denote et = EDt,ωt [At], given the above
bounds, we obtain the following recursion,

et+1 ≤ (1− 2γλ)et + 4κM2γ2 + 2κ1/2LγC
√
et (13)

When γ > 0 and |ait| ≤ γ,∀1 ≤ i ≤ t. Consequently, C2 ≤M2(
√
κ+
√
φ)2γ/λ. Applying

these bounds to the above recursion, we have

et+1 ≤ β1et + β2 + β3
√
et, (14)

Note that β1 = 1 − 2γλ, β2 = 4κM2γ2 and β3 = 2κ1/2γ3/2LM(
√
κ+
√
φ)√

λ
. Then consider

that when t→∞ we have:

e∞ = β1e∞ + β2 + β3
√
e∞ (15)

and the solution of the above recursion (15) is

e∞ =

√ β2
3

16γ2λ2
+

β2

2γλ
+

β3

4γλ

2

= γ ∗
[√

G2
2 +G1 +G2

]2

(16)

where G1 = 2κM2

λ and G2 = κ1/2M(
√
κ+
√
φ)

2λ3/2
.

We use Eq. (14) minus Eq. (15), then we get:

et+1 ≤ β1(et − e∞) + β3(
√
et −

√
e∞) + e∞

≤ β1(et − e∞) + β3(
et − e∞
2
√
e∞

) + e∞

≤ (β1 +
β3

2
√
e∞

)(et − e∞) + e∞

≤ (1− γλ)(et − e∞) + e∞ (17)

where the second inequality is due to a − b ≤ a2−b2
2b , and the last step is due to β3

2
√
e∞

=
1

2

[√
1

16γ2λ2
+

β2
2γλβ23

+ 1
4γλ

] ≤ 1
2[ 1

4γλ
+ 1

4γλ
]

= γλ.

We can easily apply Eq. (5.1) in (Recht et al., 2011) to Eq. (17), and Eq. (16) satisfy

a∞(γ) ≤ γB. We denote B =
[√

G2
2 +G1 +G2

]2
. Particularly, unwrapping (17) we have:

et+1 ≤ (1− γλ)t(e1 − e∞) + e∞ (18)

Suppose we want this quantity (18) to be less than ε. Similarly, we let both terms are
less than ε/2, then for the second term, we have

γ ≤ ε

2B
=

ε

2
[√

G2
2 +G1 +G2

]2 (19)
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For the first term, we need:

(1− γλ)te1 ≤
ε

2

which holds if

t ≥ log(2e1/ε)

γλ
(20)

According to the (19), we should pick γ = εϑ
2B for ϑ ∈ ( 0, 1 ]. Combining this with Eq.

(20), after

t ≥ 2B log(2e1/ε)

ϑελ
(21)

iterations we will have et ≤ ε and that give us a O(1/t) convergence rate, if eliminating the
log(1/ε) factor.

Now we give the technical lemma which is used in proving Lemma 5.

Lemma 5

Mt ≤ 4κM2; (22)

EDt,ωt
[
Nt
]

= 0 (23)

EDt,ωt
[
Rt
]
≤ κ1/2LC

√
EDt−1,ωt−1 [At] (24)

where At = ||ht − f∗||2H.

Proof Firstly, let we prove the Lemma 5.1 (22):

Mt = ‖gt‖2H = ‖ξt + λht‖2H ≤ (‖ξt‖H + λ‖ht‖H)2

and

‖ξt‖H = ‖L′(ft(xt), yt)k(xt, ·)‖H ≤ κ1/2M

Then we have:

‖ht‖2H =

t−1∑
i=1

t−1∑
j=1

αt−1
i αt−1

j L′(fi(xi), yi)L
′(fj(xj), yj)k(xi, xj)

≤ κM2
t−1∑
i=1

t−1∑
j=1

|αt−1
i ||α

t−1
j |

Consequently, ‖ht‖H ≤ κ1/2M
√∑t−1

i,j=1 |α
t−1
i ||α

t−1
j | ≤ κ1/2M 1

λ . Then the above equation

can be rewritten as:

Mt = ‖gt‖2H = ‖ξt + λht‖2H ≤ (‖ξt‖H + λ‖ht‖H)2 ≤ (κ1/2M + λ× κ1/2M
1

λ
)2 = 4κM25

Therefore, we finish the proof of Lemma 5.1.

19



For the second one (23), Nt = 〈ht − f∗, ḡt − ĝt〉H, then we have:

EDt,ωt
[
Nt
]

= EDt−1,ωt

[
EDt−1 [〈ht − f∗, ḡt − ĝt〉H|Dt−1, ωt]

]
= EDt−1,ωt [〈ht − f∗,EDt [ḡt − ĝt]〉H]

= 0

The third one (24), Rt = 〈ht − f∗, ĝt − gt〉H, then we have:

EDt,ωt
[
Rt
]

= EDt,ωt
[
〈ht − f∗, ĝt − gt〉H

]
= EDt,ωt

[
〈ht − f∗, [l′(ft(xt), yt)− l′(ht(xt), yt)]k(xt, ·)〉H

]
≤ EDt,ωt

[
‖ht − f∗‖H · |l′(ft(xt), yt)− l′(ht(xt), yt)| · ‖k(xt, ·)‖H

]
≤ κ1/2L · EDt,ωt

[
‖ht − f∗‖H · |ft(xt)− ht(xt)|

]
≤ κ1/2L ·

√
EDt,ωt‖ht − f∗‖2H

√
EDt,ωt |ft(xt)− ht(xt)|2

≤ κ1/2L · C
√

EDt−1,ωt−1 [At]

where the first and third inequalities are due to Cauchy-Schwarz Inequality and the second
inequality is due to the Assumptions 1. And the last step is due to the Lemma 1 and the
definition of At.

According to Lemmas 3 and 4, we obtain the final results on convergence in expectation:

Theorem 2 (Convergence in expectation) Set ε > 0, min{ 1
λ ,

ελ
4M2(

√
κ+
√
φ)2
} > γ > 0,

for Algorithm 1, with γ = εϑ
8κB for ϑ ∈ ( 0, 1 ], we will reach E

[
|ft(x)− f∗(x)|2

]
≤ ε after

t ≥ 8κB log(8κe1/ε)

ϑελ
(25)

iterations, where B and e1 are as defined in Lemma 4.

Proof Substitute Lemma 3 and 4 into the inequality (9), i.e.

E
[
|ft(x)− f∗(x)|2

]
≤ 2E

[
|ft(x)− ht+1(x)|2

]
+ 2κE

[
||ht − f∗||2H

]
≤ ε

Again, it is sufficient that both terms are less than ε/2. For the second term, we can
directly derive from Lemma 4. As for the first term, we can get a upper bound of γ:

ελ
4M2(

√
κ+
√
φ)2

. Then we obtain the above theorem.
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Appendix B: Proof of Lemma 2

Lemma 2 Using a tree structure T2 for workers {1, . . . , q} − {`′} which is totally different

to the tree T1 to compute b
`′

=
∑

ˆ̀6=`′ b
ˆ̀
, for any worker, there is no risk to disclose the

value of b
ˆ̀

or the sum of b
ˆ̀

on other workers.

Proof If there exist the inference attack, the inference attack must happen in one non-leaf
node in the tree T1. We denote the non-leaf node as NODE.

Assume the `-th worker is one of the leafs of the subtree of NODE. If the `-th worker
wants to start the inference attack, it is necessary to have the sum of all b`

′
on the leaves

of the tree, which means that the subtree corresponding to NODE also belongs to T2.

Appendix C: Complexity Analysis of FDSKL

We derive the computational complexity and communication cost of FDSKL as follows.

1. The line 2 of Algorithm 1 picks up an instance (xi)G` from the local data D` with index i.
Thus, its computational complexity of all workers is O(q), and there is no communication
cost.

2. The line 3 of Algorithm 1 sends i to other workers using a reverse-order tree structure.
Thus, its computational complexity is O(1), and the communication cost is O(q).

3. The line 4 of Algorithm 1 samples ωi ∼ P(ω) with the random seed i. Thus, its compu-
tational complexity of all workers is O(dq), and there is no communication cost.

4. The line 5 of Algorithm 1 computes ωTi xi + b. The detailed procedure is presented in
Algorithm 3. Its computational complexity is O(d + q), and the communication cost
is O(q). The detailed analysis of computational complexity and communication cost of
Algorithm 3 is omitted here.

5. The lines 6-7 of Algorithm 1 uses the tree-structured communication scheme to compute
f(xi) =

∑q
`=1 f

`(xi). Because the computational complexity and communication cost
of f `(x) are O(dq|Λ`|) and O(q|Λ`|), respectively, as analyzed in the next part, we can
conclude that the computational complexity of lines 6-7 of Algorithm 1 is O(dqt), and
its communication cost is O(qt), where t is the global iteration number.

6. The line 8-9 of Algorithm 1 compute the current coefficient αi. Thus, its computational
complexity is O(1), and there is no communication cost.

7. The line 10 of Algorithm 1 updates the former coefficients. Thus, its computational
complexity of all workers is O(t), and its communication cost is O(q).

Based on the above discussion, the computational complexity for one iteration of FDSKL
is O(dqt). Thus, the total computational complexity of FDSKL is O(dqt2). Further, the
communication cost for one iteration of FDSKL is O(qt), and the total communication cost
of FDSKL is O(qt2).
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We derive the computational complexity and communication cost of Algorithm 2 as
follows.

1. The line 1 of Algorithm 2 sets the initial solution to f `(x). Thus, its computational
complexity is O(1), and there is no communication cost.

2. The lines 3-5 of Algorithm 2 compute φωi(x) which are similar to the lines 4-5 of Algo-
rithm 1. According to the previous analyses in this section, we have that its computa-
tional complexity is O(dq), and the communication cost is O(q).

3. The line 6 of Algorithm 2 is updating the value of f `(x). Thus, its computational
complexity is O(1), and there is no communication cost.

Thus, the computational complexity of Algorithm 2 is O(dq|Λ`|) and the communication
cost of Algorithm 2 is O(q|Λ`|).
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