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ABSTRACT
Quick Access is a machine-learned system in Google Drive that
predicts which files a user wants to open. Adding Quick Access
recommendations to the Drive homepage cut the amount of time
that users spend locating their files in half. Aggregated over the
~1 billion users of Drive, the time saved up adds up to ~1000 work
weeks every day. In this paper, we discuss both the challenges of
iteratively improving the quality of a personal recommendation
system as well as the variety of approaches that we took in order
to improve this feature. We explored different deep network archi-
tectures, novel modeling techniques, additional data sources, and
the effects of latency and biases in the UX. We share both pitfalls as
well as successes in our attempts to improve this product, and also
discuss how we scaled and managed the complexity of the system.
We believe that these insights will be especially useful to those who
are working with private corpora as well as those who are building
a large-scale production recommendation system.

CCS CONCEPTS
• Information systems→Recommender systems; •Comput-
ing methodologies → Neural networks.
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1 INTRODUCTION
Quick Access [28] is a feature in both the mobile and web versions
of Google Drive that provides users a shortcut to their most rele-
vant files. Improving Quick Access recommendations is important
because of the massive amount of traffic received—O(millions) of
clicks a day. As [28] has demonstrated, using Quick Access gets
users to their files around 50% faster than if they had not. Those
time savings add up: Quick Access currently saves users 1000 work
weeks every day. That’s a 20-year career worth of work, every day.
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Quick Access differs from a traditional recommendation system
in that the items for recommendation are files selected from a user’s
private corpus. Since this corpus is queried in real-time given the
user’s context (e.g. the last 100 files the user viewed), we can look at
Quick Access as a special case of a context-aware recommendation
system [3] where even the candidates and their features for ranking
are generated from the context. That being said, we found that even
for this case of building a personal recommendation system, that
candidate generation, modeling, and ranking techniques used for
various other recommendation systems [10, 22] are still applicable.

Figure 1: The redesigned Drive app features Quick Access as
the Home view.

In this paper, we describe a variety of approaches used to improve
the quality of recommendations for Quick Access and show that
click-through rate (CTR) on Quick Access is 34.8% better, and the
accuracy (defined as whether or not a user clicked a file the model
predicted, regardless of if the user clicked the Quick Access feature)
of predictions is 10.7% better.

From our different approaches, we saw that infrastructure work
to improve serving latency had the most impact.1 We saw that
traditional feature engineering did help, but we found that there
was also significant improvement stemming from changing the

1Improving serving latency affects CTR only, which explains why overall Accuracy
didn’t increase as much as CTR.
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deep neural network (DNN) architecture for the ranking model.
We believe that the lessons learned in this work are widely appli-
cable for those working on recommendation systems, especially
on 1) private corpora where techniques like matrix factorization
aren’t available (due to the sensitivity of the data) and on 2) large
scale production systems where the infrastructure needs to support
millions of requests each day.

We first give a brief initial system overview of Quick Access in
Section 2, describing the state before we started iterating on quality.
Next, we give a comprehensive overview of different techniques
that we took to improve the quality of Quick Access in Section 3,
covering candidate generation, deep network optimizations, serv-
ing infrastructure optimization, various modeling approaches, and
feature engineering. We then present metrics demonstrating our
progress in quality development in Section 4. Following that, we
discuss scaling, reducing model complexity, and improving quality
iteration processes in Section 5. We then discuss related work and
conclude the paper with some planned future work.

2 INITIAL SYSTEM OVERVIEW
At a high-level, Quick Access [28] works as follows and the steps
can be seen in Figure 2:

(1) When a user visits Google Drive, requests are made to vari-
ous data stores to collect contextual information such as the
user’s activity in Drive over the past few weeks, what files
are attached to recently sent Gmail messages, and what files
are attached to Calendar meetings. This is the start of the
user’s session.

(2) The contextual information from the first stage is trans-
formed and processed to create contextual features, candi-
dates, and per-candidate features to be ingested by amachine-
learned (ML) ranker. These candidates are selected to consist
of the most recent files, as [28] showed that over 75% of open
events occur on files with some activity in the past 60 days.

(3) The MLmodel ranks candidates using the generated features.
Then results are fine-tuned with business logic. For instance,
some business logic generates an “explanation” for why a
file is suggested. This explanation is visually displayed to
the user.2

(4) The results are served to a user and the session ends when a
user clicks on a document anywherewithin Drive. High-level
click metadata is sent to the ML pipeline.

(5) ML pipeline incorporates the candidates, corresponding fea-
tures, and click information to train a new model which can
replace the existing production model in a one-off manner.

Quick Access utilizes a deep network implementation for the
ranking model, similar to other production recommendation sys-
tems [10, 14]. The initial model was trained using TensorFlow [1]
and utilized a pointwise learning-to-rank approach [23]— where
for every user session, given the 𝑛 candidates that were generated
to be ranked, the first user-clicked file is given a positive label and
the other 𝑛 − 1 unclicked files given negative labels, no matter if
the clicked file was clicked via the Quick Access UI or some other
location within Drive. Thus, the ranker is modeled as a pointwise
binary classification problem.
2For example, in Figure 1, see the explanation string that reads “You opened today”.

Figure 2: Simple recommendation system overview. Key
problems are A.) how to take the generic data and select can-
didates, and B.) how to rank those candidates. Based on im-
plicit user click feedback on the generated candidates, new
machine-learned (ML) models can be trained.

The input feature vector to the model contains a variety of fea-
tures constructed from streams of user activity on Drive—these
streams are represented as sparse, fixed-width vectors where events
through the day are bucketed into the vector [28]. The original
model had the following high-level categories of features:

• Histograms of user event counts.
• Histograms of user usage across various categories (e.g. dif-
ferent file mime types).

• Time series of user events across client types (e.g. web vs.
iOS).

• One-hot encodings of various rank features, e.g. how the file
ranks in terms of recency.

3 QUALITY IMPROVEMENTWORK
We took several approaches to improve quality:

• improving the candidate generation process
• improving the architecture of the deep model beyond a sim-
ple stack of fully connected layers and ReLUs

• improving our model representation, e.g. accounting for po-
sition bias and cleaning/filtering training data

• feature engineering
• improving serving latency to improve engagement

Note that for any changes dealing with training a newMLmodel,
we have guidelines that state that newly trained models can launch
only given the following criteria:

• Improvement in core metrics like accuracy and CTR.3 Unless
otherwise specified, all presented experimental results are
statistically significant.

3Even relatively small improvements are approved, as long as they are statistically
significant. The additive compound effect is evident over time.
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• The experimental model has been in a live A/B experiment
for at least 1 week.4

• Minimal increase in latency.
• Minimal increase in training complexity. Training a model
shouldn’t take much longer or require a series of steps that
is difficult for other engineers to replicate.

3.1 Candidate Generation
Originally, files with user Drive activity in the past 60 days were
considered as candidates for ranking. In order to reduce the amount
of processing and storage that ranking these candidates would
require, we set a limit of 500 candidates using only the past 40 days
of activity data. This change resulted in no losses in our metrics.
In order to further reduce the number of processed candidates and
to deal with users who had sparse activity for the past 40 days, we
experimented with moving to a cap of 100 candidates using the past
60 days of activity data. We believe that there was little coverage
from an additional candidate pool due to the importance of recency.

Our work resulted in the following decreases in latency with no
adverse effects on quality metrics:

• 3% decrease at the 50th percentile,
• 15% decrease at the 90th percentile
• 24% decrease at the 99th percentile.

Candidate generation experiments led to recall being tracked
and evaluated as a core metric for any launch decision. Recall for a
candidate generation scheme is defined as:

𝑅𝑒𝑐𝑎𝑙𝑙 =
# sessions s.t. initial click on 𝐶 ∈ 𝐶 ′

# of sessions with a click
(1)

where 𝐶 ′ is the set of candidates generated for ranking in that
session and clicks anywhere within Drive are counted.

Since the recall numbers generally started fairly high, we be-
lieved there was limited headroom of using an ML model. We in-
stead decided to use heuristics to incorporate additional sources of
candidates. This has led to different degrees of improvement. For
instance, adding in files that were shared to the user or where a
user was mentioned by comment led to as much as a 5.3% relative
jump for certain user groups. Conversely, adding in files that were
found as attachments in a user’s Gmail account only led to a 0.2%
relative jump.

3.2 Deep Network Optimizations
We share how we adapted some recent deep learning techniques,
ranging from changing loss functions to making network archi-
tecture changes, each of which led to significant online metrics
gains. Note that a diagram of the initial Quick Access network
architecture can be seen in Figure 2.

Changing Loss Functions. The initial launched model was trained
using log-loss as the loss function and AUCLoss as the evaluation
function. However, due to concerns about data imbalance where
each session could potentially contain up to 99 negative examples
and only 1 positive example, we moved to using AUC Precision-
Recall (AUC-PR) as both the offline evaluation function and loss

4Weekend metrics are different than weekday metrics, so we eliminate this bias.

function [13]. This resulted in a 0.45% increase in our offline AUC-
PR numbers, which led to a relative increase of 1.0% and 0.6% in
live Accuracy and CTR metrics.

Figure 3: Second-stagemodel architecture (after latent cross,
residual units, and batch normalization).

Latent cross. Latent Cross [5] is a recent technique deployed in
YouTube’s Recurrent Neural Network (RNN)-based recommenda-
tion systems. It feeds certain features into a separate shortcut and
allows for more efficient higher order feature interaction learning.
For example, in recommendation systems, it makes sense to im-
plicitly generate feature interactions between user type and other
candidate features. We took this approach as we saw that other
popular recommendation frameworks [21] also use feature cross
approaches similar in spirit to great success.

𝑓cross = (1 +𝑤latent) ⊙ ℎout,

where 𝑤latent is the output of the latent cross path, ⊙ is a sim-
ple element-wise multiplication, and ℎout is the output of the final
regular deep layer. We adapted it to the feedforward network archi-
tecture as shown in Figure 3. The features we include as latent cross
features are user type (User Group 1 vs. User Group 2)5, platform
(mobile vs. desktop), and day of the week. All these features possess
low dimensionality as suggested in the original paper.

Though we found that there was minimal gain in offline metrics
and evaluation, in live experiments we found that there was signifi-
cant gain for all experiment groups. Given that the largest gains
came from User Group 2 mobile users, our belief is that utilizing
latent cross enabled us to improve metrics for small groups (e.g.
User Group 2 mobile users) in training data.6

ResNet. Residual units [17] are very popular building blocks for
computer vision problems with convolutional filters. They contain
shortcut links that facilitate gradient flow and thus optimization.

We adapted residual units to our feedforward network and stacked
multiple units together as shown in Figure 3. Note that our residual

5Group information omitted to protect proprietary information.
6Due to various policy restrictions, which is further discussed in Section 5, we face a
significant lack of data from User Group 2 users.
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Figure 4: Final model architecture.

unit only contains one fully connected layer, while in the computer
vision community it is common to use two layers. We did not ob-
serve clear gains by trying two-layer units. Our hypothesis is that
while two-layer units are crucial for computer vision problems, this
does not translate to large-scale recommender system datasets like
ours. In experiments we show that ResNet significantly improves
metrics with minimal extra complexity, leading to relative increases
of 0.56% Accuracy and 0.45% CTR for web User Group 2 users.

Batch normalization. Batch normalization (BN) is a generic tech-
nique in deep learning that accelerates convergence and provides
regularization [18]. We adapted BN as shown in Figure 3. We also
observed multiple benefits including faster convergence and better
testing performance.

One thing we did not include is input layer BN (i.e., BN before the
first fully connected layers.) We note that it significantly increases
training time - each training step takes about 3 times longer due
to the large number of input features we deal with. We were able
to train a model with input layer BN and observe that, though
validation loss decreased faster per step during early steps, each
step took longer and the performance plateaued quickly and ended
up without clear gains. Thus, we recommend that practitioners
building large scale recommender systems with many features also
consider dropping input layer BN.

Deep & Cross Networks. As the previously introduced latent cross
feature interactions proved beneficial, we further improved upon
the architecture shown in Figure 3 by experimenting with models
based on the Deep & Cross Network (DCN) architecture [29]. DCN,
similarly to latent cross, allows for more efficiently learning feature
interactions by grouping semantically similar features into towers
and crossing them at the end.

We investigated how to partition the features – we emphasized
having clear guidelines semantically of how to partition, to ensure
that future contributors who added new features would be able to
intuitively knowwhich tower to add their features to. Therefore, we
experimentedwith both two and three towermodels, and found that
the most significant offline gain came from splitting the features

into three towers, with 1) one tower including all previous latent
cross features as well as additional request-level features, 2) one
tower including file-level user contextual features, such as if a
candidate contains certain contacts and n-grams that are relevant
to the user, and 3) all other features. The downside of this approach
is that it nearly doubled our model training time.. The final model
architecture can be seen in Figure 4, leading to relative increases
of 1.0% Accuracy for web User Group 2 users and a 1.03% CTR for
Android User Group 2 users, both significant increases.

3.3 Modeling Approaches
Candidate sampling. In Section 5 we discuss how we moved from a
pointwise loss model to a listwise loss model in depth, but one of the
decisions we had to make was how many of the 100 candidates to
sample as the negative examples when computing listwise loss per
example. Table 1 shows some accuracy losses for different sampling
schemes. Initially we thought that the majority of the negative
examples would not provide additional signal, so only a few would
need to be sampled in order to better facilitate learning. This proved
to be completely incorrect and in the end we found that including
every candidate in the training process was critical to maintain
accuracy numbers.

Position bias. Given that around 95% of clicks on the Quick Access
feature are on the top 3 files shown, we wanted to address the
position bias that might be impacting our training process. We used
an approach proposed by [32], where the file position is fed in
during training with feature drop-out to prevent overreliance. We

# of candidates sampled Relative accuracy loss
10 30.9%
25 4.2%
50 1.3%
100 0.0%

Table 1: Relative offline accuracy loss of sampling different
number of negative examples.
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found that this technique did not lead to any significant metrics
increase and believe that this is due to half of our training data
coming from clicks outside of Quick Access, thus rendering the
method of [32] less effective. We did see some success in applying
EM-based techniques, and further discuss this in [25].

Training data integrity. Therewere severalmotivations behindwant-
ing to clean and filter our training data in order to increase its
integrity. Recall that each example in our training data is generated
from a user’s session in Drive, where a user visits Drive and opens a
file. However, the features may be populated from any interactions
with the files, inside or outside of Drive.7 The belief we hold is that
by modeling the clicked files as positive examples and unclicked
files as negative examples, we can learn how to predict relevant
files at serving time. This led us to investigate if we could improve
upon this modeling by cleaning out potential sources of noise, as
we had the following concerns:

(1) What if a user clicks on a file a significant time after the
predictions were shown?

(2) What if a user clicks on a file outside of the Quick Access
UI?

(3) What if a user’s files do not have interactions that capture
the true relevance of the file to the user?

To address (1), we hypothesized that there is some direct cor-
respondence between the integrity of an example and how much
time had elapsed since the click. We found that over 10% of the
examples we were computing had a click that occurred more than 1
minute after the user loaded the Drive page, and of these examples,
roughly 50% occurred more than 5 minutes after. As the training
data contains features computed at the beginning of the session, our
belief was that filtering out these “delayed-click” examples would
lead to learning a more representative ranking model. We tried both
filtering out examples with over a 1 minute delay and 5 minute
delay, but found no difference in model quality, even accounting
for the reduced training data set size.

For (2), since we collect clicks on files from both the Quick Access
UI and elsewhere in Drive, we also measured the effect of only
training with clicks from the Quick Access UI, due to the concern
about potential noise from clicks outside the UI. We generated two
training data sets, a dataset 𝐷 𝑓 𝑖𝑙𝑡𝑒𝑟𝑒𝑑 with filtered clicks from only
the Quick Access UI, and a sampled dataset 𝐷𝑠𝑎𝑚𝑝𝑙𝑒𝑑 with clicks
from all sources, ensuring that |𝐷 𝑓 𝑖𝑙𝑡𝑒𝑟𝑒𝑑 | = |𝐷𝑠𝑎𝑚𝑝𝑙𝑒𝑑 |. We saw
that using only the filtered set led to a 0.6% relative decrease in
Accuracy. From the results of this experiment, we can confirm that
this exploratory data is useful and helps reduce the problem of
having a confounding training “feedback loop”as described in [7].
We believe this warrants further investigation in how to provide
less biased data for training a model.

For (3), we took a high-level look at what kind of events were
being counted as interactions. We found that we could categorize
the events in Drive activity into two buckets:

• user events – events that were directly triggered by a user,
e.g. reading or editing a file.

7For example, a user may have a sync client installed that automatically uploads
recently-added files to Drive.

• “third-party” events – events that were triggered by some
third party, e.g. a sync client.

We suspected that events of the latter type could be causing signifi-
cant noise as 1) they don’t correspond to user action and 2) they
are often done in bulk. By coming up with some heuristic rules to
classify events into one of the above categories, we found that 24%
of events could be considered “third-party”, and we filtered them
out when building features. Using the new feature streams resulted
in a 1.3% increase in relative CTR, and this new filtered stream of
events became the default to compute features from.

Training group-specific models. As mentioned in Section 3.2, we
have multiple groups of users that we care about. We filtered out
all non-User Group 2 data and trained a model only specifically
targeting User Group 2 in the hope that this targeted model would
result in better numbers. We found that unsurprisingly, this model
performed significantly worse for User Group 1, but somewhat
surprisingly, that this trained model performed no better for User
Group 2 than the production model. Our belief is that given that
the production model already knows if the user is in User Group 1
or User Group 2 (e.g. facilitated by the latent cross we added), so
the production model can thus tailor its prediction to that category
of user. Training on group specific data provided no additional
signal relative to training on all data from all users with a feature
indicating the user’s group.

3.4 Feature Additions
The majority of the quality effort came from adding new input
data sources and engineering new features to add to the model. We
attempted to craft features that would provide us a new source of
signal that was not redundant with the existing model. Producing
experimental models involved 1) adding new data sources, 2) engi-
neering and logging new features, 3) training and tuning models
with the added features. Through all our iterations, we estimate
that only about 15% of the feature sets that we have experimented
in have resulted in a significant improvement and model launch.

In this section, we give an overview of the various groups of fea-
tures whose integration successfully increased the quality metrics
for the model. We show metrics for different user groups of interest,
ranging from User Group 1/User Group 2 to web/mobile users in
Table 2. After discussing some of the successful feature launches,
we also discuss some efforts that didn’t end up working and share
our intuition on why.

Collaborator & upload features. We added a file-level feature on
whether a document was also shared with a user’s recent collabora-
tors as well as some other features related to the recent file upload
timestamps for the user, and in Table 2 we can see that this was
particularly beneficial for User Group 2 users, whom we know have
more collaborators in general than User Group 1 users.

File metadata features. Whereas the sole previous source of features
was the user’s stream of activity in Drive, we integrated a new data
source that would allow us to get some additional metadata about a
Drive file, including information about whether or not the file was
starred, when it was last modified by the user, if the user has edit
permission, etc.
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Feature Metrics User Group 2 User Group 2 User Group 1 User Group 1
Set Web Mobile Web Mobile
(1) Accuracy 1.70% 0.38% 1.09% 0.59%

CTR 0.52% 0.63% 0.62% 0.58%
(2) Accuracy 2.48% -0.05% 2.10% 0.57%

CTR 2.08% 0.00% 1.83% 0.67%
(3) Accuracy 0.94% 1.78% 0.78% 0.76%

CTR 0.45% 0.89% 0.64% 0.45%
(4) Accuracy 0.27% 0.59% 0.09% 0.15%

CTR -0.27% 1.19% 0.03% 0.20%
(5) Accuracy 0.66% 0.84% 0.37% 0.36%

CTR 0.55% 0.25% 0.66% 0.49%
Table 2: Metrics improvements from various feature additions. All numbers reported are relative improvements. Statistically
non-significant results have been greyed out.

From this data source, we crafted a variety of time-based and
yes/no features representing the file metadata described above. For
this case, even though we found that retrieving this new data source
increased our latency, the quality gain was so substantial that we
made an exception and still rolled out these features.

Platform feature. We added a simple feature related to what plat-
form the request to Drive came from, e.g. web, iOS, etc. Interestingly,
we found that just adding this feature wasn’t very effective in our
offline evaluation, which prompted exploring the uses of other ar-
chitectures. See Section 3.2 for more details. As expected, we saw a
very significant jump in metrics for mobile users.

External Context features. We added a collection of signals capturing
user-specific contextual data such as which contacts, files, and n-
grams are important to a user.

User features. This collection of features consists of:

• A user type feature which segments users into either User
Group 1 or User Group 2 categorization.

• User time features which define the hour of day and day of
week in the user’s local time zone.

• Calendar features indicating time to user’s next meetings
and attached files.

Pitfalls: Features that didn’t work. There were multiple instances
where we engineered sets of features that we were confident would
bring gain but instead led to neutral metrics. After extensive de-
bugging for the features that didn’t work out, we offer the two
explanations as to why:

First, given that each candidate example initially contains tens
of thousands of floats and we had little intuition about the semantic
meaning of existing features, we often found that the features that
we were attempting to add already had some redundancy. For ex-
ample, we experimented with adding features such as “number of
Drive sessions a day” because we wanted to capture the behavior
of power users. However, upon further examination of our exist-
ing features we found that this feature was only derivative. This
has since led us to prioritizing documenting existing features and
reducing model complexity, as detailed in Section 5.

Second, we have problems of 1) collecting biased feedback via
our existing ranker and 2) sparsity in signal for various candidates—
certain candidates are missing features. As stated in Section 2,
candidates and their features are created from a variety of sources,
the primary source of features for ranking coming from activity in
Drive. Candidates from other sources (e.g. Gmail, Calendar) may not
have any Drive activity and would thus not be properly ranked by
the ML model. We saw an example of this manifest when we added
Gmail-related signals to the model—our guess is that even though
they would benefit candidates generated from Gmail data, since
those candidates can never be ranked in the top 𝑘 , we can’t collect
sufficient feedback in order to compensate for those candidates
missing existing ranker features.

3.5 Serving latency optimization
In addition to model improvements, we worked to improve the
serving latency of the Quick Access system.8 We spent a lot of time
optimizing server request latency, but ultimately the majority of
our user-perceived latency for our web application originated from
front-end rendering. The Drive front-end is a large JavaScript-based
web application, which must be loaded, parsed, and executed from
the network (or cache), and then initialized to run handlers to begin
requesting data. Because this process must complete before any
request for Quick Access recommendations could be made, users
would perceive significant delay for Quick Access.

To improve the latency, wemade an infrastructure change to send
a server-side request to begin computing Quick Access predictions
as soon as a user loads the Drive homepage. As the user’s browser
parses and renders the website, we’re able to complete our request
in parallel and stream the prediction results to the user. The server
renders the initial page, flushes that to the user, and keeps the initial
page socket open, avoiding sending the HTML body closing tag.
Once predictions have been loaded, a <script> tag is injected into
the page with the results with a callback to render the predictions
and closing the HTML document tags.

Overall, we observed large improvements in end to end render
times (time from page open to Quick Access render):
8Though model evaluation itself is extremely fast in Quick Access, collecting candi-
date documents, computing features, and checking user access permissions for those
documents takes considerably more time.
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• 18.5% improvement at the 50th percentile.
• 6.5% improvement at the 95th percentile.
• 23.1% improvement at the 99th percentile.

Overall, we observed large improvements in end to end render
times (time from page open to Quick Access render), with 18.5%
and 23.1% improvement respectively at the 50th and 99th percentile.
This translated into very significant relative increases of 5.06%
in CTR for User Group 2 users and 5.38% in CTR for User Group
1 users. In addition, the time it takes a user to open a document
decreased 12.3% for User Group 2 and 11.7% for User Group 1.

4 METRICS
Our quality improvement work has led to significant product gains.
Figures 5a, 5b, 5c respectively show the CTR, Accuracy, and Recall
changes between the ML model and the MRU heuristic over a pe-
riod of ~18 months. Note that we omit the absolute numbers on
the figures’ y-axes to protect proprietary information. The figures
compare our production machine learning model, labeled ML, to
a baseline recommender, labeled MRU. MRU stands for most re-
cently used, and serves the user’s most recent files, regardless of
context. It’s important to have such a baseline for comparison, so we
maintain a persistent experiment to serve MRU recommendations.

We can see from these figures that though there is some noise in
the metrics9 they have steadily increased over time. Moreover, the
MLmodel’s advantage over the baselineMRU recommendations has
consistently increased. The steady increase has come from system
improvements we have made to optimize for experiment velocity.
Just as we compare our ML model to MRU in Figures 5a, 5b, 5c, our
system automatically labels, evaluates, and plots every experimental
model in comparison to the production model. We have found that
investing upfront in removing the overhead needed to build and
launch a new experiment leads not only to more experiments, but
to more ambitious experiments from a wider set of collaborators.
Those improvements from those experiments have stacked over
time for a relative CTR and accuracy increases of 34.8% and 10.7%.

Even Recall, which as we discussed was already fairly high, has
improved via our candidate generation approaches. Both (1) not
limiting candidates to files recently accessed by the users and (2)
including files from Gmail, Calendar, and shared files updated by
the user’s collaborators has led to additional useful candidates.

5 SCALING AND COMPLEXITY REDUCTION
In this section we discuss some various techniques we took in order
to scale the system and training infrastructure.

Infrastructure changes. As discussed in [27], Quick Access was
moved onto ItemSuggest—a framework that collects training data at
prediction time, eliminating train-serve skew. However, a downside
of this approach is that it slows down the training process because
features have to be implemented in ItemSuggest before they can be
used. We found that implementing offline pipelines to do feature
transformations acted as a fair compromise that allowed us to avoid
train-serve skew while 1) still allowing more flexibility in training

9Which could be attributed to weekend vs weekday metrics, seasonal behavior like
school being in session, other new features being added to Drive.

and 2) preventing the accumulation of too much technical debt in
the critical serving path.

For the ML model itself, we moved from a vanilla TensorFlow
[1] model to TF-Ranking [24], which allowed us to train models
with listwise loss [6], reducing training data size by approximately
50%, giving us access to offline ranking metrics, and reducing the
time to train a model by over 50%.

Whereas the initial launched model had hyperparameters se-
lected by running grid search, for subsequent model improvements
we considered methods similar to those found in [8] before settling
on Vizier [15]. Vizier is a black-box optimization service which
reduces the number of necessary trials to tune hyperparameters
such as the number of layers, width, initialization weights, and
even which loss functions are utilized.

In addition, we moved the model training pipeline to TFX [4],
which allowed for automatic continuous retraining to guarantee
that we always have an up-to-date model trained on fresh data.
There were several other benefits we observed, such as 1) automatic
anomaly detection and skew detection, 2) model verification to
sanity check and automatically ensure that a newly trained model
meets some quality threshold, and 3) increased ability to evaluate
models over subsets of data.

Feature reconfiguration. The initial Quick Access model had 38k
floats per candidate, including individual features that consisted of
large numbers of floats. This causes difficulties and slowed down
quality development because 1) feature ablation studies are more
difficult, 2) it is more difficult to catch bugs in the features, 3) it is
difficult to apply certain DNN tricks (e.g. latent cross). Also, without
strong semantic knowledge of existing features, when adding new
features fails to improve metrics, it is unclear whether 1) the new
features have bugs, 2) there is redundancy with existing features,
3) the new features actually are not useful. Our previous approach
did track the mean and variance for certain feature values, but as
the initial model had feature vectors of 38K floats per candidate,
it quickly became infeasible to use this approach due to the large
sparse vectors, and multiple bugs went undetected.

Significant work was done to reconfigure the feature generators
to output smaller blocks of features so that we could run experi-
ments and use [15] along with other feature importance approaches
to prune the features that the model ingests. Identifying redundant
features and reconfiguring the inefficient feature generators al-
lowed us to remove around 34k floats in total, leading to a final
model needing around just approximately 4k floats per candidate.

Improving model training workflow. Reproducibility in ML model
training has been a challenge we consistently take care to address.
We have seen cases where a model trained on fresh data (with
the same hyperparameters and features) can outperform the exist-
ing production model. We have also seen cases where for several
months the existing production model could not be replaced. Part
of this is due to the seasonal behavior of users, e.g. how during the
summer there is less activity from students.

Compounding the problem of reproducibility is the sensitive na-
ture of the data. Policy constraints restrict the length of time we can
use a dataset. The ephemeral nature of our data makes reproducibil-
ity difficult—there have been cases where multiple collaborators are
taking different quality approaches and we have difficulty deciding
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(a) CTR (b) Accuracy (c) Recall

Figure 5: Improvements of CTR (a), Accuracy (b), andRecall (c) over a period of ~18months, showing the difference between the
MLmodel and theMRUheuristic. Note that y-axis numbers have been deliberately omitted to protect proprietary information.

between which model should be launched. If we wanted to revisit
the data and see if another technique would have produced different
results, we cannot because the data has since expired.

We took two steps to help improve reproducibility issues. The
first is when training an experimental model, to always retrain a
new baseline model that has the same hyperparameters and fea-
tures as the production model. This helps us determine how much
to take seasonality into account and increase experimental rigor.
The second is to have various practitioners all trying their experi-
mental approaches on the same generated baseline to decrease both
the variance in the observed results and the number of baseline
experiments needed. Though these approaches don’t completely
solve the reproducibility challenge, we have observed that as a
result we require running fewer live experiments on different ML
models in the quality development process.

Attempting to move away from a deep model. Finally, we made an
unsuccessful effort to replace the deepmodel with a gradient boosted
decision tree (GBDT) model. There are uses of both GBDT and deep
networks in the industry, with [22, 30] opting to use GDBT and
[10, 16] picking deep networks. The combination of GBDT and
deep networks is also studied [20], but it is not easy to adjust the
serving infrastructure to adapt both.

In an effort to bring about more model interpretability, latency
wins, better support for feature engineering, and more frequent
iterations of model development (due to how much data is typically
needed for a deep network), we devoted some time to training GDBT
models. However, we found that due to the high number of pre-
existing sparse features, even with significant feature engineering
effort we were unable to match the quality of the deep network. We
also hypothesize that because of the large feature vector sizes, our
infrastructure for GDBT training was not capable of learning as
many cross feature interactions. Luckily, through this GDBT effort
we were able to dig more deeply into the feature generation logic
and found redundancies that led to several critical bug fixes.

6 RELATEDWORK
For other industry case studies of recommendation systems, [10]
discusses work on improving YouTube’s recommendation system.
[22] covers the gradual improvement of the Pinterest “Related Pins”
recommendation system. This work also uses learning-to-rank to

boost the quality of the system. [14] discusses deep learning recom-
menders at the popular Norwegian website FINN.no, where they
use multi-armed bandits as a high-level reranker on top of other
recommendations. For search, [16] gives an in-depth look at how
deep learning enabled them to significantly improve Airbnb search.

For other work on improving network architecture for recom-
mendation systems, [9] introduces framework for jointly training
linear model alongside a DNN, which is similar in spirit to the DCN
approach [29], except feature crossing is done on original features
instead of embedded features.10[3] discusses how recommendation
systems can make use of contextual information for making more
intelligent recommendations, and this has been further explored by
[5] for application within YouTube. In terms of the bias present in
recommendation systems, [7] demonstrates the adverse effects of
bias in recommendation systems in leading to homogenous behav-
ior. [2] proposes sanitizing biased feedback and changing product
interface to reduce bias. [26] utilizes causal inference techniques
with matrix factorization techniques to address the issue.

[31] offers an extensive survey of deep learning based recom-
mender systems and includes a lengthy discussion of the advan-
tages and disadvantages of utilizing deep learning techniques for
recommendation systems. There is also significant work on how
to improve the architecture of various recommender systems. [11]
proposes using RNNs to capture the evolution of users’ prefer-
ences to the files’ latent features. Our modeling may weakly encode
changing user preferences, but directly modeling the historical
interactions may prove more promising.

7 CONCLUSIONS AND FUTUREWORK
In this work, we reviewed a significant effort in quality iteration
for a personal recommendation system. We provided examples of
successful modeling techniques as well as pitfalls, and hope that
they provide a useful case study for those interested in building
recommendation systems over private corpora. We found that of all
the various quality work, that infrastructure work to reduce latency
had the most impact. Other approaches like feature engineering and
changing DNN architecture also led to quality wins. We found that
for certain features, DNN architecture needed to be changed in order

10As our starting infrastructure consisted solely of sparse features, we did not experi-
ment with this framework.
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to fully utilize those features. We confirm that the usage of DNN
was able to take advantage of a lot of sparse, difficult-to-feature-
engineer features in a way that approaches like decision trees can’t.
Changes to try to explicitly model “good” user interactions (e.g.
filtering out clicks by how much delay there was) didn’t help.

We also want to stress the importance of simplifying the model,
improving the infrastructure, and improving model training work-
flow as we found that having a less complex model and better
reproducibility in model training could allow for many more data
science practitioners to ramp up and contribute.

For future work we plan to investigate optimizing for sequential
recommendations, similar to [12], as currently our modeling and
evaluation is completely biased towards only caring about the user’s
first file open. We also plan to investigate the usage of multi-armed
bandits [19] in order to deal with our problem of getting feedback
for candidates with especially sparse features.
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