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ABSTRACT

Transfer learning has become a common practice for training deep
learning models with limited labeled data in a target domain. On
the other hand, deep models are vulnerable to adversarial attacks.
Though transfer learning has been widely applied, its effect on
model robustness is unclear. To figure out this problem, we conduct
extensive empirical evaluations to show that fine-tuning effectively
enhances model robustness under white-box FGSM attacks. We
also propose a black-box attack method for transfer learning mod-
els which attacks the target model with the adversarial examples
produced by its source model. To systematically measure the ef-
fect of both white-box and black-box attacks, we propose a new
metric to evaluate how transferable are the adversarial examples
produced by a source model to a target model. Empirical results
show that the adversarial examples are more transferable when
fine-tuning is used than they are when the two networks are trained
independently.
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1 INTRODUCTION

Deep learning models achieve state-of-the-art performances on
a wide range of computer vision tasks. Yet the performance is
achieved at the cost of large scale labeled training data. In prac-
tice, there are many domains where labeled data are insufficient to
train a deep model from scratch. In such cases, transfer learning
techniques [16, 24] are usually adopted. Transfer learning uses the
knowledge that is extracted from a well-annotated source domain
to help learning in a target domain where only limited labeled data
are available. One of the most successful and popular transfer learn-
ing techniques is fine-tuning. For example, it is demonstrated that
the parameters in a convolutional neural network (CNN) are trans-
ferable [15, 25]. Nowadays, there are many pre-trained networks
publicly available and developers often use them to save the efforts
on data labeling and model training.

However, a perturbation that is imperceptible to humans can
easily fool a deep learning models such as a well-performed com-
plex CNN [20]. A typical example was given in [20] where a panda
image is misclassified as “gibbon.” Though there are a lot of success-
ful stories of transfer learning, surprisingly, few studies consider
the robustness of transfer learning models. It is found that adver-
sarial examples can generalize across the networks with different
architectures that are trained on the same dataset [12] or the net-
works that are trained with disjoint datasets [20]. These studies
have proven that adversarial examples could be transferable. How-
ever, they are not directly dealing with transfer learning models.
This motivates us to think about to which extent we can generate
adversarial examples for transfer learning.

Generating adversarial examples for transfer learning is not a
trivial problem. An adversarial attack can be either white-box or
black-box. White-box attacks assume that the target of the attack is
accessible while black-box attacks only allow querying the network
output or even have no knowledge of the network. Thus, there
are mainly two challenges to be considered. First, in the case of
white-box attacks, although it has been proved that adversarial
training can be transferred to the target domain [7], it is still unclear
what is the effect of pure fine-tuning for the resultant model or
whether there exists a general way of attacks when only a giant
model trained on a large scale dataset (e.g., ImageNet) is available.
Second, in the case of black-box attacks, to our best knowledge,
there has been no study on how transfer learning would affect
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model robustness under black-box attacks. A trivial solution may
be directly using the adversarial examples in the source domain
that is used for pre-training. However, in many target domains used
for fine-tuning, the label sets are different from the source-domain
labels. Therefore, it is difficult to apply this trivial solution.

In this paper, we study both white-box and black-box attacks for a
simple transfer learning paradigm: the pre-training and fine-tuning
procedure of domain adaptation of a CNN model. We find this sim-
ple transfer learning paradigm shows more robustness under the
white-box FGSM attacks. For the black-box attack, we propose a
simple attack method that attacks the fine-tuned model with the
adversarial examples produced by the source model. Experimental
results show that this method is simple yet effective and it hurts
the robustness results. To systematically measure the effect of both
white-box and black-box attacks, we propose a new metric to eval-
uate how transferable are the adversarial examples produced by
a source domain network to a target domain network using both
white-box and black-box attack results. Without loss of generality,
we evaluate the following two transfer learning settings.

o The source domain is similar to the target domain. Then we
directly transfer the source domain model to the target domain.

o There exists a giant model trained on a general large dataset.
However, the similarity of source and target domains does not
support to generate adversarial examples for the target domain. In
this case, we introduce another source domain which is similar to
the target domain and also fine-tuned from the giant model.
Empirical results show that the adversarial examples are more
transferable when fine-tuning is used than they are when the two
networks are trained independently.

In addition to improved transfer performance and robustness
under white-box attacks when applying fine-tuning, our study sug-
gests that the benefits are obtained at the cost of the potential
risks of using untrusted pre-trained networks. A malicious attacker
can take advantage of this phenomenon by releasing a pre-trained
model and attack the downstream fine-tuned models. While most
transfer learning methods only optimize for a low generalization
error, we argue that the robustness of transfer learning models
should be considered as well. Otherwise, we may expose transfer
learning models under harmful attacks. Such risk has been over-
looked which can be dangerous for safety-critical applications such
as autonomous driving.

The rest of this paper is organized as follows. We review related
works in Section 2. In Section 3, we introduce the problem settings
and white-box and black-box attack methods for transfer learning
models. The experiment setup is described in Section 4, and numer-
ical results under white-box and black-box attacks are presented in
Section 5. Ablation experiments are shown in Section 6. We sum-
marize and discuss the empirical results in Section 7, and finally
conclude the paper in Section 8. Our source code is available at
https://github.com/HKUST-KnowComp/AttackTransferLearning.

2 RELATED WORKS

Transfer learning is necessary to overcome the data-hungry nature
of neural networks [16, 24]. Fine-tuning is one of the most popular
transfer learning methods. Using the networks that are pre-trained
on large scale datasets such as ImageNet [18] can significantly boost

the performance of downstream tasks, such as video classification,
object detection, image/video captioning, etc [5, 9, 21-23].

In pursuit of machine learning models that are both robust and
efficient, adversarial attacks and defenses have attracted attention
in the past few years. Numerous attack and defense methods have
been proposed [26]. Szegedy et al. [20] first propose an L-BFGS
method to craft adversarial examples that are close to the original
examples and misclassified by the network. L-BFGS attack is effec-
tive but slow. To improve efficiency, Goodfellow et al. propose a
one-step attack method FGSM by moving along the direction of
the gradient [6]. Madry et al. [13] formulate a min-max optimiza-
tion problem to study adversarial robustness. They start from a
random perturbation around the original input and strengthen the
gradient-based attack by applying it iteratively with a small step
size.

Previous works that study model robustness assume that the
model is trained from scratch in an individual domain while transfer
learning techniques are often used in practice and the assumption
no longer holds in such settings. Though fine-tuning has been
widely used, surprisingly, few research works pay attention to the
robustness of transfer learning models. The most related work is
[7] where the robustness of adversarial fine-tuned models under
white-box attacks is evaluated. Our work differs with theirs in
three aspects: (1) We study the robustness of fine-tuned models
under both white-box and black-box attacks; (2) We focus on fine-
tuning which is more widely used instead of adversarial fine-tuning
proposed in [7]; (3) Ablation experiments are conducted to study
the effect of a number of factors, including the number of labeled
data, domain similarity, network architectures, etc., on the transfer
performance and robustness.

3 ROBUSTNESS OF TRANSFER LEARNING
MODELS

We first introduce the problem settings and the notations used, then
present three model training strategies. We briefly describe how to
generate adversarial examples in an individual domain, and then
propose the method to attack transfer learning models. We finally
introduce a new metric to measure the transferability of adversarial
examples between transfer learning models.

3.1 Problem Setup

We focus on the classification task where both domains are labeled.
To avoid the confusion with the “target” of attack, the source do-
main and the target domain are called Domain A and Domain B, and
denoted by D4 and Dp, respectively. Domain A is composed of
n4 training samples which is denoted by D4 = {(x A Y A,) ;1:“1
where there are ny training samples x4 € X4 and their corre-
sponding labels y4 € Y4. Similarly, Domain B is denoted by Dp =
{()(Bj,y}gj)}]r.’f1 and there are xg € Xp and yg € Yp. There are
many more labeled data in Domain A than there are in Domain B,
i.e, ng > np. When there are X4 = Xp and Y4 = Y3, the setting
is referred to as homogeneous transfer learning. Otherwise, it is
referred to as heterogeneous transfer learning. In each domain, a
neural network, denoted by f, is trained to learn the mapping from
the input space to the label space, f : X — Y. The output of the
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network, denoted by f(x), predicts the probability distribution over
the label space.

3.2 Model Training Strategies

As attacking transfer learning can be similar or different from at-
tacking non-transfer learning models, we consider three different
training strategies to study the adversarial example generation for
comparing transfer learning with non-transfer learning. The three
ways to train the models in the two domains, namely Scratch,
Fine-tune, and CommonInit, are shown in Fig. 1. While Scratch
is not a transfer learning setting, the other two strategies both in-
volve transfer learning. The Fine-tune and CommonInit strategies
address the homogeneous and heterogeneous transfer learning set-
tings, respectively. The details of the three training strategies are
described as follows.

e Scratch: As shown in Fig. 1a, in the Scratch setting, the Model
B is randomly initialized and is only trained with Domain B’s data.
There is no transfer learning if the models are trained with the
Scratch strategy, and Model A and Model B are independent.

e Fine-tune (FT): The FT strategy is shown in Fig. 1b. To transfer
the parameters from Domain A to Domain B, the two networks share
an identical architecture. Model A (f4) is first trained with Domain
A’s data, then Model B is initialized with the parameters of Model
A. Finally, Model B (fB) is fine-tuned with Domain B’s data.

o CommonInit: Both Model A and Model B are initialized with an-
other Model C and then fine-tuned with domain-specific data. This
approach is useful for black-box attacking a heterogeneous trans-
fer learning model. For example, to train a model on STL1@ where
there are only 5, 000 training images, a natural choice of the source
domain is a downsampled variant of ImageNet [2], denoted by
ImageNet32, where there are more than one million training im-
ages. However, the label spaces of the two domains do not agree.
There are 10 classes and 1, 000 classes in STL10 and ImageNet32,
respectively. We cannot attack an STL10 model with the adver-
sarial examples produced by an ImageNet32 based model due to
the mismatched label space. One solution to the problem is to use
another domain such as CIFAR10 as the source domain. CIFAR10
has the same label space as STL1@ does. Thus, the adversarial ex-
amples generated based on CIFAR10Q can be transferred to attack
models based on STL10. In our setting, both models for CIFAR10
and STL10 are fine-tuned from ImageNet32 and the adversarial

examples produced by the CIFAR10 model can be more transfer-
able to attack the STL10 based model. In this example, CIFAR19,
STL10, and ImageNet32 correspond to Domain A, B, and C in Fig. 1c,
respectively.

3.3 Generate Adversarial Examples

Before attacking transfer learning models, we first introduce adver-
sarial example generation in an individual domain as preliminary
knowledge. There are different ways to generate adversarial exam-
ples. As our study mainly focuses on different transfer learning
settings and study the transferability of the generated examples in
different settings, we choose the widely used Fast Sign Gradient
Method (FGSM) [6] in our work.

In general, crafting adversarial examples for a model f can be
formulated as an optimization problem:

argmin £(3, (%)), (1)

I%—x|l, <€

where X denotes the adversarial example, j denotes a label that is
different from the ground truth label y, £(-, -) denotes a classification
loss, ||-||p denotes the p-norm distance and € denotes the perturba-
tion budget. The adversarial example is optimized to mislead the
network f within the p-norm e-ball of the clean example x. In this
paper, we adopt the cross-entropy loss as the classification loss and
the infinity norm as the distance measure.

Many methods to solve the optimization problem in Eq. (1) have
been proposed [6, 13, 20]. The FGSM takes one step in the direction
of the gradient:

% =x+ € - sgn(Vxl(y, f(x))), )

where the sgn function extracts the sign of each dimention in the
gradient V¢ {(y, f(x)) and uses that as the direction to slightly mod-
ify the given example. The FGSM update is believed to optimize
Eq. (1) to generate some valid examples that are imperceptible to
humans but may fool a deep learning model [6].

3.4 Attack Transfer Learning Models

We consider the robustness of transfer learning models under both
white-box and black-box attacks in this paper. Particularly, we
apply the FGSM attack method to generate adversarial examples
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Figure 2: Black-box attack Model B with adversarial exam-
ples produced by Model A. The proposed method allows at-
tack without any query to the target model.

for transfer learning models under both white-box and black-box
settings.

3.4.1 White-box Attacks. For white-box attacks, it is assumed that
everything related to the target of the attack is accessible. Thus, we
can view Model B as a white box and attack it by applying FGSM.
Model B is either trained from scratch in Domain B or fine-tuned
from a source network Model A.

3.4.2 Black-box Attacks. The assumption of white-box attacks usu-
ally does not hold in reality. A more realistic setting is the black-box
attack where the target of the attack is completely not accessible or
only the output of the target can be queried. While most black-box
attack methods are developed for the setting that allows querying
the output of the target model [1, 17], we focus on a more restricted
setting where no access to the target model is allowed.

We develop a simple black-box attack method for transfer learn-
ing models which first produces an adversarial example with Model
A and then attacks Model B with the generated adversarial exam-
ple. Hence we can attack Model B without any access to it. The
procedure is illustrated in Fig. 2. The two models can be trained
with three different strategies introduced in Section 3.2. We will
apply the proposed black-box attack method and evaluate model
robustness in Section 5.2.

3.5 Transferability of Adversarial Examples

Here, we propose a new metric to measure the transferability of
adversarial examples between transfer learning models. Similar to
the evaluation metrics for the robustness under white-box attacks,
the robustness under black-box attacks can be measured by the
adversarial accuracy. A lower adversarial accuracy indicates that the
model is more vulnerable to the transferred adversarial examples.
As will be shown in Section 5.1, the model robustness can be
enhanced after fine-tuning, and hence it may be unfair to directly
compare the adversarial accuracy of the Scratch model and that of
a transfer learning model. We introduce a new metric to evaluate
the transferability of adversarial examples between Model A and
Model B. Let a,, and aj denote the adversarial accuracy of a network
under the white-box attack and black-box attack, respectively. Let

y denote the transferability metric defined as:
= (3)

aw

which measures how much the adversarial accuracy under the
black-box attack deviates from the one under the white-box attack.
Usually, we have y > 0 since less knowledge is available in the

Domain

A B C na np nc

M U S 60K 74 604K

U M S 7.4K 600 604K

S M NA 604K 600 NA

S Syn M 604K 4.8K 60K
CIFAR STL ImageNet32 45K 4.5K 1.28M

Table 1: Statistics of transfer tasks.

black-box setting and black-box attacks are not as effective as the
white-box ones. If y < 0, it means that the black-box attacks by
transfer learning are even more effective than directly attacking
the target model.

4 EXPERIMENT SETUP

In this section, we introduce the datasets, evaluation metrics and
implementation details in the following.

4.1 Transfer Tasks

We use seven datasets for our evaluation, which are MNIST (M) [11],
USPS (U) [8], SVHN (S) [14], SynDigits (Syn) [4], CIFART® [10],
STL10@ [3], and ImageNet32 [2]. The first four datasets contain “0”
to “9” digit images with various distributions. Both M and U are
handwritten digit databases while S and Syn are digit images with
colored backgrounds. The latter three datasets are composed of
low-resolution natural images. Five transfer tasks in the form of
(Domain A, Domain B, Domain C) are constructed!. Their statistics
are described in Table 1. We follow the default train/test split of the
datasets. As preprocessing, all the images are resized to 32 X 32 and
they are rescaled to the range [-1, 1].

4.2 Evaluation Metrics

Since the five transfer tasks are all classification tasks, the clas-
sification accuracy on clean examples is adopted to measure the
transfer performance in Domain B. A higher classification accuracy
indicates better transfer performance. In addition to the transfer
performance, robustness under adversarial attacks is considered as
well. The robustness of a neural network is measured by the classi-
fication accuracy on the adversarial examples, which is referred to
as adversarial accuracy in the following. The adversarial examples
are obtained on the test set of Domain B. The clean examples that
are correctly predicted by the target model are attacked. The higher
the adversarial accuracy is, the more robust the network is.

4.3 Implementation Details

All the experiments are implemented with the PyTorch deep learn-
ing framework. Two network architectures are adopted. For the
digit classification tasks, a simple 5-layer CNN, denoted by DTN, is
used. For the CIFAR — STL task, a more expressive architecture,
the 28-10 wide residual network (WideRes) [27], is used. When

UIf np is smaller than the size of the default training set, we randomly sample ng
examples from it. Usually, there are a large amount of data in Domain C. Since there
are only 7.4K training examples in U, we do not use U as Domain C. For the CIFAR —
STL task, 9 categories that are shared by the two domains are used.
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Figure 3: (a) Classification accuracy of the five transfer tasks. The FT models consistently outperform the Scratch baselines.
(b-f) Robustness under white-box FGSM attacks. Compared to the Scratch models, the adversarial accuracy increases after
fine-tuning, which indicates that the FT models are more robust than the Scratch ones.

ImageNet32 is used as Domain C, Model A and B are initialized with
Model C except for the final classification layer. The neural networks
are optimized with the mini-batch stochastic gradient descent with
the momentum of 0.9. Early stopping is used, that is, if the network
performance does not improve within 50 epochs, the training pro-
cess is terminated. The batch size equals to 128. The learning rate
is selected from {0.1,0.01, 1073} and weight decay is selected from
{5x107%,2.5x 1072, 5 x 107%}. We report the accuracy achieved
with the optimal hyperparameters.

5 MAIN RESULTS

In this section, we study the effect of transfer learning on the ro-
bustness of Model B under attacks.

5.1 Under White-box Attacks

The classification results of the five transfer tasks are shown in
Fig. 3a. On all transfer tasks, fine-tuning brings noticeable improve-
ment over the Scratch baselines, which demonstrates the necessity
and effectiveness of transfer learning. The adversarial accuracy of
the five transfer tasks are shown in Fig. 3. We report adversarial
accuracies under multiple perturbation budgets. Compared to the

adversarial accuracy of Scratch models, the adversarial accuracy
increases after fine-tuning. The improvement is more obvious when
the network is attacked with a large perturbation budget. For ex-
ample, the adversarial accuracy rises from 50.86% to 84.96% on the
S — Mtask when € = 0.125. The results show that in addition to
better transfer performance, another advantage of fine-tuning is
the enhanced model robustness under white-box attacks.

5.2 Under Black-box Attacks

The adversarial accuracy and the transferability of the four transfer
tasks are shown in Figs. 4 and 5. In terms of the absolute adversarial
accuracy values, the adversarial accuracy drops as the perturbation
budget € increases. While the adversarial accuracy of the Scratch
model remains rather stable under multiple € values, the adversarial
accuracies of CommonInit and FT models drop significantly. Con-
sequently, when the perturbation budget € is large, the adversarial
accuracies of CommonInit and FT models are much lower than
those of the Scratch model. When there is Domain (A, B, C) = (M,
U, S), the adversarial accuracy of the Scratch model remains larger
than 80% while the adversarial accuracies of the CommonInit and
FT model are only 70.59% and 17.53% when € = 0.125, respectively.



(M, U, s) (U, M, S) (S, Syn, M) (CIFAR, STL, ImageNet32)

L . Ly s
L ST S 95 TR SE-—

3 80 = Al 3T e T & 90 SNeo ke~ g

g RO g | 7 S&--= gl 8 T g

S | S L S Sl A 5 60

o o 90 o Sen u

o o o 80 ~~ )

T 60 o ) | (1]

e & I I

= = = c

8 g 85 870 g 40

o 40 o ] o

> —A— Scratch > —A— Scratch > —A— Scratch > —A— Scratch

o o ° o

< FT < 80 FT < 60 FT < FT

201 - Common init -l Common init -l Common init 20 —— Common init
0.025 0.050 0.075 0.100 0.125 0.025 0.050 0.075 0.100 0.125 0.025 0.050 0.075 0.100 0.125 0.02 0.04 0.06
£ & 3 &

(a) Domain (A, B, C) =(M, U, S) (b) Domain (A, B, C) = (U, M, S)

(c) Domain (A, B, C) = (S, Syn, M) (d) Domain (A, B, C) = (CIFAR, STL,

ImageNet32)

Figure 4: Robustness (adversarial accuracy) under black-box attacks. The adversarial accuracies of the FT and CommonInit mod-
els drop drastically when the perturbation budget ¢ increases. They are much lower than those obtained with the Scratch
models, which indicates that the fine-tuned models are likely to be attacked by the adversarial examples produced by their

source models.

(M, U, S) (U, M, S) (S, Syn, M) (CIFAR, STL, ImageNet32)
2] 20 ry a 6 4
1.5 | —A— Scratch v —A— Scratch / 6 —A— Scratch ’ —A— Scratch v
FT S FT Y FT < FT P
-l Common init Va m 1.5{ - Common init /./ -l Common init ,/ —- Common init /'/
1.0 7 - : A -
: p / / 4 ~
e L . 4 y P,
- Ve - 1.0 7 - s . yd
0.5 el e -
“a 7 ‘ A 2 ’
-l / ’
e == 0.5 A 2 T A
0.0 ’{'/ y - //
e B e o .
-0.5 0.0 {—@——W—==""""" 0 { = 0
0.025 0.050 0.075 0.100 0.125 0.025 0.050 0.075 0.100 0.125 0.025 0.050 0.075 0.100 0.125 0.02 0.04 0.06
£ € € €

(a) Domain (A, B, C) =M, U, S) (b) Domain (A, B, C) = (U, M, S)

(c) Domain (A, B, C) = (S, Syn, M) (d) Domain (A, B, C) = (CIFAR, STL,

ImageNet32)

Figure 5: Robustness (transferability y) under black-box attacks. The new metric y considers both white-box and black-box
attack results and evaluates how transferable are the adversarial examples produced by Model A to Model B. When y drops below
0, it means that Model B is more vulnerable to the adversarial examples transferred from Model A than those crafted directly

with Model B as a white-box.

When the model robustness is measured by the transferability y,
the y values of the CommonInit and FT models are usually smaller
than those of the Scratch model, which indicates that Model B is
likely to be successfully attacked by the adversarial examples pro-
duced by Model A if the parameters of the two models are correlated
either explicitly or implicitly. An exception is found on the Domain
(A, B, C) = (S, Syn, M) task where the y values of the CommonInit
model are larger than those of the Scratch model. We hypothesize
that this is because the source domain M which is composed of
handwritten digits is quite different from the two target domains S
and Syn. The y value of the FT model drops below 0 on the Domain
(A, B, C) = (M, U, S) task when € = 0.125, which means that Model
B is more vulnerable to the adversarial examples transferred from
Model A than those crafted directly with Model B as a white-box.
The results of the black-box attacks show that fine-tuning might

introduce potential risks of being attacked by its source model,
which are unaware of previously.

6 ABLATIONS

There are a number of factors that might affect the transfer per-
formance and model robustness. To provide further insights into
the effect of transfer learning, we conduct ablation experiments to
study the following factors: (1) The number of training examples
in Domain B. (2) The number of training examples in Domain A. (3)
The choice of Domain A. (4) Network architectures. The ablation
experiments are conducted on the S — M task and the network
architecture is DTN if not specified.

6.1 Number of Training Examples in Domain B

We first show the impact of varying ng on the transfer performance
and model robustness in Fig. 6. The Scratch models and FT models
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ness are improved. We report the adversarial accuracy of the white-box attacks with ¢ = 16/255 in (b).
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Figure 7: The effect of n4. The FT models consistently outstrip the Scratch model. When n4 increases, both the transfer per-

formance and the model robustness are improved.

are trained with 50, 100, 200, 500 labeled samples in Domain B. We
report the adversarial accuracy when € = 16/255. The classification
accuracy and the adversarial accuracy of both models increase as
more labeled data are available. The transfer performance and the
model robustness of the FT model remain stable given multiple
values of np while those of the Scratch model significantly drops
as np decreases. For example, when there are only 50 examples in
Domain B, the classification accuracy and the adversarial accuracy
of the Scratch model is 91.59% and 71.45%, respectively, which
lags behind those of the FT model by 4.99% and 14.04%. The results
show that fine-tuning can be particularly beneficial when there are
very few labeled samples in Domain B.

6.2 Number of Training Examples in Domain A

We vary the number of training examples in Domain A and report
the classification accuracy and adversarial accuracy in Fig. 7. Model
A is trained with 1K, 5K, 10K, 100K and 500K examples. Similar to
the results in Section 6.1, more labeled data in Domain A yield better
transfer performance and improved robustness. The FT models
obtained with different ny values consistently outperforms the
Scratch model.

6.3 Choice of Domain A

To study the effect of different source domains, we fix M as the
Domain B and use S and U as Domain A, respectively. The number

of training samples in Domain A and Domain B are 5,000 and 600,
respectively. Thus we have two transfer tasks, S — M and U —
M. Both M and U are handwritten digits and hence they are more
visually similar than the other task S — M. The results are shown
in Fig. 8. With the same amount of labeled data, when Domain A is
more similar to Domain B, the classification accuracy is higher and
Model B is more robust under white-box attacks. At the same time,
Model B is more vulnerable to adversarial examples transferred
from Model A.

6.4 Network Architectures

We examine whether the observations generalize to other network
architectures. We repeat the experiment with the WideRes network
and the results are shown in Fig. 9. WideRes networks use widened
residual blocks that improve both model performance and training
efficiency. There are 28 convolutional layers in a WideRes network
while there are only 5 layers in a DTN network, and the WideRes
network has more representational power. This is demonstrated by
the fact that the classification accuracy is improved for both the
Scratch and FT model (Fig. 9a). Moreover, the adversarial accuracy
of the FT model consistently outperforms that of the Scratch model
disregard of the network architecture that is used. In terms of the
robustness under black-box attacks, the conclusions are the same
as those drawn when the DTN architecture is used: the FT model
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Figure 9: The effect of network architectures on transfer performance and robustness. The results of WideRes are consistent
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is adopted under white-box attacks. On the other hand, the FT model is more likely to be attacked by the adversarial examples
produced by its source model than the Scratch model under black-box attacks.

is again more likely to be attacked by the adversarial examples
produced by its source model than the Scratch model.

7 DISCUSSION

As demonstrated by the experimental results and ablation studies,
fine-tuning can effectively improve both transfer performance and
robustness under white-box attacks. On the other hand, we can
successfully attack a fine-tuned target model in a restricted black-
box manner by utilizing its source model, which is a downside of
fine-tuning. The observations generalize across different transfer
tasks and network architectures. We hypothesize that the success
of fine-tuning can be attributed to the following two reasons.

o The improvements may benefit from more training data. Our
empirical discoveries in Sections 6.1 and 6.2 show that increas-
ing the number of training samples in either Domain A or Domain
B yields enhanced robustness. They are in accordance with the
theoretical results in [19], which postulate that training a robust
classifier requires more data.

o Fine-tuning improves the Lipschitzness of the loss landscape
and hence makes the model more robust. We visualize the his-
tograms of the gradient norms ||Vx{(y, f(x))||2 in Fig. 10. Fig. 10a
shows that the gradient norms of the FT model is more likely to
have a small value while the maximum value of the gradient norms

of the Scratch model can be larger than 2. The histograms of the
gradient norms of the Scratch and FT models are shown in Figs.
10b and 10c, respectively. The adversarial examples that success-
fully fool the target model are more likely to have large gradient
norm values. The gradient norms of the FT model is suppressed,
which might improve model robustness.

8 CONCLUSION

Though fine-tuning is a successful and popular transfer learning
technique, its effect on model robustness has been almost ignored.
To figure out this problem, extensive experiments are conducted in
this paper. The results show that fine-tuning can enhance model ro-
bustness under white-box FGSM attacks. We also propose a simple
and effective black-box attack method for transfer learning models.
Results suggest that fine-tuning might introduce potential risks
since a fine-tuned model is more likely to be successfully attacked
by the adversarial examples crafted from its source model than a
model that is learned from scratch. Our study convinces another
advantage of fine-tuning and reveals that there are underlying risks
that have been overlooked. We hope that the findings can serve
as step stones towards transfer learning models that are both ro-
bust and effective. In addition, we also developed a new evaluation
metric to measure how transferable are the produced adversarial
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examples to attack transfer learning models. We also believe this
metric will be useful for future study of the vulnerability of transfer
learning models.
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