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ABSTRACT
A mobile app interface usually consists of a set of user interface
modules. How to properly design these user interface modules
is vital to achieving user satisfaction for a mobile app. However,
there are few methods to determine design variables for user in-
terface modules except for relying on the judgment of designers.
Usually, a laborious post-processing step is necessary to verify the
key change of each design variable. Therefore, there is a only very
limited amount of design solutions that can be tested. It is time-
consuming and almost impossible to figure out the best design
solutions as there are many modules. To this end, we introduce
FEELER, a framework to fast and intelligently explore design solu-
tions of user interface modules with a collective machine learning
approach. FEELER can help designers quantitatively measure the
preference score of different design solutions, aiming to facilitate
the designers to conveniently and quickly adjust user interface
module. We conducted extensive experimental evaluations on two
real-life datasets to demonstrate its applicability in real-life cases
of user interface module design in the Baidu App, which is one of
the most popular mobile apps in China.
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Figure 1: The user interface modules of the Baidu App.
There are 14 user interface modules, where Search Box (No.
5) and News Feed (No. 8 and No. 9) are two examples.

1 INTRODUCTION
A user interface of a mobile app can disassemble into different user
interface modules. In Figure 1, we illustrate the important modules
on the user interface of the Baidu App which has more than 200
million daily active users and is one of the most popular mobile
apps in China. As we can see from the right side of Figure 1, there
are mainly 14 modules, and most of them play an important role in
the functionality of the app, such as the Search Box (No. 5) module
and the News Feed (No.8 and No. 9) module. Finding the best design
solutions to such modules is critical to improve user satisfaction of
the mobile app.

The design of a mobile app’s user interface is usually conducted
in two levels. At a lower level, designers will provide the design
solution of each user interface module. As shown in Figure 2, a user
interface module (i.e. Search Box) usually has several key design
variables. Note that all the design variables here refer to visual
appearance variables of a user interface module. With varying such
design variables, we can get different design solutions for the user
interface module. Figure 3 illustrates different design solutions of
the Search Box module. At a higher level, the designers combine
these modules into a whole interface. While the whole interface
is some kind of fixed, the modules at the lower level are always
adjusted by designers due to several reasons, such as changing
styles in different holidays, adding temporary modules and revis-
ing important modules. Hence, designers are usually exhausted to
adjust the design solutions of user interface modules.
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In this paper we investigate how to intelligently explore the
best design solutions for user interface modules, aiming to build
a predictive model that can assess the preference score of a given
user interface module. The predictive module should also be able
to quantitatively measure the preference score of different design
solutions, and analyze the correlations among variables. In this way,
the model can help designers conveniently and quickly adjust user
interface modules. Though how to design the whole interface at
a higher level is also a challenging research topic, it is beyond the
scope of this paper.

However, to the best of our knowledge, there are few existing
studies to help identify a better design solution of user interface
modules. There is a combinatorial explosion for enumerating all
possible design solutions. Thus, most of the design variables of an
interface module are determined by designers according to their
judgement and personal preference. Traditionally, designers would
come up with a couple of different designs and then verify whether
users like them or not by a post-processing step, using online A/B
test or offline evaluation. Such a post-processing step is usually
time-consuming and requires high labor costs. Hence, only a few
design solutions of the user interface module can be tested and
properly evaluated. In this way, it is almost impossible to find out
the best design solutions. In recent years, there are some works
about evaluating the user experience of a product [21], and the
friendliness of the machine learning interface [12]. But all of them
are survey-based method without using machine learning tech-
nology. Machine learning methods have been used to tappability
[23] or accessibility [9] problems, which usually makes prediction
based on existing screen without attempting to adjust the design
solution. To the best of our knowledge, there is no existing study
to employ machine learning to explore better design solutions of
user interface modules.

In this paper, we propose FEELER, a method of Intelligent Ex-
ploration for User Interface Module of Mobile App with Collective
Learning. The core of FEELER is to use a two-stage collective learn-
ing method to build a predictive model based on the user feedback
for interface modules collected by multiple rounds in a crowdsourc-
ing platform.

The first stage of FEELER is to build a proactive model with active
learning. The proactive model has an iterative optimization process
to find the best values of a predictive function with minimized cost,
using a crowdsourcing platform to invite participants to rate their
preference of different design solutions. A challenge of this stage
is how to manage the exploitation versus exploration trade-off,
i.e. the “exploitation” of the design solutions that has the highest
expected preference scores and “exploration” to get more diverse
design solutions. Hence, an acquisition function is defined in the
proactive model to guide the exploration of design solutions in each
round with balancing the exploitation versus exploration trade-off.

The second stage of FEELER is a comparison-tuningmodel which
can further improve the predictive performance for design solutions
upon the predictive ability of the proactive model. The comparison-
tuning model is motivated by the following two insights. First of
all, our major concern is how to distinguish the best design solu-
tions from the good ones (the bad design solutions are obvious and
not useful). Second, the participants usually can only differenti-
ate which solutions are better after comparing them. Therefore, in

Figure 2: Design variables of Search Box

this stage, we generate pairs of design solutions based on the ones
returned by the proactive model and then invite participants to
rate which solution is better for each pair. The comparison-tuning
model is optimized based such labeled pairwise comparison data.

In addition, FEELER also provides a mechanism to quantitatively
analyze the design variables for each user interface module, and
the correlation among design variables. In this way, designers can
adjust the design variables for each user interface module while
being aware of the module preference scores. In this perspective,
another benefit of FEELER is to bring the quantitative analysis
methodology for user interface design.

At last, we conduct extensive experiments on two important
user interface modules, Search Box and News Feed, of the Baidu
App to show the effectiveness of FEELER over baselines. We also
conduct an in-depth analysis of the design variables upon the pre-
dictive models of FEELER, to demonstrate how such results can
help designers. FEELER has been used to guide the design of the
Baidu App in practice. The findings, limitations and further research
opportunities are also discussed.

We summarize the contributions of this paper as follows:
• We are the first to study the exploration of user interface
modules with a machine learning method. Our research
sheds some light on a new user interface design paradigm
with machine learning methodology.

• We propose a method, called FEELER, for intelligent explo-
ration for user interface modules based on a multiple round
crowdsourcing process. FEELER has two major stages which
are to build a proactive model and a comparison-tuning
model respectively.

• We conduct extensive experimental evaluations and in-depth
model analysis on two real-life datasets from Search Box and
New Feed of the Baidu App, to demonstrate the effectiveness
and utility of FEELER.

2 OVERVIEW
2.1 Preliminaries
Here we introduce preliminaries using over this paper. As described
in the introduction section, each user interface of a mobile App has
several modules. A module of a user interface usually has a set of
design variables. We name such a set of parameters for a module
as a design variable vector ®x . All the design variable vectors of a
module belong to a predefined domain X, i.e. ®x ∈ X. Each design
variable vector defines a design solution of a module. As we can
see from Figure 2, the design variables of Search Box on the Baidu
App include the color, thickness, height of the box, the font size
of the default search text, and so on. Figure 3 illustrates different
design solutions of the Search Box in the Baidu App with varying
design variable vectors.



Figure 3: Different design solutions of Search Box

It is not necessary to add all the design variables into the model
since some design variables can be easily determined or are not
important factors. Besides, a large magnitude of variables adds to
the difficulty of effectively and efficiently constructing the model. In
FEELER, the key design variables are selected after discussion with
designers and user experience researchers together. The design
variables that considered to be very important to user experience
based on judgments of designers, or variables that designers were
eager to explore more, were given high priority to be included. In
our system, there are 9 design variables for Search Box, and 8 design
variables for News Feed.

Given an oracle model ψ̂ (·) returning the general user preference
of a design solution, the exploration of user interface module can
be considered as a process to find the best design variable vector
®x∗ according to the model ψ̂ (·), i.e. argmaxx ∈Xψ̂ (x). Usually, the
designers adjust the design variables iteratively to find the best de-
sign solutions for each user interface module. In this paper, we aim
to build a surrogate modelψ (·) to approximate the oracle function
ψ̂ (·). Note that the objective of FEELER is to explore the best design
solution, instead of approximating ψ̂ (x) perfectly. Therefore, we
require the surrogate model ψ (·) to be accurate when the design
variable vector nearby the ones of the best solutions. In other words,
it is not so useful to make accurate user preference prediction when
the design solution is far from the best ones.

In FEELERwe choose Gaussian Processes (GPs) as the basemodel
to approximate the oracle model ψ̂ (·). GP is a rich and flexible
class of non-parametric statistical models over function spaces
[26] with a wide range of applications [27]. The reasons to select
GPs can be explained from three perspectives. At first, the output
of GPs is probabilistic so that we can obtain confidence intervals
for each prediction by GPs. Such confidence intervals are very
important information for designers. Second, GPs provide a natural
mechanism to define the acquisition function for active learning to
balance the exploitation versus exploration trade-off. Third, GPs can
be optimized by the pairwise comparison data. Instead of directly
giving a preference score, the user can more precisely express their
preference by comparing a pair of design solutions. GPs can utilize
such pairwise comparison data for model optimization. We will
further explain the second and the third advantages of GPs in
Section 3 and Section4 respectively.

Here we give a brief introduction about GPs [26]. Given a set
of labeled training data D = (xi ,yi ) where xi is a design variable
vector and yi is labeled preference score, a model ψ (·) aims to
predict the score of a test design variable vector ®xt . GPs assume
theψ is drawn from a GP prior that P(ψ ) ∼ N(0,K) whereN(0,K)
is Gaussian distribution with mean is zero and covariance matrix
is K. Note that zero-mean assumption is for simplicity which is

not a drastic limitation, since the mean of the posterior process is
not confined to be zero [26]. The covariance matrix K is also called
the Gram matrix [20] whose elements ki, j are defined by a kernel
function over a pair of training instances, i.e. ki j = κ(®xi , ®x j ). In our
case study, we use the popular Radial Basis Function (RBF) kernel,
where κ(®xi , ®x j ) = exp(− ∥ ®xi−®x j ∥

2∆2 ). The posterior probability of the
test vector ®xt after observing the training data D is:

P(ψ (xt )|D) =
∫

P(ψ (xt )|ψ )P(ψ |D)dψ . (1)

The posterior predictive probability distribution of P(ψ (xt )|D)
can be solved analytically which is also a Gaussian distribution
P(ψ (xt )|D) = N(u(®xt ),δ2(®xt )) with:

u(®xt ) = kTK−1Y , (2)

δ2(®xt ) = κ(®xt , ®xt ) − kTK−1k, (3)

where k is kernel vector evaluated between the test vector ®xt and
all training instances, i.e. k = [κ(®xt , ®x1),κ(®xt , ®x2), ....]T , and Y =
[y1,y2, ...]T .

2.2 Framework of FEELER
Wepropose a two-stage framework to approximate the oracle model
ψ̂ (·) leveraging the collectively labeled data by crowdsourcing. An
illustration of the FEELER is shown in Figure 4. The first stage of
FEELER is called proactive model with an iterative optimization
process, and the second stage is named as comparison-tuning model
which is a fine-tuning prediction model by pairwise comparison.

In the first stage, we train a proactive model with crowdsourcing
labeled data. At first, we generate a set of design solutions for
a given module and then recruit many participants to rate the
design solutions. Here we use Bayesian-based active learning [22]
method to iteratively optimize the proactive model. In this stage, the
proactive model has an acquisition function to guide the selection
of the next set of design variable vector. Then the selected data
are labeled on the crowdsourcing platform which will be used to
optimize the proactive model in the next round.

In the second stage, we build a comparison-tuning model upon
the predictive ability of the proactive model. The insight of the
comparison-tuning model is that, when users face a single design
solution, usually they cannot rate its score confidently, but they can
rate which one is better by comparison. In this stage, we aim to build
a fine-tuning model to predict the user preference score among the
best design solutions. We first generate a pair of design solutions
based on the best design solutions returned by the proactive model,
then invite participants to rate which solution is better for each
pair. The labeled pairwise comparison data is used to train the
comparison-tuning model.

FEELER requires several rounds of data labeling on a Baidu’s
crowdsourcing platform1. There are 500 participants for labeling the
data of FEELER. Each case was evaluated by at least 20 participants.

3 PROACTIVE MODEL LEARNING
The first stage of FEELER is to build a proactive model. This stage
is an iterative active learning processing. We first generate a batch

1https://zhongbao.baidu.com/



Figure 4: Overview of FEELER. The first stage of FEELER constructs the proactive model, and the second stage of FEELER
builds the comparison-tuning model.

of design solutions and then invite participants to label their prefer-
ence score for each solution via a five-point Likert question (1-not
at all, 5-Extremely). Then we use the labeled solutions to update
the model which is used to guide the generation of design solutions
for the next round of data labeling and model learning. We can
summarize the construction of the proactive model in three steps,
which are:

(1) Generating design solutions according to a batch of design
variable vectors;

(2) Collecting collectively labeled data of all design solutions;
(3) Updating the proactive model f (·) and its acquisition func-

tion, then generating a new batch of design variable vectors,
and then go to Step (1).

In the first step, we need to generate a batch of design solutions
according to a set of design variable vectorsX = {®x1, ®x2, ..., ®xn }, ®xi ∈
X. In the initialize step, we generate the design variable vectors
by random sampling from the domain X of the module. In the
optimization iteration, the design variable vectors are generated
according to an acquisition function in the domain X. We postpone
the discussion about the acquisition function to Section 3.2. Exam-
ples of design solutions of Search Box and News Feed are shown
in Figure 5. To avoid the influence of other confounding design
elements, each interface only contained one design solution which
was placed in the center of the screen.

3.1 Collective labelling
In this step, we sent the design solutions to participants to label their
preference score on the Baidu crowdsourcing platform. Participants
were required to rate their degree of preference via a five-point
Likert question (1-not at all, 5-Extremely). To avoid the bias of
a single participant, we send the same design solution ®xi to 20
participants, then we average rating scores of all the participants
as the user preference score yi of the design solution. After the
labeling process, we can get a labeled dataset D = {(xi ,yi )}. Since
we adopt an iterative active learning method to label the data, there
are multiple rounds to label the solutions. We note the l-th round
of the labeled data set as Dl = {(x li ,y

l
i )}, 0 ≤ l ≤ L.

(a) Search box (b) News feed
Figure 5: Examples of the testing design solutions.

3.2 Updating the model and acquisition
function

The updating of the proactive model can be explained from the
Bayesian optimization perspective. At first we incorporate a prior
belief about model f (·). After optimizing the f (·)with a labeled data
set Dl , we can generate another labeled dataset Dl+1 to optimize
f (·) with all the previous labeled data.

Given the labeled dataDl , for a new design variable vector ®xt , the
posterior probability distribution of f (®xt ) is P((®xt |D0, ...,Dl ). If we
use GPs as the proactive model, then we have P((®xt |D0, ...,Dl ) =
N(u(®xt ),δ2(®xt ))whereu(·) and δ2(·) are mean and variance matrix
defined by Eqn. (2) and Eqn. (3) respectively.

After updating themodel, we use an acquisition function to guide
the selection of candidate design solutions where an improvement
over the current best design solution is likely. In other words, we
need to identify a set of new design variable vectors that can maxi-
mize the acquisition function overX, where the acquisition function
is calculated using the updated posterior model. In FEELER we use
the Expected Improvement (EI) [19] as the acquisition function
which can select the design solutions to, in expectation, improve
the user preference value upon f (·) the most. For GPs, the analytical



expression for EI (·) is:

EI (®x) =
{
(u(®x) − f (®x∗))Φ(η) + σ (®x)ϕ(η) i f σ (®x) > 0
max(0,u(®x) − f (®x∗)) i f σ (®x) = 0

where ϕ(·) and Φ(·) denote the probability density function (PDF)
and cumulative distribution function (CDF) of the standard nor-
mal distribution function, f (®x∗) is the current best design variable
vector, and η = u( ®x )−f ( ®x ∗)

σ ( ®x ) . The advantage of EI is that it can auto-
matically trade off the exploitation versus exploration. Exploitation
means sampling the design variable vector where the f (·) predicts a
high value and exploration means sampling design variable vector
where the prediction uncertainty (i.e. variance) of f (·) is high.

We use a random sampling method to generate the design vari-
able vectors for the next round of evaluation. We first generate a set
of random vectors in the domain of a user interface module, that
Hi = {®hi,1, ®hi,2, ..., ®hi,a } and ®hi, j ∈ X. Then we input the random
vectors Hi into the acquisition function EI (·) to select the vector
®hi,∗ that maximizes EI (·), i.e. ®hi,∗ = arдmax ®hi, j ∈Hi

EI (®hi, j ). Then

we take ®hi,∗ as a candidate design variable vector ®xi . The random
sampling process is repeated b times to form a new set of design
variable vectors X l = {®x l1, ®x

l
2, ..., ®x

l
b }, where l denotes the order of

iteration round.

3.3 Lessons and remarks
There are several issues deserving attention in the proactive model
of FEELER. The first finding is about the design of the multiple-
choice question for crowdsourcing. There are two ways to design
the choice question. One is the Yes/No question letting participants
indicate whether she/he likes the design solution. The other one
is a five-point Likert question (1-not at all, 5-Extremely) letting
participants indicate different levels of his/her preference. We find
that Yes/No question is not suitable since most of the participants
tend to give a “No” answer. One possible reason is that users can
always find an unsatisfied point of the user interface module. Thus,
we adopt the five-point Likert question.

Second, some participants may not answer the questions seri-
ously and randomly select a choice. Such behavior will affect the
quality of the labeled ground truth. To avoid such a problem, we
randomly present duplicate questions to the same participants at
different times. If the answers for the same question is quite differ-
ent (the score difference is larger than 2), we think this participant is
unqualified, and remove all her/his answers. If a user always gives
extreme choices like 1 or 5, we also remove all her/his answers. The
participants did not know such filter rules.

Third, there is a trade-off to balance the number of labeled so-
lutions and the cost since the larger dataset requires higher cost.
In this stage, we design a simple formula to determine the num-
ber of labeled instances which is 3 · 2d where d is the dimension
number of design variable vector. The intuition of the formula is
that we hope there are at least two instances for each dimension,
and then we multiply it by 3 to increase the coverage of the sam-
pled vector over the space. Therefore, in each round, we generated
1500 (≈ 3 · 29 = 1536) design solutions of Search Box, and 800
(≈ 3 · 28 = 768) News Feed design solutions to be labeled.

4 OPTIMIZING COMPARISON-TUNING
MODEL

In the second stage of FEELER, we build a comparison-tuning model
based on the comparison among the best design solutions gener-
ated by the proactive model. However, the predicted score of the
proactive model is based on the five-point Likert question which
only reflects the vague subjective judgment for each design solution.
In this step, we refine the model by capturing superiority among
the best solutions. The main idea is that given the best solutions
generated by the previous stage, we randomly select a set of pairs of
design solutions, and then invite participants to rate which solution
is better. Examples about pairs of design solutions of Search Box
and Feed News are illustrated in Figure 6.

(a) Search box (b) News feed
Figure 6: Examples for solution comparison. Given a pair of de-
sign solution, participants rate which one is better.

4.1 Generating candidate solution pairs
The generation of design solution pairs is based on the proactive
model built on the first stage of FEELER. In this step, we first
randomly generate a large amount of design solution and then
select a set of the best design solutions based on the proactive
optimized in Section 3. Then we randomly construct a set of design
solution pairs from the best design solutions set. These solutions
pairs are sent to the crowdsourcing platform for preference rating.
In our crowdsourcing platform, we use 20 participants to rate each
solution pair and determine the preference order by majority voting.

This process can be formally described as follows. We random
generate a large set of design solutions X ′ = {®x ′1, ..., ®x

′
N } that

N → ∞ (we set N = 30, 000). Given the proactive model f (·), we
select a small subset of design solutions X = {®x1, ..., ®xn }(n ≪ N
and X ⊂ X ′) that f (®xr ) ≥ f (®x ′s ) if ®xr ∈ X and ®x ′s ∈ X ′⋂ ®x ′s < X .
Then after the collective labeling by the participants on the platform,
we can obtain a set of observed comparison labels on the design
solution pairs, which can be denoted as R = {®xmi ▷ ®xmj ,m =
1, ...,M} where ®xmi ∈ X and ®xmj ∈ X , and ®xmi ▷ ®xmj means design
solution ®xmi is rated better than solution ®xmj voting by participants.

4.2 Optimization
Our next objective is to optimize a new comparison-tuning model
д(·) which can return preference score for a design solution with
the preference relation observed in the data R = {®xmi ▷ ®xmj , 1 ≤



m ≤ M}. Hereafter we refer ®xi and ®x j in R with omittingm for sim-
plifying the notation. In this stage, we also assume the comparison-
tuning model д(·) as Gaussian Process, and adopt a preference
learning method based on GP [5, 11, 24, 25].

In order to take into account a measure of the variability in user
judgement, we introduce a noise tolerance ϵ to the comparison-
tuning modelд(·)which is similar with the TrueSkill ability ranking
model [1, 10]. The actual score for a solution is д(®xi ) + ϵi where ϵi
is Gaussian noise of zero mean and unknown variance δ2, i.e. ϵi ∼
N(ϵi |0,δ2). The variance δ2 is fixed across all design solutions and
thus takes into account intrinsic variability in the user judgement.
Then the likelihood function to capture the preference relation of
data R is:

P(®xi ▷ ®x j |д, ϵi , ϵj ) =
{
1 i f д(®xi ) + ϵi > д(®x j ) + ϵj
0 otherwise

(4)

The marginal likelihood of P(®xi ▷ ®x j |д) over the Gaussian noise
N(0,δ2) is:

P(®xi ▷ ®x j |д) =
∫ ∫

P(®xi ▷ ®x j |д, ϵi , ϵj )N(ϵi |0,δ2)N(ϵj |0,δ2)dϵidϵj .
(5)

According to Eqn. 4, we have P(®xi ▷ ®x j |д) = Φ(д( ®xi )−д( ®x j )√
2δ

) where
Φ(·) is the cumulative normal distribution function.

The posterior probability of the comparison-tuning model д(·)
is [26]:

P(д |R) = P(д)P(R |д)
A

, (6)

where д = [д(®x1),д(®x2), ...,д(®xn )]T and the normalization denom-
inator A = P(R) =

∫
P(д)P(R |д)dд is called the marginal likeli-

hood.
We assume that prior probability P(д) is a zero-mean Gaussian

process:

P(д) = N(д |0,K), (7)

where the Gram matrix K (refer to Eqn. 2) is computed over all
design solution vector appearing in solution pair data R.

The likelihood P(R |д) is the joint probability of the observed
solution pairs given the model д(·) which is a product of Eqn. 4:

P(R |д) =
∏

®xi▷®x j ∈R
P(®xi ▷ ®x j |д). (8)

The hyper-parameters in the Bayesian framework are the noise
variance δ2 and the kernel width ∆ of RBF kernel. Learning of
the hyper-parameters can be formulated as searching optimal val-
ues of the hyper-parameters that maximize the marginal likeli-
hood P(R) =

∫
P(д)P(R |д)dд which is also called the evidence for

the hyper-parameters. However, P(R) is analytically intractable.
There are two categories of methods to solve the marginal like-
lihood which are 1) approximation method like Laplace approxi-
mation [17] and expectation propagation [18]; and 2) stochastic
simulation method like Monte Carlo (MC) Simulation [8] or Markov
Chain Monte Carlo (MCMC) Simulation [2]. In this paper, we adopt
Laplace approximation in our framework mainly following the
method in [5].

The inference learning of the hyper-parameters can be briefly
explained as follows, and the detailed explanation can be found in
[5]. The posterior probability of P(д |R) is P(д |R) ∝ P(R |д)P(д).
Therefore, themaximum a posteriori (MAP) estimation ofд (i.e.д∗ =
argmaxдP(д |R)) appears in the mode of the following function:

z(д) = log(P(R |д)P(д)) =
∑

®xi▷®x j ∈R
logΦ(

д(®xi ) − д(®x j )√
2δ

) − 1
2д

TK−1д.

(9)

Since we have ∂z(д)
∂д |д=д∗ = 0, Newton method can be used to find

the MAP point of Eqn. (9).
The Laplace approximation of P(д |R) refers to carrying out the

Taylor expansion at the MAP point д∗ up to the second order for
z(д):

z(д) ⋍ z(д∗) − 1
2 (д − д

∗)TΛ∗(д − д∗), (10)

where Λ∗ is the Hessian matrix of −z(д) at MAP point д∗. Λ∗ can
be re-written as Λ∗ = Ω∗ + K−1 and Ω∗ is an square matrix whose

elements are
−∂2 ∑ logΦ( д( ®xi )−д( ®xj )√

2δ
)

∂д( ®xi )∂д( ®x j ) |д=д∗ . Then we have:

P(д |R) = exp{z(д)} ∝ exp{−1
2 (д − д

∗)TΛ∗(д − д∗)}, (11)

which means we can approximate the posterior distribution P(д |R)
as a Gaussian distribution with mean as д∗ and covariance matrix
as (Ω∗ + K−1)−1.

By basic marginal likelihood identity (BMI) [4], we can get the
marginal likelihood P(R) (or evidence) as:

P(R) = P(R |д∗)P(д∗)
P(д∗ |R) . (12)

Eqn. (12) can be explicitly computed by combining Eqn. (7), Eqn.
(8) and Eqn. (11). Then we can adopt a gradient descent method to
learn the optimal values for the hyper-parameters.

4.3 Prediction
Now given a test design solution ®xt , we would like to obtain its
posterior predictive distribution which is:

p(д(®xt )|R) =
∫

P(д(®xt )|д)P(д |R)dд. (13)

As we have expressed in Eqn. (7), we assume that P(д) follows
a zero-mean Gaussian Process, then according to Eqn. (2) and Eqn.
(3) we have:

P(д(®xt )|д) = N(д(®xt )|kTK−1д,κ(®xt , ®xt ) − kTK−1k). (14)
According to Eqn. (11), we can approximate the distribution P(д |R)
as a Gaussian distribution with д |R ∼ N(д∗, (Ω∗ + K−1)−1). Thus,
the posterior predictive distribution p(д(®xt )|R) defined in Eqn. (13)
can be explicitly expressed as a Gaussian N(д(®xt )|ut ,δ2t ) with:

ut = kTK−1д∗ (15)

δ2t = κ(®xt , ®xt ) − kT (K + Ω∗−1)k (16)

Note that varianceδ2t is simplified as: (kTK−1)T (K−1+Ω∗)(kTK−1)+
κ(®xt , ®xt ) − kTK−1k = κ(®xr , ®xr ) − kT (K−1)T (K−1 + Ω∗)(K−1)k =
κ(®xr , ®xr ) − kT (K + Ω∗−1)k. Thus, given any design solution ®xt we



can compute the posterior predictive distribution of this solution.
Usually, we can use the mean ut as predicted score, and use δt to
form confidence intervals.

4.4 Remarks
Here we discuss several practical issues about the comparison-
tuning model. First of all, instead of using the comparison-tuning
model directly, we use a two-stage method to learn the oracle model.
It is possible to construct the comparison-tuning model without the
first stage of FEELER. However, in that case, we will build a model
to rank the design solutions in the whole domain. Since there is an
almost infinite number of design solutions for each user interface
model, building such a model requires a very high labor cost to
label the data. It is not practical to obtain a reasonable model in
this manner.

Second, the comparison learning method can achieve better per-
formance than the purely active learning method. Participants can
only give a vague judgment about the design solution, whereas
they can better capture the slight difference when they compare
them in pairs. Our experiments also demonstrate our claim.

Third, in order to finish the comparison task, all participants
were required to conduct this task using mobile phone simulator
on PCs. We do try our best to simulate the experience to use the
smartphone.

Fourth, in this stage, suppose we select top n best design solu-
tions, we random sample 2 · n pairs from the best design solutions,
i.e. M = 2 · n. In our experiment, we select the best 500 solutions
based on the model in the first stage and then generate 1000 pairs
to train the model.

5 EXPERIMENTS
We first present the settings as well as experiment evaluations on
our method. We also present an in-depth discussion on how to
utilize FEELER to quantitatively analyze the design variables.

5.1 Settings
5.1.1 Competitors. Actually, there is no direct competitor for the
exploration of a user interface module. Though somemachine learn-
ing algorithms can be trained on the dataset generated by FEELER
(in two stages), simply using these competitors cannot solve the
user interface module exploration problem. The experiments in this
section just verify the predictive capability of FEELER.

Here we use three groups of competitors to evaluate the perfor-
mance, which includes regression, classification, and learning-to-
rank. The first group contains regression models which directly
predict the preference score for each design solution, including
linear regression (LR) which has good interpretability, Support
Vector Regressor (SVR)[6] which performs well in small datasets
and Multilayer Perception Regressor (MLPR) which is a deep learn-
ing model with high capacity. The second group is made up of
classification models. We process the preference scores into binary
labels by considering a design solution good (labeled as 1) if its
preference score higher than 2.5, else it as a bad solution (labeled
as 0). Then we implement two binary classifiers as the competitors
which are Logistic Regression(LogiR) and Multilayer Perceptron
Classifier(MLPC). The third group is a learning-to-rank model

with assuming there is only one group in the whole dataset. We
use the XGBoost(XGB) [3] with setting loss as “rank:pairwise” to
perform pairwise labeled comparison dataset. We use Proactive-GP
to denote the proactive model built by FEELER in stage one.

5.1.2 Dataset. We conduct our experimental evaluations on two
datasets generating from Search Box and News Feed of the Baidu
App. The labeled data in the proactive model stage is used as ground
truth. Note that such labeled data may not be real ground truth, but
can relatively reflect the properties of good design solutions. We
randomly split the last round of labeled data in the proactive stage
into 80%, 10%, and 10% data as train, validation and test dataset.
Then we add the labeled data of all previous rounds into the train-
ing data. There are two rounds of data labeling in stage one in
our experiment. Search Box has 1500 while News Feed has 800
labeled instances in each round. For the comparison-tuning model
(of FEELER) and XGB (of the learning-to-rank model), we use the
same 1000 solution pairs to train the model while the testing set is
the same with other baselines.

5.1.3 Metrics. Here we adopt the Average Precision (AP) and Nor-
malized Discounted Cumulative Gain (NDCG) as the metrics [14].
To calculate the metrics, we rank all design solutions by their prefer-
ence score labeled by participants, and then we sort all the predicted
results of models above to obtain predicted rankings. Please refer to
Appendix A.1 about the description of the metrics. By default, we
set the default threshold ρ of AP as 0.1 and the default fold number
n in NDCG as 15.

5.2 Performance evaluation
Table 1: Performance comparison on AP and NDCG.

Dataset Search Box News Feed
Model AP NDCG AP NDCG

FEELER 0.226 0.668 0.275 0.673
Proactive-GP 0.167 0.648 0.129 0.544

LR 0.185 0.604 0.156 0.578
SVR 0.159 0.570 0.117 0.474

MLP-R 0.182 0.590 0.134 0.526
LogiR 0.164 0.588 0.156 0.556
MLP-C 0.149 0.576 0.154 0.525
XGB 0.181 0.599 0.130 0.515

Table 1 shows the prediction performances of FEELER and its
competitors on AP and NDCG metrics. As we can see, FEELER
achieved higher AP and NDCG than other models on both the
Search Box dataset and the News Feed dataset. Moreover, FEELER
could do a better job than Proactive-GP, which demonstrates the ef-
fectiveness of our second stage to build a comparison-tuning model.
We also evaluate the performance of proactive-GP by comparing
with other regression models under Mean Absolute Error in Ap-
pendix A.2. Note that FEELER can not only predict the preference
score for each design solution but also conduct variable analysis
which is discussed in Section 5.3.

Figure 7 shows the NDCG with different fold number n. As
we can see from Figure 7, all the competitors declined drastically
with the increasing of fold number n since they could not rank the
solutions properly, because larger fold number means a more strict
condition for correct ranking. Meanwhile, the NDCG of FEELER



(a) Search box (b) News feed
Figure 7: NDCG with varying fold number n.

is always larger than all competitors, meaning FEELER can make
a better prediction with fine-grained ranking. This is especially
useful for user interface design since we care more about how to
find the best design solutions from good solutions.

5.3 Utilization of FEELER for variable analysis
The most important application of FEELER is to predict the prefer-
ence score given a design solution. Using our developed tool, the
designers of the Baidu App can adjust different design variables to
see the trend of preference score. Moreover, FEELER also provides
a mechanism to quantitatively analyze the design variables. We
discuss this in this section.
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(a) Icon Size of Search Box (b) Font Size of News Feed
Figure 8: Distribution of top design solutions.

5.3.1 Distribution of top design solutions. We first showcase the
relationship between the preference score and the design variables
by calculating the distribution of top design solutions. To conduct
such analysis, we randomly generate 30,000 design solutions for
Search Box and News Feed respectively and then use FEELER to
predict their score. Then we select the top 500 and top 100 design
solutions with the highest score. Figure 8(a) shows the distribution
under the design variable icon size for Search Box; and Figure
8(b) shows the distribution under the design variable f ont size .
From both figures, we can find that the distribution of Top500
solutions and Top100 solutions are almost consistent with similar
peak values. (The distribution of Top100 are more concentrated.)
Figure 8 can also help us determine the best values for each design
variables. The green area in Figure 8 is the proper range of the
design variables given by designers. We can see that most of the
good design solutions are within such given intervals. Moreover,
we can also find the best value (i.e. peak value in Figure 8) of design
variables that has the largest chance to get the highest preference
score. Such peek values for these design variables are unknown by
the designer.

(a) (b)
Figure 9: Multivariate density distribution with varying design
variables. (a): Search box with varying Icon Size; (b): News Feed
with varying Font Size.

5.3.2 Multivariate density distribution of design variables. Since
FEELER is a statistical model, we can build the multivariate density
distribution of design variables to show the correlation distribution
between preference score and design variables. Figure 9 shows such
distribution on Search Box(icon size vs preference score) and News
Feed (f ont size vs preference score). By the multivariate density
distribution, we can analyze the effect of a single variable on the
preference score. For example, as shown in Figure 9, with varying
the design variables (icon size and f ont size), the probability density
distribution of preference score is changed. We can also see that
f ont size of News Feed has a larger impact on the probability
density distribution than the one of icon size of Search Box.

5.3.3 Variable correlation analysis. FEELER can also help us to
observe the interaction relations between design variables. Figure
10 shows the joint distribution of two design variables of Top500
design solutions of Search Box and News Feed via bubble diagram.
In both figures, the larger the bubble in the figure, there are more
design solutions with the design variables being indicated by the
bubble. Therefore, the bubble diagram figures can help us observe
the correlation among design variables, which can help designers
make decisions. For example, assume the designer has fixed icon
size as 85px for Search Box, the best range of f ont size for Search
Box should be about 55px to 58px . Using FEELER, designers could
easily choose proper values for design variables.

(a) Search Box (b) News Feed
Figure 10: Variable correlation on Top500 design solutions.
(a)Icon Size vs Font Size of Search Box; (b) Font Size vs Line Spacinд
of News Feed.



6 RELATEDWORK
There are only a few existing works related to our paper. In [21],
the authors propose a solution to evaluate the design concept of
a product which is quite different from a user interface. However,
the proposed method in [21] is solely based on survey data and
no machine learning methods are discussed. Authors in [12] also
discuss how to design a user-friendly machine learning interface
with the user experience and research scientist collaboration. It is
also a survey-based method without utilizing any machine learning
technology. A mobile interface tappability prediction method had
been investigated recently [23], but this method does not touch the
user interface module design problem. There are also some recent
studies to predict touchscreens tappability [23] and accessibility
[9], but these methods usually make predictions based on existing
screens, without investigating how to help designers optimize and
generate design solutions. In recent years, there are also some
works to utilize the machine learning and deep learning to model
and predict human performance in performing a sequence of user
interface tasks such as menu item selection [15], game engagement
[13, 16] and task completion time [7]. To the best of our knowledge,
there is no existing work to utilize machine learning to assist the
user interface design of mobile App with collective learning.

7 CONCLUSION, LESSONS ANDWHATÂĂŹS
NEXT

We investigated to explore the best design solution for a user in-
terface module of a mobile app with collective learning. FEELER
collects user feedback about the module design solution in a process
of multiple rounds, where a proactive model is built with active
learning based on Bayesian optimization, and then a comparison-
tuning model is optimized based on the pairwise comparison data.
Thus, FEELER provides an intelligent way to help designers explore
the best design solution for a user interface module according to
the user preference. FEELER is a statistical model with Gaussian
Processes that can not only evaluate design solutions and identify
the best design solutions, but also can help us find the best range
of design variables and variable correlations of a user interface
module. FEELER has already been used to help the designers of
Baidu to improve the user satisfaction of the Baidu App, which is
one of the most popular mobile apps in China.

There are several lessons learned from our method. First of all,
machine learning methods can help us to identify the best design
solution for a user interfacemodule, which shed some light on a new
machine learning-based user interface design paradigm. Second,
FEELER can also help designers to understand the hidden rules
for good design solutions of a user interface module. We can use
FEELER to identify the impact of a single factor and reasonable
range of design variables without having to exhaustively manually
evaluate all the design solutions.

We will continue to extend FEELER to be a general tool to im-
prove the user satisfaction of other mobile apps. Moreover, it also
deserves research attention to investigate how to apply the method-
ology of FEELER to generate the whole user interface of a mobile
App, which is a more challenging problem due to the complexity
of the user interface.
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A MORE EXPERIMENTS
A.1 Metrics
Average Precision (AP) is employed to evaluate the performance
of ranking. Given an user-labeled ranking and a predicted ranking,
we could compute AP by:

AP =
1
K

N∑
i=1

(si
i
(
i∑
j=1

si )), (17)

where N is the number of design solutions in user-labeled ranking
as well as predicted ranking. We set the score value s of top K =
ρN (0 < ρ < 1)(ρ is called threshold) design solutions in user-
labeled ranking data as 1 and otherwise 0. In the predicted ranking,
for the i-th solution we obtain its score value si according to its
score in the original rank in user-labeled ranking data.

Normalized Discounted Cumulative Gain (NDCG) is another
metric. To compute NDCG, we cut the user-labeled ranking data
into n folds, each fold containsm design solutions. We mark the
scores of m design solutions in j-th fold as the same, which is
S = n− j + 1. For each design solution in the predicted ranking data,
we obtain its score value si according to its score in the original
rank in user-labeled ranking data. In this way, we can compute
NDCG by:

DCG =
n×m∑
i=0

2si − 1
loд2(i + 1)

(18)

IdealDCG =
n×m∑
i=0

2Si − 1
loд2(i + 1)

(19)

NDCG =
DCG

IdealDCG
(20)

By default, we set the ρ of AP as 0.1 and the n of NDCG as 15,
which are selective enough without losing too much variety.

We also use Mean Absolute Error (MAE) to evaluate the perfor-
mance of score predicting by regression model:

MAE =
1
N

N∑
i=1

|labeli − predi |, (21)

where N is the number of design solutions in testing set while
labeli and predi are the actual score and prediction score of i-th
design solution respectively.

A.2 Evaluation of Proactive-GP
Table 2: Performance comparison on MAE.
Model/Datasets Search Box News Feed
Proactive-GP 0.476 0.208

LR 0.424 0.233
SVR 0.437 0.244
MLPR 0.427 0.222

We evaluate the performance of Proactive-GP by comparing it
with other regression models under MAE. As shown in Table.2,
Proactive-GP achieved 0.476 and 0.206 Mean Average Error(MAE)
on Search Box dataset andNews Feed dataset respectively. Proactive-
GP does not always have the smallest MAE on all datasets compared
with baselines. It is because the main objective of Proactive-GP is
to balance the exploitation versus exploration trade-off, whereas
accurate prediction is not its main optimization task.
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