
FePIM: Contention-Free In-Memory Computing Based on

Ferroelectric Field-Effect Transistors

Xiaoming Chen*#, Yuping Wu#, Yinhe Han
#Equal contribution. *Corresponding author (chenxiaoming@ict.ac.cn).

Institute of Computing Technology, Chinese Academy of Sciences

University of Chinese Academy of Sciences

Beijing, China

ABSTRACT

The memory wall bottleneck has caused a large portion of the

energy to be consumed by data transfer between processors and

memories when dealing with data-intensive workloads. By giving

some processing abilities to memories, processing-in-memory (PIM)

is a promising technique to alleviate the memory wall bottleneck.

In this work, we proposed a novel PIM architecture by employing

ferroelectric field-effect transistors (FeFETs). The proposed design,

named FePIM, is able to perform in-memory bitwise logic and add

operations between two selected rows or between one selected

row and an immediate operand. By utilizing unique features of

FeFET devices, we further propose novel solutions to eliminate

simultaneous-read-and-write (SRAW) contentions such that stalls

are eliminated. Experimental results show that FePIM reduces 15%

of the memory access latency and 44% of the memory access energy,

compared with an enhanced version of a state-of-the-art FeFET-

based PIM design which cannot handle SRAW contentions.

CCS CONCEPTS

•Hardware→Non-volatilememory;Emerging architectures.

KEYWORDS

Ferroelectric field-effect transistor, processing-in-memory, data con-

tention

ACM Reference Format:

Xiaoming Chen, Yuping Wu, Yinhe Han. 2021. FePIM: Contention-Free

In-Memory Computing Based on Ferroelectric Field-Effect Transistors. In

26th Asia and South Pacific Design Automation Conference (ASPDAC ’21),

January 18–21, 2021, Tokyo, Japan. ACM, New York, NY, USA, 6 pages.

https://doi.org/10.1145/3394885.3431530

1 INTRODUCTION

In the past decades, the performance gap between processors and

memories has been continuously widened [13], which is known as

the memory wall bottleneck. The recent development of big-data

applications has further exerted great pressure to the conventional

computer architecture. Due to the high cache miss caused by the

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

ASPDAC ’21, January 18–21, 2021, Tokyo, Japan

© 2021 Association for Computing Machinery.
ACM ISBN 978-1-4503-7999-1/21/01. . . $15.00
https://doi.org/10.1145/3394885.3431530

irregular memory access patterns and the high volumes of data, a

huge amount of data needs to be transferred between processors

and memories through the narrow off-chip memory bus. It is re-

ported that a data access from the dynamic random-access memory

(DRAM) consumes three orders of magnitude higher energy then a

simple arithmetic operation [8]. As a result, the energy consump-

tion of data movement can be over 60% and up to over 90% of the

total energy consumption for big-data applications [19].

Processing-in-memory (PIM) is a promising technique to al-

leviate the memory wall bottleneck. By integrating some light-

weight processing units into the main memory, the pressure of

processor-memory data movement can be dramatically relieved.

There are roughly two categories of modern PIM implementations.

The first implementation takes advantage of 3D integration and

places the processing units on the bottom layer of the 3D stacking

(e.g., [1, 5, 14]). The second implementation employs emerging non-

volatile memory devices and modifies the peripheral circuitry to

perform in-memory bitwise logic operations without the require-

ment of 3D integration, resulting in a more cost-efficient solution. In

recent years, people have proposed the second-category PIM archi-

tectures based on resistive random-access memories (RRAMs) [4, 9],

spin-transfer torque random-access memories (STT-RAMs) [10],

phase-change memories (PCMs) [12], and ferroelectric field-effect

transistors (FeFETs) [15].

Despite the aforementioned nonvolatile device based PIM de-

signs are claimed to achieve high energy efficiency and/or perfor-

mance, there are several practical and important issues that have

never/rarely been considered, potentially preventing applications

benefiting from PIM architectures. Most of the existing PIM designs

only provide in-memory bitwise logic operations without consider-

ing write back. How to efficiently control write back is an inevitable

issue. Consider a normal case where a PIM operation is completed

and the result needs to be written back. Meanwhile, we need to read

some data out for the subsequent PIM operations. The write back

and read operations may contend. In a way, this problem is similar

to the data hazard issue in the pipeline architecture of processors.

Though Ref. [11] proposed an FeFET-based memory design that

supports direct write back in the same clock cycle of PIM opera-

tions, it has two major drawbacks. First, the cells that are not being

written are 𝑉DD/2 biased, putting them in an unstable state as the

𝑉DD/2 bias may perturb the ferroelectric polarization. Second, direc-
t write back requires some signals to be switched at some on-the-fly

conditions within a clock cycle, which is difficult to implement

and vulnerable to variations. Instead, latching the PIM result and

writing it back in the next clock cycle is still the most reliable way.

However, when scheduling write back, PIM operations and normal

114

http://crossmark.crossref.org/dialog/?doi=10.1145%2F3394885.3431530&domain=pdf&date_stamp=2021-01-29

ASPDAC ’21, January 18–21, 2021, Tokyo, Japan X. Chen, Y. Wu and Y. Han

memory operations together, practical applications can frequent-

ly cause simultaneous-read-and-write (SRAW) contentions. This

problem has never been studied in PIM. If such data contentions

are not well handled, the PIM processing units have to be stalled

until contentions disappear, resulting in performance loss.

In this work, we employ FeFETs to build a contention-free PIM ar-

chitecture. Compared with RRAMs, STT-RAMs and PCMs, FeFETs

have two unique advantages. First, the OFF-state current of FeFETs

is negligibly small (experiments have demonstrated 10−12A or even

10−15A OFF-state currents [17, 21]), which helps reduce the en-

ergy consumption. More importantly, FeFETs are three-terminal

devices and the read and paths are separated. This offers a higher

flexibility when designing FeFET-integrated circuits (e.g., multi-

functional PIM memories [22]). In addition to designing a PIM

architecture which supports in-memory logic and add operations,

the data contention problem is introduced and solved by utiliz-

ing the separated-read-and-write-paths feature of FeFETs1. Our

contributions are summarized as follows.

• We propose an FeFET-based PIM architecture named FePIM.

Compared with existing PIM designs, FePIM is a complete

PIM architecture with controllers, which operate according

to an elaborated finite state machine (FSM). The controller

not only enables the cooperation of the normal memory

operations and PIM operations, but also handles in-memory

data contentions.

• We introduce the data contention problem in the FeFET

memory array.We design a novel FeFET-basedmemory array

architecture that natively supports SRAW operations on

different rows.

• We further propose a forwarding mechanism that supports

SRAWoperations on the same row. These are two impor-

tant features of FePIM to eliminate stalls caused by SRAW

contentions.

• As far as we know, this is the first time the data contention

problem has been introduced and solved in PIM architec-

tures.

2 PRELIMINARY

An FeFET is made by integrating a ferroelectric material layer in

the gate stack of a metal-oxide-semiconductor field-effect transis-

tor (MOSFET), as shown in Fig. 1a. FeFETs are compatible with

MOSFETs [18]. The behavior of an FeFET strongly depends on the

ferroelectric layer material and thickness. By properly selecting the

ferroelectric layer thickness, a hysteresis loop in the 𝐼DS-𝑉G curve

can be obtained [6] so as to introduce nonvolatility into the device.

We adopt a SPICE-compatible FeFET simulation model from [3].

Fig. 1b shows a simulated hysteresis curve when the ferroelectric

layer thickness is 5.4nm. The existence of the hysteresis curve

indicates that the state of an FeFET can be read out by setting a

proper𝑉G (e.g.,𝑉G = 0V in the case of Fig. 1b) at a fixed nonzero𝑉D.
In this case, we can obtain two possible values of 𝐼DS, i.e., 𝐼ON or

𝐼OFF, depending on the state of the FeFET (i.e., ON or OFF), which in

turn, depends on the ferroelectric layer polarization. When standby,

1Contention in this paper refers to in-memory contention. Contention between pro-
cessors and memories, which is the coherence issue [20], is out of the scope of this
paper.

DrainSource
Oxide
Metal

Gate

Substrate

Ferroelectric

(a)

0

50

100

-0.4 -0.3 -0.2 -0.1 0 0.1 0.2 0.3 0.4

I D
S(
uA
)

VG(V)

VD=0.1V VD=0.2VVD VD

(b)

Figure 1: FeFET background. (a) FeFET structure. (b) Simu-

lated hysteresis curve.

�������������������	��

��������

���

���

	����

�����

���

Figure 2: Top-level diagram of FePIM architecture.

�����
�����
���

��
����

�������
��
!

"��#�
��$�����#
%

&��
�� ��#

���

����

���

��$��

	����

�������
��
'

����

��������

���$��

	����

(
��

������

������
������

���#��

	����

Figure 3: Bank architecture of FePIM.

a proper bias voltage (e.g., 0V in the case of Fig. 1b) is needed to

the gate terminal of an FeFET to maintain its polarization.

To change the polarization of the ferroelectric layer and also

change the state of an FeFET, we need to supply a positive or

negative 𝑉G pulse with a proper magnitude (e.g., 0.4V according

to Fig. 1b) to the gate terminal. The applied 𝑉G pulse produces a

positive or negative electric field on the ferroelectric layer, and

changes its polarization. FeFETs are nonvolatile, meaning that the

ferroelectric layer polarization maintains after power off.

3 FEPIM ARCHITECTURE

3.1 Architecture Overview

The top-level architecture of FePIM is shown in Fig. 2. Similar to

the conventional memory architecture, FePIM is also constituted

by a set of banks. To schedule PIM operations, we add a global

115

FePIM: Contention-Free In-Memory Computing Based on Ferroelectric Field-Effect Transistors ASPDAC ’21, January 18–21, 2021, Tokyo, Japan

SL

BL

WL

(a)

RSL
WSL

BL SL

(b)

("�
)"�

"�

��
��
(���

��
��
)���

(c)

Figure 4: Existing FeFET memory designs (2×2 example). (a)

1T cell [16]. (b) 2T cell [7]. (c) 3T cell [15].

PIM controller in the memory. The global controller receives a PIM

command in each clock cycle, decodes the command, and sends the

command to the proper bank(s) to execute PIM operations.

Bank is the core component of FePIM. Fig. 3 shows the bank

architecture of FePIM. The primary components of a bank are an

FeFET memory array, sense amplifiers (SAs) and PIM logics, a bank

controller, two forwarding rows (FwRows), and other peripheral

circuitry. The bank controller receives commands from the global

controller and generates all the control signals as well as the ad-

dresses to schedule PIM operations in the bank. The bank controller

operates based on an finite state machine (FSM), which is described

in Section 3.6. The FeFET memory array has two primary func-

tionalities: memory mode and PIM operation mode. In the memory

mode, it works similar to a conventional random-access memory

(RAM). In the PIM operation mode, typically two rows are select-

ed (PIM operations between one selected row and an immediate

operand are also supported) and the result is produced by the SAs

and PIM logics. The SA design and PIM logics are introduced in Sec-

tion 3.3. We do not explicitly differentiate the two modes because

the SAs and other peripheral circuitry are common for both modes.

We propose two novel techniques to deal with SRAW contentions

so stalls caused by SRAW contentions are completely avoided. The

details are described in Sections 3.2 and 3.4.

3.2 FeFET Memory Design

Before introducing our new design, we first briefly review existing

FeFET memory designs based on 1T cells [16], 2T cells [7] and

3T cells [15], as shown in Fig. 4. The 1T cell based memory only

supports column-wise write and row-wise read, which requires a

complex peripheral circuitry. It cannot support SRAW operations

due to the fact that the bit line (BL) voltages for read and write

operations conflict. For write, the BL corresponding to the writing

column is set to 𝑉DD and all the other BLs are set to 0. For read,

all BLs are set to 𝑉READ. This implies that, there is no way to set
common BL voltages to perform read and write operations at the

same time. Although the 2T cell and 3T cell based memory designs

both support row-wise read and write, they cannot support SRAW

operations either. The reason is the same. For read, the BLs are

set to 0 to maintain the FeFETs’ polarizations. For write, the BLs

are set to the writing voltages. Consequently, if the read and write

operations happen simultaneously, we are not able to set a common

set of BL voltages that can support both read and write operations.

Supporting SRAW operations is important for PIM. We consider

a simple example which involves two general PIM commands: a

("�
)"�

�� "�

*�)

*�(

+�
����

Figure 5: Proposed 3T-cell memory (2×2) supporting SRAW

operations on different rows.

Table 1: Voltage settings for memory operations.
Read Write

Standby
Sel. row Unsel. row Sel. row Unsel. row

RSL 𝑉READ 0 0 X 0
WSL −𝑉DD −𝑉DD 𝑉DD −𝑉DD 0
BL X ±𝑉WRITE 0
SL 0 (for sensing) 0 0

‘X’ means don’t-care.

= b op1 c and d = e op2 f, where op1 and op2 are two PIM
operators. During the first clock cycle, b and c are read out and a is
calculated. During the second clock cycle, we need to write back a
and also read out e and f for the second command. If the memory
cannot support SRAW operations, we have to write back a first
and stall the second command for one clock cycle. In this case, if

we have 𝐾 such PIM commands, we need 2𝐾 cycles to finish them,

which spends double time of what we expect.

To overcome this challenge, we propose a novel FeFET memory

design based on a new 3T cell design, as shown in Fig. 5. According

to the above analysis on the existing FeFET memory designs, the

key to support SRAW operations on different rows is to liberate

BLs during read, because the BLs may be used for write. However,

during read, the gate terminals of the FeFETs must be grounded

to maintain the FeFETs’ polarizations. Without the functionality

of the BLs during read, the gate terminals of the FeFETs will be

floating which may lead to wrong read results. Moreover, the leak-

age currents of the floating gates may lead to polarization loss.

To solve this problem, we use two access transistors in each cell.

The access transistors for read (ATRs) behave like the conventional

access transistors in the existing 2T cell and 3T cell based memory

designs. We add the access transistors for write (ATWs) to set the

gate voltages of the FeFETs during read. The new FeFET memory

design enables SRAW operations on different rows.

For write, only one write select line (WSL) is activated. The BLs

are set to ±𝑉WRITE according to the writing values. The values will

be programmed into the activated row of the FeFETs through the

ATWs. For all inactivated rows, since the WSLs are −𝑉DD, the gate
terminals of the FeFETs are grounded through the ATRs so that

their polarizations are also maintained. For read or PIM operations,

we activate one or two read select lines (RSLs). The read result

or the PIM operation result between two activated rows is read

from the sense lines (SLs) through the SAs. The voltage settings for

memory operations are shown in Table 1.

Now we consider SRAW operations on different rows. For the

row selected to write, its RSL is grounded. Hence,𝑉DS of the FeFETs
in the writing row is always 0. This implies that the write operation

will not affect the SL currents. For the one or two rows selected to

116

ASPDAC ’21, January 18–21, 2021, Tokyo, Japan X. Chen, Y. Wu and Y. Han

V(�*,
-V,,

/
V,,

V)(��� -V)(���

(a)

-1

0

1

0 5 10 15 20 25 30

W
SL
2(
V
)

-1

0

1

0 5 10 15 20 25 30

B
L
1(
V
)

-1

0

1

0 5 10 15 20 25 30
B
L
2(
V
)

0

25

50

0 5 10 15 20 25 30

SL
1(
uA
)

0

5

10

0 5 10 15 20 25 30

SL
2(
uA
)

Time (ns)

(b)

Figure 6: (a) Example of SRAW operations (read on the first

row and write on the second row). (b) Simulated waveforms

of SRAW operations.

� �

"�

�
�

�
�

V�(

V*9,

":�

��:�

��9

(�*,��(
9�(��9;

9*9,
*9,

<�(
<9�(

����
*���

Figure 7: Schematic of SA and PIM logics.

read, since their WSLs are set to −𝑉DD, the gate terminals of the
FeFETs are grounded through the ATRs to maintain their polariza-

tions. Fig. 6a illustrates an example of SRAW operations. Fig. 6b

shows the simulated waveforms of this case. The two FeFETs in

the first row are ON and OFF respectively. From 10ns, we begin

to program the two FeFETs in the second row both to ON. The

simulated waveforms show that the SL currents of the first row are

not affected by the programming of the second row.

The success of supporting SRAW operations on different rows

comes from two facts: the liberation of the BLs during read and

the separated-read-and-write-paths feature of FeFETs. Due to the

latter, any two-terminal device cannot apply our approach since

the read and write paths are the same. Compared with the existing

memory designs without the support of SRAW operations, our

design reduces the clock cycles of PIM operations by half at most.

However, the current design cannot read and write the same row

at the same time. We propose a simple yet effective solution in

Section 3.4.

3.3 PIM Operations

FePIM can perform some bitwise logic operations and an add op-

eration between two memory rows or between one memory row

and an immediate operand. To realize PIM operations, one or two

memory rows are activated. The activated rows will contribute

currents to the SLs. Like the existing nonvolatile device based PIM

architectures [4, 9, 10, 12, 15], we also modify the SAs to sense the

SL currents. Our SA design is shown in Fig. 7. An operational ampli-

fier is used to clamp the SL voltage. The current output is converted

to voltage and then fed into two voltage comparators with two

reference voltages: 𝑉OR for sensing OR/NOR/INV/memory read

and 𝑉AND for sensing AND/NAND. The XOR/XNOR outputs are

"�

�9

>>>>>>

��(��
����

���
������
������

Figure 8: Schematic of a forwarding row.

produced by utilizing the AND and OR outputs at the same time.

By utilizing the XOR and AND outputs, a full adder is trivial to

construct. The output of the PIM logics is selected from all the logic

and adder outputs according to the PIM command.

3.4 Dealing With Data Contention by
Forwarding Rows

The FePIM architecture introduced till now solves the SRAW con-

tention problem on different rows, but cannot support SRAW op-

erations on the same row. SRAW operations on the same row can

also happen in practical applications. We consider another simple

example which involves two general PIM commands: a = b op1
c and d = a op2 e. In the second clock cycle, we write back the
result of the first command a, and at the same time, we intend to
read out a for the second command, bringing SRAW operations on

the same row. Without supporting SRAW operations on the same

row, we need to stall FePIM by one clock cycle. We introduce a

simple yet effective forwarding mechanism as follows.

As shown in Fig. 3, we add two FwRows at the bottom of the

memory array of each bank. The schematic of a FwRow is illustrated

in Fig. 8. The FwRows work as follows. If an SRAW contention

happens like in the above case, in the second cycle, the result of the

first command, a, which is stored in the output buffer, is forwarded
into one FwRow. a is written back to the memory in the second
cycle. Meanwhile, the second command can be executed by reading

the FwRow and the row that stores e. An activated FwRow behaves

like a memory row. In other words, an activated FwRow contributes

to the SL currents. With the FwRows, we realize an equivalent effect

of executing SRAW operations on the same row. Combined with

the FeFET-based 3T cell design, SRAW contentions are completely

avoided in FePIM, which is never achieved by existing nonvolatile

memory based PIM architectures.

As can be seen from Fig. 3, the inputs of the FwRows can be

selected as the input of a bank. In this case, FePIM can perform

PIM operations between a selected row and an immediate operand.

This is the secondary functionality of the FwRows, which is not

supported by existing nonvolatile device based PIM architectures.

It is also possible that two FwRows are both activated. Consider

the following two PIM commands: a = b op1 c and d = a
op2 0x12345678 (0x12345678 is a representation of an immediate
operand). In this case, in the second cycle, the first FwRow selects

a as input, and the second FwRow selects the immediate operand,

which is the input of the bank, as input.

3.5 Inter-Bank Data Movement

Data movement is needed when the two operands of a command

are not in the same bank. A data movement operation takes two

117

FePIM: Contention-Free In-Memory Computing Based on Ferroelectric Field-Effect Transistors ASPDAC ’21, January 18–21, 2021, Tokyo, Japan

����?

���>

���� "��� &��
@'

��#A

&��
@!

��
%
���>

�$�>A

"���

�#���

��$�
�

��$�
��

��$�
���
��$�
�;

����?

���>

&��
@!
��

%
!
��(��A

��$�
�

��$�
��

��$�
���
��$�
�;����������

����
@	�

(�(��A

&��
@!

��(��
%

���>
�$�>A

&��
@'

��(��#A

'
��#

����������

!
��

����������

����

����

9��
��

#���
	���

��
#���

	���

9�

����������

9�

����������

����������
9�

����������

9��
��

#���
	���

����

����

��
#���

	���

Figure 9: FSM of bank controller.

clock cycles. In the first cycle, the source bank reads the data to be

moved, which is written into the transfer buffer of the destination

bank in the second cycle. In the following cycles, in the destination

bank, the operand is fed into one FwRow and can be used for PIM

operations. Data movement brings inevitable pipeline stall. But

note that this is not a unique issue of FePIM. The previous PIM

architectures [4, 9, 10, 12, 15] all have the same issue. A possible

solution to reduce data movement is to optimize the data location

in the memory, which is out of the scope of this paper.

3.6 FSM of Bank Controller

The bank controller operates according to an FSM. The bank con-

troller not only schedules the memory load and store operations

and PIM operations, but also deals with SRAW contentions and

data movement. All PIM commands are classified into four types:

I) memory load, II) memory store, III) PIM operation between two

rows, and IV) PIM operation between one row and an immediate

operand.

The proposed FSM is illustrated in Fig. 9. Once a command is

fetched, the subsequent actions are determined based on the types

of the current and previous commands. If the previous command

is of type I, namely, memory load, then no SRAW contention can

happen. In this case, the command is dispatched and executed

normally. On the other hand, once a store operation (either a store

command or a write back of a PIM operation) is finished, we need

to check if there are SRAW contentions for the next command, if

the next command involves any read operation. If so, one or two

FwRows will be activated to handle the SRAW contentions. For

type III commands, we need to first check if the two operands are

in the same bank. If not, data movement is needed.

4 EVALUATION RESULTS

FePIM is simulated with HSPICE using the FeFET model proposed

in [3]. The 45nm predictive technologymodel [2] is used as the basic

MOSFET model. We use the following voltage settings: 𝑉DD = 1V,

𝑉READ = 0.1V and 𝑉WRITE = 1V. The baseline for comparison is an

Table 2: Comparison on energy consumption (in pJ) of basic

operations of a 1MB array with 32-bit word size.

Read Write PIM operation SRAW

[15] 45.65 45.02 75.72 90.07
Our design 59.63 63.57 79.35 65.01

Table 3: Memory access breakdown (%).

NCWs CWs NCRs CRs ContRs RwIOs

MA 0 33.33 0 66.67 33.33 0
HIST 0 33.33 0 66.67 33.33 66.67
QSORT 1.46 22.06 1.45 75.03 0 54.43
RSORT 12.5 25 0 62.5 25 50
XORENC 0 50 0 50 50 50
AES 9.89 23.08 13.46 53.57 26.79 4.95
KMP 0.14 0 1.81 98.05 0 0

KNAPSACK 0 20.04 39.98 39.98 20.04 0
DIJKSTRA 0.13 0.09 0.03 99.75 0.17 36.24
FLOYD 2.04 2.04 0 95.92 2.04 31.97

enhanced version of a state-of-the-art FeFET-based PIM design [15].

The memory array of the baseline is based on the existing 3T cell

design (Fig. 4c). We enhance [15] by adding the write back func-

tionality, but SRAW contentions cannot be avoided in the baseline.

4.1 Operation-Level Evaluation

We first perform an apple-to-apple comparison with [15] on the

energy consumption of basic operations. We also evaluate a 1MB

memory array with 32-bit word size (same as [15]). Table 2 lists the

energy consumption of read, write, PIM and SRAW operations. For

a single operation (a read, write or PIM operation), our memory

array consumes a little higher energy than the design of [15]. The

higher energy consumption mainly comes from the static power

of the inverters in each row of our memory array (see Fig. 5) and

the operational amplifiers in the SAs. However, if we consider an

SRAW operation, our memory array can reduce the energy by 28%,

since the memory design of [15] does not support SRAW operations

so it takes two clock cycles to finish an SRAW operation.

4.2 System-Level Evaluation

Here we perform evaluations on the entire FePIM architecture,

where the analog components are evaluated by HSPICE and the

controllers are implemented by Verilog and evaluated by Design

Compiler. The bank size is 1024×1024 and we assume 8 banks

in FePIM. The clock frequency is 500MHz. The baseline has the

same memory size for a fair comparison. We use 10 benchmarks

which are implemented by C to conduct a system-level evalua-

tion. The 10 benchmarks are from different areas, including matrix

add (MA), histogram (HIST), quick sort (QSORT), radix sort (R-

SORT), XOR encryption (XORENC), advanced encryption standard

(AES), Knuth-Morris-Pratt string matching algorithm (KMP), 0-1

knapsack problem (KNAPSACK), Dijkstra shortest path algorith-

m (DIJKSTRA), and Floyd shortest path algorithm (FLOYD). The

computation-to-communication ratio of the 10 benchmarks is low

so they are suitable for PIM architectures.

Table 3 lists the memory access breakdown of the 10 bench-

marks. Like the methodology described in [15], memory accesses

are classified into convertible writes (CWs), non-convertible writes

(NCWs), convertible reads (CRs) and non-convertible reads (NCRs).

For each benchmark, the sum of these four columns is 100%. Since

118

ASPDAC ’21, January 18–21, 2021, Tokyo, Japan X. Chen, Y. Wu and Y. Han

0.0
0.2
0.4
0.6
0.8
1.0 Baseline FePIM

Figure 10: Normalized memory access latency comparison.

0.0
0.2
0.4
0.6
0.8
1.0 Baseline FePIM

Figure 11: Normalized memory access energy comparison.

FePIM can handle SRAW contentions and PIM commands with

immediate operands, we also list the percentages of contending

reads (ContRs) and reads with immediate operands (RwIOs) in the

last two columns. CRs refer to those memory reads that can be

converted to a PIM command, i.e., two successive reads with an

operation or one read followed by an operation with an immediate

operand. ContRs refer to those memory reads that contend with

previous write operations. CWs refer to those memory writes that

are associated with PIM operations.

Fig. 10 shows the system-level normalized memory access laten-

cy comparison. FePIM reduces 15% of the memory access latency

on average compared with the baseline. The memory access latency

reduction is due to the elimination of stalls caused by SRAW con-

tentions. For benchmarks QSORT, KMP, DIJKSTRA and FLOYD, the

memory access latency reduction is negligible due to their small or

even zero ContR rates, as listed in Table 3.

Fig. 11 shows the system-level memory access energy compari-

son. FePIM reduces the memory acess energy consumption by 44%

on average. The memory access energy reduction comes from 1)

the elimination of the static power consumed by stalling cycles

which are in turn caused by SRAW contentions and 2) the lower

energy consumption of PIM operations with immediate operand-

s. The latter dominates the memory access energy reduction. For

benchmarks KMP, the memory access energy reduction is zero due

to the fact that its CoutRs and RwIO rates are both 0, as listed in

Table 3.

5 CONCLUSION

PIM is a promising technique to alleviate the memory wall bottle-

neck. Existing nonvolatile device based PIM designs cannot well

handle the SRAW contention issue. In this work, we utilize FeFETs

to build a contention-free PIM architecture named FePIM. We uti-

lize the unique feature of FeFETs of separated read and write paths

to build a novel memory array that natively supports SRAW opera-

tions on different rows. Furthermore, a forwarding mechanism is

proposed to realize SRAW operations on the same row, so that all

possible stalls caused by SRAW contentions are eliminated. Com-

pared with an enhanced version of a state-of-the-art FeFET-based

PIM design that cannot handle SRAW contentions, FePIM reduces

the memory latency by 15% and the memory energy consumption

by 44% on average.

ACKNOWLEDGEMENTS

This work was supported in part by National Key R&D Program

of China (No. 2020AAA0105200), in part by Key Research Program

of Frontier Sciences, Chinese Academy of Sciences (No. ZDBS-LY-

JSC012), in part by Strategic Priority Research Program of Chinese

Academy of Sciences (No. XDB44000000), in part by National Nat-

ural Science Foundation of China (Nos. 61804155 and 61834006),

in part by the Youth Innovation Promotion Association CAS, in

part by the Young Elite Scientists Sponsorship Program by CAST

(No. 2018QNRC001), and in part by Beijing Academy of Artificial

Intelligence (BAAI).

REFERENCES
[1] J. Ahn et al. 2015. A scalable processing-in-memory accelerator for parallel graph

processing. In ISCA. 105–117.
[2] ASU. 2011. Predictive Technology Model. http://ptm.asu.edu/
[3] A. Aziz et al. 2016. Physics-Based Circuit-Compatible SPICE Model for Ferro-

electric Transistors. IEEE EDL 37, 6 (June 2016), 805–808.
[4] P. Gaillardon et al. 2016. The Programmable Logic-in-Memory (PLiM) computer.

In DATE. 427–432.
[5] M. Gao et al. 2017. TETRIS: Scalable and Efficient Neural Network Acceleration

with 3D Memory. In ASPLOS (ASPLOS ’17). 751–764.
[6] S. George et al. 2015. Ncfet based logic for energy harvesting systems. In SRC

TECHCON.
[7] S. George et al. 2016. Nonvolatile memory design based on ferroelectric FETs. In

DAC. 1–6.
[8] S. Han et al. 2016. EIE: Efficient Inference Engine on Compressed Deep Neural

Network. In ISCA. 243–254.
[9] M. Imani et al. 2017. MPIM: Multi-purpose in-memory processing using config-

urable resistive memory. In ASP-DAC. 757–763.
[10] S. Jain et al. 2018. Computing in Memory With Spin-Transfer Torque Magnetic

RAM. IEEE TVLSI 26, 3 (March 2018), 470–483.
[11] Mingyen Lee et al. 2020. FeFET-Based Low-Power Bitwise Logic-in-Memory with

Direct Write-Back and Data-Adaptive Dynamic Sensing Interface. In ISLPED.
[12] S. Li et al. 2016. Pinatubo: A processing-in-memory architecture for bulk bitwise

operations in emerging non-volatile memories. In DAC. 1–6.
[13] D. Patterson et al. 1997. A case for intelligent RAM. IEEE Micro 17, 2 (March

1997), 34–44.
[14] S. H. Pugsley et al. 2014. NDC: Analyzing the impact of 3D-stacked memory+logic

devices on MapReduce workloads. In ISPASS. 190–200.
[15] D. Reis et al. 2018. Computing in Memory with FeFETs. In ISLPED (ISLPED ’18).

24:1–24:6.
[16] A. Sharma and K. Roy. 2018. 1T Non-Volatile Memory Design Using Sub-10nm

Ferroelectric FETs. IEEE EDL 39, 3 (March 2018), 359–362.
[17] P. Sharma et al. 2017. Impact of total and partial dipole switching on the switching

slope of gate-last negative capacitance FETs with ferroelectric hafnium zirconium
oxide gate stack. In VLSIT. T154–T155.

[18] M. Trentzsch et al. 2016. A 28nm HKMG super low power embedded NVM
technology based on ferroelectric FETs. In IEDM. 11.5.1–11.5.4.

[19] H.-W. Tseng et al. 2015. Gullfoss: Accelerating and Simplifying Data Movement

among Heterogeneous Computing and Storage Resources. Technical Report. Univer-
sity of California, San Diego. http://csetechrep.ucsd.edu/Dienst/UI/2.0/Describe/
ncstrl.ucsd_cse/CS2015-1015

[20] S. Xu et al. 2019. CuckooPIM: An Efficient and Less-blocking Coherence Mecha-
nism for Processing-in-memory Systems. In ASP-DAC. 140–145.

[21] W. Zhang et al. 2013. Electrical properties of CaxSr1-xBi2Ta2O9 ferroelectric-gate
field-effect transistors. Semiconductor Science and Technology 28, 8 (2013), 085003.

[22] X. Zhang et al. 2019. FeMAT: Exploring In-Memory Processing in Multifunctional
FeFET-Based Memory Array. In ICCD. 541–549.

119

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.6
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /Impact
 /Kartika
 /Latha
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 200
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 200
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Required" settings for PDF Specification 4.01)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

