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ABSTRACT
Sparse matrix-vector multiplication is often employed in many

data-analytic workloads in which low latency and high throughput

are more valuable than exact numerical convergence. FPGAs pro-

vide quick execution times while offering precise control over the

accuracy of the results thanks to reduced-precision fixed-point arith-

metic. In this work, we propose a novel streaming implementation

of Coordinate Format (COO) sparse matrix-vector multiplication,

and study its effectiveness when applied to the Personalized PageR-

ank algorithm, a common building block of recommender systems

in e-commerce websites and social networks. Our implementation

achieves speedups up to 6x over a reference floating-point FPGA

architecture and a state-of-the-art multi-threaded CPU implementa-

tion on 8 different data-sets, while preserving the numerical fidelity

of the results and reaching up to 42x higher energy efficiency com-

pared to the CPU implementation.

CCS CONCEPTS
•Theory of computation→Graph algorithms analysis; Rounding
techniques; • Hardware→ Hardware accelerators.

KEYWORDS
FPGA, Graph Algorithms, Approximate Computing

1 INTRODUCTION
Sparse matrix-vector multiplication (SpMV) is a computational ele-

ment widely employed in machine learning, engineering, and most

importantly, graph analytics [11, 23] as real-world graphs present

an extremely high degree of sparsity. Personalized PageRank (PPR)

[2], a variation of the famous PageRank algorithm ranks the most

relevant vertices of the graph with respect to an input vertex. In

most cases PPR must be computed with minimal latency, often

on graphs with millions of edges, such as domain-specific knowl-

edge bases, e-commerce websites, and social networks communities

[13, 15], to find recommended posts in a social network while users

interact with it, or recommended items for a given query on an

e-commerce platform. Moreover, the precise numerical values pro-

duced by the algorithm are rarely useful, as long as the order of the

top-ranked vertices is correct (consider the problem of recommend-

ing the top-10 products for a user query). Numerical boundedness

of PPRmakes Field-Programmable Gate Arrays (FPGAs) suitable for

computing PPR with throughput beyond traditional architectures,

leveraging fixed-point arithmetic that can reduce execution time

while preserving the correct ranking, and accelerate convergence.

In this work, we propose a novel FPGA architecture for a stream-

ing edge-centric SpMV that uses Coordinate (COO) format matrices,

and apply it to the computation of PPR. Reduced-precision fixed-

point arithmetic is used to maximize performance while reducing

resource utilization and preserving the quality of the results.

In summary, we present the following contributions:

• An optimized FPGA architecture of SpMV that leverages a

COO matrix and reduced-precision arithmetic, which we

employ in a novel implementation of PPR (Section 4).

• We validate the practical applicability of our PPR imple-

mentation on 8 different graphs against a state-of-the-art

multi-threaded CPU implementation and an equivalent 32-

bits floating-point FPGA architecture, reaching speedups up

to 6.8x and up to 42x higher energy efficiency.

• Most importantly, we characterize how reduced precision

leads to negligible accuracy loss and 2x faster convergence

on PPR, showing the effectiveness of reduced precision for

approximate graph ranking algorithms (Section 5).

2 RELATEDWORK
In this section, we provide an overview of existing research on

the optimization of SpMV for different hardware architectures,

especially in the context of graph algorithms and PPR.

2.1 CPU and GPU Implementations
Leveraging sparse linear algebra for graph processing is the focus

of the GraphBLAS project, which aims at defining operations on

graphs through the language of linear algebra [11], and it offers

early implementations for both CPU and GPU [4, 22]. Highly tuned

implementations of PPR exploit the graph data-layout to maximize

cache usage [25], or employ multi-machine setups to process tril-

lions of edges [26]. Green-Marl [8] and GraphIt [24] implements

PPR using Domain-Specific Languages (DSLs) that abstract the in-

tricacies of graph processing, and optimized to fully exploits the

CPU hardware. PPR on GPU is less common: it is worth mentioning

nvGRAPH [1] and GraphBLAST [22], that leverage sparse linear

algebra to match and possibly outperform CPU implementations.

2.2 FPGA Implementations
To the best of our knowledge, no existing work specifically ad-

dresses the computation of PPR on FPGA, either using reduced-

precision arithmetic or algorithmic optimizations.

However, there have been significant contributions in optimiz-

ing SpMV computations on FPGAs, as SpMV represents the main

bottleneck of many PageRank implementations. Recent work by

Grigoras et al. [7] focuses on compressing the sparse matrix, mov-

ing the bottleneck from memory accesses to the decompression of

the input data while lowering the storage demand. Umuroglu et al.
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Figure 1: A graph as COOmatrix. In X, each valueval can be
seen as the probability of moving from y to x . For example,
from vertex x = 0 there is a 0.5 probability of coming from
vertexy = 1 and a 0.5 probability of coming from vertexy = 2

[20] leverage local cache hierarchies and pre-processing schemes to

maximize the amount of time in which values are kept in a fast local

cache. Using data-set partitioning and complex memory hierarchies

enable SpMV computations on web-scale graphs, as seen in Shan

et al. [18]: clearly, there is a performance trade-off introduced by

supporting larger graphs, and simpler design might be more benefi-

cial for smaller data-sets such as the ones in our intended use-case.

Reduced-precision arithmetic has not been thoroughly studied in

the context of graph ranking algorithms, but encouraging results

were shown in numerical analysis and deep-learning [16, 21].

3 PROBLEM DEFINITION
In this work, we apply a novel SpMV architecture to the com-

putation of Personalized PageRank, an algorithm that provides a

personalized ranking of the graph vertices, such that vertices that

are more relevant to an input vertex will have a higher score.

Given a graph G with |V | vertices and |E | edges, we represent it
using the adjacency matrix A and out-degree matrix D (a diagonal

matrix with the number of out-going edges of each vertex). Define

X = (D−1A)T as the probability of transitioning from a vertex to

one of its neighbors
1
, a personalization vertex v , and a vector pt

of PageRank values, personalized w.r.t. v , computed at iteration t .
1 − α is the probability of moving to any random vertex, and d̄ is

a dangling vector s.t.
¯di = 1 ⇔ Dii = 0, ¯di = 0 ⇔ Dii , 0. d̄ is

added to D to ensure that the computation is numerically stable [9].

The vector v̄ is equal to 0 except for the element at index v , which
is 1. The recurrence equation [3, Section 3] of PPR is

pt+1 = αXpt +
α

|V | (d̄pt)1 + (1 − α)v̄ (1)

The first term of the right-hand side is a matrix-vector multi-

plication, while the second and third terms (the dangling factor
and the personalization factor) are obtained with dot-products. The

weighted adjacency matrix X is stored in a sparse format as it is ex-
tremely sparse: in a graph with 10

6
vertices and average out-degree

10, only 10 · 10
6/10

12
(i.e. 0.001%) of the entries of X are non-zero.

Compressed Sparse Column (CSC), a common storage format

for sparse matrices [18], can be inefficient for real-world graphs

with vertex degrees that follow an exponential distribution, as it

limits pipelined architectures that demand precise knowledge of

data boundaries. Instead, we employ the COO storage layout (fig. 1),

which uses three equally sized arrays, containing, for each entry,

1
assuming uniform probability, the probability of moving from a vertex x with out-

degree d to a neighbor y is 1/d

its value and its two coordinates. COO simplifies array partitioning,

enables burst reads from memory, and pipelined hardware designs,

as entries are independent and the architecture is not bound to

knowing the degree of each vertex. Instead, CSC-based designs

often fail to handle graphs with exponential distribution, especially

if stream-like processing is demanded.

We compute κ personalization vertices in parallel, to batch multi-

ple user requests. We replace pt with a matrix Pt of size |V | ×κ, and
v̄ with a matrix V̄. Updating Pt requires reading all the edges only

once. This optimization boosts the efficiency of a memory-bound

algorithm, and enables higher throughput and scalability.

4 IMPLEMENTATION
We present the building blocks of our SpMV architecture and how

we integrated it in the PPR computation, our intended use-case.

4.1 Personalized PageRank Implementation
Alg. 1 contains the pseudo-code of the main PPR computation. The

input graph is read from DRAM, with edges as packets of size

P_SIZE = 256 to maximize the throughput of memory transac-

tions, and process B edges per clock cycle (8, if P_SIZE = 256 bits

and each value is 32 bits). Lines 6-8 of Alg. 1 are the core of PPR,

with the SpMV computation further detailed in alg. 2 and fig. 2.

The κ entries of the scaling vector are computed as the sum of

current PPR values of vertices with no outgoing edges. Values in

the dangling bitmap are read in blocks with size P_SIZE , while P
is cyclically partitioned to access B contiguous values in a single

clock cycle. PPR values are stored as reduced-precision fixed-point

values. Quantization truncates to zero the fractional bits with pre-

cision higher than representable. Other policies (e.g. rounding to

the closest representable value) resulted in numerical instability.

4.1.1 SpMV Design. Our SpMV architecture has 4 main steps. First,

we read a graph packet from DRAM (lines 4-5 in alg. 2), and store it

in local buffers x , y, val to read and update B values at once. While

we compute κ PPR vectors in parallel, the edges of the graph are

accessed only once. Parallel accesses to Pt retrieve PPR values for

each personalization vertex: thanks to UltraRAM, we perform these

accesses with low latency, without imposing strong constraints

on the graph size. The B aggregator cores (lines 12-17) combine

point-wise contributions to obtain the total contribution of a single

vertex, as a packet can contain multiple edges referring to it. Each

aggregator considers edges whose end is in the range [x[0],x[0]+B],
i.e. the maximum range that can be found in a packet.

Algorithm 1 Personalized PageRank

1: function PPR(coo_дraph, V̄, d̄,α ,max_iter )
2: Initialize local buffers to 0

3: for k ← 0,κ do ▷ Set PR=1 on pers. vertices

4: P1[k] = V̄[k]
5: for i ← 0,max_iter do
6: scalinд_vec ← scalinд(P1, d̄) ▷ i .e . α

|V | P1d̄
7: SpMV (coo_дraph, P1, P2) ▷ Xpi in eq. (1)

8: P1 = αP2 + scalinд_vec + (1 − α)V̄
9: Write P1 to output
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Figure 2: Representation of our SpMV architecture. The scat-
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arrows represent a streaming transfer between cores

The last step adds PPR contributions of the current packet to the

PPR arrays stored in UltraRAM. Contributions are stored in a buffer

of size 2B, with up to B non-zero contiguous values. A Finite-State

Machine with 2 buffers of size B accumulates PPR entries and writes

them to output at indices multiple of B, ensuring that updates can be
performed in parallel as they are aligned to the partitioning factor of

Pt+1. Each block of res1 is written on UltraRAM only once to avoid

expensive += operations and Read-After-Write (RAW) conflicts in

unrolled loops. The 4 main steps of the algorithm, presented here

as a single loop (alg. 2, line 2), are implemented as separate modules

in a streaming data-flow region, enabling aggressive pipelining of

loops and better resource allocation.

4.1.2 PPR Buffers Design. Temporary PPR values are stored in

UltraRAM (URAM), a type of memory available in recent Xilinx

UltraScale+
TM

FPGAs. UltraRAM can be seen as a middle-ground

between slow but abundant DRAM and faster, but limited, BRAM.

Using a Xilinx Alveo U200 Accelerator Card, we store up to 90MB

of data on UltraRAM, corresponding to around 20 million different

PageRank values, assuming that the PageRank value of each vertex

is stored in 32-bits. In practice, reduced fixed-point precision allows

us to store even more vertices, and scale to larger graphs. The

maximum number of edges is bound by the available DRAM, and

could reach about 5 billion on the 64GB of DRAM available in

the Alveo U200 card. Our design can be easily scaled to compute

multiple PPR vectors in parallel, if the end-user can provide an upper

bound over the number of vertices in its graphs. In our experiments,

optimal performance results are achieved if the number of vertices

does not exceed 1 million (which is still larger than what is found

in many real applications), and 8 to 16 personalization vertices are

computed in parallel, using the same hardware resources required

for a larger graph that does not consider multiple PPR vertices.

Algorithm 2 COO SpMV

1: function SpMV(coo_дraph, Pt, Pt+1)
2: for i ← 0..|E |/B do
3: ▷ 1. Process COO in packets of size B
4: x ← coo_дraph.x[i];y ← coo_дraph.y[i]
5: val ← coo_дraph.val[i]
6:

7: for k ← 0..κ do ▷ κ personalization vertices
8: ▷ 2. Update edge-wise PPR values
9: for j ← 0..B do
10: dp_bu f f er [k, j] = val[j] · Pt[k,y[j]]
11: ▷ 3. Aggregate partial PPR values
12: for b1← 0..B do
13: for b2← 0..B do
14: aдд_res[k,x[0] % B + b1] +=

dp_bu f f er [k,b2] · ((x[0] + b1) == x[b2])
15: ▷ 4. Store PPR values on each vertex
16: xs ← ⌊x[0]/B⌋ · B
17: if xs == xs_old then
18: for j ← 0..B do
19: res1[k, j] += aдд_res[k, j]
20: res2[k, j] += aдд_res[k, j + B]
21: else
22: for j ← 0..B do
23: res[k, j + xso ld ] = res1[k, j]
24: res1[k, j] = res2[k, j] + aдд_res[k, j]
25: res2[k, j] = aдд_res[k, j + B]
26: reset(aдд_res); xs_old ← xs

The size of local memory buffers is not a limitation on the size

of the graphs: first, our PPR implementation targets graphs encoun-

tered in social network communities and e-commerce platforms,

whose size does not fill the available FPGA hardware resources [13];

second, there exist partitioning techniques [18, 20] that handles

large web-scale graphs. Scalability to web-scale graphs, although

not required in our use-case or to validate the performance of our

SpMV implementation, is very interesting; these approaches, how-

ever, are mostly orthogonal to our design and integrating them

would not demand a deep rethinking of our architecture.

4.2 Host Integration
Our architecture follows a host-accelerator model in which the host
(a server) communicates with the accelerator (an FPGA) over PCIe.

Pre-processing (e.g. loading the graph) is done once at the start and

not for each computation of PPR, and it takes a negligible amount of

time (< 1% of the execution time). Re-synthesizing the architecture

is required to change the fixed-point precision, κ or the maximum

number of vertices in URAM, but not for different input graphs.

5 EXPERIMENTAL EVALUATION
Our architecture is implemented on a Xilinx Alveo U200 Acceler-

ator Card with 64 GB of DRAM (77 GB/s of total bandwidth) and

equipped with a xcu200-fsgd2104-2-e FPGA offering 960 Ultra-

RAM blocks of 288Kb (with 72 bits port width) and 4320 BRAM
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Table 1: Summary of graph datasets used in the evaluation

Graph Distribution |V| |E| Sparsity

Gn,p (Erdős-Renyi) 10
5

1002178 10
−4

2 · 10
5

1999249 4.9 · 10
−5

Watts–Strogatz small-world 10
5

1000000 10
−4

2 · 10
5

2000000 5 · 10
−5

Holme and Kim powerlaw 10
5

999845 0.99 · 10
−4

2 · 10
5

1999825 4.9 · 10
−5

Amazon co-purchasing network 128000 443378 2.7 · 10
−5

Twitter social circles 81306 1572670 2.3 · 10
−4

Table 2: Resource usage, power consumption of our design.
Other bit-widths, omitted for brevity, show the same trends

Bit-width BRAM DSP FF LUT URAM Clock
(MHz)

Power
Cons.

20 bits 14% 3% 4% 26% 20% 220 34 W

26 bits 14% 3% 4% 38% 20% 200 35 W

32 bits, float 14% 48% 35% 89% 26% 115 40 W

Available 4320 6840 2364480 1182240 960

blocks with 18Kb size each. This FPGA platform is mounted on a

server with an Intel Core i7-4770 CPU @ 3.40GHz with 4 cores (8

threads) and 16 GB of DRAM. We compare our PPR implementa-

tion against the floating-point implementation in PGX 19.3.1
2
, a

powerful toolkit for in-memory graph analytics. Its state-of-the-art

implementation of PPR [8] is fully multi-threaded. Experiments

with PGX were conducted on a machine equipped with two Intel

Xeon E5-2680 v2 @ 2.80GHz with 10 cores (20 threads) each, and

384 GB of DRAM. We analyze 5 versions of our architecture: 26

bits unsigned fixed-point (Q1.25), 24 bits (Q1.23), 22 bits (Q1.21),
20 bits (Q1.19), and a 32-bit floating point version (F32). Lower
bit-width negatively impacts the quality of results, while higher

precision provides minimal gain (section 5.3.2). The CPU baseline

uses 32 bits floating-point arithmetic, and our CPU does not support

arbitrary precision. Simulated fixed-precision arithmetic resulted in

lower CPU performance, and is not a meaningful comparison. Man-

ually batching multiple requests in PGX through vector properties

did not provide a speedup over the fast default implementation of

PPR, which is already fully exploiting the CPU [24].

Our experimental setup contains 8 graphs (table 1): 6 are gener-

ated using different statistical distributions offered by the Python

networkx library3, while 2 are real-world graphs from the Stanford

Large Network Dataset Collection [13]. Synthetic graphs are con-

sistent in size, edge distribution, and sparsity to real-world graphs

used in e-commerce and social network communities [13]; their

COO representation has size in line with recent work on sparse ma-

trices on FPGAs [6]. Synthetic graphs with identical sizes highlight

how trends are similar across distributions (section 5.1, section 5.3),

2
docs.oracle.com/cd/E56133_01/latest/index.html

3
networkx.github.io/documentation/stable/
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Figure 3: Speedup of our FPGA implementation (y-axis) w.r.t.
the CPU baseline, for decreasing bit-widths (x-axis).

and we can extract insights on the convergence and precision of

PPR as we change input graph and bit-width.

5.1 Execution time
We measure for each graph the time required to compute the PPR

values for 100 random personalization vertices, to simulate a realistic

batch workload performed by social networks and e-commerce

platforms. Time spent transferring results from FPGA to CPU is

included, and is negligible compared to the total execution time.

All tests are executed with an α of 0.85, for 10 iterations each

(even a low amount of iterations is enough for convergence, see

section 5.3.2).

Figure 3 reports the speedups of different fixed-point sizes com-

pared to the CPU baseline and to an equivalent 32-bits floating-

point FPGA architecture. Reducing bit-width shows a positive cor-

relation with clock speed, and higher speedups. On graphs with

around 10
6
edges we obtain up to 6.47x speedup, thanks to the

reduced bit-width and the ability to compute 8 PPR vectors at once.

Results for synthetic graphs are averaged, as no difference was

observed among distributions. We achieve similar results on real-

world graphs, with up to 6.8x speedup on the highly sparse Amazon

co-purchasing network. The time required by the FPGA for 100

random requests ranges from 280 ms for Amazon to 1000 ms for

larger graphs, which is in line with the real-time requirement of our

use-case. The floating-point FPGA architecture is 6 times slower

than the fixed-point designs, with larger DSP usage (48% vs 3%), and

negligible accuracy gain compared to 26-bits fixed-point (fig. 4).

The clock frequency is between 200 and 220 MHz, but we can

reach up to 350 MHz with lower number of concurrent PPR vertices

κ. The clock speed increases sublinearly w.r.t κ above 200 MHz,

limiting the benefits of very low κ. On larger graphs the speedups

are less significant, as higher URAM utilization negatively impacts

the clock frequency due to routing congestion. In our experiments,

doubling the size of the PPR buffers lowers the clock speed by

around 35-40%. Resources utilization (summarized in table 2 for

κ = 8), is minimal for BRAM, DSPs and registers and is not impacted

by fixed-point bit-width and PPR vector size. URAM usage grows

linearly with PPR vector size (from 20% to 40% in our experiments).

5.2 Energy Efficiency
Our FPGA architecture uses 35W during execution, and increasing

the PPR buffer or the fixed-point bit-width does not seem to affect

the power consumption. The CPUs consume around 230W, and

docs.oracle.com/cd/E56133_01/latest/index.html
networkx.github.io/documentation/stable/
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our architecture provides a Performance/Watt gain from 16.5x to

42x compared to it (geomean 28.2x). Even against a faster CPU or

a GPU, our architecture is likely to offer higher energy efficiency.

Using fixed-point provides 5x higher energy efficiency over the

equivalent floating-point design, which however provides 2.5x-5x
higher energy efficiency than the CPU baseline (geomean 4.3x).

5.3 Accuracy Analysis
We compared the accuracy of the rankings obtained with fixed-

point precision (after 10 iterations of PPR) with the ones of the

CPU implementation at convergence (with at least 100 iterations),

using common Information Retrieval (IR) ranking metrics [17].

100 iterations are enough to reach convergence even in web-scale

graphs [12], although 10 iterations would often suffice (fig. 4, fig. 7).

5.3.1 Accuracy metrics. First, we look at the number of errors,
i.e. the number of vertices with wrong ranking in the top 10, 20

and 50 compared to the CPU. This metric is very coarse-grained, as

a single mistake can greatly affect the ranking: for example, if the

correct top-4 values are {2, 4, 8, 6} and we retrieve {4, 8, 6, 2}, this
metric reports 4 errors, although only a single value is displaced.

Edit Distance counts how many operations are needed to trans-

form one sequence of top-N vertices into another [14]; it handles

ordering shifts: in the previous example the edit distance is just 1,

as we insert 2 at the beginning and ignore values after the first N.

Normalized Discounted Cumulative Gain (NDCG) [10] is
commonly used to evaluate recommender systems: it dampens the

relevance of a vertex by a logarithmic factor such that highly ranked

vertices contribute more to the cumulative gain. Given a vector of

PPR scores, reli = |V | − i is the relevance of the i-th vertex, and

we define Discounted Cumulative Gain (DCG) as in eq. (2). DCG is

normalized by the Ideal DCG of the CPU implementation.

DCG =
|V |∑
i=1

reli
loд2(i + 1) nDCG =

DCG

IDCG
(2)

5.3.2 Accuracy Discussion. Figure 4 shows how metrics change

by lowering the fixed-point bit-width, for each of the 2 · 10
6
edges

graphs. Figure 5 shows additional accuracy metrics, aggregated on

all graphs: Mean Average Error (MAE), Precision and Kendall’s τ .
MAE evaluates how far FPGA PPR values are from the correct ones,

while Precision measures the top-N correctness without looking

at the vertices order; just 20 bits are enough to retrieve 90% of the

best top-50 items. Kendall’s τ is a ranking metric that penalizes out-

of-order predictions [19]. Results in fig. 5 are similar to fig. 4, with

MAE and Precision mostly unaffected by a larger set of predictions.
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Figure 5: Aggregated accuracy metrics show trends in-line
with fig. 4, and even low bit-width provides good predictions

10-5 5·10-5 10-4 5·10-4

40%

60%

80%

100%

Pr
ec

isi
on

(h
ig

he
r 

is 
be

tt
er

)

5 Iterations

10-5 5·10-5 10-4 5·10-4

40%

60%

80%

100%
10 Iterations

10-5 5·10-5 10-4 5·10-4

40%

60%

80%

100%
15 Iterations

Top-50 Precision w.r.t sparsity,
bit-width, and number of iterations 20

22
24
26

Figure 6: Sparsity does not affect accuracy, except for very
low bit-width, and 10 iterations are enough for convergence.
Other metrics show similar trends as the top-50 Precision

Increasing bit-width is always beneficial, with diminishing re-

turns. Using 26 bits provides near-to-perfect results, although even

22 or 24 bits provide satisfactory results, with more than half of the

vertices being ranked correctly. 22 bits show a top-10 edit distance

of 3 and an NDCG value > 95%. With 26 bits, the top-20 edit dis-

tance is < 3, i.e. only 3 values in the first 20 are out-of-place. Results

are impacted by graph distribution: Holme and Kim graphs, for

which errors are lower, have dense communities, similarly to real

social networks, while the behavior of the other 2 models is more

unpredictable. Sparsity has a minor impact on accuracy (fig. 6): very
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Figure 7: Fixed-point gives 2x faster convergence compared
to floating-point. Lines are truncated for error below 10−7

low bit-width suffers from high sparsity, but in general results are

consistent with Figure 4. We display the top-50 precision due to

space limitations, but other metrics show identical behaviors.

Fixed-point arithmetic produces faster convergence (fig. 7). We

measure, after each iteration, the Euclidean norm of new and pre-

vious PPR values, to evaluate convergence. Less than 20 iterations

are always enough for convergence, and even 10 iterations provide

an error below 10
−6

(a common convergence threshold for PPR

[1]). Fixed-point arithmetic converges twice as fast compared to

floating-point, while preserving accuracy (fig. 4). In real computa-

tions, PPR stops when the error is below a threshold: a 2x faster

convergence immediately translates to an additional 2x speedup

over a floating-point implementation. Lower bit-width provides

10-20% faster convergence in synthetic graphs.

6 CONCLUSION AND FUTUREWORK
We presented a high-performance FPGA implementation of a COO

SpMV algorithm that leverages data-flow computation and reduced-

precision fixed-point arithmetic. We have shown how our archi-

tecture accelerates the PPR algorithm and outperform a state-of-

the-art CPU implementation by up to 6.8x, with up to 42x higher

energy efficiency. With just 26-bits fixed-point values we guarantee

a speedup above 5.8x with negligible accuracy loss, with 2x faster

convergence: average top-10 edit is distance below 1 and NDCG

is above 99.9% compared to the CPU, showing how graph ranking

algorithms can benefit from approximate computing.

Although the present work focuses on the design of a fixed point

COO SpMV for a specific use-case and is not a general-purpose

graph engine, we deem valuable to integrate partitioning techniques

[18, 20] and support web-scale graphs, and study the optimal trade-

off between partitioning overheads and FPGA resource utilization.

A comparison against modern GPUs is also very interesting: we

omitted detailed GPU analyses as we currently lack high-end GPUs

comparable to the Alveo U200. The GTX960 at our disposal is as

fast as the CPU baseline using nvGRAPH, although Nvidia claims

a 3x speedup using a faster Tesla M40 against a CPU similar to

ours [1]. We will also apply our reduced precision SpMV on other

use-cases, such as graph embeddings [5].
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