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ABSTRACT
Verification of quantum circuits is essential for guaranteeing cor-
rectness of quantumalgorithms and/or quantumdescriptions across
various levels of abstraction. In this work, we show that there are
promising ways to check the correctness of quantum circuits us-
ing simulative verification and random stimuli. To this end, we
investigate how to properly generate stimuli for efficiently check-
ing the correctness of a quantum circuit. More precisely, we in-
troduce, illustrate, and analyze three schemes for quantum stim-
uli generation—offering a trade-off between the error detection
rate (as well as the required number of stimuli) and efficiency. In
contrast to the verification in the classical realm, we show (both,
theoretically and empirically) that even if only a few randomly-
chosen stimuli (generated from the proposed schemes) are consid-
ered, high error detection rates can be achieved for quantum cir-
cuits. The results of these conceptual and theoretical considera-
tions have also been empirically confirmed—with a grand total
of approximately 106 simulations conducted across 50 000 bench-
mark instances.

1 INTRODUCTION
Verification methods are essential for demonstrating or even prov-
ing the correctness of classical circuits. Their goal is to confirm
whether a given circuit realization conforms to its specification.
In this regard, formal verification methods [1], [2]—which aim to
prove correctness with 100% certainty—are well established, but
often fail due to the exponential complexity of the task itself. In
contrast, simulative verification methods [3]–[8] are typically very
fast as long as only a limited number of simulations with specific
stimuli are conducted to achieve a desired coverage. In order to gen-
erate high quality stimuli (which indeed are capable of detecting er-
rors), methods such as constraint-based random simulation [3]–[6],
fuzzing [7], [8], etc. are employed.

In the quantum realm, the verification of quantum circuits is es-
sential for guaranteeing correctness of quantum algorithms and/or
quantum descriptions across various levels of abstraction. Here,
sequences of quantum operations and/or quantum gates are em-
ployed which utilize quantum mechanical effects such as superpo-
sition, entanglement, or interference [9]. This allows for promising
applications in various domains such as chemistry, finance, cryp-
tography, or machine learning. But it also requires a more complex
description than in the classical realm. Consequently, the formal
verification of quantum circuits poses even more challenges than
in the classical realm—which even recent advances [10]–[14] can
only escape to a certain extent.

This motivates the consideration of simulative verification in
the quantum realm (similar to the classical realm, where this is
well established). In this regard, the simulation of quantum circuits
on a classical computer hardware is key. Although this leads to
an exponential complexity in order to describe the corresponding
quantum states and operations, powerful methods have recently
been proposed to tackle this problem [15]–[22]. However, while
the stimuli space for classical circuits is finite (each input bit can
be assigned either 0 or 1—yielding a total of 2= possible stimuli), the

state space in the quantum realm is infinitely large (possible stimuli
are elements of a 2=-dimensional Hilbert space). This raises the
question on whether simulative verification of quantum circuits
(on classical computers) is suitable at all and, if so, how to generate
proper stimuli to efficiently check the correctness of a quantum
circuit.

In this work, we show that, although the perspective of a pos-
sible infinite number of stimuli may seem rather grim at a first
glance, there are promising ways to check the correctness of quan-
tum circuits using simulative verification and random stimuli. This,
however, severely depends on how the stimuli are actually gener-
ated. In fact, we introduce, illustrate, and analyze three schemes
for quantum stimuli generation offering a nice trade-off between
error detection rate (as well as the required number of stimuli) and
efficiency. In contrast to classical circuits, we show (both, theoreti-
cally and empirically) that even if only a few randomly-chosen stim-
uli (generated from the proposed schemes) are considered, high er-
ror detection rates can be achieved in the quantum realm. The re-
sults of these conceptual and theoretical considerations have also
been empirically confirmed, which, to the best of our knowledge,
led to the broadest empirical evaluation of simulative verification
schemes for quantum circuits to date—with a grand total of ap-
proximately 106 simulations conducted across 50 000 benchmark
instances.

The remainder of this paper is structured as follows: Section 2
provides the necessary background on classical verification, quan-
tum circuits, and their verification. Then, Section 3 introduces, il-
lustrates, and (theoretically) analyzes different stimuli generation
schemes and their likeliness of detecting errors. The results of these
conceptual and theoretical considerations are then empirically con-
firmed in Section 4. Finally, Section 5 concludes the paper.

2 BACKGROUND AND MOTIVATION
This work deals with verification of circuits—a topic which has
been and currently still is heavily considered in the classical realm.
Because of this, we first briefly review the established schemes in
this section. Afterwards, we provide the basics on quantum com-
puting and quantum circuits and, based on that, eventually discuss
the challenges of the verification of quantum circuits. By this, we
motivate our work.

2.1 Verification of Classical Circuits
In order to demonstrate or even prove the correctness of classical
circuits, verification methods are applied. They check whether a
given circuit, the Design Under Verification (DUV), adheres to an
also given Golden Specification. To this end, current (industrial)
practice mainly applies schemes such as

• simulative verification [3]–[8], in which certain input assign-
ments (stimuli) are explicitly assigned to the circuit, propa-
gated through it, and the outputs are compared to the ex-
pected values, or

• formal verification [1], [2], which considers the problem
mathematically and proves that a circuit is correct with
100% certainty.

http://arxiv.org/abs/2011.07288v1
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Obviously, formal verification provides the best solutionwith re-
spect to quality. Corresponding methods are capable of efficiently
traversing large parts of the search space, e.g., by applying clever
implications during the proof. The corresponding techniques are,
however, rather complex compared to their simulative counter-
parts and, particularly for larger designs, often fail due to the ex-
ponential complexity of the task.

Simulation is much easier to implement and very fast as long as
only a limited number of stimuli is applied. The problem obviously
is the quality provided by the applied set of stimuli. An exhaustive
set of stimuli would show correctness with 100% certainty, but is
practically intractable as this would eventually require an exponen-
tial number of stimuli to simulate. Accordingly, methods such as
constraint-based random simulation [3]–[6], fuzzing [7], [8], etc. are
key techniques to cope with this problem while still maintaining a
high quality. Here, stimuli and/or data inputs are specifically gen-
erated (e.g., from constraints, mutations of randomly generated in-
puts, etc.) so that corner case scenarios and/or a broad variety of
cases are triggered. In doing so, errors that might otherwise remain
undetected are more likely to be found.

However, despite substantial progress that has been made in the
past, e.g., on improving the efficiency of formalmethods or on stim-
uli generation which increases the coverage of simulative verifica-
tion, verifying classical circuits remains a challenge and, hence, is
subject of further research.

2.2 Quantum Circuits
Quantum circuits promise more potential than classical circuits for
many applications, but also require a more complex description.
In contrast to classical bits, the main computational unit of quan-
tum circuits (the qubit) cannot only be in one of the computational
basis states |0〉 or |1〉, but also in a superposition of both. That is,
the state |i〉 of a qubit can be described as |i〉 = U0 |0〉 + U1 |1〉
with U0, U1 ∈ C and |U0 |2 + |U1 |2 = 1. More generally, the state of
an =-qubit system is described by 2= complex amplitudes U8—each
associated to a computational basis state |8〉 = | (8=−1 . . . 80)2〉 =

|8=−1〉 ⊗ · · · ⊗ |80〉. It holds that |i〉 =
∑

8 ∈{0,1}= U8 |8〉 with U8 ∈ C
and

∑

8 ∈{0,1}= |U8 |2 = 1. Typically, those states are expressed
as 2=-dimensional state vectors consisting of all amplitudes, i.e.,
|i〉 ≡ [U0, . . . , U2=−1]⊤.

Example 1. Consider the two-qubit quantum state |i〉 described
by |i〉 = 1/√2 |00〉+0 |01〉+0 |10〉+1/√2 |11〉. This is a valid quantum
state since |1/√2|2 + |1/√2|2 = 1/2 + 1/2 = 1. Its state vector represen-
tation is given by [1/√2, 0, 0, 1/√2]⊤. Notably, |i〉 is an example of an
entangled state where the state of one qubit inherently depends on
the state of another qubit—a phenomenon unique to quantum com-
puting.

A quantum circuit manipulates the state of a quantum system.
To this end, each quantum gate of a circuit realizes a certain
quantum operation. Mathematically, these operations are repre-
sented by 2= × 2=-dimensional, unitary matrices1 * acting on the
2=-dimensional state vector |i〉 ≡ [U0, . . . , U2=−1]⊤. Typically,
quantum operations only act on: < = qubits (predominantly : = 1

or : = 2) and, hence, are characterized by 2: ×2:-dimensional, uni-
tary matrices which are extended to the full system size by tensor
products with identity matrices.

1A complex matrix* is unitary if* †* =** †
= I, where* † denotes the conjugate-

transpose of* and I the identity matrix.

Example 2. Popular single-qubit gates include the Pauli gates - ,
. , and / , the Hadamard gate � , as well as the the phase gate ( . The
respective matrices are:

- =

[0 1
1 0

]

. =

[0 −8
8 0

]

/ =

[1 0
0 −1

]

� = 1/√2
[1 1
1 −1

]

( =

[1 0
0 8

]

.

Most multi-qubit gates are controlled gates, where a certain
single-qubit gate is applied to a specified target qubit only if all desig-
nated control qubits are |1〉. One prominent example is the two-qubit
controlled-NOT (CNOT), which is described by the matrix

CNOT (@2, @C ) =
[1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

]

.

The overall quantum circuit � (realizing a quantum algorithm)
is eventually represented as a sequence of quantum gates 68 , i.e.,
by � = 60, . . . , 6<−1 with < being the total number of gates.
The functionality of this circuit is described by the unitary matrix
* = *<−1 · . . . ·*0, where *8 is the unitary matrix corresponding
to gate 68 .

Example 3. Consider the quantum circuit � = 6061 acting on
two qubits (denoted @0 and @1) with 60 = � (@1) (i.e., an H gate
applied to@1) and61 = CNOT (@1, @0) (i.e., a CNOT gate with control
qubit @1 and target qubit @0). Then, the respective matrices *0, *1,
and the overall system matrix* = *1 ·*0 are given by

*0 = �⊗I2 =
1
√
2

[1 0 1 0
0 1 0 1
1 0 −1 0
0 1 0 −1

]

*1 =

[1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

]

* =
1
√
2

[1 0 1 0
0 1 0 1
0 1 0 −1
1 0 −1 0

]

.

For more details about quantum computing we refer to [9], [23].

2.3 Verification of Quantum Circuits
In the quantum realm, the verification problem can be stated
in a similar fashion as for classical circuits: Given a circuit
� = 60 . . . 6<−1, it should be checked whether it adheres to an also
given specification2. For the sake of this work and without loss
of generality we assume in the following that the specification is
given as a unitary function *—possibly described by a high-level
quantumalgorithm, another circuit, or further functional represen-
tations for quantum computing.

However, due to the more complex/expressive description, the
formal verification of quantum circuits poses even more challenges
than in the classical realm. Despite recent advances in the design of
diverse/efficient formal verification methods [10]–[14], these can
only escape the imminent complexity to a certain extent. Accord-
ingly, simulative verification might provide a promising alterna-
tive as well. In fact, this has already been considered in theoreti-
cal quantum information, where (truly quantum-based) methods
have been proposed (see, e.g., [23, Section 3] and [24]). But these
approaches would require an execution on actual quantum com-
puting devices, whose availability and accessibility still is severely
restricted. Hence, before valuable quantum computing resources
are wasted to verify a quantum circuit, efficient alternatives which
can be employed prior to an actual execution on a quantum com-

puter (using classical computing devices) are of high interest3.

2Note that the terms Device Under Verification and Golden Specification are not estab-
lished in the quantum realm (yet), which is why we simply use the terms circuit and
specification in the following.
3This has similarities to the verification of classical circuits which also shall be con-
ducted prior to an actual execution in the field.
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This eventually results in the following simulative verification
scheme for quantum circuits:

(1) Consider a set S of quantum states (which serve as stimuli).
(2) Pick (and prepare) a quantum state |i〉 ∈ S.
(3) Simulate (on a classical device) both* and� with this initial

state—resulting in two states |i* 〉 and |i� 〉, respectively.
(4) Compare the output |i� 〉 generated by the realization �

with the desired output |i* 〉 by computing the quantum
fidelity F between both states [9]4, i.e.,

F (|i* 〉 , |i� 〉) = |〈i* |i� 〉|2 ∈ [0, 1] .
(5) If F (|i* 〉 , |i� 〉) ≠ 1, the stimulus |i〉 shows the incorrect

behavior of � with respect to * . Accordingly, the verifica-
tion failed and the process is terminated.

(6) Remove |i〉 from S.
(7) If |S| ≠ ∅ (i.e., S is still non-empty) continue with Step (2);

otherwise, the simulative verification process has been com-
pleted.

Now, the challenges of such an approach are as follows: First,
in order to simulate a quantum circuit � = 60 . . . 6<−1 starting
with an initial state |i〉 on a classical device (Step (3) from above),
matrix-vector multiplications of the matrices *8 (representing the
circuit’s gates 68 ) with the state vector |i〉 as well as the resulting
output vectors, respectively, have to be conducted consecutively.

Example 4. Consider the circuit � from Example 3 and the ini-
tial state |i〉 = |00〉 ≡ [1, 0, 0, 0]⊤. Applying the gate 60 = � (@1)
to this initial state, i.e., computing *0 |i〉, produces a new state
|i ′〉 = 1/√2 |00〉+1/√2 |10〉 ≡ [1/√2, 0, 1/√2, 0]⊤. Afterwards, applying
61 = CNOT (@1, @0) to |i ′〉, i.e., computing*1 |i ′〉, results in the final
state |i ′′〉 = 1/√2 |00〉 + 1/√2 |11〉 ≡ [1/√2, 0, 0, 1/√2]⊤—representing
the output state generated by this circuit for stimulus/input |i〉.

This leads to an exponential complexity since the involved
vectors and matrices have a size of 2= and 2= × 2= , respec-
tively (with = being the number of qubits). But although this
is substantially harder than for the verification of classical
circuits (here, a single simulation yields only linear complex-
ity), rather powerful methods have been recently proposed to
tackle this complexity—including methods based on highly op-
timized and parallel matrix-computations [15], [16], tensor net-
works [17], [18], quasiprobability/stabilizer-rank methods [19]
(and references therein), as well as decision diagrams [20]–[22].

Second, as in the verification of classical circuits, the quality of
the verification process heavily depends on the applied set of stim-
uli, i.e., 100% certainty cannot be guaranteed as long as the set of
applied stimuli is not exhaustive. Moreover, while the stimuli space
for classical circuits is finite (each input bit can be assigned either
0 or 1—yielding a total of 2= possible stimuli), the state space in the
quantum realm is infinitely large (possible stimuli are elements of a
2=-dimensional Hilbert space). This raises the question onwhether
simulative verification of quantum circuits (on classical computers)
is suitable at all and, if so, how to generate proper stimuli |i〉 to
efficiently check the correctness of a quantum circuit.

In the following, we show that, although the perspective of a
possible infinite number of stimuli may seem rather grim at a first
glance, there are promising ways to check the correctness of quan-
tum circuits using simulative verification. These, however, severely
depend on how the stimuli are actually generated. In fact, we show

4In this regard the fidelity F acts as a similarity measure between two states—
effectively computing the squared overlap of the states’ amplitudes.

(both, theoretically and empirically) that high error detection rates
can be achieved even if only a few randomly-chosen stimuli are
considered—as long as these are generated in a specific fashion.

3 RANDOM STIMULI GENERATION
In this section, we propose different schemes for the generation
of (random) stimuli and explore how well they can show the cor-
rectness of a quantum circuit. To this end, each of the following
subsections introduces, illustrates, and (theoretically) analyzes dif-
ferent stimuli generation schemes and their likeliness of detecting
errors. Eventually, this will show that simulative verification in-
deed is very promising since sets of stimuli can be generated in a
fashion that offers a nice trade-off between error detection rate (as
well as the required number of stimuli) and efficiency. The results
of these conceptual and theoretical considerations have also been
empirically confirmed as summarized later in Section 4.

3.1 Classical Stimuli
The most straight-forward application of simulative verification
for quantum circuits (compared to the classical approach reviewed
in Section 2.1) is to consider the set of computational basis states as
stimuli (i.e., picking |i〉 from the set {|8〉 : 8 ∈ {0, 1}=}) and com-
puting F (* |8〉 ,+ |8〉), where+ is the matrix associated to�). This
has recently been studied in [25], where empirical results show
that choosing “classical” stimuli from this set at random often al-
lows to detect even small errors in quantum circuits. The following
example illustrates this remarkable “power of simulation”.

Example 5. Consider a certain =-qubit unitary specification *
and assume that some error affects (w.l.o.g.) the first qubit in the ac-
tual realization� . In the quantum realm, this means that the circuit

� is described by the unitary matrix+ = * · (I⊗(=−1) ⊗ �), where �
describes an error gate that is applied to the first qubit. Due to the in-
herent reversibility of quantum gates, this error has a localized effect
on the output, i.e.,

F (* |2〉,+ |2〉) = F (|2〉, (I⊗(=−1) ⊗ �) |2〉) = |〈20 |� |20〉|2

for any classical stimulus |2〉 = |2=−1 . . . 20〉.
Now suppose that � = - , i.e., a bit flip error occured. In

contrast to classical intuition, such an error can be detected
by a single simulation with any classical stimulus |2〉, since
F (* |2〉 ,+ |2〉) = |〈20 |- |20〉|2 = 0 independent of |2〉.

However, this approach has a severe handicap which has not
been discussed so far—namely that it is not faithful. Specifically, for
each unitary specification* there is an (infinitely large) family of
realizations � for which F (* |2〉 ,+ |2〉) = 1 holds for all classical
stimuli |2〉, even if quantum states |i〉 with F (* |i〉 ,+ |i〉) ≠ 1
actually exist. An example illustrates the problem:

Example 6. Consider the same scenario as in Ex. 5, but assume
that the error is characterized as � = / , i.e., a phase flip error oc-
curred. No classical stimulus |2〉 may detect such an error due to the

fact that F (* |2〉,+ |2〉) = |〈20 |/ |20〉|2 = 1 independent of |2〉. Intu-
itively, this happens whenever the “difference” of* and+ is diagonal

in the computational basis, such as I⊗(=−1) ⊗/ in case of this exam-
ple.

Nevertheless, our empirical evaluations (which are summarized
later in Section 4) show that whenever classical stimuli are actually
capable of detecting a certain error in the realization� , they do so
within remarkably few simulations with randomly picked classi-
cal stimuli—an effect contradictory to classical intuition as already
observed in [25].
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Figure 1: Bloch Sphere

3.2 Local Quantum Stimuli
In the previous section, we showed that classical stimuli genera-
tion is not sufficient to faithfully detect errors in quantum circuits.
On an abstract level, this should not come as a surprise. After all,
quantum circuits are designed to achieve tasks that classical cir-
cuits cannot. In fact, a closer look at the single-(qu)bit case already
reveals a fundamental discrepancy: Classical single-bit operations
map one of two possible inputs (0 or 1) to one of two possible
outputs (0 or 1). In contrast, the quantum case is much more ex-
pressive: The set of all possible single-qubit states |i〉 is infinitely
large and can be parametrized by the 2-dimensional Bloch sphere
[9] illustrated in Figure 1. Single-qubit quantum operations map
single-qubit states to single-qubit states. Geometrically, this fam-
ily encompasses all possible rotations of the Bloch sphere as well
as all reflections. Classical (single-qubit) stimuli, i.e., the states |0〉
and |1〉, are not expressive enough to reliably probe such a con-
tinuum of operations. They correspond to antipodal points on the
(Bloch) sphere and it is simply impossible to detect certain transfor-
mations by tracking the movement of only two antipodal points.

In order to address this, also stimuli beyond (classical) basis
states should be considered. More precisely, three pairs of antipo-
dal points are sufficient for full resolution [26]–[28], namely

|0〉 , |1〉 , (/ -basis),

|+〉 = 1/√2( |0〉 + |1〉), |−〉 = 1/√2( |0〉 − |1〉), (- -basis), and

|↑〉 = 1/√2( |0〉 + 8 |1〉), |↓〉 = 1/√2( |0〉 − 8 |1〉), (. -basis).

Generating stimuli uniformly at random from this sextu-

ple5 produces a set that is expressive enough to detect any
single-qubit error. More precisely, for any pair of functionally
different single-qubit unitaries * and + , at least one input
|;1〉 ∈ {|0〉 , |1〉 , |+〉 , |−〉 , |↑〉 , |↓〉} produces functionally different
outputs, i.e., the fidelity F (* |;1〉 ,+ |;1〉) is guaranteed to be ≠ 1.

This desirable feature extends to the multi-qubit case. That is,
if we independently select one of these six (single-qubit) states for
every available qubit, every “local” single-qubit error may be de-
tected. Thus, for = qubits, we consider the following ensemble of
local quantum stimuli:

|;〉 = |;=−1〉 ⊗ · · ·⊗ |;0〉 with |;8〉 ∈ {|0〉 , |1〉 , |+〉 , |−〉 , |↑〉 , |↓〉} (1)

Example 7. Let us revisit the scenario from Ex. 5 (and Ex. 6). Com-
pared to classical stimuli, local quantum stimuli behave in a more ho-
mogeneous fashion on the classical extreme cases shown before: First,
suppose that � = - (bit flip error). Then,

F (* |;〉,+ |;〉) = |〈;0 |- |;0〉|2 =
{

0 |;0〉 ∈ {|0〉, |1〉, | ↑, | ↓〉}
1 |;0〉 ∈ {|+〉, |−〉}

5The single-qubit states |0〉 , |1〉 , |+〉 , |−〉 , |↑〉 , |↓〉 can be generated from the basis
state |0〉 by applying the gates I, X , H , XH , HS, or XHS, respectively.

Compared to classical stimuli, only 2/3 of all local quantum stimuli
detect this type of error. Now, suppose that � = / (phase flip error).
Then,

F (* |;〉,+ |;〉) = |〈;0 |/ |;0〉|2 =
{

0 |;0〉 ∈ {|+〉, |−〉, | ↑, | ↓〉}
1 |;0〉 ∈ {|0〉, |1〉}

Consequently, in contrast to not detecting such an error with classical
stimuli at all, again 2/3 of all local quantum stimuli are capable of
detecting this type of error.

This observation that local quantum stimuli can detect errors
which would have remained undetected using classical stimuli is
not a coincidence. In fact, the collection of a total of 6= local quan-
tum stimuli is expressive enough to detect any error in a quantum
circuit.

Theorem 1. For each pair of functionally distinct =-qubit uni-
taries* and+ , there exists at least one local quantum stimulus |;〉 as
defined in Eq. (1) that detects the error, i.e., yieldsF (* |;〉 ,+ |;〉) ≠ 1.

Proof sketch6. The key idea is to relate the expected fi-
delity E |; 〉F (* |;〉 ,+ |;〉)—where the average is taken over all

6= locally random stimuli—to a meaningful distance measure
in the space of unitary matrices. This average outcome fidelity
equals 1 if and only if * and + are functionally equivalent.
Now, suppose that * and + are functionally distinct unitaries.
Then, E |; 〉F (* |;〉 ,+ |;〉) < 1 which is only possible if (at least) one
stimulus |;〉 produces an outcome fidelity that is strictly smaller
than one. �

While this rigorous statement asserts that any error can be de-
tected by (at least) one local quantum stimulus, it does not provide
any advice on how to find the “right” stimulus. This is a very chal-
lenging problem in general, but the above example suggests that
repeated random sampling of stimuli should “do the job”. Our em-
pirical studies (see Section 4) confirm that such a procedure works
remarkably well. Typically, few randomly generated local quan-
tum stimuli suffice to detect realistic errors.

3.3 Global Quantum Stimuli
The previous section has shown that a modest increase in the ex-
pressiveness of stimuli can already make a large difference. Local
quantum stimuli can detect any error, while classical stimuli can-
not. This is interesting, because local quantum stimuli are compar-
atively few in number (6= states in a 2=-dimensional state space to
detect arbitrary discrepancies in unitary circuits) and actually do
not inherit many further quantum features. For example, “global”
quantum features such as entanglement are not employed by them
at all. This begs the question: what kind of advantages can even
more expressive and “more quantum” stimuli offer? Faithfulness
is not a problem anymore, but richer, global stimuli may help to
detect errors earlier, i.e., after substantially fewer iterations.

In order to identify powerful global quantum stimuli, it is help-
ful to revisit local quantum stimuli as introduced in Eq. (1) from
a different perspective: They are generated through starting with
a very simple classical state (i.e., |0 . . . 0〉) and applying certain
single-qubit gates to the individual qubits, e.g., |0〉 ⊗ |+〉 ⊗ |↑〉 =

(I ⊗ � ⊗ �() |000〉. Consequently, random local stimuli are gener-
ated by choosing this layer of single-qubit gates at random. This

6Note that, due to page limitations, we only provide a sketch of the proof for this
theorem.



Random Stimuli Generation for the Verification of�antum Circuits ASPDAC ’21, January 18–21, 2021, Tokyo, Japan

generation scheme can be readily generalized. Rather than select-
ing only a single layer of (single-qubit) gates, we construct a gen-
eration circuit �0 · · ·�;−1 that has ; > 1 layers and, most impor-
tantly, also features two-qubit gates. That is, a stimuli |6〉 with
|6〉 = (�0 · · ·�;−1) |0 . . . 0〉 is generated, where each �8 is a (sin-
gle) layer comprised of so-called Clifford gates (� , ( , CNOT ) [29].

Overall, this set of global quantum stimuli |6〉 contains all local
quantum stimuli, but is much richer and much more expressive.
For instance, the overwhelming majority of global quantum stim-
uli will be highly entangled. Provided that the number of layers
; is proportional to the number of qubits = [30], [31], these stim-
uli show remarkable properties. Most notably, the expected out-
come fidelity (averaged over all possible global quantum stimuli
|6〉) accurately approximates one of the most prominent distance
measures for =-qubit quantum circuits, namely

E |6〉F (* |6〉,+ |6〉) ≈ Favg (* ,+ ) = 1
2=+1

(

1 + 2=
�

�tr(* †+ )
�

�

2
)

. (2)

Here, tr(* †+ ) denotes the trace of the unitary matrix * †+ . This
average (gate) fidelity [9] forms the basis of many state-of-the-art
quantum calibration procedures [32], [33]. Importantly, most (real-
istic) errors lead to an average fidelity that is tiny. Eq. (2) allows us
to capitalize on this phenomenon. The following statement is an
immediate consequence of Eq. (2) and Markov’s inequality:

Corollary 1. Consider a unitary specification * and a particu-
lar realization as a quantum circuit� (represented by the unitary+ ).
Then, a randomly selected global quantum stimulus obeys

Pr |6〉 [F (* |6〉,+ |6〉) = 1] ≤ Favg (* ,+ ).
The r.h.s. equals 1 if and only if� correctly realizes* , otherwise it is
typically much smaller.

This general statement does have powerful implications when
applied to a precise example.

Example 8. Consider again the scenario from Ex. 5 (and Ex. 6): A
single-qubit error � occurred on the first qubit leading to the unitary

+ = * · (I⊗(=−1)⊗�), where the single-qubit error is either � = - (bit

flip error) or � = / (phase flip error). Then, Favg (* ,+ ) =
1

2=+1 ≤
2−= (because Pauli matrices are traceless) and Corollary 1 implies
that it is very unlikely to not detect this error with a single, random
global quantum stimulus, i.e., Pr |6〉 [F (* |6〉,+ |6〉) = 1] ≤ 2−= ≪
1.

This example demonstrates the power of global quantum stim-
uli. However, it is important to keep in mind that this power is not
for free. The generation of (random) global quantum stimuli and
subsequent simulation is much more resource-intensive by com-
parison (as confirmed by our empirical evaluations in Section 4).

This can also be understood from a broader context: The aver-
age (gate) fidelity as given by Eq. (2) is closely related to another
popular distance measure—the entanglement fidelity. This quantity
captures the performance of a powerful quantum stimulus |Ω〉, see
e.g. [24]. This stimulus is generated from 2= qubits by pairwise
entangling individual qubits of one half of the system with the
qubits of the other half. Applying both circuits to the first half of
this state and computing the fidelity of the outcome states subse-
quently yields the entanglement fidelity [34], [35], i.e.,

F (* ⊗ I|Ω〉,+ ⊗ I|Ω〉) = 4−=
�

�tr(* †+ )
�

�

2
= Fent (* ,+ ). (3)

Comparing Eq. (2) and Eq. (3) shows that these quantities are al-
most identical. This implies that global quantum stimuli accurately

approximate the powerful quantum stimulus |Ω〉 on average. Fi-
nally, we point out that conducting simulative verificationwith |Ω〉
itself is not feasible on classical computers, since requiring double
the amount of qubits exponentially increases the resource-demand
for classical simulations.

4 EMPIRICAL STUDY
In this section, we empirically study the behavior of the schemes
proposed in Section 3 through extensive evaluations. To this end,
the proposed schemes have been implemented in �++ as part of
the open-source JKQ framework for quantum computing [36].
More precisely, they have been integrated into the JKQ QCEC
quantum circuit equivalence checking tool (publicly available
at https://github.com/iic-jku/qcec) using the decision diagram-
based simulator from [21] for conducting the simulations. In order
to obtain a rigorous evaluation, we considered the following setup:

• We chose 25 widely-used reversible/quantum algorithms
with 16 to 34 qubits—constituting the respective reference
implementations * .

• Each algorithm has been compiled to a suitable IBM ar-
chitecture using IBM Qiskit [37]—constituting the realiza-
tion� .

• In order to study the detection of errors, a total of 8
error-injection options have been considered for each cir-

cuit7:
– Removal of 1, 2, or 3 random gates from � ,
– Insertion of 1, 2, or 3 random gates from the set

{-,., /, �, (,) } on random qubits into � ,
– Insertion of 10 random Toffoli gates at the beginning or
at the end of� .

• For each error-injection option, 50 random seeds have been
considered.

• For each resulting instance, 5 random seeds have been used
for randomly picking stimuli according to the respective
scheme.

• For each resulting instance and random seed, up to 16 simu-
lations of* and � with stimuli randomly picked according
to the specific scheme have been performed aiming to detect
the injected error.

Overall, this led to a total of 50 000 benchmark instances. Since for
each instance on average approximately 3 random stimuli were

necessary to detect the error, a grand total of approx. 106 simu-
lations have been conducted. To the best of our knowledge, this
led to the broadest empirical evaluation of simulative verification
schemes for quantum circuits to date.

The obtained results are summarized in Table 1. Here, we list
the error detection rate ?s in percent (i.e., the probability that the
error is detected by the generated set of stimuli), the number of
stimuli ∅s needed to detect the error, and the runtime ∅t of the
respective scheme in seconds8. Due to page limitations, we only
list the averaged values (w.r.t. the different error injections). How-
ever, since the obtained results are rather homogeneous across the
respective benchmarks (as confirmed by the moderate standard de-
viation which is also listed in Table 1, this still allows for a proper
interpretation of the results.

7In any realistic scenario where, e.g., a bug is present in the compilation flow, the
resulting errors in � would be much more severe than the error-injections studied
in this work. Consequently, it can be deducted from the results obtained in this work
that the proposed schemes perform even more reliably on such instances.
8The runtime depends on the simulator used, as well as the hardware the simulations
are conducted on. Nevertheless, it allows to reason about the efficiency of the individ-
ual schemes to some extent.

https://github.com/iic-jku/qcec
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Table 1: Experimental results (quantities averaged over a total of approx. 106 different simulations)

Remove 1 random gate Remove 2 random gates Remove 3 random gates

Approach ?s [%] ∅s ∅t [s] ?s [%] ∅s ∅t [s] ?s [%] ∅s ∅t [s]
Classical Stimuli (Section 3.1) 86.9 ± 4.1 4.0 ± 0.8 0.2 ± 0.3 97.9 ± 2.2 1.7 ± 0.4 0.1 ± 0.1 99.6 ± 0.8 1.2 ± 0.2 0.1 ± 0.1
Local Quantum Stimuli (Section 3.2) 98.8 ± 1.6 1.5 ± 0.3 0.7 ± 1.3 100.0 ± 0.0 1.1 ± 0.1 0.5 ± 0.9 100.0 ± 0.0 1.0 ± 0.0 0.7 ± 1.1
Global Quantum Stimuli (Section 3.3) 99.0 ± 1.5 1.2 ± 0.2 50.1 ± 103.0 100.0 ± 0.0 1.0 ± 0.0 56.9 ± 113.1 100.0 ± 0.0 1.0 ± 0.0 68.7 ± 115.3

Add 1 random gate Add 2 random gates Add 3 random gates

Approach ?s [%] ∅s ∅t [s] ?s [%] ∅s ∅t [s] ?s [%] ∅s ∅t [s]
Classical Stimuli (Section 3.1) 54.9 ± 4.7 7.8 ± 0.7 0.4 ± 0.5 80.7 ± 5.0 3.9 ± 0.8 0.2 ± 0.2 90.8 ± 4.2 2.4 ± 0.6 0.1 ± 0.1
Local Quantum Stimuli (Section 3.2) 73.9 ± 7.4 5.1 ± 1.1 2.9 ± 5.1 92.5 ± 3.9 2.2 ± 0.6 1.1 ± 2.0 97.5 ± 2.8 1.4 ± 0.4 0.6 ± 0.9
Global Quantum Stimuli (Section 3.3) 75.9 ± 10.1 4.6 ± 1.5 80.9 ± 118.1 92.9 ± 4.3 2.1 ± 0.6 47.9 ± 97.1 97.6 ± 2.8 1.4 ± 0.4 38.2 ± 93.1

Add 10 random Toffolis at beginning Add 10 random Toffolis at end Overall

Approach ?s [%] ∅s ∅t [s] ?s [%] ∅s ∅t [s] ?s [%] ∅s ∅t [s]
Classical Stimuli (Section 3.1) 82.0 ± 11.7 5.3 ± 1.9 0.5 ± 0.7 80.3 ± 12.2 5.3 ± 2.0 0.5 ± 0.7 84.1 ± 5.6 3.9 ± 0.9 0.3 ± 0.3
Local Quantum Stimuli (Section 3.2) 82.3 ± 11.6 4.0 ± 1.8 2.8 ± 5.3 80.6 ± 12.0 4.1 ± 1.8 2.5 ± 5.1 90.7 ± 4.9 2.5 ± 0.8 1.5 ± 2.7
Global Quantum Stimuli (Section 3.3) 82.9 ± 12.1 3.6 ± 1.8 79.9 ± 120.2 81.2 ± 12.6 3.8 ± 1.9 66.7 ± 116.7 91.2 ± 5.4 2.3 ± 0.8 61.2 ± 109.6

?s [%]: Error detection rate in percent ∅s: Average number of stimuli ∅t [s]: Average runtime in seconds
Since the obtained results are rather homogeneous across the respective benchmarks (as confirmed by the moderate standard deviation), we only list averaged values here.

From those results, the following conclusions can be drawn:

• All schemes lead to sets of stimuli with remarkable error de-
tection rates. With randomly chosen stimuli only, few stim-
uli are sufficient to detect the vast majority of errors (while,
in contrast, dedicated constrained-based stimuli generation,
fuzzing, etc. methods [3]–[8] are required in the classical
realm to get a merely acceptable error detection rate).

• Based on these high standards, classical stimuli generation
performs worst and often fails—especially in cases where
individual (diagonal) gates are removed or added. This is a
consequence of classical stimuli not being faithful as shown
in Section 3.1. At the same time, the corresponding simu-
lations are very fast; making this scheme suitable for rapid
prototyping.

• On the other side of the spectrum, global stimuli genera-
tion yields the most robust results, i.e., requiring the least
amount of stimuli and also achieving the highest error de-
tection rates. This confirms the discussions from Section 3.3
on the quality of those stimuli. Thus, this scheme is suitable
for rigorous testing even if the simulation of those stimuli
is severely more runtime-demanding.

• Local quantum stimuli generation constitutes a trade-off
between quality and efficiency compared to the other two
schemes. Although this scheme is not as powerful as global
quantum stimuli generation with respect to quality, it is
faithful (as shown in Section 3.2) and remains rather effi-
cient.

5 CONCLUSION
In this work, we showed that simulative verification in the quan-
tum realm is much more powerful than in the classical realm. On
the one hand, we introduced, illustrated, and analyzed three po-
tential quantum stimuli generation schemes offering a trade-off
between error detection rate (as well as the required number of
stimuli) and efficiency. On the other hand, we showed (both, theo-
retically and empirically) that, in contrast to classical circuits, high
error detection rates can be achieved by just considering a few
randomly-chosen stimuli (generated according to the proposed
schemes). This eventually shows that simulative verification offers
huge potential in the verification of quantum circuits.
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