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ABSTRACT
Group cohesion is a multidimensional emergent state that mani-
fests during group interaction. It has been extensively studied in
several disciplines such as Social Sciences and Computer Science
and it has been investigated through both verbal and nonverbal
communication. This work investigates the dynamics of task and
social dimensions of cohesion through nonverbal motion-capture-
based features. We modeled dynamics either as decreasing or as
stable/increasing regarding the previous measurement of cohesion.
We design and develop a set of features related to space and body
movement from motion capture data as it offers reliable and accu-
rate measurements of body motions. Then, we use a random forest
model to binary classify (decrease or no decrease) the dynamics of
cohesion, for the task and social dimensions. Our model adopts la-
bels from self-assessments of group cohesion, providing a different
perspective of study with respect to the previous work relying on
third-party labelling. The analysis reveals that, in a multilabel set-
ting, our model is able to predict changes in task and social cohesion
with an average accuracy of 64%(±3%) and 67%(±3%), respectively,
outperforming random guessing (50%). In a multiclass setting com-
prised of four classes (i.e., decrease/decrease, decrease/no decrease,
no decrease/decrease and no decrease/no decrease), our model also
outperforms chance level (25%) for each class (i.e., 54%, 44%, 33%,
50%, respectively). Furthermore, this work provides a method based
on notions from cooperative game theory (i.e., SHAP values) to
assess features’ impact and importance. We identify that the most
important features for predicting cohesion dynamics relate to spa-
cial distance, the amount of movement while walking, the overall
posture expansion as well as the amount of inter-personal facing
in the group.
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1 INTRODUCTION
Collaborationmay be the main cause of our success as a species [45].
This behavior results from the fact that humans naturally feel the
need to belong to a group. Groups highly impact individual behav-
ior and they develop their own dynamics. It is at least since the
times of the Greek philosopher Aristotle (c. 385 - c. 323 BC) that hu-
man behavior and group phenomena are being investigated: “Man
is by nature a social animal" [3]. Understanding how one specific
group phenomenon emerges and evolves over time is a complicated
task due to the inter-dependency with other group phenomena and
the high variability of the group and context settings. With the ad-
vent of new technologies coupled to the emergence of Social Signal
Processing (SSP) [36, 47], a lot of efforts have been put into the
automatic detection and prediction of these groups phenomena [1].
SSP is a multidisciplinary research domain aimed at automatically
detecting and analyzing human social signals and behavior. Auto-
mated group interaction analysis is one of the challenging tasks
addressed by the SSP community and emphasis is given to the study
of emergent states as they play an important role in group dynamics.
These are social processes that result from the interactions among
group members (e.g., [24]). Cohesion is one of the most studied
emergent states [38] due to its influence on desirable group out-
comes such as group effectiveness and performance (see [40] for a
review). Automatically measuring cohesion is still at its infancy and
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could potentially help to develop new applications (e.g., software
providing feedback on group processes such as meetings). Multiple
definitions of cohesion exist, limiting the generalization and the
reproducibility over the literature. Recently, Severt and Estrada
proposed an integrative framework of cohesion [41]. This frame-
work gathers ideas from the Carron model [9] as well as various
influential ideas integrating the multidimensionality of cohesion
(e.g., [5, 6, 12, 15]). It acknowledges that cohesion is a dynamic
phenomenon that can be expressed in various dimensions and hi-
erarchical levels depending on the context and the relationships
among group members. The design of the nonverbal features auto-
matically extracted in this study was informed by its definition of
cohesion [41]. This framework refers to social and task dimensions
as being part of the instrumental property of cohesion. The former
refers to “social bonds between group members that are bound by the
group’s working relationship" while the latter concerns the “group
members’ shared commitment to the group’s tasks" [41].
The main contribution of this study is to set up a baseline to pre-
dict the dynamics of the task and social dimensions of cohesion
through nonverbal motion-capture-based features. To the best of
our knowledge, this is the first study addressing cohesion from this
angle. Previous studies, indeed, focused on predicting the level of
cohesion [20, 33]. Here, we focused on the variations of cohesion
(i.e., its dynamics) that we modeled as decrease or stable/increase
with respect to the previous measurement of cohesion. Furthermore,
we chose to study cohesion from a different perspective, using as
labels the group members’ self-assessments of cohesion instead of
relying on third-party labelling. This study also supplies a set of
nonverbal group motion capture-based features that is useful to
describe the functional property of cohesion at a horizontal level.
Finally, this research provides a novel method based on cooper-
ative game theory to assess the impact and the importance of a
feature set on our model. This approach helps to understand how
are the task and social dimensions related to each other by ob-
serving similarities and differences in the way nonverbal behavior
manifest and impact each dimension. In order to achieve all of the
previously mentioned goals, we first extracted nonverbal features
from the MoCap data available in the GAME-ON dataset [29]. We
focused our effort on conceiving and extracting features with this
technology as body movement and gesture (kinesics) and group
members use of space (proxemics) play an important role in non-
verbal communication [18] and MoCap data provides reliable and
accurate measurements of body movements as opposed to existing
video-based features. Then, we ran a supervised machine learning
algorithm using as labels the group members’ self-assessments to
predict the dynamics of both task and social dimensions. Since the
GAME-ON dataset also provides six self-assessments of group cohe-
sion for each group member collected all along the data collection,
we approximated the dynamics (increase or stable/decrease) of co-
hesion by taking the mean rank difference between two consecutive
measurements. Finally, we assessed the impact of our features on
the model prediction and their overall importance. This analysis
highlighted what are the common important features to predict the
dynamics of both task and social dimensions in our setting. These
findings are in line with theoretical models of cohesion (e.g., [41])
that suggest a relationship between social and task dimensions.

2 RELATEDWORK
2.1 Automated approaches to detect cohesion
Over the last decade, an interest for automatically detecting cohe-
sion has emerged. As nonverbal communication has been shown to
be a more powerful predictor of group-level cohesion than verbal
behavior [25], most of the studies focused on small groups’ non-
verbal cues. Hung and Gatica-Perez were the first to address this
problem, employing both audio and video nonverbal descriptors
to study cohesion through multiple dimensions in a meeting con-
text [20]. In their study, they collected external annotations on the
established AMI corpus [31]. Thereby, Hung et al. provided a first at-
tempt at a general design framework for the automated assessment
of group cohesion based on nonverbal behavioral features. They
showed that the best performing features were the total pause time
between each individual’s turns during a meeting segment with
audio cues, the total visual activity for each person in the meeting
with video cues and the visual activity during periods of overlapped
speech with audio-visual cues. They reached more than 80% classifi-
cation accuracy at estimating high and low levels of cohesion, rated
by external observers, using binary classifiers such as SVMs. The
task and social dimensions of cohesion were, however, estimated
together, making it difficult to assess the impact of each feature
on the classification. More recently, Nanninga et al. extended this
work by integrating pairwise and group descriptors related to the
alignment of para-linguistic speech behavior (e.g., convergence and
similarity of voice intensity, speech rate) [33]. In a similar meeting
context, they showed how combining mimicry and turn-taking
based features improved classification when predicting high and
low task and social cohesion. They used a Gaussian Mixture Model
and Kernel Density Estimation to estimate task and social dimen-
sions separately, achieving a performance of 64% Area under the
ROC Curve (AUC) and 71% AUC for task and social dimensions,
respectively. Group-level cohesion was estimated by comparing
pairwise dyadic mimicry features. It remains an open question
whether a group level mimicry feature would further improve per-
formances. For the occasion of the EmotiW 2019 challenge [10],
some studies [13, 16, 50] classified high and low levels of cohesion
on images from a corpus of images created via web crawling of
various keywords related to social events [11]. They showed how fa-
cial expressions were impacting external annotations and achieved
promising results at predicting cohesion from images.
Other studies explored cohesion at a longitudinal level. They used
sociometric badges to collect task and social-relevant features over
a long period. These are unobtrusive equipment that can be placed
on a person or on its phone and that are able to track the person’s
movement and activity. A first study using such kind of sensors
was conducted by Olguin and Pentland to investigate face-to-face
interactions of workers for a period of 20 working days [34]. All
the features extracted were based on nonverbal behavior, proximity
as well as other sources such as emails and performance data but
only concerned individuals. Similarly, Zhang et al., used sociometric
badges to explore small group collaborations during long duration
missions in confined spaces through a four-month simulation space
exploration mission [51]. They defined individual as well as group
features to classify cohesion as positive or negative, taking into
account both task and social dimensions. They reached promising
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results (80% AUC) and showed that dyadic interactions and face-
to-face communication are important for assessing cohesion. It,
however, remains to be seen whether these results are specific to
the studied scenario or whether they apply to different groups and
contexts. Furthermore, only [33] and [51] integrated task and social
dimensions in their models but did not explore their relationships.
At present, automated studies of cohesion only rely on external
annotators that evaluate cohesion by answering a questionnaire or
using a coding scheme (e.g., ACT4Team [22]) after analyzing a spe-
cific group interaction. The group’s perspective provided through
self-assessments could help to gain additional insights.

2.2 Nonverbal features from the visual channel
related to cohesion

In multimodal studies on cohesion analysis, visual features are often
found to perform poorly in comparison to other channels [20, 21].
One possible reason for this is that extracting nonverbal behavior
from the visual channel might be challenging. Visual data in images
or videos contains a lot of information and often requires further
processing to extract relevant information on group activity. In a
recent study, Kantharaju et al., provided a multimodal analysis of
group cohesion using the AMI corpus [4]. They explored cohesion
through nonverbal social cues, dialogue acts and interruptions, us-
ing features from various modalities (e.g., audio and video). Among
the nonverbal social features extracted from the visual channel, they
showed that gaze, facial expressions, gestures and body postures
were significantly impacting the perceived level of cohesion (e.g.,
instances of laughter are more frequent in high cohesive groups). In
this study, they, however, limited their nonverbal social cues analy-
sis to only four features (e.g., gaze, facial action units, head node,
laughter) and assessed their impact with independent t-test on only
16 two-minute segments, which might be insufficient to generalize
to different groups and contexts. Furthermore, observing correla-
tions between the features and the cohesion scores is interesting
to develop an intuition about how the features might be related
to cohesion but it does not prove that they are useful to predict
cohesion. These results, however, encourage the development of
other nonverbal visual features related to cohesion as they seem to
be important for predicting cohesion. Visual features can be very
salient in portraying inter-personal relationships, as one can infer
a lot of information based on the way people present themselves
physically, either by positioning or by movement in space. The
amount of body movement is partially accessible using low-level,
pixel-based information by observing general visual motion found
in a video, given a fixed position, fixed lighting camera setup. Over-
all movement can hereby be approximated for example via the
amount of compression in a video and via optical flow [20, 21, 51].
From here, any information related to specific body parts, such as
facial expressions, gestures and body posture require an additional
model which (1) detects the specific body parts and (2) quantifies
the associated motion. Themost used strategy to derive information
on the facial features of a person is by identifying facial action units
(FAUs) when they are active and their respective intensity [4, 32].
Gestures are often expressed by quantifying the total movement of
the hands over time. Hand positions are most often detected either

by using additional sensors [32, 51], or by first deriving skeleton-
data [16, 50], using software solutions such as OpenPose [7]. Body
language cues can contain additional information on the intensity
and synchronicity of the conversation in a group. One technology
which is starting to receive growing interest in the context of group
interaction research are motion capture (MoCap) systems. Themain
advantage of MoCap over video data is that 3D data on key body
joints of individuals is readily available eliminating the need for
an additional model to detect these body parts. Furthermore, as
opposed to 3D depth cameras, the final data is not restricted to a
single viewpoint, thus positions in 3D space and distances can be
calculated with much higher precision. Additionally, due to the high
precision of MoCap, body movement and position and distances can
be assessed with much higher accuracy. Moreover, MoCap systems
are designed to not limit the available range of motions. This makes
MoCap an ideal instrument in order to test the impact of proxemics
and body language cues on group interactions.

3 THE GAME-ON DATASET
All of the previous studies focusing on automatically detecting
cohesion used datasets that are not specifically designed for its
study. These datasets are composed of various groups’ interactions
in specific contexts and often contain scripted scenarios (e.g., the
AMI corpus [31]). Furthermore, the measurements of the level of
cohesion only relied on external annotators. In order to explore and
advance our understanding of the expression of task and social di-
mensions of cohesion, we chose to use the GAME-ON dataset. Since
the GAME-ON dataset [29] was specifically designed to monitor
and elicit changes in cohesion over time, it is suited for the study of
cohesion dynamics. Additionally, GAME-ON reports the change of
cohesion through group self-assessments all along with the game.
These were collected before the data collection and after each task
using the GEQ questionnaire [9] with a 9-point Likert-scale. This
questionnaire is aimed at measuring social and task dimensions of
cohesion from a group member’s point of view. GAME-ON consists
of more than 11 hours of multimodal data (i.e., audio, video and Mo-
Cap data) where a total of 17 groups interact during an escape game.
The dataset is composed of five different tasks. For all tasks (except
the second), game instructions were given but participants were
free to move and interact as they liked. As all of the participants
considered themselves as friends and did not have any hierarchical
status among them, it provided us with a relevant framework to
study these dimensions at a horizontal level.

4 METHODOLOGY
The aim of this analysis is to detect decreases in cohesion on a given
fixed time segment. For this aim, we present the following modeling
pipeline (see Figure 1), used to extract MoCap-based features from
the GAME-ON dataset, to train a statistical classifier, and finally, to
extract information from the trained model on the most informa-
tive features for the task. The modeling pipeline can be separated
into three major functional components: the feature extraction of
both established as well as novel nonverbal features, the tempo-
ral aggregation by separating each task into fixed-length temporal
slices with early feature selection, and finally, the model training
and prediction. Additionally, we present our labeling strategy to
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quantify task-to-task changes in group cohesion by calculating the
mean rank difference among self-assessments between subsequent
tasks. Finally, we present our evaluation strategy by reporting our
selected metrics associated with performance and feature impor-
tance. As we predict the cohesion dynamics for each slice and each
group separately we jointly train and predict the cohesion state
overall interactions.

4.1 Feature Extraction
One aim of this work is to explore mechanisms and behavioral cor-
relates of group cohesion using motion capture. The MoCap data
available yield translations and rotations of 17 key body joints in
3D space. Thus, the kind of information we can extract fromMoCap
data is related to the body language of the participant, their move-
ment in space as well as the distance and orientation towards each
other. Additionally, we introduce a new set of features by proposing
a framework of positional turn-taking (inspired by equal notions
of conversational turn-taking [39]), by approximating speaker be-
havior from facing behavior in the group. Table 1 shows the set
of group features used in this work. We differentiate between two
types of group features. Aggregated group features refer to features
which first are calculated per individual and then aggregated over
the group using a set of group descriptors (e.g. average, maximum,
variance). Innate group features are features which are directly
calculated over the group as a whole.

4.1.1 Aggregated group features. We calculated the maximum spa-
tial distance between group members (encoded as 𝑑𝑖𝑠𝑡_𝑚𝑎𝑥) over
the distance between positions of the chest joint on the XZ-plane.
We expect groups which are standing closer together to not in-
terpret the presence of others as invading, meaning they have
a stronger social bond to each other. Conversely, if participants
choose to move further away in a task, this can be interpreted
as diminishing social cohesion. Additionally, we related the inter-
personal distance to notions from proxemics literature by cate-
gorizing the inter-personal distance as being inside public space
(maximum distance above 3.6 meters), social space (between 3.6
and 1.2 meters) or personal space (below 1.2 meters) as defined by
Hall et al. [17]. For this aim, we collected the 𝑑𝑖𝑠𝑡_𝑚𝑎𝑥 values for
each temporal segment in a histogram, where the bins reflect the
three proxemic ranges. The histogram related features, encoded as
𝑃𝑢𝑏𝑙𝑖𝑐 𝑆𝑝𝑎𝑐𝑒 , 𝑆𝑜𝑐𝑖𝑎𝑙 𝑆𝑝𝑎𝑐𝑒 , 𝑃𝑒𝑟𝑠𝑜𝑛𝑎𝑙 𝑆𝑝𝑎𝑐𝑒 respectively, reflect the
normalized size of each bin given by the amount of𝑑𝑖𝑠𝑡_𝑚𝑎𝑥 associ-
ated with each interval. We expect groups which share strong social
bonds to stand closer to each other (e.g. a lower amount of distance
in public space found over social space). Based on spatial distance,
we further introduce a binary indicator for body contact (𝑡𝑜𝑢𝑐ℎ)
between group members, which indicates that the hand joints of a
participant are less than 15cm away from the upper body joints of
another participant. We choose a conservative threshold for touch
detection as for one sensor locations are not located at the finger-
tips but rather close to the palm. Secondly, the threshold is further
aimed to enable us to capture touch at areas around the sensor (e.g.
touching a participants elbow instead of their forearm). While in
theory, touch could also be approximated from image or video data,
the sensitivity of MoCap makes it much better suited to approxi-
mate haptic communications without the use of tactile sensors. We

expect that signalling by touch can work both at communicating
task-related information as well as convey social status [19]. We
quantify kinesics related features on the amount of walking by cal-
culating overall body movement in space and the amount of hand
movement while standing still. Spatial body movement (encoded
as 𝑚𝑜𝑣_𝑤𝑎𝑙𝑘) is calculated by taking the average change in the
position of participants’ chest-joint in the XZ-plane. The amount
of hand movement (encoded as𝑚𝑜𝑣_ℎ𝑎𝑛𝑑𝑠) is calculated by taking
the average change in position of the hand joints in space for all
time points where subjects aren’t moving in space (i.e. the change
in position of the Hip-joint on the XZ-plane less than 50cm over 1
second). Movement and gesturing may indicate active engagement
in the activity and thus are expected to have a positive impact on
predicting cohesion [14]. The next set of features relates to postural
cues and posture differences among group members. Specifically,
we considered the postural expansion, given by the bounding box
volume of the body joints (inspired by [37]). This feature is given
by the volume of the box being spanned by the maximum and
minimum body joint coordinates in X-,Y- and Z-direction for each
participant. The bounding box volume is then normalized over
the arm-span and overall height of each participant in order to
account for different body types. We computed both the average
expansion (𝑝𝑜𝑠_𝑏𝑜𝑥) and the expansion difference ratio (i.e. the
difference of highest and lowest expansion at any time point, en-
coded as 𝑝𝑜𝑠_𝑏𝑜𝑥_𝑟𝑎𝑡𝑖𝑜) in the group. We expect posture expansion
to be related to notions of dominance and hierarchy, where small
differences and big overall expansion to be positively correlated
to social cohesion [49]. Finally, we defined a visual facing detector
that detects whenever the chest-joint of a participant enters the
line of sight of another participant. The line of sight of a participant
is modeled as a cone extending orthogonally from the chest point
of the participant with a 60◦ angle and a 3.6 meters depth (see
Figure 2). These specifications are derived given our understanding
of the biological findings about the extend of our focused field of
view [48], and the meaningful distance intervals according to Hall’s
definition of proxemics [17]. Based on this, we calculated the total
facing time (encoded in 𝑓 𝑎𝑐_𝑡𝑜𝑡𝑎𝑙) as the total time a participant
faces another one.

4.1.2 Innate group features. Innate group features, as opposed to
aggregates, describe the group as a whole, rather than its composing
members. Using our facing detector, we derive two group aspects
by assessing the quality and amount of turn-taking in the group as
well as the current group formation. Turn-taking commonly refers
to the dynamics of group discourse, such as the amount of speech or
the rate of speaker changes. We visually approximate active speaker
role by assessing the person who is being visually faced using our
facing detector. We derive the active speaker of the group as the
person who is being faced the most at a point in time and a floor
exchange as a change of the active speaker. If no participant is being
faced or multiple participants are being faced equally, no active
speaker is being detected. This way, we can estimate the amount
of floor exchanges (𝑓 𝑒𝑥), as well as the participation equality (𝑝𝑒𝑞)
and turn taking freedom (𝑡𝑡 𝑓 ), as described in [26]. We introduce
an additional turn-taking feature, called facing balance (𝑓 𝑎𝑐_𝑟𝑎𝑡𝑖𝑜),
which captures balance of facing times towards other participants
in the group. More precisely, let facing balanceV be defined as:
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Figure 1: The modeling pipeline. Components: Feature extraction and engineering; Temporal integration and feature aggrega-
tion using slices of 20s with an early feature selection using Kolmogorov-Smirnov statistics; Modeling and prediction of the
dynamic cohesion state given by the current and previous self-assessments.

V = 1 − 𝛼 · (𝑚𝑎𝑥𝑝 {V𝑝 } −𝑚𝑖𝑛𝑝 {V𝑝 }) 𝑤𝑖𝑡ℎ

V𝑝 =
𝐻𝑚𝑎𝑥 − 𝐻 (𝑝)

𝐻𝑚𝑎𝑥

where 𝑝 is each member of the group, 𝛼 is the proportion of time
where anybody is being faced, 𝐻 (𝑥) is the entropy over the facing
probabilities towards each other member in the group and 𝐻𝑚𝑎𝑥

a normalization coefficient as the maximum possible entropy for
a given group size. Groups with a clearly defined leader who is
often faced would thus have a lower balance than groups with-
out clear leadership structure where facing is equally distributed.
We expect that turn-taking features are positively correlated with
social cohesion as the equal active engagement was shown to be
predictive of social cohesion [20, 33]. Lastly, we quantified the for-
mation of the group by visually detecting the facing formation (or
F-formation) of the group. Facing formations indicate the presence
of a shared interaction space and conversation floor, thus are ex-
pected to be positively correlated with both social and task cohesion.
In our work, building on the idea of visual facing, we introduced a
new strategy of F-formation detection (encoded as 𝑓 _𝑓 𝑜𝑟𝑚), which
approximates the interaction space (or o-space) of a group using
intersecting line-of-sight. An F-formation at any point in time is
detected if the space in which all three line-of-sight cones intersect
is non-empty (see Figure 2). Our method this way is able to detect
any F-formation where individuals circumvent a shared convex
space. For three people, the detected F-formations are circular and
semi-circular formation, where mutual facing may occur. Notably

Figure 2: Visual attention and F-formation detection. An F-
formation is detected when all visual attention cones inter-
sect in a shared space (o-space).

missing are non-enclosed o-spaces such as a line formation or L-
arrangement (cf. [30]). F-Formation is quantified by the amount of
time any type of F-formation is detected. We calculated overlapping
line-of-sight by calculating polygon intersections using the python
Shapely package1. Table 1 summarizes all the features developed
for this study.

Table 1: Name, description and type of the extracted features.
Aggregate-Type refers to features assessed over group indi-
viduals while Group-Type asses the group state as a whole.

Encoding Description Type
max_dist Max distance between group members Aggregate

{Public/Social/Private}
Space Spacial association of max distance Aggregate

mov_hands Amount of hand movement when not walking Aggregate
mov_walk Average amount of walking Aggregate

mov_walk_ratio Movement difference in group Aggregate
pos_box Average posture expansion Aggregate

pos_box_ratio Posture difference in group Aggregate
touch Time touch is detected Aggregate

fac_total Time someone is being faced Aggregate
fac_ratio Facing balance Group

peq Participation equality Group
ttf Turn-taking freedom Group
fex Number of floor exchanges Group

f_form Presence, type of F-formation Group

4.2 Feature aggregation and early selection
Each time-series was split into fixed-length slices of 20-second
length over which the features were calculated. The short time
window is inspired by the notion of thin-slicing, showing that affect
and attitude can be accurately assessed when observing people
over period of a few seconds [2]. We expect that these findings for
general social interactions also translate to the perception of group
cohesion. As part of our study, we analyzed 15 groups, resulting
in a total of 1881 fixed-length slices of 20-second length (10 hours
and 27 minutes of data). We then aggregated each feature over each
slice by computing: average (𝑎𝑣𝑔), standard deviation (𝑠𝑡𝑑), maxi-
mum value (𝑚𝑎𝑥 ), minimum value (𝑚𝑖𝑛) and distribution skewness
(𝑠𝑘𝑒𝑤 ). Aggregationwas done for all features aside from turn-taking
features which were directly computed over each slice. This finally
1https://github.com/Toblerity/Shapely
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resulted in a set of 48 candidate features. We further reduced the
feature set by using Kolmogorov-Smirnov statistic [23, 43] to find
features whose distribution over the label set is different with a
significance level of 𝑝 < 0.01. This early feature selection ensures
that we only consider features which are potentially meaningful
for the prediction model.

4.3 Labeling strategy
One of the core aims of this work is to study dynamic changes in
group cohesion over the set of consecutive tasks. For this aim, we
computed task- and participant-specific labels which reflect the
change in cohesion between subsequent tasks using the mean rank
difference of individual cohesion scores, which are provided in the
dataset. We used a rank difference of scores since the scaling of
Likert-scale responses as found in the dataset is often highly subject
dependent. Equation 1 shows the notation to compute our predic-
tion label given by the mean rank difference, where 𝑟𝑎𝑛𝑘 refers
to the rank-transformation, 𝐺𝐸𝑄 refers to the sum of individual
associated responses in the dataset, the so-called GEQ-score.

𝑙𝑎𝑏𝑡 =
∑

𝑖∈{1,2,3}

𝑟𝑎𝑛𝑘 (𝐺𝐸𝑄 (𝑖, 𝑡)) − 𝑟𝑎𝑛𝑘 (𝐺𝐸𝑄 (𝑖, 𝑡 − 1))
3 (1)

This work is aimed at predictingwhether or not a given short-length
time window displays a decrease in group cohesion. Because of this,
we binarized the social and task cohesion labels for our prediction
setup, where a label 𝑙𝑎𝑏 < 0 indicates a decrease in cohesion and
𝑙𝑎𝑏 >= 0 indicates no change or increase in cohesion. Focusing on
decreases in affect and behavior is an established method and has
previously been done in similar works (e.g., [32, 44]).

4.4 Model prediction
Since we are trying to predict decrease for each slice for the social-
and task-related dimension of group cohesion, we used a multilabel
prediction approach. We chose a multilabel approach in order to
jointly model the influence of the feature space on both dimen-
sions by leveraging commonalities and common differences in the
data during training. We further used a tree-based approach to
avoid potential scaling issues with our features space which might
have been present with distance-based models such as k-nearest
neighbors or support vector machines. Because of these consider-
ations we decided to use a random forest classification model to
jointly predict social and task dimensions. In this work, we used
the scikit-learn [35] implementation of the Random Forest Classi-
fier. We employed a repeated nested 10-fold cross-validation with 5
repetitions across all slices to validate our model. Cross-folds were
randomly generated for each repetition. Additionally, the cross-
folds were stratified over the set of groups and the set of tasks
to ensure that all groups are equally represented in the training
and test sets in order not to set preference to tasks and groups
with long duration on the experiment. The hyper-parameters of
the prediction model were estimated using gridsearch on a 5-fold
cross-validation over each train-validation split. The best model
was selected using the highest average accuracy over both social
and task dimension. Hyper-parameters tuned during model vali-
dation are the maximum depth of pruned decision trees, as well
as the evaluation criterion. The best scoring model found during

evaluation uses pruned decision trees with a maximum depth of 5,
a total of 100 estimators, and Gini imbalance evaluation criterion.
We finally evaluated our model by assessing the average joint accu-
racy over the test sets in the cross-validation, as well as the separate
accuracy and f1-score for social and task cohesion.

4.5 Feature interpretation
Intuitively, we could expect that both social and task dimensions
are expressed differently, through various modalities, as they serve
different purposes (quantifying social bonds and quantifying task
commitment respectively). Psychological models (e.g., [9, 41]), how-
ever, assume that theses dimensions are not orthogonal, meaning
there may be behavioral correlates which are indicative for both
dimensions. Since we trained a model to jointly predict the social
and task dimensions of group cohesion, we expect that our predic-
tive model is able to exploit the commonalities in predicting both
the task and social dimension to improve generalization on the test
data. From the trained model, we can then probe it to reveal (1)
which features are informative for the model to predict task and
social cohesion and (2) how higher and lower feature values impact
the final model prediction. We quantified both the overall feature
importance and whether the features’ impact is positive or nega-
tive by analysing the SHAP values extracted from the fitted model
using the overall most common best setup selected during cross-
validation. SHAP values [28] are inspired by Shapley values [42], a
notion from cooperative game theory where a common payout is
distributed according to each participant’s individual and shared
contribution. In a similar vein, SHAP values assign an additive con-
tribution towards the prediction output assigned by a trained model.
This way, each variable of each sample in the dataset can be associ-
ated with a score that reflects how important it is for the overall
prediction and if it positively or negatively impacts the final predic-
tion. As we used a tree-based model, we employed TreeSHAP [27]
to compute the associated SHAP values. The mean absolute SHAP
value for each feature provides the overall feature importance over
the whole dataset. The features’ impact was quantified by calculat-
ing the Pearson correlation coefficient (𝑃𝐶𝐶) between the feature
values and the associated SHAP values. The sign of the correlation
thus provides the type of impact (positive/negative) while the value
indicates the linearity of this relationship (with +1/−1 indicating
strong monotonic relationship).

5 RESULTS AND DISCUSSION
The following is a summary of the results of our analysis. Out of the
total 1881 slices, we trained during our nested cross-validation on an
average of 1354 slices (72%), validated the model on 339 slices (18%)
and tested on the remaining 188 slices (10%). Using mean rank dif-
ference, the resulting labels are balanced in both task (51% 𝑑𝑒𝑐𝑟𝑒𝑎𝑠𝑒)
and social (54% 𝑑𝑒𝑐𝑟𝑒𝑎𝑠𝑒). When viewed as a multiclass problem
comprising the four classes decrease/decrease, decrease/no decrease,
no decrease/decrease and no decrease/no decrease, the label distribu-
tion is 30%, 16%, 21%, 33% respectively. Using Kolmogorov-Smirnov
statistics, we reduce the total set of considered features from 48
candidate features to a total of 37 features. The 11 removed fea-
tures include aggregates for the skew of distribution, as well as
𝑓 _𝑓 𝑜𝑟𝑚_𝑚𝑖𝑛 and 𝑓 𝑎𝑐_𝑓 𝑒𝑥 . Skewness, as a higher-order moment,
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Figure 3: Confusionmatrix for predicting dynamics for both
task and social cohesion in percentages (baseline=25%). “ − ”
and “ + ” refer to decrease or stable/decrease, respectively.

might simply be less informative on the data than lower-order mo-
ments, 𝑓 _𝑓 𝑜𝑟𝑚_𝑚𝑖𝑛 is not very informative since it only detects
when touch is detected over the whole slice. Finally, 𝑓 𝑎𝑐_𝑓 𝑒𝑥 might
not be informative on small time windows. We find that our predic-
tion paradigm is able to correctly identify the cohesion dynamics
with an average accuracy of 46% over the test sets for both task and
social cohesion. We find that we are able to predict task cohesion
with an average test accuracy of 64%(±3%) and social cohesion with
an average test accuracy of 67%(±3%). The results show that our
model is outperforming a baseline of random guessing (50%). Addi-
tionally, we manage to achieve an average f1-score of 64%(±3%)
and 67%(±3%) for task and social cohesion, respectively. Figure
3 further shows the corresponding confusion matrix of the four
possible joint classes when analyzing the results as a multiclass
problem as described before. Again, we find that we are able to
outperform above baseline (25% with random guessing). Further-
more, the results show that our model is confident in predicting the
non-conflicting classes (decrease/decrease, no decrease/no decrease)
while the performance is lower for the conflicting classes (i.e., de-
crease/no decrease, no decrease/decrease). This is likely because
(1) these classes are slightly under-represented in the dataset using
our labelling strategy and (2) we do not explicitly try to model
these classes with our multilabel approach but rather infer each
state based on the model’s knowledge of social and task dynamics,
respectively. The fact that we are still able to perform above chance
level in all four classes reveals that general dynamics model for
social and task cohesion is sufficient to also model the agreement
between social and task cohesion dynamics. Finally, the model
seems marginally better at differentiating the classes based on the
social dimension than on the task dimension, also reflected in the
fact that the overall average accuracy is higher for predicting social
cohesion than task. The fact that we achieve higher performance
for predicting social cohesion is in line with previous findings from
the literature [33]. Figure 4 summarizes our analyses regarding the
features’ impact. We find that overall, the maximum distance,

the amount of walking, the overall posture expansion and the
amount of inter-personal facing in the group are found to be
most meaningful in predicting both task and social cohesion.
When considering the 10 most important features for predicting
task and social cohesion, we can extract a common subset of im-
portant features to analyze the commonalities and differences for
predicting both dimensions. The top-10 features for each dimen-
sion comprise 64% and 56% of the total model impact respectively.
In our feature set, we find that “𝑚𝑎𝑥_𝑑𝑖𝑠𝑡_𝑚𝑖𝑛”, “𝑝𝑜𝑠_𝑏𝑜𝑥_𝑎𝑣𝑔”,
“𝑚𝑜𝑣_𝑤𝑎𝑙𝑘_𝑎𝑣𝑔” and “𝑓 𝑎𝑐_𝑎𝑣𝑔” are the most important features,
associated with distance, body movement, posture and finally fac-
ing behavior. Among this set, we find that “𝑚𝑎𝑥_𝑑𝑖𝑠𝑡_𝑚𝑖𝑛” is neg-
atively correlated with both task cohesion dynamics as well as
social cohesion dynamics (𝑃𝐶𝐶 = −0.86/−0.83, respectively). This
means that both task and social cohesion in a group drops when
the distance between group members is high. This finding is in line
with our previous assumption that groups standing closer together
hold higher social bonds and don’t feel the presence of others as
invading. In a similar vein, we find that “𝑓 𝑎𝑐_𝑎𝑣𝑔” is positively
correlated with both dimensions (𝑃𝐶𝐶 = 0.71/0.88, respectively).
This indicates that groups, which do not face each other during in-
teractions, are more likely to experience a decrease of the task and
social cohesion. Both “𝑝𝑜𝑠_𝑏𝑜𝑥_𝑎𝑣𝑔” and “𝑚𝑜𝑣_𝑤𝑎𝑙𝑘_𝑎𝑣𝑔” show
opposite expression for the two dimensions. Posture expansion
is positively correlated in task cohesion (𝑃𝐶𝐶 = 0.8) while it is
negatively correlated in social cohesion (𝑃𝐶𝐶 = −0.51). This is con-
trary to our prior assumption that overall high expansion correlates
positively with social cohesion, as an erect posture was previously
been found to be an indicator for social success [49]. The amount
of movement of the participants in space on the other hand is nega-
tively correlated in task cohesion (𝑃𝐶𝐶 = −0.6) while it is positively
correlated in social cohesion (𝑃𝐶𝐶 = 0.6). Again, this is contrary to
our prior assumptions as movement was assumed to be a sign of
active task engagement. To further analyze these weak contingent
linearities, Figure 5 shows the dependency plots between shap and
feature values for “𝑝𝑜𝑠_𝑏𝑜𝑥_𝑎𝑣𝑔” and “𝑚𝑜𝑣_𝑤𝑎𝑙𝑘_𝑎𝑣𝑔”. We find
that the model assigns the most impact to low feature values, while
assigning lower, consistent impact to higher feature values. For
“𝑝𝑜𝑠_𝑏𝑜𝑥_𝑎𝑣𝑔” we additionally find that there is an increase in fea-
ture impact for feature values higher than 0.6. In summary, when
trying to monitor potential changes in the dynamics of cohesion in
a group, our analysis reveals that one needs to look at the overall
spacial distance of the group and the facing behavior, since they
might indicate a lack of collaboration in the group. Secondly, the
body posture and movement in the group should also be moni-
tored since extreme posture changes or low movement might be
indicative of resignation or conflict [8].

6 CONCLUSION AND FUTUREWORK
In this paper, we achieved promising results on automatically pre-
dicting variations of the task and social dimensions of cohesion
from the group perspective (i.e., using self-assessments of cohesion)
by analyzing MoCap-based behavioral features. Results suggest
that our set of MoCap-based features, derived from existing video-
based features, is successful at capturing relevant nonverbal cues
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Figure 4: Impact of the 10most informative features on themodel for predicting task (left) and social (right) cohesion dynamics.
A high feature value associated with a positive SHAP value indicates that the feature is positively impacting themodel output.

Figure 5: Dependency plots between SHAP and feature val-
ues of task (left) and social (right) cohesion for contingent
variables “𝑝𝑜𝑠_𝑏𝑜𝑥_𝑎𝑣𝑔” (top) and “𝑚𝑜𝑣_𝑤𝑎𝑙𝑘_𝑎𝑣𝑔” (bottom).

related to cohesion. Our proposed approach uses tools from co-
operative game theory to generate knowledge about the features’
impact on the model predictions. It highlights that the maximum
distance between group members, the overall posture expansion
and the amount of facing between each person have the most sig-
nificant (positive or negative) impact on the model. Moreover, it
shows that there is a sizeable intersection of features found to be
important for predicting both task and social cohesion. This fact
implies that there exists a common set of behavioral correlates for
both dimensions, meaning that they are indeed correlated with
each other. Furthermore, because some of our common features
hold opposing model impact between both dimensions (e.g., pos-
ture expansion), we can further deduce that they do not manifest
similarly, confirming the assumptions on the interplay of these
dimensions from the original model [41]. Our analysis reveals that
our set of MoCap based-features are informative for monitoring
group cohesion when labels are based on self-assessments. These

features were explicitly modeled to reflect nonverbal behavioral
cues which are traditionally computed on the visual channel. This
supports our assumption, that a reason for the poor performance
of visual features might be the way they are extracted (low-level
and model-based extraction on images and videos). Features found
in this study to be informative encompass both low-level extracted
information (overall body motion) and high-level visual informa-
tion (inter-personal distance, posture and facing behavior). This
study lays the foundations for the development of computational
models to study the dynamics of cohesion. Some points, however,
remain to be addressed. Indeed, this work focuses on MoCap-based
features to detect variations in cohesion. It remains to be seen how
much additional information this modality provides when inte-
grating it into a multimodal (audio-visual) framework. One way
the presented modeling pipeline could include more fine-grained
dynamic changes is by changing the way cohesion dynamics are
reflected in each temporal segment. This can be done at the labeling
stage or at the model level. Concerning the labels, we used a mean
rank difference approach between two tasks in order to approxi-
mate the variations of cohesion. A more complex labeling strategy
could be developed to integrate information such as the inter-rater
agreement. It should also minimize biases introduced by either
self or external assessments [46] by potentially combining both
ratings. From the model perspective, we used a multilabel approach
to jointly predict a decrease in both task and social dimensions by
considering each segment independently. Future work could also
include the temporal dependencies between slices to directly model
temporal developments on a large time scale. As a first exploration
of the dynamics of cohesion based on self-assessments, this work
provides useful guidelines for the design, use and interpretation of
MoCap-based features related to cohesion and how to assess their
impact on the model performances.
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