
1

Fine-grained Code Coverage Measurement in Automated
Black-box Android Testing

ALEKSANDR PILGUN, SnT, University of Luxembourg
OLGA GADYATSKAYA, LIACS, Leiden University
YURY ZHAUNIAROVICH, Independent Researcher
STANISLAV DASHEVSKYI, Forescout Technologies
ARTSIOM KUSHNIAROU, iTechArt Inc.
SJOUKE MAUW, CSC & SnT, University of Luxembourg

Today, there are millions of third-party Android applications. Some of them are buggy or even
malicious. To identify such applications, novel frameworks for automated black-box testing and
dynamic analysis are being developed by the Android community. Code coverage is one of the most
common metrics for evaluating effectiveness of these frameworks. Furthermore, code coverage is
used as a fitness function for guiding evolutionary and fuzzy testing techniques. However, there are
no reliable tools for measuring fine-grained code coverage in black-box Android app testing.

We present the Android Code coVerage Tool, ACVTool for short, that instruments Android apps
and measures code coverage in the black-box setting at class, method and instruction granularity.
ACVTool has successfully instrumented 96.9% of apps in our experiments. It introduces a negligible
instrumentation time overhead, and its runtime overhead is acceptable for automated testing tools.
We demonstrate practical value of ACVTool in a large-scale experiment with Sapienz, a state-of-art
automated testing tool. Using ACVTool on the same cohort of apps, we have compared different
coverage granularities applied by Sapienz in terms of the found amount of crashes. Our results show
that none of the applied coverage granularities clearly outperforms others in this aspect.

CCS Concepts: • Security and privacy → Mobile platform security; • Software and its engineering
→ Dynamic analysis; Software testing and debugging.

Additional Key Words and Phrases: Android, Automated Software Testing, Code Coverage, Instru-
mentation

ACM Reference Format:
Aleksandr Pilgun, Olga Gadyatskaya, Yury Zhauniarovich, Stanislav Dashevskyi, Artsiom Kush-
niarou, and Sjouke Mauw. 2020. Fine-grained Code Coverage Measurement in Automated Black-box
Android Testing. ACM Trans. Softw. Eng. Methodol. 1, 1, Article 1 (January 2020), 37 pages.
https://doi.org/10.1145/3395042

Authors’ addresses: Aleksandr Pilgun, SnT, University of Luxembourg, aleksandr.pilgun@uni.lu; Olga
Gadyatskaya, LIACS, Leiden University, o.gadyatskaya@liacs.leidenuniv.nl; Yury Zhauniarovich, Independent
Researcher, yury@zhauniarovich.com; Stanislav Dashevskyi, Forescout Technologies, stanislav.dashevskyi@
forescout.com; Artsiom Kushniarou, iTechArt Inc., artsiom.kushniarou@itechart-group.com; Sjouke Mauw,
CSC & SnT, University of Luxembourg, sjouke.mauw@uni.lu.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted
without fee provided that copies are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. Copyrights for components of this work owned
by others than the author(s) must be honored. Abstracting with credit is permitted. To copy otherwise,
or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee.
Request permissions from permissions@acm.org.
© 2020 Copyright held by the owner/author(s). Publication rights licensed to ACM.
1049-331X/2020/1-ART1 $15.00
https://doi.org/10.1145/3395042

ACM Trans. Softw. Eng. Methodol., Vol. 1, No. 1, Article 1. Publication date: January 2020.

https://doi.org/10.1145/3395042
https://doi.org/10.1145/3395042

1:2 A. Pilgun et al.

1 INTRODUCTION
Code coverage measurement is an essential element of software development and quality
assurance cycles for all programming languages and ecosystems, including Android. It is
routinely applied by developers, testers, and analysts to understand the degree to which
the system under test has been evaluated [4], to generate test cases [73], to compare test
suites [24], and to maximize fault detection by prioritizing test cases [75]. In the context of
Android application analysis, code coverage has become a critical metric. Fellow researchers
and practitioners evaluate the effectiveness of tools for automated testing [18, 38, 51, 67]
and security analysis [35, 50, 79] using code coverage, among other metrics. It is also used
as a fitness function to guide application exploration in testing [39, 51, 62].

Unfortunately, the Android ecosystem introduces a particular challenge for security and
reliability analysis: Android applications (apps for short) submitted to markets (e.g., Google
Play) have been already compiled and packaged, and their source code is often unavailable
for inspection. Measuring code coverage achieved in testing and analysis is not a trivial
endeavor in this setting. This is why some third-party app testing systems, e.g., [17, 48, 57],
use open-source apps for experimental validation, whereby the source code coverage could be
measured by popular tools developed for Java, such as EMMA [56] or JaCoCo [37]. These,
and other systems will benefit from a reliable tool for measuring code coverage in testing
third-party Android apps.

In the absence of source code, code coverage is usually measured by instrumenting the
bytecode of applications [41]. Within the Java community, the problem of code coverage
measurement at the bytecode level is well-developed and its solution is considered to be
relatively straightforward [41, 64]. However, while Android applications are written in Java,
they are compiled into bytecode for the register-based Dalvik Virtual Machine (DVM),
which is quite different from the Java Virtual Machine (JVM). Thus, there are significant
disparities in the bytecode for these two virtual machines.

Since the arrangement of the Dalvik bytecode complicates the instrumentation process [35],
there have been so far only few attempts to track code coverage for Android applications at
the bytecode level [77], and they all still have limitations. The most significant one is the
coarse granularity of the provided code coverage metric. For example, ELLA [23], InsDal [46]
and CovDroid [74] measure code coverage only at at the method level. Another limitation of
the existing tools is the low percentage of successfully instrumented apps. For instance, the
tools by Huang et al. [35] and Zhauniarovich et al. [81] support fine-grained code coverage
metrics, but they could successfully instrument only 36% and 65% of applications from
their evaluation samples, respectively. Unfortunately, such instrumentation success rates are
prohibitive for these tools to be widely adopted by the Android community. Furthermore,
the existing tools suffer from limited empirical evaluation, with a typical evaluation dataset
being less than 100 apps. Sometimes, research papers do not even mention the percentage of
failed instrumentation attempts (e.g., [13, 46, 74]).

Remarkably, in the absence of reliable fine-grained code coverage reporting tools, some
frameworks integrate their own black-box code coverage measurement libraries, e.g., [13,
40, 48, 51, 60]. However, as code coverage measurement is not the core contribution of
these works, the authors do not provide detailed information about the rates of successful
instrumentation, as well as other details related to the code coverage performance of these
libraries.

ACM Trans. Softw. Eng. Methodol., Vol. 1, No. 1, Article 1. Publication date: January 2020.

Fine-grained Code Coverage Measurement in Automated Black-box Android Testing 1:3

In this paper, we present ACVTool – the Android Code coVerage measurement Tool
that does not suffer from the aforementioned limitations. The paper makes the following
contributions:

∙ An approach to instrument Dalvik bytecode in its smali representation by inserting
probes to track code coverage at the levels of classes, methods and instructions. Our
approach is fully self-contained and transparent to the testing environment.

∙ An implementation of the instrumentation approach in ACVTool, which can be
integrated with any testing or dynamic analysis framework. Our tool presents the
coverage measurements and information about encountered crashes as handy reports
that can be either visually inspected by an analyst, or processed by an automated
testing environment.

∙ Extensive empirical evaluation that shows the high reliability and versatility of our
approach.
– While previous works [35, 81] have only reported the number of successfully in-

strumented apps1, we also verified whether apps can be successfully executed after
instrumentation. We report that 96.9% have been successfully executed on the An-
droid emulator, which is only 0.9% less than the initial set of successfully instrumented
apps.

– In the context of automated and manual application testing, ACVTool introduces only
a negligible instrumentation time overhead. In our experiments ACVTool required
on average 33.3 seconds to instrument an app.

– The runtime overhead introduced by ACVTool is very low for real apps: in experi-
ments with real Android apps the mean CPU overhead introduced by ACVTool is
0.53%.

– We have evaluated whether ACVTool reliably measures the bytecode coverage by
comparing its results with those reported by JaCoCo [37] and ELLA [23]. Our results
show that the ACVTool results can be trusted, as code coverage statistics reported
by ACVTool, JaCoCo and ELLA are highly correlated.

– By integrating ACVTool with Sapienz [51], an efficient automated testing framework
for Android, we demonstrate that our tool can be useful as an integral part of an
automated testing or security analysis environment. With ACVTool, we were able to
compare how different coverage metrics fare in bug finding with Sapienz. We show
that different coverage granularities do not tend to find the same crashes, but none
of them clearly outperforms the others. The question of the right granularity of code
coverage to be used in search-based testing remains open.

∙ We release ACVTool as an open-source tool to support the Android testing and
analysis community. Source code and a demo video of ACVTool are available for the
community2.

ACVTool can be readily used with various dynamic analysis and automated testing
tools, e.g., IntelliDroid [70], CopperDroid [63], Sapienz [51], Stoat [62], DynoDroid [49],
CuriousDroid [15], PATDroid [57], Paladin [48], to mention a few, to measure code coverage.
This work extends our preliminary results reported in [22, 54].

This paper is structured as follows. We give the necessary background information about
Android applications and their code coverage measurement aspects in Section 2. The
ACVTool design and workflow are presented in Section 3. Section 4 details our bytecode
1For ACVTool, it is 97.8% out of 1278 real-world Android apps.
2https://github.com/pilgun/acvtool

ACM Trans. Softw. Eng. Methodol., Vol. 1, No. 1, Article 1. Publication date: January 2020.

https://github.com/pilgun/acvtool

1:4 A. Pilgun et al.

instrumentation approach. In Section 5, we evaluate the effectiveness and efficiency of
ACVTool and assess how the coverage data reported by ACVTool is compliant to the data
measured by the JaCoCo system on the source code and Ella without source code. Section 6
presents our results on integrating ACVTool with the Sapienz automated testing framework,
evaluates the impact of ACVTool instrumentation on app runtime behavior, and discusses
the contribution of code coverage data to bug finding in Android apps. Then we discuss the
limitations of our prototype and potential threats to validity for our empirical findings in
Section 7. We provide an overview of related work and compare ACVTool to the existing
tools for black-box Android code coverage measurement in Section 8. We conclude with
Section 9.

2 BACKGROUND
2.1 APK Internals
Android apps are distributed as apk packages that contain the resource files, native libraries
(*.so), compiled code files (*.dex), manifest (AndroidManifest.xml), and developer’s
signature. Typical application resources are user interface layout files and multimedia
content (icons, images, sounds, videos, etc.). Native libraries are compiled C/C++ modules
that are often used for speeding up computationally intensive operations.

Android apps are usually developed in Java and, more recently, in Kotlin – a JVM-
compatible language [19]. Upon compilation, code files are first transformed into Java
bytecode files (*.class), and then converted into a Dalvik executable file (classes.dex)
that can be executed by the Dalvik/ART Android virtual machine (DVM). Usually, there is
only one dex file, but Android also supports multiple dex files. Such apps are called multidex
applications.

In contrast to most JVM implementations that are stack-based, DVM is a register-based
virtual machine. It assigns local variables to registers, and the DVM instructions (opcodes)
directly manipulate the values stored in the registers. Each application method has a set
of registers defined in its beginning, and all computations inside the method can be done
only through this register set. The method parameters are also a part of this set. The
parameter values sent into the method are always stored in the registers at the end of
the method’s register set. For more details, we refer the interested reader to the official
Android documentation about the Dalvik bytecode internals [25] and the presentation by
Bornstein [12].

Since raw Dalvik binaries are hard to understand for humans, several intermediate
representations have been proposed that are more analyst-friendly: smali [10, 28] and
Jimple [65]. In this paper, we work with smali, a low-level programming language for the
Android platform. Smali is supported by Google [28], and it can be viewed and manipulated
using, e.g., the smalidea plugin for the IntelliJ IDEA/Android Studio [10].

The Android manifest file is used to set up various parameters of an app (e.g., whether it
has been compiled with the debug flag enabled), to list its components, and to specify the
set of declared and requested Android permissions. The manifest provides a feature that is
very important for the purpose of this paper: it allows one to specify the instrumentation
class that can monitor at runtime all interactions between the Android system and the app.
We rely upon this functionality to enable the code coverage measurement, and to intercept
the crashes of an app and log their details.

Before an app can be installed onto a device, it must be cryptographically signed with a
developer’s certificate (the signature is located under the META-INF folder inside an .apk

ACM Trans. Softw. Eng. Methodol., Vol. 1, No. 1, Article 1. Publication date: January 2020.

Fine-grained Code Coverage Measurement in Automated Black-box Android Testing 1:5

file) [80]. The purpose of this signature is to establish the trust relationship between the
apps of the same signature holder: for example, it ensures that the application updates
are delivered from the same developer. Still, these signatures cannot be used to verify the
authenticity of the developer of an application being installed, as other parties can modify the
contents of the original application and re-sign it with their own certificates. Our approach
relies on this possibility of code re-signing to instrument the apps.

2.2 Code Coverage
The notion of code coverage refers to the metrics that help developers to estimate the portion
of the source code or the bytecode of a program executed at runtime, e.g., while running a
test suite [4]. Coverage metrics are routinely used in the white-box testing setting, when
the source code is available. They allow developers to estimate the relevant parts of the
source code that have never been executed by a particular set of tests, thus facilitating, e.g.,
regression-testing and improvement of test suites. Furthermore, code coverage metrics are
regularly applied as components of fitness functions that are used for other purposes: fault
localization [64], automatic test generation [51], and test prioritization [64].

In the Android realm, not only application developers are interested in measuring code
coverage. For example, Google tests all submitted (already packaged) apps to ensure that
they meet the security standards3. For independent testers and analysts it is important
to understand how well a third-party app has been exercised [38], and various third-party
app testing and analysis tools are routinely evaluated with respect to the achieved code
coverage [18, 35, 38, 67].

There exist several levels of granularity at which the code coverage can be measured.
Statement coverage, basic block coverage, and function (method) coverage are very widely
used. Other coverage metrics exist as well: branch, condition, parameter, data-flow, etc [4].
However, these metrics are rarely used within the Android community, as they are not widely
supported by the most popular coverage tools for Java and Android source code, namely
JaCoCo [37] and EMMA [56]. On the other hand, the Android community often uses the
activity coverage metric, that counts the proportion of executed activities [7, 15, 51, 77]
(classes of Android apps that implement the user interface), because this metric is useful
and is relatively easy to compute.

There is an important distinction in measuring the statement coverage of an app at the
source code and at the bytecode levels: the instructions and methods within the bytecode
may not exactly correspond to the instructions and methods within the original source
code. For example, a single source code statement may correspond to several bytecode
instructions [12]. Also, a compiler may optimize the bytecode so that the number of methods
is different, or the control flow structure of the app is altered [41, 64].

It is not always possible to map the source code statements to the corresponding bytecode
instructions without having the debug information. Therefore, it is practical to expect that
the source code statement coverage cannot be reliably measured within the third-party
app testing scenario, and with ACVTool we resort to measuring the bytecode instruction
coverage. We call the third-party app testing scenario black-box testing, to emphasize the
absence of source code and implementation details. This terminology is standard in the
Android community [38].

3https://www.android.com/security-center/

ACM Trans. Softw. Eng. Methodol., Vol. 1, No. 1, Article 1. Publication date: January 2020.

https://www.android.com/security-center/

1:6 A. Pilgun et al.

Decompile

Android Manifest

Smali Code

Instrumented

Android Manifest
Instrumented

Smali Code
Instrument Build&Sign

Install Test

Instrumentation

Report

Runtime

Report

Collect

Apktool ACVTool

ACVTool

Apktool

apksigner

adb

manual

automatic adb Crash

Data

Offline
Online

Generate

Fig. 1. ACVTool workflow

3 ACVTOOL DESIGN
ACVTool allows one to measure and analyze the degree to which the code of a closed-source
Android app is executed during testing, and to collect crash reports occurred during this
process. We have designed the tool to be self-contained by embedding all dependencies
required to collect the runtime information into the application under test (AUT). Therefore,
our tool does not require to install additional software components, allowing it to be
effortlessly integrated into any existing testing or security analysis pipeline. For instance,
we have tested ACVTool with the random input event generator Monkey [30], and we have
integrated it with the Sapienz tool [51] to experiment with fine-grained coverage metrics (see
details in Section 6). Furthermore, for instrumentation ACVTool uses only the instructions
available on all current Android platforms. The instrumented app is thus compatible with
all emulators and devices. We have tested whether the instrumented apps work using an
Android emulator and a Google Nexus phone.

Figure 1 illustrates the workflow of ACVTool that consists of three phases: offline, online
and report generation. At the time of the offline phase, the app is instrumented and prepared
for running on a device or an emulator. During the online phase, ACVTool installs the
instrumented app, runs it and collects its runtime information (coverage measurements and
crashes). At the report generation phase, the runtime information of the app is extracted
from the device and used to generate a coverage report. Below we describe these phases in
detail.

3.1 Offline Phase
The offline phase of ACVTool is focused on app instrumentation. In a nutshell, this process
consists of several steps depicted in the upper part of Figure 1. The original Android app is
first decompiled using apktool [68]. Under the hood, apktool uses the smali/backsmali
disassembler [10] to disassemble .dex files and transform them into smali representation.
To track the execution of the original smali instructions, ACVTool inserts special probe
instructions after each of them. These probes are invoked right after the corresponding
original instructions, allowing us to precisely track their execution at runtime. After the
instrumentation, ACVTool compiles the instrumented version of the app using apktool and
signs it with apksigner. Thus, by relying on native Android tools and some well-supported

ACM Trans. Softw. Eng. Methodol., Vol. 1, No. 1, Article 1. Publication date: January 2020.

Fine-grained Code Coverage Measurement in Automated Black-box Android Testing 1:7

tools provided by the community, ACVTool is able to instrument almost every app. We
present the details of our instrumentation process in Section 4.

In order to collect the runtime information, we used the approach proposed in [81] and
developed a dedicated Instrumentation class. ACVTool embeds this class into the app
code, allowing the tool to collect the runtime information. After the app has been tested,
this class serializes the runtime information (represented as a set of boolean arrays) into
a binary representation, and saves it to the external storage of an Android device. The
Instrumentation class also collects and saves the data about crashes within the AUT,
and registers a broadcast receiver. The receiver waits for a special event notifying that the
process collecting the runtime information should be stopped. Therefore, various testing
tools can use the standard Android broadcasting mechanism to control ACVTool externally.

ACVTool makes several changes to the Android manifest file (decompiled from binary
to normal xml format by apktool). First, to write the runtime information to the external
storage, we additionally request the WRITE_EXTERNAL_STORAGE permission. Second, we add
a special instrument tag that registers our Instrumentation class as an instrumentation
entry point.

After the instrumentation is finished, ACVTool assembles the instrumented package with
apktool, re-signs and aligns it with standard Android utilities apksigner and zipalign.
Thus, the offline phase yields an instrumented app that can be installed onto a device and
executed.

It should be mentioned that we sign the application with a new signature. Therefore, if
the application checks the validity of the signature at runtime, the instrumented application
may fail or run with reduced functionality, e.g., it may show a message to the user that the
application is repackaged and may not work properly.

Along with the instrumented apk file, the offline phase produces an instrumentation report.
It is a serialized code representation saved into a binary file with the pickle extension
that is used to map probe indices in a binary array to the corresponding original bytecode
instructions. This data along with the runtime report (described in Section 3.2) is used
during the report generation phase. By default, ACVTool instruments an application to
collect instruction-, method- and class-level coverage information. It is also possible to
instrument an app to collect only method- and class-level coverage data, in case only a
coarser-grained coverage information is required.

3.2 Online Phase
During the online phase, ACVTool installs the instrumented app onto a device or an emulator
using the adb utility, and initiates the process of collecting the runtime information by
starting the Instrumentation class. This class is activated through a command issued to
adb. Developers can then test the app manually, run a test suite, or interact with the app in
any other way, e.g., by running tools, such as Monkey [30], IntelliDroid [70], or Sapienz [51].
ACVTool’s data collection does not influence the app execution. If the Instrumentation
class has been not activated, the app can still be run in a normal way.

After the testing is over, ACVTool generates a broadcast that instructs the Instrumentation
class to stop the coverage data collection. Upon receiving the broadcast, the class consolidates
the runtime information into a runtime report and stores it on the external storage of the
testing device. Additionally, ACVTool keeps the information about all crashes of the AUT,
including the timestamp of a crash, the name of the class that crashed, the corresponding
error message and the full stack trace. By default, ACVTool is configured to catch all runtime

ACM Trans. Softw. Eng. Methodol., Vol. 1, No. 1, Article 1. Publication date: January 2020.

1:8 A. Pilgun et al.

Fig. 2. ACVTool html report

Fig. 3. Covered smali instructions highlighted by ACVTool

exceptions in an AUT without stopping its execution – this can be useful for collecting the
code coverage information right after a crash happens, helping to pinpoint its location.

3.3 Report Generation Phase
The runtime report is a set of boolean vectors (with all elements initially set to False);
each of these vectors corresponds to one class of the app. Every element of a vector maps
to a probe that has been inserted into the class. Once a probe has been executed, the
corresponding vector’s element is set to True, meaning that the associated instruction has
been covered. To build the coverage report that shows what original instructions have been
executed during the testing, ACVTool uses data from the runtime report, showing what
probes have been invoked at runtime, and from the instrumentation report that maps these
probes to original instructions.

Currently, ACVTool generates reports in the html and xml formats. These reports have a
structure similar to the reports produced by the JaCoCo tool [37]. While html reports are
convenient for visual inspection, xml reports are more suitable for automated processing.
Figure 2 shows an example of a html report. Analysts can browse this report and navigate
the hyperlinks that direct to the smali code of individual files of the app, where the covered
smali instructions are highlighted (as shown in Figure 3).

4 CODE INSTRUMENTATION
In this section, we describe the bytecode instrumentation approach used in ACVTool. In
the literature, Huang et al. [35] propose two approaches for measuring bytecode coverage:
(1) direct instrumentation by placing probes right after the instruction that has to be
monitored for coverage (this requires using additional registers); (2) indirect instrumentation
by wrapping probes into separate functions. The latter instrumentation approach introduces
significant overhead in terms of added methods that could potentially lead to reaching the

ACM Trans. Softw. Eng. Methodol., Vol. 1, No. 1, Article 1. Publication date: January 2020.

Fine-grained Code Coverage Measurement in Automated Black-box Android Testing 1:9

upper limit of method references per .dex file (65536 methods, see [27]). Thus, we built
ACVTool upon the former approach.

1 private void updateElements() {
2 boolean updated = false;
3 while (!updated) {
4 updated = updateAllElements();
5 }
6 }

Listing 1. Java code example.

1 .method private updateElements()V
2 .locals 1
3 const/4 v0, 0x0
4 .local v0, "updated":Z
5 :goto_0
6 if−nez v0, :cond_0
7 invoke−direct {p0}, Lcom/demo/Activity;−>updateAllElements()Z
8 move−result v0
9 goto :goto_0

10 :cond_0
11 return−void
12 .end method

Listing 2. Smali representation of the original Java code example.

4.1 Bytecode representation
To instrument Android apps, ACVTool relies on the apkil library [72] that creates a
tree-based structure of smali code. The tree generated by apkil contains classes, fields,
methods, and instructions as nodes. It also maintains relations between instructions, labels,
try–catch and switch blocks. We use this tool for two purposes: (1) apkil builds a structure
representing the code that facilitates bytecode manipulations; (2) it maintains links to the
inserted probes, allowing us to generate the code coverage report.

The original apkil library has not been maintained since 2013. Therefore, we adapted it
to enable support for more recent versions of Android. In particular, we added annotation
support for classes and methods, which has appeared in the Android API 19, and has been
further extended in the API 22. Our modifications specify the .annotation word and its
structure for classes and methods for the apkil smali parser. Other our additions to apkil
contain 4 new instructions: filled-new-array, invoke-custom, filled-new-array/range
and invoke-custom/range. We added them to the list of 35c and 3rc Dalvik instruction
formats4. For parsing, apkil finds such instructions by name as they have a different format
compared to other instructions [27]. Thus, the apkil library evolves according to ACVTool’s
needs, and it is maintained within the ACVTool project.

Tracking the bytecode coverage requires not only to insert the probes while keeping the
bytecode valid, but also to maintain the references between the original and the instrumented
bytecode. For this purpose, when we generate the apkil representation of the original
bytecode, we annotate the nodes that represent the original bytecode instructions with
additional information about the probes we inserted to track their execution. We then save
4See https://source.android.com/devices/tech/dalvik/instruction-formats for more details about instruction
formats.

ACM Trans. Softw. Eng. Methodol., Vol. 1, No. 1, Article 1. Publication date: January 2020.

https://source.android.com/devices/tech/dalvik/instruction-formats

1:10 A. Pilgun et al.

1 .method private updateElements()V
2 .locals 4
3 move−object/16 v1, p0
4 sget−object v2, Lcom/acvtool/StorageClass;−>Activity1267:[Z
5 const/16 v3, 0x1
6 const/16 v4, 0x9
7 aput−boolean v3, v2, v4
8 const/4 v0, 0x0
9 goto/32 :goto_hack_4

10 :goto_hack_back_4
11 :goto_0
12 goto/32 :goto_hack_3
13 :goto_hack_back_3
14 if−nez v0, :cond_0
15 goto/32 :goto_hack_2
16 :goto_hack_back_2
17 invoke−direct {v1}, Lcom/demo/Activity;−>updateAllElements()Z
18 move−result v0
19 goto/32 :goto_hack_1
20 :goto_hack_back_1
21 goto :goto_0
22 :cond_0
23 goto/32 :goto_hack_0
24 :goto_hack_back_0
25 return−void
26 :goto_hack_0
27 const/16 v4, 0x4
28 aput−boolean v3, v2, v4
29 goto/32 :goto_hack_back_0
30 :goto_hack_1
31 const/16 v4, 0x5
32 aput−boolean v3, v2, v4
33 goto/32 :goto_hack_back_1
34 :goto_hack_2
35 const/16 v4, 0x6
36 aput−boolean v3, v2, v4
37 goto/32 :goto_hack_back_2
38 :goto_hack_3
39 const/16 v4, 0x7
40 aput−boolean v3, v2, v4
41 goto/32 :goto_hack_back_3
42 :goto_hack_4
43 const/16 v4, 0x8
44 aput−boolean v3, v2, v4
45 goto/32 :goto_hack_back_4
46 .end method

Listing 3. Instrumented smali code example. The highlighted lines mark the added instructions.

this annotated intermediate representation of the original bytecode into a separate serialized
.pickle file as the instrumentation report.

4.2 Register management
To exemplify how our instrumentation works, Listing 1 gives an example of a Java code
fragment, Listing 2 shows its smali representation, and Listing 3 illustrates the corresponding
smali code instrumented by ACVTool.

The probe instructions that we insert are simple aput-boolean opcode instructions (e.g.,
Line 7 in Listing 3). These instructions put a boolean value (the first argument of the opcode
instruction) into an array identified by a reference (the second argument), to a certain cell
at an index (the third argument). Therefore, to store these arguments we need to allocate
three additional registers per app method.

ACM Trans. Softw. Eng. Methodol., Vol. 1, No. 1, Article 1. Publication date: January 2020.

Fine-grained Code Coverage Measurement in Automated Black-box Android Testing 1:11

The addition of these registers is not a trivial task. We cannot simply use the first
three registers in the beginning of the stack because this will require modification of the
remaining method code and changing the corresponding indices of the registers. Moreover,
some instructions can address only 16 registers [27]. Therefore, the addition of new registers
could make these instructions malformed. Similarly, we cannot easily use new registers at
the end of the stack because method parameter registers must always be the last ones.

To overcome this issue, we use the following approach. We allocate three new registers,
however, in the beginning of a method we copy the values of the argument registers to
their corresponding places in the original method. For instance, in Listing 3 the instruction
at Line 3 copies the value of the parameter p0 into the register v1 that has the same
register position as in the original method (see Listing 2). Depending on the value type, we
use different move instructions for copying: move-object/16 for objects, move-wide/16 for
paired registers (Android uses register pairs for long and double types), move/16 for others.
Then we update all occurrences of parameter registers through the method body from p
names to their v aliases (compare Line 7 in Listing 2 with Line 17 in Listing 3). Afterwards,
the last 3 registers in the stack are safe to use for the probe arguments (for instance, see
Lines 4-6 in Listing 3).

4.3 Probes insertion
Apart from moving the registers, there are other issues that must be addressed for inserting
the probes correctly. First, it is impractical to insert probes after certain instructions that
change the the execution flow of a program, namely return, goto (line 21 in Listing 3), and
throw. If a probe was placed right after these instructions, it would never be reached during
the program execution.

Second, some instructions come in pairs. For instance, the invoke-* opcodes, which are
used to invoke a method, must be followed by the appropriate move-result* instruction to
store the result of the method execution [27] (see Lines 17-18 in Listing 3). Therefore, we
cannot insert a probe between them. Similarly, in case of an exception, the result must be
immediately handled. Thus, a probe cannot be inserted between the catch label and the
move-exception instruction.

These aspects of the Android bytecode mean that we insert probes after each instruction,
but not after the ones modifying the execution flow, and not after the first command in the
paired instructions. These excluded instructions are untraceable for our approach, and we do
not consider them to be part of the resulting code coverage metric. Note that in case of a
method invocation instruction, we log each invoked method, so that the computed method
code coverage will not be affected by this.

The VerifyChecker component of the Android Runtime that checks the code validity at
runtime poses additional challenges. For example, a Java synchronized block, which allows
a particular code section to be executed by only one thread at a time, corresponds to a pair of
the monitor-enter and monitor-exit instructions in the Dalvik bytecode. To ensure that
the lock is eventually released, this instruction pair is wrapped with an implicit try–catch
block, where the catch part contains an additional monitor-exit statement. Therefore,
in case of an exception inside a lock, another monitor-exit instruction will unlock the
thread. VerifyChecker ensures that the monitor-exit instruction will be executed only
once, so it does not allow to add any instructions that may potentially raise an exception.
To overcome this limitation, we insert the goto/32 statement to redirect the flow to the
tracking instruction, and a label to go back after the tracking instruction was executed.
Since VerifyChecker examines the code sequentially, and the goto/32 statement is not

ACM Trans. Softw. Eng. Methodol., Vol. 1, No. 1, Article 1. Publication date: January 2020.

1:12 A. Pilgun et al.

considered as a statement that may throw exceptions, our approach allows the instrumented
code to pass the code validity check.

5 EVALUATION
Our code coverage tracking approach modifies the app bytecode by adding probes and
repackaging the original app. This approach could be deemed too intrusive to use with the
majority of third-party applications. To prove the validity and the practical usefulness of
our tool, we have performed an extensive empirical evaluation of ACVTool with respect to
the following criteria:

Effectiveness. We report the instrumentation success rate of ACVTool, broken down in
the following numbers:

∙ Instrumentation success rate. We report how many apps from our datasets have been
successfully instrumented with ACVTool.

∙ App health after instrumentation. We measure the percentage of instrumented apps
that can run on an emulator. We call these apps healthy5. To report this statistic, we
installed the instrumented apps on the Android emulator and launched their main
activity. If an app is able to run for 3 seconds without crashing, we count it as healthy.

Efficiency. We assess the following characteristics:
∙ Instrumentation-time overhead. Traditionally, the preparation of apps for testing is

considered to be an offline activity that is not time-sensitive. Given that the testing
process may be time-demanding (e.g., Sapienz [51] tests each application for hours),
our goal is to ensure that the instrumentation time is insignificant in comparison to the
testing time. Therefore, we have measured the time ACVTool requires to instrument
apps in our datasets.

∙ Runtime overhead. Tracking instructions added into an app introduce their own runtime
overhead, what may be a critical issue in testing. Therefore, we evaluate the impact of
the ACVTool instrumentation on app performance and codebase size. We quantify the
runtime overhead measured as the CPU utilization overhead on a subset of applications
and on the benchmark PassMark application [59] by comparing executions of original
and instrumented app versions. We also measure the increase in the .dex file size.

Compliance with other tools. We compare the coverage data reported by ACVTool with
the coverage data measured by JaCoCo [37] that relies on the white-box approach and
requires source code, and by Ella [23], which does not require source code, but measures
coverage only at the method level. This comparison allows us to draw conclusions about the
reliability of the coverage information collected by ACVTool.

To the best of our knowledge, this is the largest empirical evaluation of a code coverage
tool for Android done so far. In the remainder of this section, after presenting the benchmark
application sets used, we report on the results obtained in dedicated experiments for each
of the above criteria. The experiments were executed on an Ubuntu server (Xeon 4114,
2.20GHz, 128GB RAM).

5.1 Benchmark
We downloaded 1000 apps from the Google Play sample of the AndroZoo dataset [2]. These
apps were selected randomly among apps built after Android API 22 was released, i.e., after

5To the best of our knowledge, we are the first to report the percentage of instrumented apps that are
healthy.

ACM Trans. Softw. Eng. Methodol., Vol. 1, No. 1, Article 1. Publication date: January 2020.

Fine-grained Code Coverage Measurement in Automated Black-box Android Testing 1:13

Table 1. ACVTool performance evaluation

Parameter Google Play F-Droid Totalbenchmark benchmark
Total # healthy apps 832 446 1278

Instrumented apps 809 (97.2%) 442 (99.1%) 1251 (97.8%)
Healthy instrumented apps 799 (96.0%) 440 (98.7%) 1239 (96.9%)
Avg. instrumentation time 36.6 sec 27.4 sec 33.3 sec

November 2014. These are real third-party apps that may use obfuscation and anti-debugging
techniques, and could be more difficult to instrument.

Among the 1000 Google Play apps, 168 could not be launched: 12 apps were missing a
launchable activity, 1 had encoding problem, and 155 crashed upon startup. These crashes
could appear due to some misconfigurations in the apps, but also due to the fact that we
used an emulator. Android emulators lack many features present in real devices. We have
used the emulator, because we subsequently test ACVTool together with Sapienz [51] (these
experiments are reported in the next section). We excluded these unhealthy apps from our
sample. In total, our Google Play benchmark contains 832 healthy apps. The apk sizes in
this set range from 20KB to 51MB, with an average apk size of 9.2MB.

As one of our goals is to evaluate the reliability of the coverage data collected by ACVTool
comparing to JaCoCo as a reference, we need to have some apps with the available source
code. To collect such apps, we use the F-Droid6 dataset of open source Android apps (1330
application projects as of November 2017). We could git clone 1102 of those, and found
that 868 apps used Gradle as a build system. We have successfully compiled 627 apps using
6 Gradle versions7.

To ensure that all of these 627 apps can be tested (healthy apps), we installed them on an
Android emulator and launched their main activity for 3 seconds. In total, out of these 627
apps, we obtained 446 healthy apps that constitute our F-Droid benchmark. The size of the
apps in this benchmark ranges from 8KB to 72.7MB, with an average size of 3.1MB.

5.2 Effectiveness
5.2.1 Instrumentation success rate. Table 1 summarizes the main statistics related to the
instrumentation success rate of ACVTool.

Before instrumenting applications with ACVTool, we first reassembled, repackaged, rebuilt
(with apktool, zipalign, and apksigner) and installed every healthy Google Play and
F-Droid app on a device. From the Google Play sample, one repackaged app crashed upon
startup, and apktool could not repackage 22 apps, raising AndrolibException. From the
F-Droid sample, apktool was unable to repackage only one app. These apps were excluded
from subsequent experiments, and we consider them as failures for ACVTool (even though
ACVTool instrumentation did not cause these failures).

Besides the 24 apps that could not be repackaged in both app sets, ACVTool has
instrumented all remaining apps from the Google Play benchmark. Yet, it failed to instrument
3 apps from the F-Droid set. The found issues were the following: in 2 cases apktool raised an
exception ExceptionWithContext declaring an invalid instruction offset, in 1 case apktool

6https://f-droid.org/
7Gradle versions 2.3, 2.9, 2.13, 2.14.1, 3.3, 4.2.1 were used. Note that the apps that failed to build and
launch correctly are not necessarily faulty, but they can, e.g., be built with other build systems or they may
work on older Android versions. Investigating these issues is out of the scope of our study, so we did not
follow up on the failed-to-build apps.

ACM Trans. Softw. Eng. Methodol., Vol. 1, No. 1, Article 1. Publication date: January 2020.

https://f-droid.org/

1:14 A. Pilgun et al.

threw ExceptionWithContext stating that a register was invalid and must be between v0
and v255.

5.2.2 App health after instrumentation. From all successfully instrumented Google Play
apps, 10 applications crashed at launch and generated runtime exceptions, i.e., they became
unhealthy after instrumentation with ACVTool (see the third row in Table 1). Five cases
were due to the absence of the Retrofit annotation (four IllegalStateException and one
IllegalArgumentException), 3 cases – ExceptionInInitializerError, 1 case –
NullPointerException, 1 case – RuntimeException in a background service. In the F-
Droid dataset, 2 apps became unhealthy due to the absence of Retrofit annotation, raising
IllegalArgumentException.

Upon investigation of the issues, we suspect that they could be due to faults in the
ACVTool implementation. We are working to properly identify and fix the bugs, or to
identify a limitation in our instrumentation approach that leads to a fault for some type of
apps.

Conclusion: we can conclude that ACVTool is able to process the vast majority of apps in
our dataset, i.e., it is effective for measuring code coverage of third-party Android apps. For
our total combined dataset of 1278 originally healthy apps, ACVTool has instrumented 1251,
what constitutes 97.8%. From the instrumented apps, 1239 are still healthy after instrumen-
tation. This gives us the instrumentation survival rate of 99%, and the total instrumentation
success rate of 96.9% (of the originally healthy population). The instrumentation success
rate of ACVTool is much better than the instrumentation rates of the closest competitors
BBoxTester [81] (65%) and the tool by Huang et al. [35] (36%).

5.3 Efficiency
5.3.1 Instrumentation-time overhead. Table 1 presents the average instrumentation time
required for apps from our datasets. It shows that ACVTool generally requires less time
for instrumenting the F-Droid apps (on average, 27.4 seconds per app) than the Google
Play apps (on average, 36.6 seconds). This difference is due to the smaller size of apps,
and, in particular, the size of their .dex files. For our total combined dataset the average
instrumentation time is 33.3 seconds per app. This time is negligible compared to the testing
time usual in the black-box setting that could easily reach several hours.

5.3.2 Runtime overhead.

CPU utilization overhead. To assess the runtime overhead induced by our instrumentation
in a real world setting, we ran the original and instrumented versions of 10 apps (size range
1–32MB, 10MB mean APK size) randomly chosen from our dataset with Monkey [30], a
random input event generator from Google (same seed for reproducibility, 1 second throttle,
500 events), and measured CPU utilization with the Qualcomm Snapdragon Profiler [55].

We provide performance measurement at the best precision we could achieve on Android,
taking into account its reactive nature. Our fully automated pipeline works as follows. First,
we reboot the Android device (we use Nexus 5) and install a new app. Then the profiler is
launched starting the CPU utilization measurements. Monkey starts and exercises the app,
while the profiler saves the data. Once the testing is finished, the app is uninstalled. We test
every app 5 times for each of its 3 versions: original, instrumented at the method level and
instrumented at the instruction level. Finally, we calculated the average CPU utilization for
every app version and logic processor (since the CPU on our device has 4 logic processors).

ACM Trans. Softw. Eng. Methodol., Vol. 1, No. 1, Article 1. Publication date: January 2020.

Fine-grained Code Coverage Measurement in Automated Black-box Android Testing 1:15

1 2 3 4 5 6 7 8 9 10
Application #

0

10

20

30

40

50

CP
U

Ut
iliz

at
io

n,
 %

original
method
instruciton

(a) Average CPU utilization measured in 10
applications.

Method Instruction

0

1

2

3

4

CP
U

Ut
iliz

at
io

n
Di

ffe
re

nc
e,

 %

(b) Boxplot of the CPU utilization dif-
ference for instrumented versions of ap-
plications (instrumented versions at the
method-only and at the instruction level
compared to the original app versions).

Fig. 4. Performance measurement results in a realistic app testing scenario

Table 2. PassMark overhead evaluation

Granularity of instrumentation Overhead
CPU .dex size

Method +17% +11%
Instruction +27% +249%

Figure 4a shows that CPU utilization of instrumented apps slightly differs from the CPU
utilization by their original versions. However, as seen from Figure 4b, the difference is
insignificant: the mean difference of CPU utilization is 0.25% and 0.53% for the method-
and instruction-instrumented versions, respectively. This experiment shows that the runtime
overhead introduced by ACVTool is not prohibitive in a user-like application testing scenario.

PassMark overhead. To further estimate the runtime overhead we used a benchmark
application called PassMark [59]. Benchmark applications are designed to assess performance
of mobile devices. The PassMark app is freely available on Google Play, and it contains a
number of test benchmarks related to assessing CPU and memory access performance, speed
of writing to and reading from internal and external drives, graphic subsystem performance,
etc. These tests do not require user interaction. The research community has previously
used this app to benchmark their Android related-tools (e.g., [8]).

For our experiment, we used the PassMark app version 2.0 from September 2017. This
version of the app is the latest that runs tests in the managed runtime (Dalvik and ART)
rather than on a bare metal using native libraries. We have prepared two versions of the
PassMark app instrumented with ACVTool: one instrumented at the method level, and
another instrumented at the instruction level.

Table 2 summarizes the performance degradation of the instrumented PassMark version
in comparison to the original app. When instrumented, the size of the Passmark .dex file
increased from 159KB (the original version) to 178KB (method granularity instrumenta-
tion), and to 556KB (instruction granularity instrumentation). We have run the Passmark
application 10 times for each level of instrumentation granularity against the original version
of the app. In the CPU tests that utilize high-intensity computations, Passmark slows down,

ACM Trans. Softw. Eng. Methodol., Vol. 1, No. 1, Article 1. Publication date: January 2020.

1:16 A. Pilgun et al.

Table 3. Increase of .dex files for the Google Play benchmark

Summary statistics Original file size Size of instrumented file
Method Instruction

Minimum 4.9KB 17.6KB (+258%) 19.9KB (+304%)
Median 2.8MB 3.1MB (+10%) 7.7MB (+173%)
Mean 3.5MB 3.9MB (+11%) 9.0MB (+157%)

Maximum 18.8MB 20MB (+7%) 33.6MB (+78%)

on average, by 17% and 27% when instrumented at the method and instruction levels,
respectively. Other subsystem benchmarks did not show significant changes in numbers.

Evaluation with PassMark is artificial for a common app testing scenario, as the PassMark
app stress-tests the device. However, from this evaluation we can conclude that performance
degradation under the ACVTool instrumentation is not prohibitive, especially if it is used
with modern hardware.

Dex size inflation. As another metric for overhead, we analysed how much ACVTool
enlarges Android apps. We measured the size of .dex files in both instrumented and original
apps for the Google Play benchmark apps. As shown in Table 3, the .dex file increases on
average by 157% when instrumented at the instruction level, and by 11% at the method level.
Among already existing tools for code coverage measurement, InsDal [46] has introduced
.dex size increase of 18.2% (on a dataset of 10 apks; average .dex size 3.6MB), when
instrumenting apps for method-level coverage. Thus, ACVTool shows smaller code size
inflation in comparison to the InsDal tool.

Conclusion: ACVTool introduces an off-line instrumentation overhead that is acceptable
for common testing scenarios. The run-time overhead (measured as CPU utilization) in live
testing with Monkey is negligible. When stress-testing with the benchmark PassMark app,
ACVTool introduces 27% overhead in CPU. The increase in code base size introduced by
the instrumentation instructions, while significant, is not prohibitive. Thus, we can conclude
that ACVTool is efficient for measuring code coverage in Android app testing pipelines.

5.4 Compliance with other coverage tools
5.4.1 Instruction coverage measurement. When the source code is available, developers can
log code coverage of Android apps using the JaCoCo library [37] that could be integrated
into the development pipeline via the Gradle plugin. We used the coverage data reported by
this library to evaluate the correctness of code coverage metrics reported by ACVTool.

For this experiment, we used only the F-Droid benchmark because it contains open-source
applications. We put the new jacocoTestReport task in the Gradle configuration file and
added our Instrumentation class into the app source code. In this way we avoid creating
app-specific tests, and can run any automatic testing tool. Due to the diversity of project
structures and versioning of Gradle, there were many faulty builds. We obtained 141 apks
instrumented with JaCoCo, i.e., we could generate JaCoCo reports for them. Two of these
apks were further excluded, as the JaCoCo reports for them generated incorrectly (coverage
always would be zero). Thus, totally we used 139 apps in this experiment.

First, we analyze this app population in terms of instructions. Indeed, smali code and
Java bytecode are organized differently. Figure 5a shows a scatterplot of the number of
method instructions in smali code (measured by ACVTool, including the “untrackable”
instructions) and in Java code (measured by JaCoCo). Each point in this Figure corresponds

ACM Trans. Softw. Eng. Methodol., Vol. 1, No. 1, Article 1. Publication date: January 2020.

Fine-grained Code Coverage Measurement in Automated Black-box Android Testing 1:17

0 200 400 600 800
1000

ACVTool # of instructions

0

200

400

600

800

1000
Ja

C
oC

o

of
 in

st
ru

ct
io

ns

(a) Scatterplot of the number of instructions
in app methods, as computed by ACVTool
and JaCoCo.

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

P
ea

rs
on

's
 c

or
re

la
tio

n

(b) Boxplot of correlation
for code coverage data com-
puted by ACVTool and Ja-
CoCo.

Fig. 5. Compliance of coverage data reported by ACVTool and JaCoCo.

to an individual method of one of the apks in our benchmark. The line in the Figure is the
linear regression line. The data shape demonstrates that the number of instructions in the
smali code is usually slightly smaller than the number of instructions in the Java bytecode.

Figure 5a also shows that there are some outliers, i.e., methods that have low instruction
numbers in smali, but many instructions in Java bytecode. We have manually inspected all
these methods and found that outliers were constructor methods that contain declarations
of arrays. Smali (and Dalvik VM) allocates such arrays with only one pseudo-instruction
(.array-data), while Java bytecode is much longer [12]. Given these differences in the code
organization, we can expect that, generally, there will be discrepancies in the coverage
measured by ACVTool and JaCoCo.

Discrepancies in code coverage measurements can appear also due to the fact that some
instructions are not tracked by ACVTool, as mentioned in Section 4. It is our choice to not
count those instructions towards covered. In our F-Droid dataset, about half of the methods
consist of 7 smali instructions or less. For such small methods, if they contain untraceable
instructions, code coverage measurements by ACVTool and JaCoCo can differ substantially.

To compare the measured coverage data, we ran two copies of each app (instrumented
with ACVTool and with JaCoCo) on the Android emulator using the same Monkey scripts
for both versions. Figure 5b shows a boxplot of the correlation of code coverage measured
by ACVTool and JaCoCo. Each data point corresponds to one application, and its value
is the Pearson correlation coefficient between percentage of executed code, for all methods
included in the app. The minimal correlation is 0.21, the first quartile is 0.94, median is 0.99,
and maximal is 1.00. This means that for more than 75% of apps in the tested applications,
their code coverage measurements have correlation equal to 0.94 or higher, i.e., they are
strongly correlated. The boxplot in Figure 5b contains a number of outliers that appear due
to the reasons explained above. Still, overall, the boxplot demonstrates that code coverage
logged by ACVTool is strongly correlated with code coverage logged by JaCoCo.

ACM Trans. Softw. Eng. Methodol., Vol. 1, No. 1, Article 1. Publication date: January 2020.

1:18 A. Pilgun et al.

0.0 0.5 1.0
ACVTool

0.0

0.2

0.4

0.6

0.8

1.0
E

lla

0.0 0.5 1.0
ACVTool

0.0

0.2

0.4

0.6

0.8

1.0

Ja
C

oC
o

0.0 0.5 1.0
Ella

0.0

0.2

0.4

0.6

0.8

1.0

Ja
C

oC
o

Fig. 6. Code coverage measurements at the method level: pair-wise coverage comparisons for ACVTool,
ELLA and JaCoCo.

5.4.2 Method-level coverage measurements. When the application source code is not available,
testers cannot use JaCoCo to measure code coverage. In this situation researchers and
practitioners frequently use the ELLA library [23] to measure the method coverage [51, 67].
As ELLA is no longer maintained, ACVTool can be now used by testers to measure code
coverage at the method level, if such need arises.

To provide evidence that ACVTool measures method-level code coverage reliably, we
compare its results with the method coverage data reported by ELLA (no source code) and
JaCoCo (white-box coverage).

For this experiment, we use the same 139 F-Droid apps mentioned above. We have
instrumented them with the ACVTool at the method level. We have also instrumented them
with ELLA, and we took the apps already pre-compiled with JaCoCo. For all these app
versions, we run Monkey in the same setting.

Figure 6 shows scatterplots of method coverage measurements for pair-wise comparison
of data from the three coverage tools; each data point corresponds to an application. This
Figure demonstrates that the vast majority of data points lie on the symmetry line from
(0,0) to (1,1), i.e., the tools report practically identical method coverage results for most of
the apps in this set. The deviations from the main line are results of possible differences in
app behavior (further elaborated in 6.3).

In this experiment, correlation of method coverage measurements for ACVTool and ELLA
is 0.9829; for ACVTool and JaCoCo is 0.9912; and for ELLA and JaCoCo is 0.9858. This
demonstrates very high compliance of ACVTool measurements to results obtained by the
other independent tools.

Class-level compliance. As the previous experiment has shown that the method code
coverage measured by ACVTool agrees with the measurements at the same level by ELLA
and JaCoCo, we can consider the class-level coverage to be compliant with the other tools
as well. This is an implication of our instrumentation implementation for classes: class-level
coverage requires method-level instrumentation, and a class is considered covered if at least
one of its methods was called.

Conclusion: overall, we can summarize that code coverage data reported by ACVTool
generally agrees with data computed by JaCoCo. The discrepancies in code coverage appear
due to the different approaches that the tools use, and the inherent differences in the
Dalvik and Java bytecodes. At the method level, the measurements by ACVTool are highly
compliant with the measurements taken by ELLA and JaCoCo.

ACM Trans. Softw. Eng. Methodol., Vol. 1, No. 1, Article 1. Publication date: January 2020.

Fine-grained Code Coverage Measurement in Automated Black-box Android Testing 1:19

6 USEFULNESS OF ACVTOOL IN TESTING WITH SAPIENZ
To assess the usefulness of ACVTool in practical black-box testing and analysis scenarios,
we integrated ACVTool with Sapienz [51] – a state-of-art automated Android search-based
testing tool. Its fitness function looks for Pareto-optimal solutions using three criteria: code
coverage, number of found crashes and the length of a test suite. This experiment had
two main goals: (1) demonstrate that ACVTool fits into a real automated testing/analysis
pipeline; (2) evaluate whether the fine-grained code coverage measure provided by ACVTool
can be useful to automatically uncover diverse types of crashes with black-box testing
strategy.

Sapienz integrates three approaches to measure code coverage achieved by a test suite:
EMMA [56] (reports source code statement coverage); ELLA [23] (reports method coverage);
and its native plugin to measure coverage in terms of launched Android activities. EMMA
does not work without the source code of apps, and thus in the black-box setting only ELLA
and own Sapienz plugin could be used. The original Sapienz paper [51] did not evaluate the
impact of the code coverage metric used on the discovered crashes population, because it
was not possible to compare results for the same group of applications.

Our previously reported experiments with JaCoCo suggest that ACVTool can be used to
replace EMMA, as the coverage data reported for Java instructions and smali instructions
are highly correlated and comparable. Furthermore, ACVTool measures coverage in terms of
classes and methods, and thus it can also replace ELLA within the Sapienz framework. Note
that the code coverage measurement itself does not interfere with the search algorithms used
by Sapienz. Thus, ACVTool allows us to compare the coverage granularities performance
with respect to bug finding with Sapienz.

As our dataset, we use the healthy instrumented apks from the Google Play dataset
described in the previous section. We have run Sapienz against each of these 799 apps, using
its default parameters. Each app has been tested using the activity coverage provided by
Sapienz, and the method and instruction coverage supplied by ACVTool. Furthermore, we
also ran Sapienz without coverage data, i.e., substituting coverage for each test suite as 0.

Each app has been tested by Sapienz under the default settings for 3 hours for each
coverage metric. After each run, we collected the crash information (if any), which included
the components of apps that crashed and Java exception stack traces. In the remainder of
this section, we report on the results of crash detection with different coverage metrics and
draw conclusions about whether the choice of a coverage metric contributes to bug detection.

Like many other automated testing tools for Android, Sapienz is non-deterministic. Thus,
we apply statistical tests to analyze significance of all reported findings. Throughout this
section, we will evaluate how effectively Sapienz finds bugs with each coverage metric in
a particular app. For each app population, we obtain records of found crashes in each
application, and we compare performance of each coverage metric per each app record. This
gives us paired measurements for all coverage metrics, which are not necessarily normally
distributed. Thus, to evaluate statistical significance of the results, we use the non-parametric
Wilcoxon signed-rank test [69] that is appropriate in this setting. The null-hypothesis for
the Wilcoxon test is that there is no difference which metric to use in Sapienz. Alternative
hypothesis is that Sapienz with one coverage condition will consistently find more crashes
than Sapienz with another coverage condition.

To measure the effect size we use the Vargha-Delaney A12 statistics [66] that was applied
in the original Sapienz paper [51].

ACM Trans. Softw. Eng. Methodol., Vol. 1, No. 1, Article 1. Publication date: January 2020.

1:20 A. Pilgun et al.

Table 4. Crashes found by Sapienz in 799 apps

Coverage metrics # unique
crashes

faulty
apps

crash
types

Activity coverage 233 (36%) 154 22
Method coverage 237 (36%) 142 21

Instruction coverage 251 (38%) 147 25
Without coverage 160 (24%) 102 22

Total 653 353 35

144
14

83

28

4

5

7

14

119

24
9 12

37

121

32

Activity Method
Instruction Without coverage

(a) Crashes found with Sapienz using different cov-
erage metrics in 799 apps.

a m i n
am ai an m

i
m

n in
am

i
am

n
ai

n
m

in
am

in

0

200

400

600

of

 c
ra

sh
es

(b) Barplot of crashes found by coverage
metrics individually and jointly (𝑎 stands
for activity, 𝑚 for method, 𝑖 for instruction
coverage, and 𝑛 for no coverage).

Fig. 7. Crashes found by Sapienz.

6.1 Descriptive statistics of crashes
Table 4 shows the numbers of crashes grouped by coverage metrics that Sapienz has found
in the 799 apps. We consider a unique crash as a distinctive combination of an application,
its component where a crash occurred, the line of code that triggered an exception, and a
specific Java exception type.

In total, Sapienz has found 353 apps out of 799 to be faulty (at least one crash detected),
and it has logged 653 unique crashes with the four coverage conditions. Figure 7a summarizes
the crash distribution for the coverage metrics. The intersection of the results for all code
coverage conditions contains only 5 unique crashes. Individual coverage metrics have found
38% (instruction coverage), 36% (method coverage), 36% (activity coverage), and 24%
(without coverage) of the total number of found crashes. These results suggest that coverage
metrics at different granularities find distinct crashes.

In these experiments, instruction coverage has shown slightly better performance in bug
finding as it found more crashes on the dataset. However, when comparing chances to find a
bug in a particular app, its edge over the activity and method coverage is not statistically
significant according to the Wilcoxon signed-rank test [69]. On the other hand, all valid
coverage metrics outperform testing without coverage data in a statistically significant way
(𝑝-values ≤ 10−4). Still, Vargha-Delaney effect sizes [66] are very small: 0.52 for method and
instruction coverage (compared to no coverage), and 0.53 for activity coverage. Thus, we can

ACM Trans. Softw. Eng. Methodol., Vol. 1, No. 1, Article 1. Publication date: January 2020.

Fine-grained Code Coverage Measurement in Automated Black-box Android Testing 1:21

conclude that it is likely that Sapienz with coverage performs better than without coverage
data. However, the practical importance of coverage data used in Sapienz may be limited.

We now set out to investigate how multiple runs affect detected crashes, and whether a
combination of coverage metrics could detect more crashes than a single metric.

6.2 Evaluating bug finding efficiency on multiple runs
We now look at assessing the impact of randomness on Sapienz’ results. As we mentioned,
our findings may be affected by the non-determinism in Sapienz. To determine the impact of
coverage metrics in finding crashes on average, we need to investigate how crash detection
behaves in multiple runs. Thus, we have performed the following two experiments on a set
of 150 apks randomly selected from the 799 healthy instrumented apks.

6.2.1 Performance in 5 runs. We have run Sapienz for 5 times with each coverage metric and
without coverage data, for 3 hours per each of 150 apps. This gives us two crash populations:
𝒫1 that contains unique crashes detected in the 150 apps during the first experiment, and
𝒫5 that contains unique crashes detected in the same apps running Sapienz 5 times. Table 5
summarizes the populations of crashes found by Sapienz with each of the coverage metrics
and without coverage.

As expected, running Sapienz multiple times increases the amount of found crashes. In this
experiment, we are interested in the proportion of crashes contributed by coverage metrics
individually. If coverage metrics are interchangeable, i.e., they do not differ in capabilities of
finding crashes, and they will, eventually, find the same crashes, the proportion of crashes
found by individual metrics to the total crashes population can be expected to significantly
increase: each metric, given more attempts, will find a larger proportion of the total crash
population.

As shown in Table 5, the activity coverage has found a larger proportion of total crash
population (38% from 32%). Sapienz without coverage data also shows better performance
over multiple runs (36% from 31%), while the instruction coverage has increased performance
from 36% to 40%. The method coverage has achieved the best improvement (45% form 34%).
For all coverage metrics, the increases in the found crashes populations due to repeated
testing are statistically significant according to the Wilcoxon signed-rank test (𝑝-values ≤
10−5), but the Vargha-Delaney effect sizes [66] are small: all in the range (0.61, 0.64). Thus,
repeating Sapienz test executions improves chances to find a crash in an app, but not a lot.
The edge of method coverage over other metrics in repeated experiments is not statistically
significant.

These findings suggest that even with 5 repetitions a single coverage metric is not able
to find all crashes that were detected by other metrics. Our results in this experiment are
consistent with a previously reported smaller experiment that involved only 100 apps (see
[22] for more details).

6.2.2 Evaluating a combination of metrics. The previous experiment indicates that even
repeating the runs multiple times does not allow any of the code coverage metrics to find
the same number of bugs as all metrics together. We now fix the time that Sapienz spends
on each apk8, and we want to establish whether the number of crashes that Sapienz can find
in an apk with 3 metrics is greater than the number of crashes found with just one metric
but with 3 attempts. This would suggest that the combination of 3 metrics is more effective

8In these testing scenarios, Sapienz spends the same amount of time per app (3 runs), but the coverage
conditions are different.

ACM Trans. Softw. Eng. Methodol., Vol. 1, No. 1, Article 1. Publication date: January 2020.

1:22 A. Pilgun et al.

Table 5. Crashes found in 150 apps with 1 and 5 runs.

Coverage metrics Crashes
𝒫1: 1 run 𝒫5: 5 runs

Activity coverage 40 (32%) 101 (38%)
Method coverage 43 (34%) 119 (45%)

Instruction coverage 46 (36%) 106 (40%)
No coverage 39 (31%) 95 (36%)

Total 126 263

all a m i
0

2

4

6

8

10

Fig. 8. Boxplots of crashes detected per app (𝑎 stands for activity, 𝑚 for method, and 𝑖 for instruction,
respectively).

Table 6. Summary statistics for crashes found per apk, in 150 apk

Statistics 1 run × 3 metrics 3 runs × 1 metric
activity method instruction

Min 0 0 0 0
1st. Quartile 0 0 0 0

Mean 0.65 0.48 0.64 0.58
Median 0 0 0 0

3rd. Quartile 1 1 1 1
Max 9 4 9 6

in finding crashes than each individual metric. For each apk from the chosen 150 apps, we
compute the number of crashes detected by Sapienz with each of the three coverage metrics
executed once. We then have executed Sapienz 3 times against each apk with each coverage
metric individually.

Table 6 summarizes the basic statistics for the apk crash numbers data, and the data shapes
are shown as boxplots in Figure 8. The summary statistics show that Sapienz equipped with
3 coverage metrics has found, on average, slightly more crashes per apk than Sapienz using
only one metric but executed 3 times. To verify this, we apply the Wilcoxon signed-rank
test [69].

The results of the Wilcoxon test did not reject the null-hypotheses for all coverage metrics
(𝑝-values 0.43 and 0.58, and 0.51 for activity, method and instruction coverage, respectively).
This can be interpreted as a high probability that the crashes data have been drown from
similarly distributed populations.

To confirm this negative result, we apply the Vargha-Delaney A12 statistic to measure the
effect size. The A12 effect sizes for differences in the crash population found by 3 metrics

ACM Trans. Softw. Eng. Methodol., Vol. 1, No. 1, Article 1. Publication date: January 2020.

Fine-grained Code Coverage Measurement in Automated Black-box Android Testing 1:23

jointly and the population found by the activity, method and instruction coverage are,
respectively, 0.515, 0.516 and 0.513, which all correspond to a negligible effect.

Our findings from this experiment are not fully consistent with the previously reported
experiment on a smaller set of 100 apps [22]. The difference could be explained by the
following factors. First, we have used only healthy instrumented apps in this experiment
(the ones that did not crash upon installation). The experiment reported in [22] did not
involve the check for healthiness, and the crashing apps could have affected the picture.
In the unhealthy app case, Sapienz always reports one single crash for it, irrespectively of
which coverage metrics is used. Note that in our Google Play sample approximately 17% are
unhealthy, i.e., they cannot be executed on an emulator, as required by Sapienz. Second,
the new apps tested in this experiment could have behaved slightly differently than the
previously tested cohort. And, finally, in these experiments we used more recent releases of
the testing environment components, including the Android SDK, that are more stable and
have less compatibility issues.

6.3 Impact of ACVTool on Sapienz
Instrumentation and repackaging of the app’s codebase may introduce differences in runtime
behavior and additional faults. Such deviations can make parts of the app unreachable,
which may impact further testing. Despite our positive evaluation demonstrated in Section 5,
automated testing tools, such as Sapienz, look deeper into the app and can be more
significantly impacted by issues raised by instrumentation. Here we analyze how much does
ACVTool interfere with the Sapienz testing process. We consider two main aspects.

∙ Preserving the original behavior. We compare the behavior of instrumented apps
against their original versions and report the differences.

∙ Fault analysis. We analyse what crashes Sapienz found with and without ACVTool
and report on ACVTool-specific crashes.

6.3.1 Preserving behavior. To evaluate the ACVTool impact on app behavior we designed
the following experiment. For every app from the 150 apps subset mentioned in Section 6.2
we took the most evolutionary developed Sapienz test suite and ran it on two versions of the
app: original and instrumented at instruction level. After every triggered event we saved a
screenshot of the UI state and its XML layout (with the help of UIAutomator [31]). Then we
removed the status bar (around 90px at the image top) from every image and performed an
automated comparison of images and XML files for the original and instrumented versions
in Beyond Compare [58].

The publicly available version of Sapienz produces sequences containing mostly atomic
Monkey [30] events, with one exception. An event named GUIGen in the sequence produces
up to 12 random events on Android. Thus, in this experiment we excluded the GUIGen line
from all the sequences to achieve sequence reproducibility. Moreover, we kept 1 second pause
between the events to make sure that content loading and app animation have lower impact
on the produced screenshots.

In this experiment, 50% out of the total 33938 automatically compared image and XML
pairs were found to be identical. We manually inspected the other pairs and found that the
differences could be attributed to the following main reasons.

∙ Pop-ups: One of the apps in the pair in some cases fires a pop-up related to the Android
OS state or the app itself. This happens to both instrumented and original apps. In
this case we re-run the test and it solves the problem.

ACM Trans. Softw. Eng. Methodol., Vol. 1, No. 1, Article 1. Publication date: January 2020.

1:24 A. Pilgun et al.

Fig. 9. Example of a justified difference in behavior between the original (left) and the instrumented
(right) app versions: the screenshots are different due to the dynamic nature of the app itself and the
loaded ad content.

∙ Advertisement: Apps frequently load ads, which may look differently each time, as
shown in Figure 9).

∙ Dynamic content: Some apps may display their UI each time differently or download
completely new content, as exemplified in Figure 9.

∙ PNG artefacts: Apktool sometimes breaks PNG files or changes the color and trans-
parency properties during decoding. Therefore, parts of the app may look different.

In this experiment, we assume that two versions of an app behave identically if their GUI
states stay equal.

Taking into account the above-mentioned factors, we consider the app behavior unmodified
if the GUI states are totally identical, or they are different due to the four reasons specified
above, which we call justifiable discrepancies. Such discrepancies do not correspond to
functional differences in app states.

In total, 145 out of 150 apps in the dataset behaved justifiably the same, while 26 of them
behaved completely the same. In these 145 apps we did not observe behavioral differences
caused by ACVTool.

Two apps behaved differently because the test interacted with an ad, which expanded to
the full screen mode. Three apps could not load maps, which made the apps to malfunction.
They threw the Google Maps Android API: Authorization failure error in logcat. ACVTool
caused this error because it re-signs the app with its own signature, while the Google Maps
API requires the original signature.

6.3.2 Fault analysis. Figure 10 demonstrates the distribution of crashes found by Sapienz
with respect to the code coverage metric applied. The 653 unique crashes found on the set
of 799 apps were caused by 35 exception types. We note that our crash type distribution
resembles the results reported in the original Sapienz paper for the main crash types on
the Google Play subjects [51]. The most prevalent Java exception types in Figure 10 also
generally agree with the statistics of Java exceptions in open source Android projects reported
by [20]. As Android bug finding is not the core goal of this paper, we limit ourselves to
reporting the general crash distribution as provided by Sapienz, and we do not focus here
on attributing the root causes of crashes as in, e.g., [44].

It is interesting yet very challenging to evaluate whether ACVTool introduces new app
crashes due to the instrumentation process. There are two approaches to confirm if ACVTool

ACM Trans. Softw. Eng. Methodol., Vol. 1, No. 1, Article 1. Publication date: January 2020.

Fine-grained Code Coverage Measurement in Automated Black-box Android Testing 1:25

0 10 20 30 40 50 60 70

java.lang.NoSuchFieldError

java.lang.UnsupportedOperationException

java.lang.AssertionError

android.view.ViewRootImpl$CalledFromWrongThreadException

libcore.io.ErrnoException

android.database.sqlite.SQLiteException

com.google.gson.stream.MalformedJsonException

junit.framework.AssertionFailedError

java.util.regex.PatternSyntaxException

java.lang.Throwable

java.lang.ClassNotFoundException

java.util.MissingResourceException

android.database.sqlite.SQLiteDatabaseLockedException

java.io.FileNotFoundException

com.afollestad.materialdialogs.MaterialDialog$DialogException

java.lang.SecurityException

com.facebook.FacebookException

java.util.ConcurrentModificationException

java.lang.StringIndexOutOfBoundsException

scala.MatchError

android.database.CursorIndexOutOfBoundsException

java.lang.ArithmeticException

java.lang.ClassCastException

java.util.concurrent.TimeoutException

java.lang.NumberFormatException

java.lang.RuntimeException

java.lang.IndexOutOfBoundsException

android.view.WindowManager$BadTokenException

java.lang.ArrayIndexOutOfBoundsException

java.lang.UnsatisfiedLinkError

java.lang.IllegalArgumentException

android.content.ActivityNotFoundException

java.lang.IllegalStateException

Native crash

java.lang.NullPointerException

E
xc

ep
tio

n

Original
Method
Instruction
No coverage

Fig. 10. Distribution of the crash types (exceptions) found by Sapienz with different code coverage
granularities. Exceptions are sorted in the descending order with respect to the total number of unique
found crashes with this exception type.

introduces new faults in the experiment with Sapienz. First, from a crash description and the
corresponding stack trace we can find the evidence that the bug is introduced by ACVTool.
Second, crashes introduced by ACVTool and thus detected only on instrumented apps should
not reproduce on the original app versions.

As we described in Section 3.1, during the offline phase ACVTool embeds the custom
Instrumentation class and probes into apps. We carefully analyzed the stack traces of
all exceptions obtained in our experiment with Sapienz and did not find any evidence of
ACVTool methods there. However, the probes we embed do not use method calls, but
rather directly change binary array values corresponding to original bytecode instructions at
runtime. Thus, if any fault happens due to these probes we will not see any probe-specific
symptoms in the stack trace. Therefore, the first approach cannot completely confirm the
absence of crashes introduced by ACVTool.

The applicability of the second approach is hurdled by flaky tests. Flaky tests are those
that do not reliably fail even in identical circumstances. The authors of the follow-up paper
about Sapienz [3] admit that the tool is subject to flaky tests, but they do not provide
estimates about how many tests are flaky. It is mentioned only that “it is safer to assume

ACM Trans. Softw. Eng. Methodol., Vol. 1, No. 1, Article 1. Publication date: January 2020.

1:26 A. Pilgun et al.

that we live in a world where all tests are flaky”, what may indicate that the flaky tests
proportion is high.

To prove this we ran an experiment where we used the crash-leading test suites found by
Sapienz with the default settings on the original, non-modified apps. In this experiment,
only 37% of the faults found in the original apps were reproduced on the same apps.

The main reason for this low reproducibility of faults is the asynchronous nature of
Android [3]. Depending on the wait time, an asynchronous call to a service may produce
different results. When the service returns a value in time, this value is used, but if a value
is not returned, the default value is used. This may lead to completely different execution
paths.

We should also mention that the default throttle setting that Sapienz uses for Monkey is
quite aggressive. It intensively bombards an app with events irrespective of the app’s state
and its animation. Since Monkey’s throttle parameter significantly affects crash detection [53],
satisfactory crash reproducibility on Sapienz may be achieved with a proper throttle value
(e.g., as we set in Section 6.3.1). However, the consequence and a huge disadvantage would
be a dramatic slowing down of Sapienz in finding new faults. Still, even this approach cannot
guarantee full reproducibility of the crashes. Thus, with this approach we cannot confirm
that ACVTool does not introduce new faults, because these faults could be due to flaky
tests.

Thus, we can confidently confirm only the crashes described in Section 5.2.2 as caused by the
ACVTool instrumentation phase. However, out of the 5 exception types found when filtering
healthy apps in Section 5.2.2, 3 types – IllegalStateException, IllegalArgumentException,
NullPointerException – appear prevalently in the found crashes distribution. We expect
that ACVTool could have contributed to at least some of these exceptions.

6.4 Analysis of results
Our experiments show that ACVTool can be integrated into an automated testing pipeline
and it can be used in conjunction with available testing tools such as Sapienz. Our experiments
demonstrate that ACVTool does not impact app behavior in testing with Sapienz for the
majority of the tested apps. However, as we expected, the repackaging process breaks the
original signature, and some app code parts may become unavailable due to the failing
signature checks, as happens, e.g., with the Google Maps Android API.

We can also conclude that better investigation and integration of different coverage
granularities is warranted in the automated Android testing domain, just like in software
testing in general [16]. Our crash data analysis and the experiment with repeating executions
5 times show that no coverage metric is able to find the vast majority of the total found crash
population. Sapienz without coverage finds fewer bugs than with coverage data (160 crashes
on the total app population versus, e.g., 233 crashes found with the activity coverage), yet it
is still able to uncover a significant crash population. Further investigation of these aspects
could be a promising line of research. Our open-source ACVTool can be helpful in these
studies.

7 DISCUSSION
ACVTool addresses the important problem of measuring code coverage of closed-source
Android apps. Our experiments show that the proposed instrumentation approach works for
the majority of Android apps, the measured code coverage is reliable, and the tool can be
integrated with security analysis and testing tools. We have already shown that integration
of the coverage feed produced by our tool into an automated testing framework can help to

ACM Trans. Softw. Eng. Methodol., Vol. 1, No. 1, Article 1. Publication date: January 2020.

Fine-grained Code Coverage Measurement in Automated Black-box Android Testing 1:27

uncover more application faults. Our tool can further be used, for example, to compare code
coverage achieved by dynamic analysis tools and to find suspicious code regions.

In this section, we discuss limitations of the tool design and current implementation, and
summarize the directions in which the tool can be further enhanced. We also review threats
to validity regarding the conclusions we make from the Sapienz experiments.

7.1 Limitations of ACVTool
ACVTool design and implementation have several limitations that we discuss in this section.

Limitations of the ACVTool design. An inherent limitation of our approach is that apps
must be first instrumented before their code coverage can be measured. Indeed, in our
experiments, there was a fraction of apps that could not be repackaged and instrumented.
Furthermore, apps can employ various means to prevent repackaging, e.g., they can check
their signature at the start, and stop executing in case of a failed signature check. Moreover,
as shown by the experiment reported in Section 6.3, the repackaging step may inhibit the
usage of Google APIs. Still, this limitation is common to all tools that instrument applica-
tions (e.g., [23, 35, 46, 74, 81]). Considering this, ACVTool has successfully instrumented
96.9% of our total original dataset selected randomly from F-Droid and Google Play. Our
instrumentation success rates are significantly higher than any of the related work, where
this aspect has been reported (e.g., [35, 81]). Therefore, ACVTool is practical and reliable.
We examine the related work and compare ACVTool to the available tools in the subsequent
Section 8.

While being an important part of the ACVTool workflow, the decompilation and repack-
aging part are not the focus of this study. Therefore, we do not investigate possible errors
in apktool, which is currently the best Android reverse engineering tool that integrates
a decompiler to smali. It is also well-maintained, and new improved versions are released
regularly.

We assessed that the code coverage data from ACVTool is compliant to the measurements
from the well-known JaCoCo [37] and ELLA [23] tools. We have found that, even though
there could be slight discrepancies in the number of instructions measured by JaCoCo and
ACVTool, the coverage data obtained by both tools is highly correlated and commensurable.
Therefore, the fact that ACVTool does not require the source code makes it, in contrast to
JaCoCo, a very promising tool for simplifying the work of Android developers, testers, and
security specialists.

Limitations of our instrumentation approach. One of the reasons for the slight difference
in the JaCoCo and ACVTool measurements of the number of instructions is the fact that we
do not track several instructions, as specified in Section 4. Technically, nothing precludes us
from adding probes right before the “untraceable” instructions. However, we consider this
solution to be inconsistent from the methodological perspective, because we deem the right
place for a probe to be immediately after the executed instruction. In the future we plan
to extend our approach to compute also basic block coverage, and then the “untraceable”
instruction aspect will be fully and consistently eliminated. Alternatively, ACVTool can be
enhanced by introducing a lightweight static analysis at the smali code level for a control
flow graph-aware instrumentation [34].

Another limitation of our current approach is the constraint of 256 registers per method.
Our instrumentation approach introduces 3 new registers. This register manipulation tech-
nique is safe as long as the total number of registers in the original smali method is less than
or equal to 256. The only problematic instruction in this respect is aput-boolean, which

ACM Trans. Softw. Eng. Methodol., Vol. 1, No. 1, Article 1. Publication date: January 2020.

1:28 A. Pilgun et al.

can access up to 256 registers. While this limitation could potentially affect the success
rate of ACVTool, we have encountered only one app, in which this limit was exceeded
after the instrumentation. This limitation can be addressed either by switching to another
instrumentation approach, whereby inserting probes as specific method calls, or by splitting
big methods. Both of the approaches may require to reassemble an app that has more than
64K methods into a multidex apk [26]. We plan this extension as future work.

Taken to extremes, insertion of probes may potentially lead to issues. It is not clear what
is the limit to the amount of instructions in a single app method and whether this limit
can be reached by increasing the total number of instructions by a factor of 4. We have not
encountered such cases, but this aspect may be worthy of further investigation in case of
testing very complex applications [77].

We investigated the runtime overhead introduced due to our instrumentation, which
could be another potential limitation. Our results show that ACVTool does not introduce
a prohibitive runtime overhead. For example, the very resource-intensive computations
performed by the PassMark benchmark app degrade the CPU utilization by 27% in the
instruction-level instrumented version. This is a critical scenario, and the overhead for an
average app will be much smaller, which is confirmed by our experiments on real apps.

Limitations of the current ACVTool implementation. Our current ACVTool prototype
does not fully support multidex apps. It is possible to improve the prototype by adding full
support for multidex files, as the instrumentation approach itself is extensible to multiple
dex files. In our dataset, we have 46 multidex apps, which constitutes 3.5% of the total
population. In particular, in the Google Play benchmark there were 35 apks with 2 dex
files, and 9 apks containing from 3 to 9 dex files (overall, 44 multidex apps). In the F-Droid
benchmark, there were two multidex apps that contained 2 and 42 dex files, respectively. The
current version of ACVTool is able to instrument multidex apks and log coverage data for
them, but coverage will be reported only for one dex file. While we considered the multidex
apks, if instrumented correctly, as a success for ACVTool, after excluding them, the total
instrumentation success rate will become 93.1%, which is still much higher than other tools.

Also, the current implementation still has a few issues (3.3% of apps have not survived
instrumentation), which we plan to fix in subsequent releases.

7.2 Threats to validity
Our experiments with Sapienz reported in Section 6 allow us to conclude that black-box code
coverage measurement provided by ACVTool is useful for state-of-art automated testing
frameworks. Furthermore, these experiments suggest that it is necessary to better study the
impact of coverage data for achieving time-efficient and effective bug finding.

At this point, it is not yet clear if there is a coverage metric that works best. Further
investigation of this topic is required to better understand exactly how granularity of code
coverage affects the results, and what are other confounding factors that may influence the
performance of Sapienz and other similar tools.

Our findings from these experiments are negative, as our data does not indicate prevalence
of a particular coverage granularity. We now discuss the threats to validity for the conclusions
we draw from our experiments. These threats to validity could potentially be eliminated by
a larger-scale experiment.

Internal validity. Threats to internal validity concern the experiment’s aspects that may
affect validity of the findings. First, our preliminary experiment involved only a sample of 799
Android apps. It is, in theory, possible that on a larger dataset we will obtain different results

ACM Trans. Softw. Eng. Methodol., Vol. 1, No. 1, Article 1. Publication date: January 2020.

Fine-grained Code Coverage Measurement in Automated Black-box Android Testing 1:29

in terms of number of unique crashes and their types. A significantly larger experiment
involving thousands of apps could lead to more robust results.

Second, Sapienz relies on the random input event generator Monkey [30] as the underlying
test engine, and thus it is nondeterministic. It is possible that this randomness may have
influence on our current results, and the results obtained in another experiment will show a
clear edge for some coverage granularity.

Third, we perform our experiment using the default parameters of Sapienz. It is possible
that their values, e.g., the length of a test sequence, may also have an impact on the results.
In our future work, we plan to investigate this threat further.

We acknowledge that tools measuring code coverage may introduce some additional
bugs during the instrumentation process. In our experiments, results for the method and
instruction-level coverage have been collected from app versions instrumented with ACVTool,
while data for the activity coverage and without coverage were gathered for the original apk
versions. If ACVTool introduces bugs during instrumentation, this difference may explain
why the corresponding populations of crashes for instrumented (method and instruction
coverage) and original (activity coverage and no coverage) apps tend to be close.

As reported in Section 6.3, we have tried to address this threat by comparing application
behaviors on original and instrumented app versions, and by investigating the crashes. We
have shown that ACVTool does not change the app behavior, as visible in the GUI. However,
we are yet not able to automatically confirm that ACVTool does not introduce crashes
at runtime. Unfortunately, the publicly available Sapienz version does not support crash
reproducibility. In the future, we consider to systematically evaluate reproducibility of found
crashes across the original and instrumented app versions using tools like RecDroid [78],
CrashScope [52] or Paladin [48].

Finally, our findings may be affected by the experimental set-up. We run Sapienz with
Android emulators, which are not fully representative of real devices and may introduce
some stability issues that can result in app crashes [3].

External validity. Threats to external validity concern the generalization of our findings.
To test the viability of our hypothesis, we have experimented with only one automated test
design tool. It could be possible that other similar tools that rely upon code coverage metrics
such as Stoat [62], AimDroid [32] or QBE [39] would not obtain better results when using
the fine-grained instruction-level coverage. We plan to investigate this further by extending
our experiments to include more automated testing tools that rely on code coverage.

It should be also stressed that we used apps from the Google Play for our experiment.
While preparing a delivery of an app to this market, developers usually apply different
post-processing tools, e.g., obfuscators and packers, to prevent potential reverse-engineering.
Some crashes in our experiment may be introduced by these tools. In addition, obfuscators
may introduce some additional dead code and alter the control flow of apps. These features
may also impact the code coverage measurement, especially in case of more fine-grained
metrics. Therefore, in our future work we plan to also investigate this issue.

8 RELATED WORK
8.1 Android app testing
Automated testing of Android applications is a very prolific research area. Today, there
are many frameworks that combine UI and system events generation, striving to achieve
better code coverage and fault detection. E.g., Dynodroid [49] is able to randomly generate
both UI and system events. Interaction with the system components via callbacks is another

ACM Trans. Softw. Eng. Methodol., Vol. 1, No. 1, Article 1. Publication date: January 2020.

1:30 A. Pilgun et al.

facet, which is addressed by, e.g., EHBDroid [60]. The survey by Choudhary et al. [18] has
compared the most prominent testing tools that automatically generate app input events
in terms of efficiency, including code coverage and fault detection. Three recent surveys,
by Zein, Salleh and Grundy [76], by Linares-Vásquez et al. [45], and by Kong et al. [38],
summarize the main efforts and challenges in the automated Android app testing area.

8.2 Coverage measurement tools in Android
White-box coverage measurement. Tools for white-box code coverage measurement are

included into the Android SDK maintained by Google [29]. Supported coverage libraries
are JaCoCo [37], EMMA [56], and the IntelliJ IDEA coverage tracker [61]. These tools are
capable of measuring fine-grained code coverage, but require that the source code of an app
is available. This makes them suitable only for testing apps at the development stage.

Table 7. Summary of black-box coverage measuring tools

Tool
Tool details Results of empirical evaluation

Coverage
granularity

Target
representa-

tion

Code
available

Sample
size

Instrumentation
success rate (%)

Overhead Compli-
ance

evaluatedInstru-
mented

Executed Instr. time
(sec/app)

Run
time (%)

ELLA [23, 67] method Dalvik
bytecode

Y 68 [67];
1278 (this

paper)

60% [67];
95.9%
(this

paper)

60% [67];
91.1%
(this

paper)

15.7 (this
paper)

N/A Y (this
paper)

Huang et
al. [35]

class, method,
basic block,
instruction

Dalvik
bytecode
(smali)

N 90 36% N/A N/A N/A Y

BBoxTester [81] class, method,
basic block

Java
bytecode

Y 91 65% N/A 15.5 N/A N

Asc [60] basic block,
instruction

Jimple Y 35 N/A N/A N/A N/A N

ABCA [36] class, method,
instruction

Jimple N 6 N/A N/A N/A 9-86%
of

system
time

N

Horvath et
al. [33]

method Java
bytecode

N 10 N/A N/A N/A N/A N

InsDal [46, 47,
71]

class, method Dalvik
bytecode

N 10 N/A N/A 1.5 N/A N

Sapienz [51] activity Dalvik
bytecode

Y 1112 N/A N/A N/A N/A N

DroidFax [13?
, 14]

instruction Jimple Y 195 N/A N/A N/A N/A N

AndroCov [11,
42]

method,
instruction

Jimple Y 17 N/A N/A N/A N/A N

CovDroid [74] method Dalvik
bytecode
(smali)

N 1 N/A N/A N/A N/A N

ACVTool (this
paper)

class, method,
instruction

Dalvik
bytecode
(smali)

Y 1278 97.8% 96.9% 33.3 up to
27% on
Pass-
Mark

Y

Black-box coverage measurement. Several frameworks for measuring black-box code cover-
age of Android apps already exist, however they are inferior to ACVTool. Notably, these
frameworks often measure code coverage at coarser granularity. For example, ELLA [23],
InsDal [46], CovDroid [74], and the tool by Horvath et al. [33] measure code coverage only
at the method level.

ACM Trans. Softw. Eng. Methodol., Vol. 1, No. 1, Article 1. Publication date: January 2020.

Fine-grained Code Coverage Measurement in Automated Black-box Android Testing 1:31

ELLA [23] is arguably one of the most popular tools to measure Android code coverage
in the black-box setting, however, it is no longer supported. ELLA relies on the same
approach to app instrumentation as ACVTool (at the method level): it inserts probes at the
beginning of methods, manipulates registers and tracks probe execution [23]. The difference
in coverage measurement approaches appears in the reporting procedure. While executed,
an app instrumented by ELLA sends identifiers of executed methods via a socket to the
ELLA server.

An empirical study by Wang et al. [67] has evaluated performance of Monkey [30],
Sapienz [51], Stoat [62], and WCTester [77] automated testing tools on large and popular
industry-scale apps, such as Facebook, Instagram and Google. They have used ELLA to
measure method code coverage, and they reported the total success rate of ELLA at 60%
(41 apps) on their sample of 68 apps.

In our own experiment with ELLA reported in Section 5.4.2, ELLA has nearly the same
instrumentation success rates as ACVTool: the same 98.7% apps in the F-Droid dataset, and
94.4% in Google Play dataset (against 97.8% for ACVTool). After the ELLA instrumentation,
in total, 91.1% out of 1278 apps are healthy (against 96.9% for ACVTool). While success
rates are similar between the tools (ACVTool performs slightly better), ACVTool does more
sophisticated instrumentation at the instruction level and, therefore, takes twice as much
time as compared to ELLA.

Huang et al. [35] proposed an approach to measure code coverage for dynamic analysis
tools for Android apps. Their high-level approach is similar to ours: an app is decompiled
into smali files, and these files are instrumented by placing probes at every class, method
and basic block to track their execution. However, the authors report a low instrumentation
success rate of 36%, and only 90 apps have been used for evaluation. Unfortunately, the tool
is not publicly available, and we were unable to obtain it or the dataset by contacting the
authors. Because of this, we cannot compare its performance with ACVTool, although we
report a much higher instrumentation rate, evaluated against a much larger dataset.

BBoxTester [81] is another tool for measuring black-box code coverage. Its workflow
includes app disassembling with apktool and decompilation of the dex files into Java jar
files using dex2jar [1]. The jar files are instrumented using EMMA [56], and assembled
back into an apk. The empirical evaluation of BBoxTester showed the successful repackaging
rate of 65%, and the instrumentation time has been reported to be 15 seconds per app.
We were able to obtain the original BBoxTester dataset. Out of 91 apps, ACVTool failed
to instrument just one. This error was not due to our own instrumentation code: apktool
could not repackage this app. Therefore, ACVTool successfully instrumented 99% of this
dataset, against 65% of BBoxTester.

The InsDal tool [46] instruments apps for class and method-level coverage logging by
inserting probes in the smali code, and its workflow is similar to ACVTool. The tool has
been applied for measuring code coverage in the black-box setting with the AppTag tool [71],
and for logging the number of method invocations in measuring the energy consumption of
apps [47]. The information about instrumentation success rate is not available for InsDal,
and it has been evaluated on a limited dataset of 10 apps. The authors have reported an
average instrumentation time overhead of 1.5 sec per app, and an average instrumentation
code overhead of 18.2% of dex file size. ACVTool introduces a smaller code size overhead of
11%, on average, but requires more time to instrument an app. On our dataset, the average
instrumentation time is 24.1 seconds per app, when instrumenting at the method level only.
It is worth noting that half of this time is spent on repackaging with apktool.

ACM Trans. Softw. Eng. Methodol., Vol. 1, No. 1, Article 1. Publication date: January 2020.

1:32 A. Pilgun et al.

CovDroid [74], another black-box code coverage measurement system for Android apps,
transforms apk code into smali-representation using the smali disassembler [10] and inserts
probes at the method level. The coverage data is collected using an execution monitor, and
the tool is able to collect timestamps for executed methods. While the instrumentation
approach of ACVTool is similar in nature to that of CovDroid, the latter tool has been
evaluated on a single application only.

Alternative approaches to Dalvik instrumentation focus on performing detours via other
languages, e.g., Java or Jimple. For example, Bartel et al. [9] worked on instrumenting
Android apps for improving their privacy and security via translation to Java bytecode.
Zhauniarovich et al. [81] translated Dalvik into Java bytecode in order to use EMMA’s
code coverage measurement functionality, while Horvath et al. [33] used translation into
Java bytecode to use their own JInstrumenter library for jar files instrumentation. The
limitation of such approaches, as reported in [81], is that not all apps can be retargeted into
Java bytecode.

The instrumentation of apps translated into the Jimple representation has been used
in, e.g., Asc [60], DroidFax [13], ABCA [36], and AndroCov [11, 42]. Jimple is a suitable
representation for subsequent analysis with Soot [6], yet, unlike smali, it does not belong to
the “core” Android technologies maintained by Google. Moreover, Arnatovich et al. [5] in
their comparison of different intermediate representations for Dalvik bytecode advocate that
smali is the most accurate alternative to the original Java source code and therefore is the
most suitable for security testing.

Remarkably, in the absence of reliable fine-grained code coverage reporting tools, some
frameworks [13, 15, 40, 43, 48, 51, 60] integrate their own black-box coverage measurement
libraries. Many of these papers do note that they have to design their own code coverage
measurement means in the absence of a reliable tool. ACVTool addresses this need of the
community. As the coverage measurement is not the core contribution of these works, the
authors have not provided enough information about the rates of successful instrumentation,
and other details related to the performance of these libraries, so we are not able to compare
them with ACVTool.

App instrumentation. Among the Android application instrumentation approaches, the
most relevant for us are the techniques discussed by Huang et al. [35], InsDal [46] and
CovDroid [74]. ACVTool shows much better instrumentation success rate, because our
instrumentation approach deals with many peculiarities of the Dalvik bytecode. A similar
instrumentation approach has been also used in the DroidLogger [21] and SwiftHand [17]
frameworks, which do not report their instrumentation success rates.

Summary. Table 7 summarizes the performance of ACVTool and code coverage granulari-
ties that it supports in comparison to other state-of-the-art tools. ACVTool significantly
outperforms any other tool that measures black-box code coverage of Android apps. Our tool
has been extensively tested with real-life applications, and it has excellent instrumentation
success rate, in contrast to other tools, e.g., [35] and [81]. We attribute the reliable perfor-
mance of ACVTool to the very detailed investigation of smali instructions we have done,
that is missing in the literature. ACVTool is available as open-source to share our insights
with the community, and to replace the outdated tools (ELLA [23] and BBoxTester[81]) or
publicly unavailable tools ([35, 74]).

ACM Trans. Softw. Eng. Methodol., Vol. 1, No. 1, Article 1. Publication date: January 2020.

Fine-grained Code Coverage Measurement in Automated Black-box Android Testing 1:33

9 CONCLUSIONS
In this paper, we presented an instrumentation technique for Android apps. We incorporated
this technique into ACVTool – an effective and efficient tool for measuring precise code
coverage of Android apps. We were able to instrument and execute 96.9% out of 1278 apps
used for the evaluation, showing that ACVTool is practical and reliable.

The empirical evaluation that we have performed allows us to conclude that ACVTool
will be useful for both researchers who are building testing, program analysis, and security
assessment tools for Android, and practitioners in industry who need reliable and accurate
coverage information.

To enable better support for automated testing community, we are working to add support
for multidex apps, extend the set of available coverage metrics to branch coverage, and
to alleviate the limitation caused by the fixed amount of registers in a method. We will
also investigate an option to store counters for each executed instruction, what will allow
identifying most and least executed code locations. As another promising line of future work,
we will investigate on-the-fly dex file instrumentation that will make ACVTool even more
useful in the context of analyzing highly complex applications and malware.

Furthermore, our experiments with Sapienz have produced interesting conclusions that no
coverage granularity is able to find all crashes, even in repeated experiments. We have also
found negative results on the importance of coverage granularity, when used as a component
of the fitness function in the black-box app testing. ACVTool that works with most of the
apps has uniquely enabled us to perform this coverage comparison study. The second line of
future work for us is to expand our experiments to more apps and more testing tools, thus
establishing better guidelines on which coverage metric(s) is more effective and efficient in
bug finding.

Acknowledgements
This work was supported by the Luxembourg National Research Fund (FNR) through grants
AFR-PhD-11289380-DroidMod and C15/IS/10404933/COMMA. We thank the anonymous
reviewers for their useful comments.

REFERENCES
[1] 2017. dex2jar. https://github.com/pxb1988/dex2jar
[2] K. Allix, T. F. Bissyande, J. Klein, and Y. L. Traon. 2016. AndroZoo: Collecting Millions of Android

Apps for the Research Community. In 2016 IEEE/ACM 13th Working Conference on Mining Software
Repositories (MSR). 468–471. https://doi.org/10.1109/MSR.2016.056

[3] Nadia Alshahwan, Xinbo Gao, Mark Harman, Yue Jia, Ke Mao, Alexander Mols, Taijin Tei, and Ilya
Zorin. 2018. Deploying Search Based Software Engineering with Sapienz at Facebook. In International
Symposium on Search Based Software Engineering. Springer, 3–45.

[4] Paul Ammann and Jeff Offutt. 2016. Introduction to Software Testing (2 ed.). Cambridge University
Press. https://doi.org/10.1017/9781316771273

[5] Yauhen Arnatovich, Hee Beng Kuan Tan, Sun Ding, Kaiping Liu, and Lwin Khin Shar. 2014. Empirical
Comparison of Intermediate Representations for Android Applications.. In SEKE. 205–210.

[6] Steven Arzt, Siegfried Rasthofer, and Eric Bodden. 2017. The Soot-based Toolchain for Analyzing
Android Apps. In Proceedings of the 4th International Conference on Mobile Software Engineering
and Systems (Buenos Aires, Argentina) (MOBILESoft ’17). IEEE Press, Piscataway, NJ, USA, 13–24.
https://doi.org/10.1109/MOBILESoft.2017.2

[7] Tanzirul Azim and Iulian Neamtiu. 2013. Targeted and Depth-first Exploration for Systematic Testing
of Android Apps. In Proceedings of the 2013 ACM SIGPLAN International Conference on Object
Oriented Programming Systems Languages & Applications (Indianapolis, Indiana, USA) (OOPSLA
’13). ACM, New York, NY, USA, 641–660. https://doi.org/10.1145/2509136.2509549

ACM Trans. Softw. Eng. Methodol., Vol. 1, No. 1, Article 1. Publication date: January 2020.

https://github.com/pxb1988/dex2jar
https://doi.org/10.1109/MSR.2016.056
https://doi.org/10.1017/9781316771273
https://doi.org/10.1109/MOBILESoft.2017.2
https://doi.org/10.1145/2509136.2509549

1:34 A. Pilgun et al.

[8] Michael Backes, Sven Bugiel, Oliver Schranz, Philipp von Styp-Rekowsky, and Sebastian Weisgerber.
2017. Artist: The android runtime instrumentation and security toolkit. In 2017 IEEE European
Symposium on Security and Privacy (EuroS&P). IEEE, 481–495.

[9] Alexandre Bartel, Jacques Klein, Martin Monperrus, Kevin Allix, and Yves Le Traon. 2012. In-Vivo
Bytecode Instrumentation for Improving Privacy on Android Smartphones in Uncertain Environments.
arXiv:1208.4536 [cs.CR]

[10] Ben Gruver. 2018. Smali/Baksmali Tool. Retrieved 23/11/2018 from https://github.com/JesusFreke/
smali

[11] Nataniel P. Borges, Jr., Maria Gómez, and Andreas Zeller. 2018. Guiding App Testing with Mined
Interaction Models. In Proceedings of the 5th International Conference on Mobile Software Engineering
and Systems (Gothenburg, Sweden) (MOBILESoft ’18). ACM, New York, NY, USA, 133–143. https:
//doi.org/10.1145/3197231.3197243

[12] D. Bornstein. 2008. Google I/O 2008 - Dalvik Virtual Machine Internals. Retrieved 24/01/2018 from
https://sites.google.com/site/io/dalvik-vm-internals

[13] H. Cai and B. G. Ryder. 2017. DroidFax: A Toolkit for Systematic Characterization of Android
Applications. In 2017 IEEE International Conference on Software Maintenance and Evolution (ICSME).
643–647. https://doi.org/10.1109/ICSME.2017.35

[14] H. Cai and B. G. Ryder. 2017. Understanding Android Application Programming and Security: A
Dynamic Study. In 2017 IEEE International Conference on Software Maintenance and Evolution
(ICSME). 364–375. https://doi.org/10.1109/ICSME.2017.31

[15] Patrick Carter, Collin Mulliner, Martina Lindorfer, William Robertson, and Engin Kirda. 2017. Curious-
Droid: Automated User Interface Interaction for Android Application Analysis Sandboxes. In Financial
Cryptography and Data Security, Jens Grossklags and Bart Preneel (Eds.). Springer Berlin Heidelberg,
Berlin, Heidelberg, 231–249.

[16] Thierry Titcheu Chekam, Mike Papadakis, Yves Le Traon, and Mark Harman. 2017. An Empirical
Study on Mutation, Statement and Branch Coverage Fault Revelation That Avoids the Unreliable Clean
Program Assumption. In Proceedings of the 39th International Conference on Software Engineering
(Buenos Aires, Argentina) (ICSE ’17). IEEE Press, Piscataway, NJ, USA, 597–608. https://doi.org/
10.1109/ICSE.2017.61

[17] Wontae Choi, George Necula, and Koushik Sen. 2013. Guided gui testing of android apps with minimal
restart and approximate learning. Acm Sigplan Notices 48, 10 (2013), 623–640.

[18] Shauvik Roy Choudhary, Alessandra Gorla, and Alessandro Orso. 2015. Automated test input generation
for android: Are we there yet?. In 2015 30th IEEE/ACM International Conference on Automated
Software Engineering (ASE). IEEE, 429–440.

[19] Mike Cleron. 2017. Android Announces Support for Kotlin. Retrieved 23/11/2017 from https://android-
developers.googleblog.com/2017/05/android-announces-support-for-kotlin.html

[20] Roberta Coelho, Lucas Almeida, Georgios Gousios, Arie Van Deursen, and Christoph Treude. 2017.
Exception handling bug hazards in Android. Empirical Software Engineering 22, 3 (2017), 1264–1304.

[21] Shuaifu Dai, Tao Wei, and Wei Zou. 2012. DroidLogger: Reveal suspicious behavior of Android
applications via instrumentation. In 2012 7th International Conference on Computing and Convergence
Technology (ICCCT). 550–555.

[22] Stanislav Dashevskyi, Olga Gadyatskaya, Aleksandr Pilgun, and Yury Zhauniarovich. 2018. The
Influence of Code Coverage Metrics on Automated Testing Efficiency in Android. In Proceedings of the
2018 ACM SIGSAC Conference on Computer and Communications Security (Toronto, Canada) (CCS
’18). ACM, New York, NY, USA, 2216–2218. https://doi.org/10.1145/3243734.3278524

[23] ELLA. 2016. A Tool for Binary Instrumentation of Android Apps. https://github.com/saswatanand/ella
[24] Milos Gligoric, Alex Groce, Chaoqiang Zhang, Rohan Sharma, Mohammad Amin Alipour, and Darko

Marinov. 2015. Guidelines for Coverage-Based Comparisons of Non-Adequate Test Suites. ACM Trans.
Softw. Eng. Methodol. 24, 4, Article 22 (Sept. 2015), 33 pages. https://doi.org/10.1145/2660767

[25] Google. 2017. Dalvik Executable format. Retrieved 23/11/2017 from https://source.android.com/
devices/tech/dalvik/dex-format

[26] Google. 2017. Enable Multidex for Apps with Over 64K Methods. Retrieved 23/11/2017 from
https://developer.android.com/studio/build/multidex.html

[27] Google. 2018. Dalvik bytecode. https://source.android.com/devices/tech/dalvik/dalvik-bytecode
[28] Google. 2018. smali. Retrieved 02/12/2018 from https://android.googlesource.com/platform/external/

smali/
[29] Google. 2018. Test your app. https://developer.android.com/studio/test/index.html

ACM Trans. Softw. Eng. Methodol., Vol. 1, No. 1, Article 1. Publication date: January 2020.

https://arxiv.org/abs/1208.4536
https://github.com/JesusFreke/smali
https://github.com/JesusFreke/smali
https://doi.org/10.1145/3197231.3197243
https://doi.org/10.1145/3197231.3197243
https://sites.google.com/site/io/dalvik-vm-internals
https://doi.org/10.1109/ICSME.2017.35
https://doi.org/10.1109/ICSME.2017.31
https://doi.org/10.1109/ICSE.2017.61
https://doi.org/10.1109/ICSE.2017.61
https://android-developers.googleblog.com/2017/05/android-announces-support-for-kotlin.html
https://android-developers.googleblog.com/2017/05/android-announces-support-for-kotlin.html
https://doi.org/10.1145/3243734.3278524
https://github.com/saswatanand/ella
https://doi.org/10.1145/2660767
https://source.android.com/devices/tech/dalvik/dex-format
https://source.android.com/devices/tech/dalvik/dex-format
https://developer.android.com/studio/build/multidex.html
https://source.android.com/devices/tech/dalvik/dalvik-bytecode
https://android.googlesource.com/platform/external/smali/
https://android.googlesource.com/platform/external/smali/
https://developer.android.com/studio/test/index.html

Fine-grained Code Coverage Measurement in Automated Black-box Android Testing 1:35

[30] Google. 2018. UI/Application Exerciser Monkey. Retrieved 23/11/2018 from https://developer.android.
com/studio/test/monkey

[31] Inc. Google. 2019. UI Automator. Retrieved 23/09/2019 from https://developer.android.com/training/
testing/ui-automator

[32] T. Gu, C. Cao, T. Liu, C. Sun, J. Deng, X. Ma, and J. Lü. 2017. AimDroid: Activity-Insulated
Multi-level Automated Testing for Android Applications. In 2017 IEEE International Conference on
Software Maintenance and Evolution (ICSME). 103–114. https://doi.org/10.1109/ICSME.2017.72

[33] F. Horváth, S. Bognar, T. Gergely, R. Racz, A. Beszedes, and V. Marinkovic. 2014. Code coverage
measurement framework for Android devices. Acta Cybernetica 21, 3 (2014), 439–458.

[34] Chin-Chia Hsu, Che-Yu Wu, Hsu-Chun Hsiao, and Shih-Kun Huang. 2018. Instrim: Lightweight
instrumentation for coverage-guided fuzzing. In Symposium on Network and Distributed System Security
(NDSS), Workshop on Binary Analysis Research.

[35] C. Huang, C. Chiu, C. Lin, and H. Tzeng. 2015. Code Coverage Measurement for Android Dynamic
Analysis Tools. In 2015 IEEE International Conference on Mobile Services. 209–216. https://doi.org/
10.1109/MobServ.2015.38

[36] Shang-Yi Huang, Chia-Hao Yeh, Farn Wang, and Chung-Hao Huang. 2015. ABCA: Android Black-box
Coverage Analyzer of mobile app without source code. In Progress in Informatics and Computing
(PIC), 2015 IEEE International Conference on. IEEE, 399–403.

[37] JaCoCo. 2018. Java Code Coverage Library. http://www.jacoco.org/
[38] Pingfan Kong, Li Li, Jun Gao, Kui Liu, Tegawendé F Bissyandé, and Jacques Klein. 2018. Automated

testing of android apps: A systematic literature review. IEEE Transactions on Reliability 68, 1 (2018),
45–66.

[39] Y. Koroglu, A. Sen, O. Muslu, Y. Mete, C. Ulker, T. Tanriverdi, and Y. Donmez. 2018. QBE: QLearning-
Based Exploration of Android Applications. In 2018 IEEE 11th International Conference on Software
Testing, Verification and Validation (ICST). 105–115. https://doi.org/10.1109/ICST.2018.00020

[40] Duling Lai and Julia Rubin. 2019. Goal-driven exploration for Android applications. In 2019 34th
IEEE/ACM International Conference on Automated Software Engineering (ASE). IEEE, 115–127.

[41] N. Li, X. Meng, J. Offutt, and L. Deng. 2013. Is bytecode instrumentation as good as source code
instrumentation: An empirical study with industrial tools (Experience Report). In 2013 IEEE 24th
International Symposium on Software Reliability Engineering (ISSRE). 380–389. https://doi.org/10.
1109/ISSRE.2013.6698891

[42] Y. Li. 2016. AndroCov. Measure test coverage without source code. https://github.com/ylimit/androcov
[43] Yuanchun Li, Ziyue Yang, Yao Guo, and Xiangqun Chen. 2017. DroidBot: a lightweight UI-Guided

test input generator for android. In 2017 IEEE/ACM 39th International Conference on Software
Engineering Companion (ICSE-C). 23–26. https://doi.org/10.1109/ICSE-C.2017.8

[44] Mario Linares-Vásquez, Gabriele Bavota, Michele Tufano, Kevin Moran, Massimiliano Di Penta,
Christopher Vendome, Carlos Bernal-Cárdenas, and Denys Poshyvanyk. 2017. Enabling mutation
testing for android apps. In Proceedings of the 2017 11th Joint Meeting on Foundations of Software
Engineering. ACM, 233–244.

[45] M. Linares-Vásquez, K. Moran, and D. Poshyvanyk. 2017. Continuous, Evolutionary and Large-Scale:
A New Perspective for Automated Mobile App Testing. In 2017 IEEE International Conference on
Software Maintenance and Evolution (ICSME). 399–410. https://doi.org/10.1109/ICSME.2017.27

[46] J. Liu, T. Wu, X. Deng, J. Yan, and J. Zhang. 2017. InsDal: A safe and extensible instrumentation
tool on Dalvik byte-code for Android applications. In 2017 IEEE 24th International Conference on
Software Analysis, Evolution and Reengineering (SANER). 502–506. https://doi.org/10.1109/SANER.
2017.7884662

[47] Q. Lu, T. Wu, J. Yan, J. Yan, F. Ma, and F. Zhang. 2016. Lightweight Method-Level Energy Consumption
Estimation for Android Applications. In 2016 10th International Symposium on Theoretical Aspects of
Software Engineering (TASE). 144–151. https://doi.org/10.1109/TASE.2016.27

[48] Yun Ma, Yangyang Huang, Ziniu Hu, Xusheng Xiao, and Xuanzhe Liu. 2019. Paladin: Automated
generation of reproducible test cases for Android apps. In Proceedings of the 20th International Workshop
on Mobile Computing Systems and Applications. 99–104.

[49] Aravind Machiry, Rohan Tahiliani, and Mayur Naik. 2013. Dynodroid: An Input Generation System for
Android Apps. In Proceedings of the 2013 9th Joint Meeting on Foundations of Software Engineering
(Saint Petersburg, Russia) (ESEC/FSE 2013). ACM, New York, NY, USA, 224–234. https://doi.org/
10.1145/2491411.2491450

ACM Trans. Softw. Eng. Methodol., Vol. 1, No. 1, Article 1. Publication date: January 2020.

https://developer.android.com/studio/test/monkey
https://developer.android.com/studio/test/monkey
https://developer.android.com/training/testing/ui-automator
https://developer.android.com/training/testing/ui-automator
https://doi.org/10.1109/ICSME.2017.72
https://doi.org/10.1109/MobServ.2015.38
https://doi.org/10.1109/MobServ.2015.38
http://www.jacoco.org/
https://doi.org/10.1109/ICST.2018.00020
https://doi.org/10.1109/ISSRE.2013.6698891
https://doi.org/10.1109/ISSRE.2013.6698891
https://github.com/ylimit/androcov
https://doi.org/10.1109/ICSE-C.2017.8
https://doi.org/10.1109/ICSME.2017.27
https://doi.org/10.1109/SANER.2017.7884662
https://doi.org/10.1109/SANER.2017.7884662
https://doi.org/10.1109/TASE.2016.27
https://doi.org/10.1145/2491411.2491450
https://doi.org/10.1145/2491411.2491450

1:36 A. Pilgun et al.

[50] Riyadh Mahmood, Naeem Esfahani, Thabet Kacem, Nariman Mirzaei, Sam Malek, and Angelos Stavrou.
2012. A whitebox approach for automated security testing of Android applications on the cloud. In
Proceedings of the 7th International Workshop on Automation of Software Test. IEEE press, 22–28.

[51] Ke Mao, Mark Harman, and Yue Jia. 2016. Sapienz: Multi-objective Automated Testing for Android
Applications. In Proceedings of the 25th International Symposium on Software Testing and Analysis
(Saarbrücken, Germany) (ISSTA 2016). ACM, New York, NY, USA, 94–105. https://doi.org/
10.1145/2931037.2931054

[52] Kevin Moran, Mario Linares-Vásquez, Carlos Bernal-Cárdenas, Christopher Vendome, and Denys
Poshyvanyk. 2017. Crashscope: A practical tool for automated testing of android applications. In 2017
IEEE/ACM 39th International Conference on Software Engineering Companion (ICSE-C). IEEE,
15–18.

[53] Priyam Patel, Gokul Srinivasan, Sydur Rahaman, and Iulian Neamtiu. 2018. On the effectiveness of
random testing for Android: or how i learned to stop worrying and love the monkey. In Proceedings of
the 13th International Workshop on Automation of Software Test. ACM, 34–37.

[54] Aleksandr Pilgun, Olga Gadyatskaya, Stanislav Dashevskyi, Yury Zhauniarovich, and Artsiom Kush-
niarou. 2018. An Effective Android Code Coverage Tool. In Proceedings of the 2018 ACM SIGSAC
Conference on Computer and Communications Security (Toronto, Canada) (CCS ’18). ACM, New
York, NY, USA, 2189–2191. https://doi.org/10.1145/3243734.3278484

[55] Qualcomm Technologies. 2019. Snapdragon Profiler. Retrieved 19/09/2019 from https://developer.
qualcomm.com/software/snapdragon-profiler

[56] V. Rubtsov. 2006. EMMA: Java Code Coverage Tool. http://emma.sourceforge.net/
[57] Alireza Sadeghi, Reyhaneh Jabbarvand, and Sam Malek. 2017. PATDroid: Permission-aware GUI

Testing of Android. In Proceedings of the 2017 11th Joint Meeting on Foundations of Software
Engineering (Paderborn, Germany) (ESEC/FSE 2017). ACM, New York, NY, USA, 220–232. https:
//doi.org/10.1145/3106237.3106250

[58] Scooter Software. 2019. Beyond Compare. Retrieved 23/09/2019 from https://www.scootersoftware.com
[59] PassMark Software. 2018. Passmark. Interpreting your Results from PerformanceTest. https://www.

passmark.com/support/performancetest/interpreting_test_results.htm
[60] Wei Song, Xiangxing Qian, and Jeff Huang. 2017. EHBDroid: Beyond GUI Testing for Android

Applications. In Proceedings of the 32Nd IEEE/ACM International Conference on Automated Software
Engineering (Urbana-Champaign, IL, USA) (ASE 2017). IEEE Press, Piscataway, NJ, USA, 27–37.
http://dl.acm.org/citation.cfm?id=3155562.3155570

[61] JetBrains s.r.o. 2017. Code Coverage. https://www.jetbrains.com/help/idea/2017.1/code-coverage.html
[62] Ting Su, Guozhu Meng, Yuting Chen, Ke Wu, Weiming Yang, Yao Yao, Geguang Pu, Yang Liu, and

Zhendong Su. 2017. Guided, Stochastic Model-based GUI Testing of Android Apps. In Proceedings of the
2017 11th Joint Meeting on Foundations of Software Engineering (Paderborn, Germany) (ESEC/FSE
2017). ACM, New York, NY, USA, 245–256. https://doi.org/10.1145/3106237.3106298

[63] Kimberly Tam, Salahuddin J Khan, Aristide Fattori, and Lorenzo Cavallaro. 2015. CopperDroid:
Automatic Reconstruction of Android Malware Behaviors.. In NDSS.

[64] Dávid Tengeri, Ferenc Horváth, Árpád Beszédes, Tamás Gergely, and Tibor Gyimóthy. 2016. Negative
effects of bytecode instrumentation on Java source code coverage. In 2016 IEEE 23rd International
Conference on Software Analysis, Evolution, and Reengineering (SANER), Vol. 1. IEEE, 225–235.

[65] Raja Vallee-Rai and Laurie J Hendren. 1998. Jimple: Simplifying Java bytecode for analyses and
transformations. (1998).

[66] András Vargha and Harold D Delaney. 2000. A critique and improvement of the CL common language
effect size statistics of McGraw and Wong. Journal of Educational and Behavioral Statistics 25, 2
(2000), 101–132.

[67] Wenyu Wang, Dengfeng Li, Wei Yang, Yurui Cao, Zhenwen Zhang, Yuetang Deng, and Tao Xie. 2018.
An Empirical Study of Android Test Generation Tools in Industrial Cases. In Proceedings of the 33rd
ACM/IEEE International Conference on Automated Software Engineering (Montpellier, France) (ASE
2018). ACM, New York, NY, USA, 738–748. https://doi.org/10.1145/3238147.3240465

[68] R. Wiśniewski and C. Tumbleson. 2017. Apktool - A tool for reverse engineering 3rd party, closed,
binary Android apps. https://ibotpeaches.github.io/Apktool/

[69] Claes Wohlin, Per Runeson, Martin Höst, Magnus C Ohlsson, Björn Regnell, and Anders Wesslén. 2012.
Experimentation in software engineering. Springer Science & Business Media.

[70] Michelle Y Wong and David Lie. 2016. IntelliDroid: A Targeted Input Generator for the Dynamic
Analysis of Android Malware.. In NDSS, Vol. 16. 21–24.

ACM Trans. Softw. Eng. Methodol., Vol. 1, No. 1, Article 1. Publication date: January 2020.

https://doi.org/10.1145/2931037.2931054
https://doi.org/10.1145/2931037.2931054
https://doi.org/10.1145/3243734.3278484
https://developer.qualcomm.com/software/snapdragon-profiler
https://developer.qualcomm.com/software/snapdragon-profiler
http://emma.sourceforge.net/
https://doi.org/10.1145/3106237.3106250
https://doi.org/10.1145/3106237.3106250
https://www.scootersoftware.com
https://www.passmark.com/support/performancetest/interpreting_test_results.htm
https://www.passmark.com/support/performancetest/interpreting_test_results.htm
http://dl.acm.org/citation.cfm?id=3155562.3155570
https://www.jetbrains.com/help/idea/2017.1/code-coverage.html
https://doi.org/10.1145/3106237.3106298
https://doi.org/10.1145/3238147.3240465
https://ibotpeaches.github.io/Apktool/

Fine-grained Code Coverage Measurement in Automated Black-box Android Testing 1:37

[71] Jiwei Yan, Tianyong Wu, Jun Yan, and Jian Zhang. 2016. Target Directed Event Sequence Generation
for Android Applications. arXiv:1607.03258 [cs.SE]

[72] K. Yang. 2018. APK Instrumentation Library. Retrieved 06/02/2018 from https://github.com/kelwin/
apkil

[73] Q. Yang, J. J. Li, and D. M. Weiss. 2009. A Survey of Coverage-Based Testing Tools. Comput. J. 52, 5
(Aug 2009), 589–597. https://doi.org/10.1093/comjnl/bxm021

[74] C. Yeh and S. Huang. 2015. CovDroid: A Black-Box Testing Coverage System for Android. In
2015 IEEE 39th Annual Computer Software and Applications Conference, Vol. 3. 447–452. https:
//doi.org/10.1109/COMPSAC.2015.125

[75] S. Yoo and M. Harman. 2012. Regression Testing Minimization, Selection and Prioritization: A Survey.
Softw. Test. Verif. Reliab. 22, 2 (March 2012), 67–120. https://doi.org/10.1002/stv.430

[76] Samer Zein, Norsaremah Salleh, and John Grundy. 2016. A systematic mapping study of mobile
application testing techniques. Journal of Systems and Software 117 (2016), 334–356.

[77] Xia Zeng, Dengfeng Li, Wujie Zheng, Fan Xia, Yuetang Deng, Wing Lam, Wei Yang, and Tao Xie.
2016. Automated test input generation for android: Are we really there yet in an industrial case?. In
Proceedings of the 2016 24th ACM SIGSOFT International Symposium on Foundations of Software
Engineering. 987–992.

[78] Yu Zhao, Tingting Yu, Ting Su, Yang Liu, Wei Zheng, Jingzhi Zhang, and William GJ Halfond. 2019.
Recdroid: automatically reproducing android application crashes from bug reports. In 2019 IEEE/ACM
41st International Conference on Software Engineering (ICSE). IEEE, 128–139.

[79] Yury Zhauniarovich, Maqsood Ahmad, Olga Gadyatskaya, Bruno Crispo, and Fabio Massacci. 2015.
Stadyna: Addressing the problem of dynamic code updates in the security analysis of Android applications.
In Proceedings of the 5th ACM Conference on Data and Application Security and Privacy (CODASPY).
37–48.

[80] Yury Zhauniarovich, Olga Gadyatskaya, Bruno Crispo, Francesco La Spina, and Ermanno Moser.
2014. Fsquadra: fast detection of repackaged applications. In IFIP Annual Conference on Data and
Applications Security and Privacy XXVIII, Vol. 8566. Springer, 130–145.

[81] Yury Zhauniarovich, Anton Philippov, Olga Gadyatskaya, Bruno Crispo, and Fabio Massacci. 2015.
Towards Black Box Testing of Android Apps. In The Tenth International Conference on Availability,
Reliability and Security. IEEE, 501–510.

ACM Trans. Softw. Eng. Methodol., Vol. 1, No. 1, Article 1. Publication date: January 2020.

https://arxiv.org/abs/1607.03258
https://github.com/kelwin/apkil
https://github.com/kelwin/apkil
https://doi.org/10.1093/comjnl/bxm021
https://doi.org/10.1109/COMPSAC.2015.125
https://doi.org/10.1109/COMPSAC.2015.125
https://doi.org/10.1002/stv.430

	Abstract
	1 Introduction
	2 Background
	2.1 APK Internals
	2.2 Code Coverage

	3 ACVTool Design
	3.1 Offline Phase
	3.2 Online Phase
	3.3 Report Generation Phase

	4 Code Instrumentation
	4.1 Bytecode representation
	4.2 Register management
	4.3 Probes insertion

	5 Evaluation
	5.1 Benchmark
	5.2 Effectiveness
	5.3 Efficiency
	5.4 Compliance with other coverage tools

	6 Usefulness of ACVTool in testing with Sapienz
	6.1 Descriptive statistics of crashes
	6.2 Evaluating bug finding efficiency on multiple runs
	6.3 Impact of ACVTool on Sapienz
	6.4 Analysis of results

	7 Discussion
	7.1 Limitations of ACVTool
	7.2 Threats to validity

	8 Related work
	8.1 Android app testing
	8.2 Coverage measurement tools in Android

	9 Conclusions
	References

