
BaseSAFE: Baseband SAnitized Fuzzing through Emulation
Dominik Maier

dmaier@sect.tu-berlin.de
TU Berlin

Lukas Seidel
seidel.1@campus.tu-berlin.de

TU Berlin

Shinjo Park
pshinjo@sect.tu-berlin.de

TU Berlin

ABSTRACT
Rogue base stations are an effective attack vector. Cellular base-
bands represent a critical part of the smartphone’s security: they
parse large amounts of data even before authentication. They can,
therefore, grant an attacker a very stealthy way to gather infor-
mation about calls placed and even to escalate to the main oper-
ating system, over-the-air. In this paper, we discuss a novel cellu-
lar fuzzing framework that aims to help security researchers find
critical bugs in cellular basebands and similar embedded systems.
BaseSAFE allows partial rehosting of cellular basebands for fast
instrumented fuzzing off-device, even for closed-source firmware
blobs. BaseSAFE’s sanitizing drop-in allocator, enables spotting
heap-based buffer-overflows quickly. Using our proof-of-concept
harness, we fuzzed various parsers of the Nucleus RTOS-based
MediaTek cellular baseband that are accessible from rogue base sta-
tions. The emulator instrumentation is highly optimized, reaching
hundreds of executions per second on each core for our complex
test case, around 15k test-cases per second in total. Furthermore,
we discuss attack vectors for baseband modems. To the best of
our knowledge, this is the first use of emulation-based fuzzing
for security testing of commercial cellular basebands. Most of the
tooling and approaches of BaseSAFE are also applicable for other
low-level kernels and firmware. Using BaseSAFE, we were able
to find memory corruptions including heap out-of-bounds writes
using our proof-of-concept fuzzing harness in the MediaTek cel-
lular baseband. BaseSAFE, the harness, and a large collection of
LTE signaling message test cases will be released open-source upon
publication of this paper.

CCS CONCEPTS
• Security and privacy → Software reverse engineering; Em-

bedded systems security.
KEYWORDS

fuzzing, cellular, security, rehosting

ACM Reference Format:
Dominik Maier, Lukas Seidel, and Shinjo Park. 2020. BaseSAFE: Baseband
SAnitized Fuzzing through Emulation. In 13th ACM Conference on Security
and Privacy in Wireless and Mobile Networks (WiSec ’20), July 8–10, 2020,
Linz (Virtual Event), Austria. ACM, New York, NY, USA, 11 pages. https:
//doi.org/10.1145/3395351.3399360

WiSec ’20, July 8–10, 2020, Linz (Virtual Event), Austria
© 2020 Copyright held by the owner/author(s). Publication rights licensed to ACM.
This is the author’s version of the work. It is posted here for your personal use. Not for
redistribution. The definitive Version of Record was published in 13th ACM Conference
on Security and Privacy in Wireless and Mobile Networks (WiSec ’20), July 8–10, 2020,
Linz (Virtual Event), Austria, https://doi.org/10.1145/3395351.3399360.

1 INTRODUCTION
Attacks on mobile basebands are possible from adjacent base sta-
tions, which are built to work over fairly large distances. The targets
move constantly, carrying their phone with them, so a rogue base
station can potentially attack a large number of phones every day.
Even though operating systems running on the phone’s basebands
are large attack vectors, parsing many different types of signaling
messages, even prior to authentication, the systems are obscure and
little research exists. Each larger chipset vendor for smartphones
develops and ships their own stack. Any sort of automated analysis,
if it exists at all, is kept locked away behind the vendor’s doors,
together with documentation and specifications of their systems.
This gave us the reason to take a closer look at one of them. Since
the systems are written in C/C++, known to be haunted by memory
corruptions, we set out to build a usable open-source fuzzing envi-
ronment, BaseSAFE. As the initial target, we chose MediaTek, one
of the large vendors. Their chips are common in many sought-after
mid-tier phones like the Xiaomi Redmi Note 8 Pro, with offerings
from most vendors, including Motorola, Nokia, HTC, and others.
The cellular baseband has close ties to the mobile operating system.
Calls and data are routed through it and most of the lower-level
interactions, such as establishing a call and selecting a base station,
are done directly in the baseband but need to be displayed to the
user.

Baseband firmware has one of the widest attack vectors of all
components in modern smartphones. Every cellular network usage
passes through the baseband. Countless high-complexity protocol
parsers are part of the firmware. However, to this date, security
testing of mobile basebands is either performed in a black box
fashion or through manual static analysis. Baseband and device
manufacturers are trying to limit the direct access to the baseband
in various ways, such as blocking JTAG access as well as encrypting
parts of or the entire baseband firmware [19, 35]. The secrecy and
closed-sourceness, sometimes scrambled firmware, and usages of
relatively unknown architectures, such as Qualcomm Hexagon,
increase the barrier to mobile baseband analysis, while at the same
time making it a more interesting and rewarding target.

In this paper we take a novel approach: by rehosting parts of a
memory dump of a major cellular baseband, we are able to run main
event handlers in our analysis platform. We propose BaseSAFE, a
platform combining speedy emulation with fuzzing and heap saniti-
zation. Building on the popular Unicorn engine emulator, BaseSAFE
allows us to perform coverage-guided fuzzing on the MediaTek
baseband. We automatically map signaling messages to their re-
spective functions using coverage feedback, to keep false-positives
low. BaseSAFE implements a custom drop-in sanitizing heap alloca-
tor for Unicorn, which can replace any baseband-internal allocation
mechanism to uncover heap corruptions and use-after-frees with
fuzzing.

ar
X

iv
:2

00
5.

07
79

7v
1

 [
cs

.C
R

]
 1

5
M

ay
 2

02
0

https://doi.org/10.1145/3395351.3399360
https://doi.org/10.1145/3395351.3399360
https://doi.org/10.1145/3395351.3399360

WiSec ’20, July 8–10, 2020, Linz (Virtual Event), Austria Maier et al.

The sample harness of BaseSAFE for LTE Radio Resource Control
(RRC) [3] messages ships with thousands of unique, minimized,
valid inputs for a layer 3 parser in the MediaTek baseband, the
errc_event_handler_main function of the firmware. All samples
trigger different code paths in the parser and will likely be a good
set to fuzz the same parsers in other baseband firmwares. The
signaling messages can be sent to the phone by a modified base
station unauthenticated.

The key contributions of this paper are summarized as follows:

• BaseSAFE is an emulation platform offering zero-overhead
Rust bindings for emulation, sanitizing, and fuzzing,

• The developed fuzzing toolkit can be used for any other
baseband or kernel,

• We show the viability of automatic test-case inference through
coverage feedback,

• We provide insights into a major baseband, MediaTek, and
discuss bugs found with BaseSAFE,

• We fuzz layer 3 signaling message handlers, as some layer
3 messages are unencrypted and allow pre-authentication
attacks,

• We provide a proof-of-concept use-case of BaseSAFE fuzzing
RRC signaling messages and Non-Access Stratum (NAS)
EMM messages in MediaTek basebands.

With BaseSAFE, we provide the groundwork for automated fuzz
tests of low-level parsers in closed-source, embedded targets.

Availability
BaseSAFE is built on open-source software. Its source code and test
cases are open-sourced at https://github.com/fgsect/BaseSAFE.

2 BACKGROUND
This paper can be seen as the intersection of two fields: cellular
baseband research and fuzzing. Because of this, we will give a
thorough introduction to both topics, with the goal that the reader
will be able to follow the paper, independent of the background.

2.1 Fuzzing
Fuzzing is a powerful way to detect vulnerabilities, especially in
low-level code. In recent years, fuzzing of desktop software and
parsers using tools like AFL and its fork, AFL++, has become one of
the main tools for automated analysis [26]. The fuzzer reruns the
target with different input thousands of times per second, using
heuristics to mutate the test cases. A key factor to a fuzzers’ success
is feedback from the target, usually coverage feedback. Thanks to
coverage feedback the fuzzer knows if the last mutation triggered
a, potentially vulnerable, path in the program [60].

Fuzzing of embedded systems is a challenging task, especially
if feedback should be collected and memory corruptions should
be detected quickly [37]. A few years ago, fuzzing wireless stacks,
firmware or a kernel, required complex setups. They had to resemble
real-world scenarios, like dedicated rogue access points [12] that are
difficult to integrate into feedback-based fuzzing methodologies. In
contrast to user-land software, in bare-metal systems and firmware,
any state change affects the whole system. Recovering from crashes
is oftentimes impossible.

2.2 Unicorn
Unicorn engine (or just Unicorn), a corner stone of BaseSAFE, is a
fork of QEMU [41]. Unicorn extends QEMUwith an easy to use API,
exposing functions like reading and writing memory, and hooking
specific addresses and memory accesses with custom callbacks.
Unicorn offers bindings for a range of languages. However to use
Rust in BaseSAFE, we extended the 3rd party unicorn-rs bindings,
as no official Rust bindings exist [16].

Unicorn supports a vast range of processor architectures, includ-
ing MediaTek’s baseband architectures, ARM and MIPS [41]. This
makes emulation of arbitrary code, even for embedded architec-
tures, viable.

QEMU, as well as the forked Unicorn engine, work by performing
the following steps for each new code location that needs to be
run [10]:

(1) Check if the translation block (instructions to the next con-
ditional jump) at this location were previously cached.

(2) If not cached, decode and lift the translation block at this ad-
dress from the target platform’s instruction set to Tiny Code
Generator (TCG), the internal intermediate representation.

(3) Translate the TCG to the host platform’s instruction set.
(4) Cache the translated block.
(5) Store a mapping from source program counter to target

program counter in an address lookup table.
(6) Execute the translated block.
(7) Repeat for the next discovered block.

The translation blocks are similar to basic blocks by design [9].
Leveraging the correspondence between translation blocks and
basic blocks, and because execution is handed back to the emulator
after each run, it is possible to implement an instrumentation similar
to the compile-time instrumentation, using the program counter as
feedback on each new basic block. AFL++ offers this instrumentation
with QEMU mode. It leverages a patched version of QEMU that
reports executed branches back to AFL [7]. After a new basic block
is translated, the fork server’s parent is informed that the block has
been translated to ensure every block is translated only once. The
control returns to the emulator after each block, which is extended
with calls to afl_maybe_log. This call fills a sharedmemory section,
passing the instrumentation information to AFL.

We built up instrumentation for BaseSAFE very similar to the
AFL-QEMU instrumentation. Translation blocks are cached in the
parent process of the SafeBASE forkserver to increase the through-
put of future runs. AFL merely has to start the harness and generate
inputs. The forked Unicorn used for BaseSAFE makes use of the
same concepts, tightly.

2.3 Cellular Baseband
Every modern smartphone has multiple types of processors. Apart
from the application processor, which runs the mobile operating
system (OS), modern smartphones use independent baseband pro-
cessors. The baseband processor handles all cellular communication.
Even though the application processor and baseband processor are
physically integrated into a single processor die, they are logically
separate. Baseband processors run a different operating system,
usually a real-time OS (RTOS), not a full-featured system like the

https://github.com/fgsect/BaseSAFE

BaseSAFE: Baseband SAnitized Fuzzing through Emulation WiSec ’20, July 8–10, 2020, Linz (Virtual Event), Austria

main processor does. Depending on the make, the method for inter-
communication between both processors varies. As smartphones
require faster mobile internet speeds, the internal interconnect
bus requires more bandwidth, so sometimes processors also utilize
shared memory between application and baseband processor. Thus,
in some cases, attacking a smartphone OS via its baseband is also
possible [35].

One of the main tasks of the cellular baseband is to identify the
cellular networks, to authenticate, and to connect to the correct
one. To achieve this, the baseband scans for the radio signal coming
from the cells and decodes network information messages from
System Information Block (SIB) messages to identify the network.
After identifying nearby cells, it will connect to the strongest cell
and perform the registration procedure. Once everything is done,
the cellular services are available. After a connection has been estab-
lished, the baseband provides mobile telephony and data services
to the mobile OS.

As pointed out by Rupprecht et al. [47], various attacks are pos-
sible just with an attacker-controlled rogue base station. One of
the earliest attacks targeting a baseband was presented by Wein-
mann [57]. Since there is no reliable way to identify whether the
base station is genuine or not, an external attacker can set up a
rogue base station (also known as IMSI catchers [54]) and send sig-
naling messages like the legitimate operator, without being noticed
by a user. It is possible for an attacker to inject modified signaling
messages by utilizing themodified open-source software (e.g. Osmo-
com [43] for 2G, OpenBTS-UMTS [42] for 3G, srsLTE [20] for 4G)
or the software of a commercial base station. With the wider avail-
ability of software-defined radio (SDR) devices, the total cost for the
rogue base station setup became feasible to the attacker nowadays.
Broadcasted signaling messages are processed by devices without
explicitly establishing the connection, while dedicated signaling
messages are available only after establishing a connection to the
base station.

3 RELATEDWORK
To the best of our knowledge, no fuzzing API for basebands exists
so far. This section discusses related work in fuzzing and cellular
security.

3.1 Emulator-Based Fuzzing
Different ways to use emulation for snapshot and kernel fuzzing
exist. Notable examples include TriforceAFL [25] by Hertz and New-
sham, as well as kAFL by Schumilo et al., both extending AFL’s
QEMU mode to fuzz whole virtual machines. In both cases, the
fuzz driver communicates with QEMU through additional hyper-
calls [51]. The current state of the art kernel fuzzer for desktops,
Syzkaller, uses VMs as well. A user-land stub inside the VM trig-
gers the kernel via syscalls [15]. Likewise, Unicorefuzz, by Maier
et al., fuzzes kernel functions in a QEMU-based emulator, Unicorn
engine. In contrast to the other kernel fuzzers, Unicorefuzz only
maps memory actively used in the fuzzed function and runs this
single snapshot continuously [34], forwarding each newly accessed
memory from the targets using avatar2 [36]. Schumilo et al. take it
one step further, fuzzing hypervisors instead of kernels, in a similar
fashion inside a custom hypervisor [50].

3.2 Baseband Research
The root cause of previously proposed attacks targeting a cellular
baseband can be traced back to the specification and the implemen-
tation. The errors in the standard allowed various forms of privacy
leakage such as cellular subscriber tracking [52] and data eaves-
dropping [49]. While there had been previous works on individual
baseband bugs [39, 46, 48], we are not aware of a systematized
approach on identifying the baseband bugs based on fuzzing.

Features of a baseband that were proven exploitable in the past
are SMS messages and AT commands. The 3GPP SMS specifica-
tion [2] defines more than just a text SMS, and processing of the
SMS had been exploited by previous researchers. Mulliner and
Miller [40] presented the bugs related to the SMS processing of mo-
bile basebands, and Mulliner et al. [39] tested them over-the-air for
multiple types of devices. These bugs are also affecting SMS-based
applications, such as one-time password [38] and SIM toolkit [8].
While mobile messenger services are replacing SMS, they are part of
the cellular standard and SMS functionality exists in smartphones.

Originally designed for controlling dial-up modems, AT com-
mands are also used in some modern smartphone basebands [1] as
a part of inter-processor communication. As a result, by sending
a malicious AT command it is possible to exfilterate information
from it or crash it unknowingly from the mobile operating system.
Example of AT command handler fuzzing includes the work by
Tian et al. [55] and ATFuzzer by Karim et al. [31].

Other work on fuzzing the components of smartphone includes
PeriScope by Song et al. [53] targeting device drivers and Hay [22]
targeting Android bootloaders.

The analysis of a baseband firmware is not well-researched:
Qualcomm, one of the major baseband manufacturer, uses a cus-
tom in-house architecture named Hexagon. Although Qualcomm
provides SDKs for the Hexagon processor, few well-known dis-
assemblers integrate it, one notable example being GSMK’s IDA
Pro plugin [23]. This further limits the research using other tools.
Nevertheless, most basebands use standard architecture, at least
for the main, (non-DSP) processor. Golde et al. [19] and Miru [35]
present a baseband firmware disassembly using industry-standard
tools, for basebands using off-the-shelf architectures such as ARM
and MIPS.

There had been attempts on fuzz testing cellular protocol im-
plementations. Johansson et al. [30] proposed a cellular protocol
fuzzing framework, which is integrated into the existing telecommu-
nication testing infrastructure. Similar commercial services exists,
such as P1 Telecom Fuzzer [44]. Hussain et al. proposed LTEIn-
spector [27] and 5GReasoner [28], which utilize formal analysis on
the 3GPP specifications to test the implementation of basebands.
Their approach is based on a formal analysis using the cellular
specification, translated into a machine-readable form. LTEFuzz by
Kim et al. [32] uses predefined test cases to identify implementa-
tion problems of a baseband. SpikerXG by Hernandez et al. [24]
fuzz firmware of Android devices and propose an analysis platform
for further rehosting and analysis will be possible, taking a big
step towards automated baseband analysis. Prior publicly known
baseband fuzzing setups fuzzed leaked binaries compiled for host
system [35]. This is a valid approach but only feasible if object files
are available, not for off-the-shelf firmware blobs.

WiSec ’20, July 8–10, 2020, Linz (Virtual Event), Austria Maier et al.

 BaseSAFE

AFL⁺⁺

spawns

execs

feeds
input

reports
feedback

reads
seeds

collects &
mutates

BasebandBasebandBaseband

Parent

fn main() {
/* emulator setup */
…
hook!(…) /heap allocator
afl_fuzz(…);

Unicorn
caches new
blocks

fork
server

BasebandBasebandForked Children

place_input_callback(…);
uc_afl_emu_start(…);
/* emulator runs */
crash_validation_callback(…);
/* crash or start over */

reports
feedback,
exitcode,
blocks,
memory
regions

Unicorn
reports
- new blocks
- coverage

…

Each
execution in
BaseSAFE
starts off
with the
same state.
The API is
easy to use.
The sanitizer
finds crashes.

forks

Figure 1: BaseSAFE

4 REHOSTING AND FUZZING
BaseSAFE is a platform to build baseband fuzzers on. The novel
core components of BaseSAFE are an API to hook up the emulation
toolkit with the maintained AFL fork AFL++ [26] in a very quick
and flexible manner, as well as various useful components like a
heap sanitizer. To enable high-speed fuzzing, BaseSAFE uses emula-
tion, built upon Unicorn engine, a popular CPU emulator [41]. This
means, fuzzing of the baseband firmware does not take place on
the phone hardware, but instead interesting functions are fuzzed
directly inside Unicorn engine. The Rust API makes it easy to write
powerful high-performance hooks, abstracting away potential hard-
ware interactions, interrupts, etc. This allows emulation and fuzzing
of the important parts of a firmware blob on fast desktop machines.
Of course, different targets do still need manual setup, coding, and
reverse engineering. In the following, we will discuss the usage and
benefits of BaseSAFE.

4.1 Fuzz API
In this section, we discuss the BaseSAFE API. Unicorn is extended
with an AFL-specific API to enable easy fuzzing, and an extra API to
hook the operating system’s heap sanitizer. A high-level overview of
the BaseSAFE procedure is depicted in Fig. 1. The API of BaseSAFE
goes beyond previous emulators, such as AFL Unicorn by Voss [56]
which did not offer interactions with AFL. Interactions with AFL
are required to kick off the fast persistent mode, but simply al-
ways started fuzzing after the first instruction. As execution left the
emulator after the first instruction to read AFL input, all Unicorn
translation caches were flushed constantly. On top, it only worked
for harnesses written in the interpreted and garbage collected lan-
guage Python.

The Unicorn engine API includes functions to set page mappings,
read and write memory and registers, add hooks, as well as start and
stop execution with different conditions. BaseSAFE makes them
available via Rust.

We extended this part of BaseSAFE with the following methods,
tailored for fuzzing:

afl_forkserver_start. After the initial setup of the test case is
done, the fuzz harness can call afl_forkserver_start. This kicks
off the forkserver logic. The baseband is kept in the same state in the
parent process, each fuzz test case is executed against a forked copy
of the emulator. So a call to afl_forkserver_start effectively
freezes the current state of prior to fuzzing run and at the same
time tells the attached afl-fuzz process to generate inputs. After
the forkserver started, the harness should read the input for this
run from AFL++ and place it into the appropriate location in the
target’s memory. As the fork is copy on write, the test case data will
be reset at the end of the run. Once this happens, the parent process
requests the next test case. Furthermore, the forkserver contains a
caching mechanism for Unicorn’s JIT, inspired by the AFL QEMU
mode: for each uncached basic block the child encounters, the child
will

(1) Decode the basic block from the target architecture (for MTK,
this is either 32 bit ARM or MIPS).

(2) Add instrumentation to the block, namely register each jump
from one location to the next in a shared map that will be
evaluated by AFL++ to generate further inputs.

(3) Notify the parent process about the current block address
and flags.

(4) Run the basic block.
(5) Continue with the next block. If it is already cached, patch

in a direct jump.
Once notified about a new block address by the child, the par-
ent process will also translate this block. As the parent mirrors
the child’s translation, this block will already be present in the
block cache for the next test case. This concept was carried over
from AFL’s QEMU mode, albeit with speed improvements: whereas
QEMU mode caches inside of the emulator, BaseSAFE patches it
into the translated block itself, reducing the need for indirect jumps,
a method first proposed by Biondo [11].

afl_next. As the fork syscall is heavyweight and, therefore, rather
slow, BaseSAFE offers a faster alternative: persistent mode. For tar-
gets like single parsers, for example errc_event_handler_main,
afl’s persistent mode can greatly improve fuzzing speeds. Instead
of exiting and reforking, the child process resets its state inter-
nally, resets the needed stack, memory, and registers, and then calls
afl_next to inform the BaseSAFE parent and afl-fuzz about the
end of a single fuzz run. AFL++ will then place the next test case
and the child can call the fuzzed target again.

afl_emu_start. In contrast to the emu_start function offered by
the core Unicorn emulator, afl_emu_start of BaseSAFE takes mul-
tiple exit addresses. This is required if the target may not always
return at the end of a function, for example if error conditions trig-
ger. On top, it will not clear the translation block cache, containing
the JITted basic blocks after execution, as it is the case with the
emulator function in Unicorn. This allows us to reuse the cache for

BaseSAFE: Baseband SAnitized Fuzzing through Emulation WiSec ’20, July 8–10, 2020, Linz (Virtual Event), Austria

consecutive forks, as discussed in afl_forkserver_start, as well
as persistent mode, discussed in afl_next. Recompilation of the
basic blocks is therefore not needed. Fuzzing speeds are high once
the emulator has encountered and translated most of the blocks.

afl_fuzz. Instead of manually specifying the fuzzing logic, such as
reading AFL’s input, catching Unicorn exceptions, or looping back
to the beginning for persistent mode, the developer may choose to
use the all-in-one function afl_fuzz. After setting up the baseband
inside the emulator, the fuzz function takes over all necessary steps
to fuzz, including all of the functions mentioned above. Its signature
can be seen in Listing 1.

The function afl_fuzz

(1) Loads the current test case input from AFL.
(2) Calls the place_input_callback, inwhich the harness should

write the input into the emulator memory at the appropri-
ate position. For persistent mode, the emulator has to reset
additional state changes in this step.

(3) Runs the emulator until execution reaches one of the exits,
a hook crashes execution or an illegal state occurs in the
emulator.

(4) Checks the Unicorn emulator error conditions and (option-
ally) calls the crash_validation_callback, allowing us to
implement custom sanitization routines.

(5) Starts from the top if persistent mode is enabled and the
counter did not expire.

pub fn a f l _ f u z z <F : ' s t a t i c , G : ' s t a t i c >(
&mut se l f ,
i n p u t _ f i l e : &str ,
i n p u t _ p l a c emen t _ c a l l b a c k : F ,
e x i t s : &[u64] ,
c r a s h _ v a l i d a t i o n _ c a l l b a c k : G ,
a lw a y s _ v a l i d a t e : bool ,
p e r s i s t e n t _ i t e r s : u32)

−> Result < () , A f lRe t >
where

F : FnMut (UnicornHandle <D> ,
&[u8] , i32) −> bool ,

G : FnMut (UnicornHandle <D> , uc_e r ro r ,
&[u8] , i32) −> bool {

Listing 1: Function Signature of afl_fuzz in Rust.

In the input_placement_callback the harness writes the input
test case to the emulator memory. The callbacks both get pointers
to the input of the current test case, provided by AFL, as well as
the persistent iteration index if it is required. Furthermore, the
crashvalidationcallback will get the exit code from Unicorn,
which will indicate errors caught during emulation, such as out-of-
bounds memory accesses. Depending on its return code, the exit
condition may be considered interesting, e.g., a crash or hitting
sanitization, in which case the AFL process gets the information
forwarded over an Inter-Process Communication (IPC) mechanism.
The fuzz function also takes a list of exits at which emulation will
stop, a flag whether the validation callback should also be called
without a Unicorn error condition and an additional u32 counter,
indicating if—and how often—persistent mode should loop before
forking again.

B
as
eS
A
FE

Nucleus OS

MediaTek Abstraction Layer
(KAL OS)

Drivers
(SIM, NVRAM)

Layer 1
(Air Interface)

GSM/UMTS
RR

LTE
RRC

MM/GMM EMM

CC
(2G, 3G)

SM/ESM
(2/3G, LTE)

L4C

ATCI L4A

Figure 2: MediaTek Baseband Architecture.

Debug Tracing. While execution has to be as fast as possible for
fuzzing to allow a large amount of test cases to be evaluated, re-
quirements when triaging a crash are vastly different. Instead of
high speed, the user wants a good understanding of the execution
path taken and encountered error cases, and hence needs as much
context as possible. For this, BaseSAFE features a debug mode that
will output all disassembled instructions and register values during
execution. As long as debug outputs are enabled, our harness also
prints all output directly generated by the baseband, such as logs
generated by dhl_trace and assert messages.

4.2 The MediaTek Baseband
We chose a MediaTek baseband as a target to implement a proof-
of-concept fuzzing harness, proving the usability and viability of
BaseSAFE. First, we will present an overview over the reverse-
engineered baseband.

For the course of this work, we focus on the HTC One E9+, using
MediaTek’s Helio X10 (MT6795) processor launched in 2015 [58].
Aside from HTC One E9+ and M9+, this processor is also used in
some smartphones around 2015, including Sony Xperia M5 and
Xiaomi Redmi Note 2 and 3. We were able to access the unencrypted
baseband firmware using the tool from Miru [35], which is target-
ing the same processor but tested in a different device. MediaTek’s
baseband firmware consists of two parts: ARM and DSP. The DSP
firmware controls the lower layers, including modulation and de-
modulation of the over-the-air signal. The ARM firmware controls
the upper layers, including the processing of the signaling messages

WiSec ’20, July 8–10, 2020, Linz (Virtual Event), Austria Maier et al.

and interconnection with the application processor. We are focus-
ing on the ARM part of the baseband firmware, as this is the place
where cellular control plane messages are processed and, therefore,
can be controlled by an external attacker.

An overview of the internal structure of the ARM firmware is
depicted in Fig. 2. Most of this MediaTek MTK baseband OS was
likely carried over from their prior feature phone OS, providing
the same task model and IPC mechanisms [33]. The OS is generally
following the layer model of the cellular network. The lowest layer
is a Nucleus RTOS kernel with a MediaTek abstraction layer above
it. Drivers are interacting with external entities used by a baseband,
such as NVRAM, used to store baseband configurations, and SIM
cards. Layer 1 and 2 are not clearly separated within the MediaTek
baseband firmware. Layer 3 consists of multiple protocols related to
the separate functionalities of the cellular network: radio resource
control (RR, RRC), mobility management (MM, GMM, EMM), call
control (CC), and session management (SM, ESM). Above this lies
an application layer, layer 4, whose implementation is MediaTek-
specific. It consists of a command interpreter (ATCI), a control
entity (L4C) and an adaption layer (L4A) and interacts with the
mobile OS running on the device’s application processor.

We are focusing on LTE RRC and EMM messages, as part of
these messages are normally used for identifying a base station and
exchanged upon establishing a connection between smartphone
and network. As such, vulnerabilities in handling these messages
enable a pre-authentication attack.

Imagination Technologies–then owner of MIPS–announced that
MediaTek is adoptingMIPS as the architecture for their baseband [29].
This is a departure from the ARM-based core that we analyzed as
a proof-of-concept for this work. By analyzing the smartphone’s
baseband firmware images by chipset using binwalk opcode anal-
ysis and Ghidra, we also found that MediaTek used ARM in their
basebands released before 2017 (Helio P25, X10, X27) and switched
to MIPS around mid-2017 (Helio P23, P70, P90, X30). Our reverse
engineering indicates that the parsers we are fuzzing are close to
identical in MIPS-based MediaTek basebands. This is to be expected,
as code reuse across architectures minimizes the development costs.
Of course, the proof-of-concept harness of BaseSAFE can easily be
ported toMIPS, as Unicorn itself supports the architecture, although
it might not provide novel insights due to the aforementioned code
reuse. Likewise, the MTK toolkits are rather standardized for both
ARM and MIPS.

4.3 Nucleus and MTK Firmware IPC
TheARMfirmwarewe used as an example application for BaseSAFE
is based on the Nucleus RTOS kernel, the libraries indicate a kernel
version of 2.x. The Nucleus RTOS is a non-preemptive realtime
OS with a queue-based IPC mechanism. The main method for the
different parts of the MTK firmware to communicate with each
other and forward packages to higher layers are these queues. Mod-
ules can use the do_send_msg function or its wrappers to send
so-called Inter Layer Messages (ILMs) to the internal or external
queue. The function proceeds to call kal_enque_msg in the Kernel
Abstraction Layer, which uses Nucleus primitives to pass the MTK
message representation to the Queue Management Unit (QMU) of
the kernel. On the other end, modules use msg_receive_extq or

msg_receive_intq, wrapping kal_deque_msg, in order to receive
ILMs for further processing. Each queue item, i.e. ILM, contains
an identifying message ID and destination module ID. The MTK
firmware uses this information tuple to route the queue entry in-
ternally and start the correct handler. Message IDs then provide
hints on how to process messages, e.g., parsers handling incoming
(physically external) messages could be informed on which decoder
to use. Additionally, ILMs handle domain-specific manifestations
of local parameters and peer buffers, carrying various forms of
information. When an ILM is initially constructed, the functions
construct_int_peer_buff and construct_int_local_para can
be used to allocate and populate the respective buffer. As a next step,
the get_int_ctrl_buffer wrapper calls into kal_get_buffer
which communicates with the Nucleus Partition Manager to re-
turn a fresh memory chunk. Both buffers have reference counts,
a module currently using one of them would signal its demand
by calling e.g. hold_local_para and thus increasing the counter.
Specific free wrapper functions, namely free_int_local_para
and free_int_peer_buff, first check the reference count and free
the corresponding buffer only if it is 0, otherwise it is decremented
by 1. The memory layouts of the ILM and local parameter struc-
tures are depicted in the upper part of Fig. 4. The MTK firmware
also implements an own queue management unit for the buffer
management of incoming messages and wraps received messages
in metadata, as depicted in the diagram in the lower part of Fig. 4.

4.4 Selective Emulation
Instead of emulating the whole baseband, we selectively emulate
single parsers. The selective emulation is single-threaded and only
spawns one process. This allows us to emulate quickly andwith zero
false-positives. However, this way we have to be more selective
about the portion of the baseband we fuzz—as manual effort is
required for each harness.

As illustrated in Fig. 2, we are focusing on layer 3 control plane
signaling messages, in particular, 3G [6] and LTE [3] RRC and NAS
EMM [4, 5] messages. They are relatively easy to modify with a
fake base station compared to lower layers. Some of these messages,
namely SIBs and Paging messages are not encrypted and decoded
automatically upon knowing the cell even without connecting to
them. Even though these messages have been a target for various
previous works, they still remain valid as a fuzzing target for various
reasons. Signaling messages are encoded in a binary-based format
such as ASN.1 and CSN.1, and correctly implementing a parser for
those protocols can be bug-ridden, while modern ASN parsers are
oftentimes autogenerated, making these parts less of a pressing
issue. Even though there are compliance tests for the standards,
these are developed towards the interoperability among multiple
vendors, not towards the implementation problems of an individual
baseband. The large amount of more than one thousand different
signaling messages for LTE RRC alone we were able to deduce
through fuzzing is likely not completely covered by compliance
tests. Hence, it is likely that individual baseband manufacturers
can make individual mistakes, which may not have been filtered
by their internal testing.

To this end, we identify the handling functions of the aforemen-
tioned signaling messages of the baseband firmware structure with

BaseSAFE: Baseband SAnitized Fuzzing through Emulation WiSec ’20, July 8–10, 2020, Linz (Virtual Event), Austria

minimal user input. We start from the downlink RRC messages of
the cellular network, which is categorized as follows:

• PCCH: Delivers paging messages. Plaintext message without
authentication.

• BCCH DL-SCH: Delivers SIBs to identify the network. Plain-
textmessagewithout authentication, baseband automatically
receives the contents upon cell discovery.

• CCCH: Initiates a connection between the phone and the
base station. Plaintext message without authentication.

• DCCH: Dedicated channel between the phone and the base
station. Integrity protected and optionally (but usually) en-
crypted.

In addition to RRC messages, NAS EMM messages manage the
registration of a phone and mobility. Some of the messages are
exchanged without encryption, therefore malicious EMMmessages
could be used as pre-authentication attack.

We have collected signaling messages from the real network and
phone using SCAT [45] and use them as seed inputs to potential
signaling message handlers.

The different decoders expect input buffers to be placed at spe-
cific offsets in multiple layers of internal structures. For incoming
signaling messages, new buffers are allocated by the MTK-internal
QMU. These buffers contain administrative queue metadata as well
as the size of the incoming message and a pointer to the payload
buffer. A local parameter struct is populated with a pointer to the
queue buffer and is being held by an Inter Layer Message struct.
Finally, the ILM needs to contain the correct message ID, signaling
the higher-level function into which ASN.1 decoder the incoming
message should be passed. Fig. 4 depicts the whole layout using a
PCCH message as an example. Correct placement of buffers, point-
ers and length fields can be handled in the place_input_callback
discussed in Sect. 4.1.

4.5 Parser Deduction

PCCH BCCH DL SCH DL DCCH DL CCCH

ASN1 Decoder

0

100

200

300

400

500

600

C
ov

er
ag

e
in

afl
-s

h
ow

m
ap

T
u

p
le

s

Packet Type (Size in Bytes)

Noise (36)

PCCH (19)

BCCH DL SCH (34)

DL DCCH (38)

DL CCCH (38)

Figure 3: Reported edge coverage of packages for each parser.
The correct packages reaches the highest coverage in each.

BaseSAFE can guide reverse engineers to select good fuzzing
targets with a concept that we call parser deduction. After we collect
signaling messages we are interested in using SCAT, we deduct the
correct parser for the signaling message by evaluating the code cov-
erage of different input functions when presented with the signaling
message, compared with code coverage of unrelated packages. For
this, we feed valid signaling messages into all decoders by emulat-
ing valid IPC messages and log the coverage. As shown in Fig. 3, the
correct signaling message always reaches the highest coverage in
the correct parser, as expected. The correlation for PCCH is smaller
than that of the other signaling messages, likely due to the fact that
the valid PCCH message we used was rather small, with only 19
bytes. To introduce a baseline, 30 noise signaling messages with
32 to 42 random bytes and an average length of 36 were generated.
These were fed into the discussed decoders and achieve notably
less coverage than the valid signaling message for each decoder,
the average coverage can be seen in Fig. 3. This method of parser
deduction allows us to select an interesting and correct target to
selectively emulate and fuzz.

4.6 Rehosting the Baseband with Rust

0

src
_m

od
_id

de
st_

mod
_id

sa
p_

id

msg
_id

pe
er_

bu
ff_

ptr

0x5078 loc
al_

pa
ra

_p
tr

IL
M

St
ru

ct
Lo

ca
l P

ar
a

St
ru

ct

msg
_le

n

M
an

ag
ed

Q

ue
ue

 B
uf

…

pa
ylo

ad
_le

n

pa
ylo

ad
_p

tr

qu
eu

e_
bu

f_p
tr

…

lp
_r

es
er

ve
d

re
f_

co
un

t

PC
CH

Pa

yl
oa

d

…

1 2 3 4 5 6 7 8 9 BA C D E F

Figure 4: Structure of MTK ILM, encapsulating a PCCHMes-
sage including pointers needed for correct input placement.

Fuzzing speed depends on various factors. Instrumenting a bi-
nary using a debugger degrades performance. Recent advancements
focus on speed of path finding, but also on sheer execution speed of
the instrumentation through lightweight hardware features [51, 61],
by leveraging optimized runtimes like QEMU block chaining [11]
or vectorized virtualization [17]. Faster instrumentation could be
possible.

Current research has shown that AFL’s QEMU mode’s perfor-
mance can be improved by re-enabling QEMU’s block chaining,
which merges code blocks if one ends with a direct jump. It is dis-
abled because it interferes with AFL’s instrumentation: Merged

WiSec ’20, July 8–10, 2020, Linz (Virtual Event), Austria Maier et al.

blocks don’t jump back into the emulator after every single con-
tained block, so it effectively disables tracing direct jumps. The
author injects the instrumentation code into the translated code,
and thus can safely enable block chaining. Combined with proper
caching this yields a speedup of 3-4 times the mainline QEMU
mode [11]. This patch could be ported to AFL-Unicorn, and could
significantly reduce the performance gap to compiler-assisted in-
strumentation.

4.7 Drop-In Heap Sanitizer
Muench et al. classify the results of memory corruptions found
through fuzzing in different categories. In their book, only observ-
able crashes and hangs are easy to track. Especially in a fuzzing
scenario, where the same test-case restarts over and over, the cate-
gories they classify as late crashes andmalfunctioning are impossible
to spot. Of course, the last class, no effect, is impossible to track
down without address sanitization [37]. A memory corruption itself
and the subsequent use of the corrupted memory may often be far
apart. At this point the fuzzer already stopped the execution of this
run and started the next iteration, removing all traces of the bug.
Thus, even when a crashing input is given, detecting the underlying
memory bug is impossible. We solve this issue by implementing a
drop-in allocator that makes use of the emulator features to provide
sanitization.

4.7.1 How to Drop-In. Usually, a drop-in allocator would be put in
place, either during compilation or linked dynamically when the
program is loaded. Both options are not applicable for our use case:
embedded firmware without source code, tool-chain, or knowledge
about the linker. While binary patching could be considered, simi-
lar to RetroWrite by Dinesh et al. [14], adding functionality in the
emulation layer is less fragile and works for all supported instruc-
tion sets. The hooking functionality of the Unicorn engine inserts
checks for conditions and callbacks directly into the JITted code.

In contrast to the QASan sanitizer for QEMU by Fioraldi, that
patches each memory access in QEMU [18], we add the instru-
mentation on top of the memory access hooks already offered by
Unicorn. With a hook in place, Unicorn engine emits checks for con-
ditions like memory accesses and executed instructions. If the check
triggers, the placed hook is called from the JITted code directly,
without stopping the emulation. Using this feature, we overwrite
the firmware’s internal allocator, i.e. kal_get_buffer described in
Sect. 4.3, by hooking its address. Whenever the hook triggers, we
allocate memory in a previously mapped page and pass the location
to the firmware by filling in the correct register. After the hooked
allocation, we increase the program counter to skip the firmware’s
actual allocator function call.

4.7.2 Allocator Implementation. The custom allocator offered by
BaseSAFE itself makes heavy use of Unicorn hooks for sanitization.
Before emulation starts, a memory region large enough to handle
all possible allocations during a single run gets allocated inside the
emulated target. Initially, an access hook is placed on the whole
region. Each time the hook triggers, a memory out-of-bounds access
is detected. The nature of the hook allows us to distinguish between
reads and writes and allows us to log the current instruction pointer.

Allocation. When the baseband’s allocator would be called, the
Unicorn hook calls our allocator instead. The allocation chunk is
allocated by removing our memory hook from a portion of the
memory region of this size. A canary region with varying size,
depending on the size of the allocation, is left hooked between each
allocated chunk. The canary region is, again, protected by hooks.
This way the only heap corruptions we cannot spot are writes
skipping the variable-sized canary regions and accessing another
already allocated chunk. Normally, all out-of-bounds accesses are
detected.

Deallocation. The deallocator hook places a new memory access
hook on the previously allocated region. Since the memory region
will never be reused for this single run, all use-after-free bugs are
detected by this hook. In addition, the chunk size, being part of
a bookkeeping structure, gets set to 0. Whenever free is being
called on a chunk with a size of 0, a double-free is detected. The
managing structures are not part of the heap itself and are kept
outside of the emulator and hence cannot be impacted by memory
corruptions. As the forkserver will reset the emulator memory for
each emulation pass by reforking, we do not have to clean the
custom heap manually, unless the persistent mode is in use, in
which case the hooks are replaced completely.

5 EVALUATION
In the following, wewill first discuss results gatheredwith BaseSAFE,
including memory corruptions. Then, we discuss how BaseSAFE
repackages PCAPs, and how we replay the test cases against a real
MediaTek-based device over-the-air.

5.1 Exhaustive Test Cases From LTE RRC
We ran BaseSAFE on the LTE RRC test case for around one week
with about 15k executions per second. Benchmarking the fuzz case
on an Intel i7-6700 CPU @3.40GHz, the speed fluctuated around
1.5k executions per second on a single core. Although no crashes
could be found during the RRC tests, we were able to uncover slow
paths. However, this cannot be abused for denial-of-service because
LTE RRC timers [3] reset the internal parser if signaling messages
were not received within the time limit.

In total, after minimizing millions of test cases using afl-cmin on
the corpus and afl-tmin on every single corpus-minimized input,
1388 unique test cases, leading to unique paths in the parser, were
found, see Sect. 5.3. They will be released as part of BaseSAFE and
can be reused to test the same message on other baseband firmware
in the future. This number can still go up with longer fuzzing times.
As these signaling messages were effectively outgeneraled by the
parser, all of the messages are relevant for parsing, even if some
behavior may not be specification-compliant, cf. Fig. 5.

5.2 Memory Corruptions in NAS EMM
Higher up in the LTE stack, in the NAS EMM parser, BaseSAFE
was able to uncover out-of-bounds reads and writes. The position
of the bug within the MTK architecture is shown in Fig. 2. Af-
ter fuzzing the parser, the heap sanitizer, discussed in Sect. 4.7,
successfully reported multiple such crashes with the same root
cause. The bug, first discovered by Grassi and Chen [21], lies in
decodeEmergencyNumberList, a function being called during the

BaseSAFE: Baseband SAnitized Fuzzing through Emulation WiSec ’20, July 8–10, 2020, Linz (Virtual Event), Austria

Figure 5: Wireshark trace of one of the fuzzer-generated sig-
naling messages triggering unique code flow in MTK

handling of Tracking Area Update Accept and Attach Accept mes-
sages, specified in the 3GPP TS 24.008 [4] standard. Here, an attacker-
controlled length-byte is not checked against the correct mes-
sage size, leading to an out-of-bounds read from the received mes-
sage buffer while copying it to the internal data structure. As the
offset into the target buffer gradually increases by factor 0x2b,
an attacker would in addition be able to overflow it during the
copying process and achieve an out-of-bounds write on the heap.
i = 0;
do {

index = *ecc_number_list_struct;
curr_item = ecc_number_list_struct + (uint)index * 0x2b;
curr_item [2] = msg[i] - 1;
data_start = i + 2;
curr_item [1] = msg[i + 1 & 0xffff];
j = 0;
while (i = data_start & 0xffff , j < curr_item [2]) {

data_start = i + 1;
curr_item[j + 3] = msg[i];
j = j + 1 & 0xff;

}
j = (uint)index + 1 & 0xff;
*ecc_number_list_struct = (byte)j;

} while (i < length);
dhl_trace(TRACE_GROUP_1 ,0,DAT_001b8020 ,PTR_DAT_001b8024 ,j,length ,msg_ptr);

Listing 2: Loop in decodeEmergencyNumberList

5.3 The Red Pill
To finalize the emulation evaluation, we need proof that the mes-
sages produced in the emulator are indeed valid messages for real
basebands. For this, we used two main methods.

5.3.1 AFL Inputs to PCAPs. After running for five days, the feedback-
driven mutations of AFL generated a large corpus of potential in-
puts, with over 250k queued items. Of course, many of these are
rather similar. As BaseSAFE works together with all AFL++ tools,
we can use a combination of AFL’s minimization tools to reduce
the amount of test-cases to 1388+ unique tests. To arrive at this
number:

(1) We ran afl-cmin, which loads the coverage map for each
test case, then removes all test cases that only touch the same
code paths from the list, keeping the smallest for each. This
removes all files that do not reach new code paths, making
sure each test case is actually relevant for the parser.

Figure 6: Base station setup with our test phone HTC One
E9.

(2) We ran afl-tmin multi-processed on all remaining files.
The test case minimization overwrites random chunks of the
input file. If the coverage map stays the same, parts of the
chunk are removed to check if the map also stays unchanged
without these bytes. Similar heuristics are repeated until the
file size is as minimal as possible—while maintaining the
coverage.

After the minimization process, we are left with a minimal set
of inputs that still cover all possible branches of the original base-
band parser. In contrast to official test-cases, they may not be valid
packages—but they will still trigger new conditions in the parser.
See, for example, the dissected packet containing signaling message
in Fig. 5. To arrive at this dissection, and verify our method, we
wrap the minimized test cases in a valid PCAP. For this, BaseSAFE
ships with a custom tool to wrap the test cases into a PCAP file.
The tool writes PCAP headers and then wraps the bytes each min-
imized test case into a GSMTAP packet. The wrapped GSMTAP
packets are decodable as a signaling message in Wireshark. One of
the generated test case decoded in Wireshark is presented in Fig. 5.

5.3.2 Replay Against Real Phones. In order to try out responses
in the real world and vet the behavior of BaseSAFE, we built a
setup able to replay the signaling messages. For this, we put up
a rogue base station capable of injecting the messages at the cor-
rect time during the connection establishment procedure. We are
using a software-defined radio and freely available application
OpenLTE [59], illustrated in Fig. 6. Along with this, we were able
to analyze the baseband log output with the MTKLogger system
application. The application is available on most MediaTek-based
phones, although it is hidden from the user interface and needs to
be accessed using special methods.

6 FUTUREWORK
BaseSAFE is an important first step towards fully automated vulner-
ability discovery on cellular basebands. However, it only manages
to cover a small portion, leaving many areas to explore further.

6.1 Fuzzing for Logic Bugs
Currently, our proof-of-concept harness for BaseSAFE mostly de-
tects memory corruptions during parsing, except for the places

WiSec ’20, July 8–10, 2020, Linz (Virtual Event), Austria Maier et al.

where asserts were explicitly inserted by MediaTek into the base-
band. It will not discover any other bugs. Through the insertion of
additional hooks and more elaborately modeled execution flows, a
variety of other bugs could be in the future. For example, finding
traces that disable a timer could lead to sustainable DoS and easier
exploitation of bugs [19]. On top, the parsed message structs, result-
ing from our LTE RRC fuzz test, could be handed to the consuming
functions behind the baseband. This could yield further bugs, as
packages might pass the parser without corruptions, but the con-
sumer could, in turn, blindly trust that input, just as we saw in
Sect. 5.2. Using BaseSAFE hooks, a lot of other logic bugs could also
be modeled. For the baseband authentication, paths that reach an
authenticated state without passing the necessary authentication
functions can be hunted down this way.

6.2 Collision-Free Coverage Tracing
Right now, BaseSAFE uses the instrumentation of AFL QEMUmode.
For each new translation block, it calculates a shift and a XOR
operation to find the afl_idx offset, see Listing 3.

a f l _ i d x = cu r _ l o c ^ uc−> a f l _ p r e v _ l o c
INC_AFL_AREA (a f l _ i d x) ;
uc−> a f l _ p r e v _ l o c = cu r _ l o c >> 1

Listing 3: Instrumentation in BaseSAFE

At the position of afl_idx, INC_AFL_AREA then increases a
counter at the shared map used to report feedback to AFL++.

While this hash is good enough to find almost all paths, our tests
indicate that collisions occasionally occur. This leaves a small num-
ber of branches undetected, negatively affecting feedback-based
mutations. The fuzzer will still eventually reach colliding paths,
but may classify the edge as already taken, putting less weight
on this test case. In the future, BaseSAFE will be extended with
collision-free instrumentation. Initial tests without AFL’s hashing
indicate a higher total number of total paths found.

6.3 Additional Targets
In the course of this paper, we were merely able to highlight a
small portion of a whole operating system. The analyzed MediaTek
firmware for theHTCOne in question has 56 calls to msg_receive_extq,
the IPC mechanism to receive messages from the system queue,
alone. As described in 4.3, each of these calls is one specific task.
Each task may contain parsers for multiple different network pack-
ets and call one of them, depending on the ILM msg_id (see Fig. 4
for one ILM example). Each such queue read may contain, or de-
pend on, user-provided input and can be an interesting target to
fuzz in itself. Especially 2G functions might be another interesting
target as it is usually old code that may be seldomly used and tested.
Apart from MediaTek, other cellular basebands, base stations, and
even unrelated firmware can be tested with BaseSAFE after some
adaptation. Piece by piece, support for non-standard architectures,
such as Qualcomm’s Hexagon, can be added by porting their exist-
ing open-source QEMU versions [13] to Unicorn engine, thereby
improving the number of testable basebands.

6.4 Further Harness Automation
While the methods and tools presented in this paper will be ap-
plicable to all cellular basebands, hook creation could be further
automated to allow adaption to new platforms with less manual
work. Of course, this will need a deeper automated understanding
of unknown firmware blobs, using heuristics and automated static
analysis.

7 CONCLUSION
BaseSAFE shows good results. It provides fast fuzzing speeds, with
around 15000 executions on a small server for our real-world use-
case, emulating multiple Mediatek baseband parsers. This proves
that emulation is a good fit for automated bug discovery in baseband
firmware analysis. BaseSAFE’s snapshot-based fuzzing introduces
a new level of precision and achieves high coverage and execution
speeds, not achievable by classical over-the-air fuzzing approaches.
BaseSAFE is built on top of state-of-the-art open-source tools and
has—in turn—been open-sourced. The API offered by its Rust bind-
ings makes it easy to quickly implement fuzz cases without ad-
ditional overhead. We were able to run high-performance partial
emulations of complex firmware. The introduced drop-in sanitiz-
ing allocator finds memory corruption bugs automatically, solving
a problem considered hard in prior literature [37]. Our proposed
framework found vulnerabilities that are reproducible over-the-air.
We conclude, that with BaseSAFE, fuzzing of embedded firmware
in general, and different parts of the MediaTek cellular baseband in
particular, is greatly facilitated and allows for efficient automated
bug discovery in various scenarios.

Responsible disclosure. All results of this research were com-
municated to MediaTek in a timely fashion.

Acknowledgements
The authors would like to thank Jiska Classen and Altaf Shaik for
valuable feedback.

REFERENCES
[1] 3GPP. 2018. AT command set for User Equipment (UE). Technical Specification

(TS) 27.007. 3rd Generation Partnership Project (3GPP). http://www.3gpp.org
/DynaReport/27007.htm Version 15.4.0.

[2] 3GPP. 2018. Technical realization of the Short Message Service (SMS). Technical
Specification (TS) 23.040. 3rd Generation Partnership Project (3GPP). http:
//www.3gpp.org/DynaReport/23040.htm

[3] 3GPP. 2020. Evolved Universal Terrestrial Radio Access (E-UTRA); Radio Resource
Control (RRC); Protocol specification. Technical Specification (TS) 36.331. 3rd
Generation Partnership Project (3GPP). http://www.3gpp.org/DynaReport/
36331.htm

[4] 3GPP. 2020. Mobile radio interface Layer 3 specification; Core network protocols;
Stage 3. Technical Specification (TS) 24.008. 3rd Generation Partnership Project
(3GPP). http://www.3gpp.org/DynaReport/24008.htm

[5] 3GPP. 2020. Non-Access-Stratum (NAS) protocol for Evolved Packet System (EPS);
Stage 3. Technical Specification (TS) 24.301. 3rd Generation Partnership Project
(3GPP). http://www.3gpp.org/DynaReport/24301.htm

[6] 3GPP. 2020. Radio Resource Control (RRC); Protocol specification. Technical
Specification (TS) 25.331. 3rd Generation Partnership Project (3GPP). http:
//www.3gpp.org/DynaReport/25331.htm

[7] AFL. 2020. AFL QEMU Mode. https://github.com/mirrorer/afl/blob/master/qe
mumode/README.qemu

[8] Bogdan Alecu. 2013. SMS fuzzing–SIM toolkit attack. DEF CON 21 (2013).
[9] Fabrice Bellard. 2005. QEMU, a fast and portable dynamic translator.. In USENIX

Annual Technical Conference, FREENIX Track, Vol. 41. 46.
[10] Fabrice Bellard. 2020. Tiny Code Generator. https://git.qemu.org/?p=qemu.g

it;a=blobplain;f=tcg/README;hb=HEAD

http://www.3gpp.org/DynaReport/27007.htm
http://www.3gpp.org/DynaReport/27007.htm
http://www.3gpp.org/DynaReport/23040.htm
http://www.3gpp.org/DynaReport/23040.htm
http://www.3gpp.org/DynaReport/36331.htm
http://www.3gpp.org/DynaReport/36331.htm
http://www.3gpp.org/DynaReport/24008.htm
http://www.3gpp.org/DynaReport/24301.htm
http://www.3gpp.org/DynaReport/25331.htm
http://www.3gpp.org/DynaReport/25331.htm
https://github.com/mirrorer/afl/blob/master/qemu_mode/README.qemu
https://github.com/mirrorer/afl/blob/master/qemu_mode/README.qemu
https://git.qemu.org/?p=qemu.git;a=blob_plain;f=tcg/README;hb=HEAD
https://git.qemu.org/?p=qemu.git;a=blob_plain;f=tcg/README;hb=HEAD

BaseSAFE: Baseband SAnitized Fuzzing through Emulation WiSec ’20, July 8–10, 2020, Linz (Virtual Event), Austria

[11] Andrea Biondo. 2018. Improving AFL’s QEMU mode performance. 0x41414141
in ?? () (Sep 2018). https://abiondo.me/2018/09/21/improving-afl-qemu-mode

[12] Laurent Butti and Julien Tinnes. 2008. Discovering and exploiting 802.11 wireless
driver vulnerabilities. Journal in Computer Virology 4, 1 (2008), 25–37.

[13] Comsecuris. 2020. QEMU with support for QDSP6 user mode emulation. https:
//github.com/Comsecuris/qemu-hexagon

[14] S. Dinesh S. Dinesh, Nathan Burow, Dongyan Xu, and Mathias Payer. 2020.
RetroWrite: Statically Instrumenting COTS Binaries for Fuzzing and Sanitization.
In IEEE S&P 2020.

[15] David Drysdale. 2016. Coverage-guided kernel fuzzing with syzkaller. https:
//lwn.net/Articles/677764/

[16] SÃľbastien Duquette. 2020. Rust bindings for the unicorn CPU emulator. https:
//github.com/ekse/unicorn-rs

[17] Brandon Falk. 2018. Vectorized Emulation: Hardware accelerated taint tracking
at 2 trillion instructions per second. https://gamozolabs.github.io/fuzzing/2018/
10/14/vectorizedemulation.html [Online; accessed 11. Nov. 2018].

[18] Andrea Fioraldi. 2019. Sanitized Emulation with QASan. https://andreafiorald
i.github.io/articles/2019/12/20/sanitized-emulation-with-qasan.html

[19] Nico Golde and Daniel Komaromy. 2016. Breaking Band: reverse engineering
and exploiting the shannon baseband. https://comsecuris.com/slides/recon2016-
breakingband.pdf

[20] Ismael Gomez-Miguelez, Andres Garcia-Saavedra, Paul D. Sutton, Pablo Serrano,
Cristina Cano, and Douglas J. Leith. 2016. srsLTE: An Open-Source Platform
for LTE Evolution and Experimentation. CoRR abs/1602.04629 (2016). http:
//arxiv.org/abs/1602.04629

[21] Marco Grassi and Xingyu Chen. 2020. Exploring the MediaTek Baseband. In
OffensiveCon.

[22] Roee Hay. 2017. fastboot OEM vuln: Android bootloader vulnerabilities in vendor
customizations. In 11th USENIX Workshop on Offensive Technologies (WOOT 17).

[23] Willem Hengeveld. 2013. IDA processor module for the hexagon (QDSP6) processor.
https://github.com/gsmk/hexagon

[24] Grant Hernandez and Kevin R. B. Butler. 2019. Basebads: Automated Security
Analysis of Baseband Firmware: Poster. (2019), 318âĂŞ319. https://doi.org
/10.1145/3317549.3326310

[25] J Hertz and T Newsham. 2016. Project triforce: Run afl on everything. NCC
Group, Tech. Rep. (2016).

[26] Marc Heuse, Heiko Eißfeld, Andrea Fioraldi, and Dominik Maier. 2020. american
fuzzy lop plus plus (afl++). GitHub. https://github.com/vanhauser-thc/AFLplu
splus

[27] Syed Hussain, Omar Chowdhury, Shagufta Mehnaz, and Elisa Bertino. 2018.
LTEInspector: A systematic approach for adversarial testing of 4G LTE. In Net-
work and Distributed Systems Security (NDSS) Symposium 2018.

[28] Syed Rafiul Hussain, Mitziu Echeverria, Imtiaz Karim, Omar Chowdhury, and
Elisa Bertino. 2019. 5GReasoner: A Property-Directed Security and Privacy
Analysis Framework for 5G Cellular Network Protocol. In Proceedings of the
2019 ACM SIGSAC Conference on Computer and Communications Security, CCS
2019, London, UK, November 11-15, 2019, Lorenzo Cavallaro, Johannes Kinder, Xi-
aoFeng Wang, and Jonathan Katz (Eds.). ACM, 669–684. https://doi.org/10.1145/
3319535.3354263

[29] Imagination Technologies. 2017. MediaTek selects MIPS for LTE modems. https:
//www.mips.com/press/mediatek-selects-mips-for-lte-modems/

[30] W. Johansson, M. Svensson, U. E. Larson, M. Almgren, and V. Gulisano. 2014.
T-Fuzz: Model-Based Fuzzing for Robustness Testing of Telecommunication
Protocols. In 2014 IEEE Seventh International Conference on Software Testing,
Verification and Validation. 323–332. https://doi.org/10.1109/ICST.2014.45

[31] Imtiaz Karim, Fabrizio Cicala, Syed Hussain, Omar Chowdhury, and Elisa Bertino.
2019. Opening Pandora’s box through ATFuzzer: dynamic analysis of AT interface
for Android smartphones. 529–543. https://doi.org/10.1145/3359789.3359833

[32] Hongil Kim, Jiho Lee, Lee Eunkyu, and Yongdae Kim. 2019. Touching the Un-
touchables: Dynamic Security Analysis of the LTE Control Plane. In 2019 IEEE
Symposium on Security and Privacy (SP). 1153–1168. https://doi.org/10.1109/SP
.2019.00038

[33] X. Lu, J. He, and J. Li. 2011. A Tibetan input method based on MTK for mo-
bile phone. In 2011 International Conference on Consumer Electronics, Communi-
cations and Networks (CECNet). 3884–3887. https://doi.org/10.1109/CECNET
.2011.5768296

[34] Dominik Maier, Benedikt Radtke, and Bastian Harren. 2019. Unicorefuzz: On
the Viability of Emulation for Kernelspace Fuzzing. In 13th USENIX Workshop
on Offensive Technologies, WOOT 2019, Santa Clara, CA, USA, August 12-13, 2019,
Alex Gantman and Clémentine Maurice (Eds.). USENIX Association. https:
//www.usenix.org/conference/woot19/presentation/maier

[35] GyÃűrgy Miru. 2017. Path of Least Resistance: Cellular Baseband to Application
Processor Escalation on Mediatek Devices. https://comsecuris.com/blog/posts/pa
thofleastresistance/

[36] Marius Muench, Aurélien Francillon, and Davide Balzarotti. 2018. AvatarÂš: A
multi-target orchestration platform. In BAR 2018, Workshop on Binary Analysis
Research, colocated with NDSS Symposium, 18 February 2018, San Diego, USA. San

Diego, UNITED STATES. http://www.eurecom.fr/publication/5437
[37] Marius Muench, Jan Stijohann, Frank Kargl, Aurélien Francillon, and Davide

Balzarotti. 2018. What you corrupt is not what you crash: Challenges in fuzzing
embedded devices. In Proceedings 2018 Network and Distributed System Security
Symposium, San Diego, CA.

[38] Collin Mulliner, Ravishankar Borgaonkar, Patrick Stewin, and Jean-Pierre Seifert.
2013. SMS-Based One-Time Passwords: Attacks and Defense. In Detection of In-
trusions and Malware, and Vulnerability Assessment, Konrad Rieck, Patrick Stewin,
and Jean-Pierre Seifert (Eds.). Springer Berlin Heidelberg, Berlin, Heidelberg,
150–159.

[39] Collin Mulliner, Nico Golde, and Jean-Pierre Seifert. 2011. SMS of Death: from
analyzing to attacking mobile phones on a large scale. USENIX Security (2011).
http://static.usenix.org/events/sec11/tech/full{˝papers/Mulliner.pdf

[40] Collin Mulliner and Charlie Miller. 2009. Fuzzing the Phone in your Phone.
Black Hat USA 2009 (2009). https://www.blackhat.com/presentations/bh-usa-
09/MILLER/BHUSA09-Miller-FuzzingPhone-PAPER.pdf

[41] Anh Quynh Ngyuen and Hoang Vu Dang. 2020. Unicorn: Next Generation CPU
Emulator Framework. http://www.unicorn-engine.org/BHUSA2015-unicorn.p
df

[42] OpenBTS. 2020. OpenBTS-UMTS. http://openbts.org/w/index.php?title=
OpenBTS-UMTS

[43] Osmocom Project. 2020. Cellular Network Infrastructure. https://osmocom.org
/projects/cellular-infrastructure/wiki

[44] P1 Security. 2020. P1 Telecom Fuzzer. https://www.p1sec.com/corp/products/p1-
telecom-fuzzer-ptf/

[45] Shinjo Park. 2017. SCAT: Signaling Collection and Analysis Tool. https://github.c
om/fgsect/scat

[46] Shinjo Park, Altaf Shaik, Ravishankar Borgaonkar, and Jean-Pierre Seifert. 2016.
White Rabbit in Mobile: Effect of Unsecured Clock Source in Smartphones. In
Proceedings of the 6thWorkshop on Security and Privacy in Smartphones and Mobile
Devices. ACM, 13–21.

[47] David Rupprecht, Adrian Dabrowski, Thorsten Holz, Edgar Weippl, and Christina
Pöpper. 2017. On Security Research Towards Future Mobile Network Generations.
(oct 2017). arXiv:1710.08932 http://arxiv.org/abs/1710.08932

[48] David Rupprecht, Kai Jansen, and Christina Pöpper. 2016. Putting LTE Security
Functions to the Test: A Framework to Evaluate Implementation Correctness. In
10th USENIX Workshop on Offensive Technologies (WOOT 16).

[49] David Rupprecht, Katharina Kohls, Thorsten Holz, and Christina Pöpper. 2019.
Breaking LTE on Layer Two. In 2019 IEEE Symposium on Security and Privacy
(SP).

[50] Sergej Schumilo, Cornelius Aschermann, Ali Abbasi, SimonWorner, and Thorsten
Holz. 2020. HYPER-CUBE: High-Dimensional Hypervisor Fuzzing. In 27th An-
nual Network and Distributed System Security Symposium, NDSS 2017, San Diego,
California, USA, 2020. https://doi.org/10.14722/ndss.2020.23096

[51] Sergej Schumilo, Cornelius Aschermann, Robert Gawlik, Sebastian Schinzel, and
Thorsten Holz. 2017. kAFL: Hardware-Assisted Feedback Fuzzing for OS Kernels.
In 26th USENIX Security Symposium (USENIX Security 17). USENIX Association,
Vancouver, BC, 167–182.

[52] Altaf Shaik, Ravishankar Borgaonkar, N. Asokan, Valtteri Niemi, and Jean-Pierre
Seifert. 2015. Practical attacks against privacy and availability in 4G/LTE mobile
communication systems. (2015). http://arxiv.org/abs/1510.07563

[53] Dokyung Song, Felicitas Hetzelt, Dipanjan Das, Chad Spensky, Yeoul Na, Stijn
Volckaert, Giovanni Vigna, Christopher Kruegel, Jean-Pierre Seifert, and Michael
Franz. 2019. PeriScope: An Effective Probing and Fuzzing Framework for the
Hardware-OS Boundary. In 26th Annual Network and Distributed System Security
Symposium, NDSS 2019, San Diego, California, USA, February 24-27, 2019. The
Internet Society. https://www.ndss-symposium.org/ndss-paper/periscope-an-
effective-probing-and-fuzzing-framework-for-the-hardware-os-boundary/

[54] Daehyun Strobel. 2007. IMSI Catcher. Chair for Communication Security, Ruhr-
Universität Bochum (2007).

[55] Dave Jing Tian, Grant Hernandez, Joseph I Choi, Vanessa Frost, Christie Raules,
Patrick Traynor, Hayawardh Vijayakumar, Lee Harrison, Amir Rahmati, Michael
Grace, et al. 2018. ATtention Spanned: Comprehensive Vulnerability Analysis
of {AT} Commands Within the Android Ecosystem. In 27th USENIX Security
Symposium (USENIX Security 18). 273–290.

[56] Nathan Voss. 2017. afl-unicorn: Fuzzing Arbitrary Binary Code. https://hackerno
on.com/afl-unicorn-fuzzing-arbitrary-binary-code-563ca28936bf

[57] Ralf-Philipp Weinmann. 2012. Baseband Attacks: Remote Exploitation of Mem-
ory Corruptions in Cellular Protocol Stacks. USENIX Workshop on Offensive
Technologies (2012).

[58] WikiChip. 2020. Helio X10 (MT6795) - MediaTek. https://en.wikichip.org/wiki/
mediatek/helio/mt6795

[59] Ben Wojtowicz. [n.d.]. OpenLTE. http://openlte.sourceforge.net/
[60] Michael Zalewski. 2016. Technical "whitepaper" for AFL-fuzz. http://lcamtuf .c

oredump.cx/afl/
[61] G. Zhang, X. Zhou, Y. Luo, X. Wu, and E. Min. 2018. PTfuzz: Guided Fuzzing

With Processor Trace Feedback. IEEE Access 6 (2018), 37302–37313. https:
//doi.org/10.1109/ACCESS.2018.2851237

https://abiondo.me/2018/09/21/improving-afl-qemu-mode
https://github.com/Comsecuris/qemu-hexagon
https://github.com/Comsecuris/qemu-hexagon
https://lwn.net/Articles/677764/
https://lwn.net/Articles/677764/
https://github.com/ekse/unicorn-rs
https://github.com/ekse/unicorn-rs
https://gamozolabs.github.io/fuzzing/2018/10/14/vectorized_emulation.html
https://gamozolabs.github.io/fuzzing/2018/10/14/vectorized_emulation.html
https://andreafioraldi.github.io/articles/2019/12/20/sanitized-emulation-with-qasan.html
https://andreafioraldi.github.io/articles/2019/12/20/sanitized-emulation-with-qasan.html
https://comsecuris.com/slides/recon2016-breaking_band.pdf
https://comsecuris.com/slides/recon2016-breaking_band.pdf
http://arxiv.org/abs/1602.04629
http://arxiv.org/abs/1602.04629
https://github.com/gsmk/hexagon
https://doi.org/10.1145/3317549.3326310
https://doi.org/10.1145/3317549.3326310
https://github.com/vanhauser-thc/AFLplusplus
https://github.com/vanhauser-thc/AFLplusplus
https://doi.org/10.1145/3319535.3354263
https://doi.org/10.1145/3319535.3354263
https://www.mips.com/press/mediatek-selects-mips-for-lte-modems/
https://www.mips.com/press/mediatek-selects-mips-for-lte-modems/
https://doi.org/10.1109/ICST.2014.45
https://doi.org/10.1145/3359789.3359833
https://doi.org/10.1109/SP.2019.00038
https://doi.org/10.1109/SP.2019.00038
https://doi.org/10.1109/CECNET.2011.5768296
https://doi.org/10.1109/CECNET.2011.5768296
https://www.usenix.org/conference/woot19/presentation/maier
https://www.usenix.org/conference/woot19/presentation/maier
https://comsecuris.com/blog/posts/path_of_least_resistance/
https://comsecuris.com/blog/posts/path_of_least_resistance/
http://www.eurecom.fr/publication/5437
http://static.usenix.org/events/sec11/tech/full{_}papers/Mulliner.pdf
https://www.blackhat.com/presentations/bh-usa-09/MILLER/BHUSA09-Miller-FuzzingPhone-PAPER.pdf
https://www.blackhat.com/presentations/bh-usa-09/MILLER/BHUSA09-Miller-FuzzingPhone-PAPER.pdf
http://www.unicorn-engine.org/BHUSA2015-unicorn.pdf
http://www.unicorn-engine.org/BHUSA2015-unicorn.pdf
http://openbts.org/w/index.php?title=OpenBTS-UMTS
http://openbts.org/w/index.php?title=OpenBTS-UMTS
https://osmocom.org/projects/cellular-infrastructure/wiki
https://osmocom.org/projects/cellular-infrastructure/wiki
https://www.p1sec.com/corp/products/p1-telecom-fuzzer-ptf/
https://www.p1sec.com/corp/products/p1-telecom-fuzzer-ptf/
https://github.com/fgsect/scat
https://github.com/fgsect/scat
http://arxiv.org/abs/1710.08932
http://arxiv.org/abs/1710.08932
https://doi.org/10.14722/ndss.2020.23096
http://arxiv.org/abs/1510.07563
https://www.ndss-symposium.org/ndss-paper/periscope-an-effective-probing-and-fuzzing-framework-for-the-hardware-os-boundary/
https://www.ndss-symposium.org/ndss-paper/periscope-an-effective-probing-and-fuzzing-framework-for-the-hardware-os-boundary/
https://hackernoon.com/afl-unicorn-fuzzing-arbitrary-binary-code-563ca28936bf
https://hackernoon.com/afl-unicorn-fuzzing-arbitrary-binary-code-563ca28936bf
https://en.wikichip.org/wiki/mediatek/helio/mt6795
https://en.wikichip.org/wiki/mediatek/helio/mt6795
http://openlte.sourceforge.net/
http://lcamtuf.coredump.cx/afl/
http://lcamtuf.coredump.cx/afl/
https://doi.org/10.1109/ACCESS.2018.2851237
https://doi.org/10.1109/ACCESS.2018.2851237

	Abstract
	1 Introduction
	2 Background
	2.1 Fuzzing
	2.2 Unicorn
	2.3 Cellular Baseband

	3 Related Work
	3.1 Emulator-Based Fuzzing
	3.2 Baseband Research

	4 Rehosting and Fuzzing
	4.1 Fuzz API
	4.2 The MediaTek Baseband
	4.3 Nucleus and MTK Firmware IPC
	4.4 Selective Emulation
	4.5 Parser Deduction
	4.6 Rehosting the Baseband with Rust
	4.7 Drop-In Heap Sanitizer

	5 Evaluation
	5.1 Exhaustive Test Cases From LTE RRC
	5.2 Memory Corruptions in NAS EMM
	5.3 The Red Pill

	6 Future Work
	6.1 Fuzzing for Logic Bugs
	6.2 Collision-Free Coverage Tracing
	6.3 Additional Targets
	6.4 Further Harness Automation

	7 Conclusion
	References

