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ABSTRACT

Android apps must work correctly even if their execution is inter-

rupted by external events. For instance, an app must work properly

even if a phone call is received, or after its layout is redrawn be-

cause the smartphone has been rotated. Since these events may

require destroying, when the execution is interrupted, and recreat-

ing, when the execution is resumed, the foreground activity of the

app, the only way to prevent the loss of state information is to save

and restore it. This behavior must be explicitly implemented by

app developers, who often miss to implement it properly, releasing

apps affected by data loss problems, that is, apps that may lose state

information when their execution is interrupted.

Although several techniques can be used to automatically gen-

erate test cases for Android apps, the obtained test cases seldom

include the interactions and the checks necessary to exercise and

reveal data loss faults. To address this problem, this paper presents

Data Loss Detector (DLD), a test case generation technique that inte-

grates an exploration strategy, data-loss-revealing actions, and two

customized oracle strategies for the detection of data loss failures.

DLD revealed 75% of the faults in a benchmark of 54 Android app

releases affected by 110 known data loss faults, and also revealed un-

known data loss problems, outperforming competing approaches.

CCS CONCEPTS

• Software and its engineering → Software testing and de-

bugging.
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1 INTRODUCTION

In the last decade, mobile apps have increasingly gained importance

and popularity. Recent studies revealed that people spend more

than 3h per day on their smartphones on average [23] and that

90% of this time is typically devoted to the use of mobile apps [21].

Indeed, people use mobile apps to perform a huge variety of tasks,

including reading e-mails, listening to music, making orders and

payments, and playing games.

Among the available ecosystems for the distribution of mobile

apps, the Android ecosystem is the largest and most used one: its

market share is almost 75% [29] and its official store, the Google

Play Store, includes almost 3.0 millions of apps [30].

Android apps consist of components, such as activities, frag-

ments, and services, whose behavior must complywith well-defined

lifecycles [9, 11, 13]. For instance, activities can be in states such

as created, paused, resumed, and stopped, and transitions between

these states produce callbacks that must be handled by the activities.

Interestingly, some of these callbacks might be particularly tricky

to implement. This is the case of the callbacks produced by stop-
start events, which are system events that may force the destruction

and then the (re-)instantiation of a running activity. Stop-start

events occur every time the execution of an app is stopped and then

resumed. Typical cases include answering a phone call, switching

between apps, and rotating the smartphone to change its layout.

When a stop-start event occurs, the difficult task for the app is

to handle the destruction of the current activity in a way that is

later possible to resume the execution at the same point it was in-

terrupted. This is done by saving the values of all the relevant state

variables before the activity is destroyed, and retrieving these values

when the execution is resumed. With the exception of some specific

cases (e.g., the widgets with a non-empty android:id property), it is a
responsibility of the developer to implement this behavior. In partic-

ular, developers have to implement both the logic necessary to save

the state of an activity in the onSaveInstanceState() callbackmethod

and the logic to resume its state in the onRestoreInstanceState()

callback method [10]. Unfortunately, this implementation might be

wrong and might introduce misbehaviors in the apps [16].
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When a stop-start event is not properly handled, the Android app

is said to be affected by a data loss fault, that is, a fault that causes
one or more state variables to lose their values. Data loss faults may

affect the correctness of the apps in many different ways. In the best

cases, they force the users to enter again inputs that had already

been entered, deteriorating the quality of the user experience. In

the worst cases, they generate activities with an inconsistent state,

which causes the apps to produce wrong outputs or even crashes.

Data loss faults can be extremely pervasive. Adamsen et al. [1]
considered the execution of system events jointly with test suites

and reported that all the four apps used in their evaluation were

affected by data loss faults. Riganelli et al. [26] analyzed 428 Android
apps and found that at least 82 (19.6%) of the apps were affected by

data loss faults. Finally, Amalfitano et al. [2] studied 68 open source

apps reporting data loss faults in 60 of them (88.2%).

Test case generation techniques could be potentially used to

reveal data loss faults. Indeed, a number of automatic test case

generation techniques are available for Android apps. For instance,

Monkey can generate test cases randomly [12], A
3
E can generate

tests systematically using a depth-first strategy [3], DroidBot [19]

and Stoat [31] exploit a model-based approach, and Sapienz uses

evolutionary algorithms [20]. While these approaches are able to

reveal several interesting faults, they are ineffective against data
loss problems for two reasons: (i) they do not include operations

that cause stop-start events, and (ii) they are not equipped with

oracles strong enough to detect non-crashing data loss failures.

Some techniques have been designed to extend the fault dis-

covery capability of existing test suites to data loss problems. For

instance, Thor systematically injects neutral event sequences, in-

cluding stop-start events, into existing test cases to augment their

failure detection capability [1]. Quantum behaves similarly but it

starts from a GUI model of the app [33]. Although useful, their

applicability is limited to apps equipped with comprehensive test

suites or GUI models. ALARic randomly generates test cases that

include stop-start events and detects data loss problems by com-

paring the state of the app under test before and after a stop-start

event is generated [24]. ALARic can successfully reveal data loss

faults, but the adopted exploration strategy and oracles have limited

effectiveness, as reported in our evaluation.

In this paper, we present Data Loss Detector (DLD), an automatic

testing technique that can reveal data loss problems in Android

apps. DLD integrates three capabilities to effectively reveal data loss

problems: (i) a biased model-based exploration strategy that steers

the exploration towards (new) app states that may be affected by

data loss problems, (ii) data-loss-revealing actions that increase the
likelihood to expose data loss problems, and (iii) two state-based

oracles, a snapshot-based oracle and a property-based oracle, that

have a high data loss detection accuracy, especially if used jointly.

Compared to Thor [1] and Quantum [33], DLD does not require a

pre-existing test suite or a pre-existing GUI model, neither requires

an initial ripping phase, but iteratively and continuously generates

test cases according to the allocated time budget. Finally, the bi-

ased model-based exploration and the data-loss-revealing actions

exploited in DLD allow a more effective data loss detection than

the strategy implemented in Alaric [24].

We empirically evaluated DLD using the benchmark by Riganelli

et al. [26], which includes 110 data loss problems affecting 54 app

releases. DLD automatically detected 83 of the 110 (75%) data loss

problems. DLD also revealed 35 data loss faults that were not part

of the benchmark, but were reported online in bug reports, and 232

previously unknown data loss faults. Overall DLD revealed three

times the data loss faults revealed by competing approaches. We

finally submitted the data loss faults that still affect apps nowadays

online to app developers who positively reacted to our bug reports.

In a nutshell, this paper makes the following contributions.

• It describes an exploration strategy, data-loss-revealing actions,

and two state-based oracles that can be incorporated in testing

techniques to reveal data loss problems,

• It delivers the Data Loss Detector (DLD) technique, which is

implemented as an extension of the DroidBot [19] test case gen-

eration tool for Android,

• It reports the largest empirical evaluation about data loss detec-

tion available so far, considering hundreds of data loss faults,

• It delivers the tool and the experimental material freely available

online at the following url: https://bit.ly/30XLygW

This paper is organized as follows. Section 2 discusses data loss

faults and exemplifies typical failures that can be experienced with

Android apps. Section 3 describes the main technical contributions

of this paper, including the biased model-based exploration strategy,

the data-loss-revealing actions, and the automatic oracles. Section 4

reports empirical results. Section 5 discusses related work. Finally,

Section 6 provides final remarks.

2 DATA LOSS FAULTS

In this section we describe data loss faults and the Android compo-

nents that can be affected by these faults: activities and fragments.

An Android activity is a component that implements a screen of

an app and the logic to handle that screen. To partition a screen into

smaller units, activities can contain a number of fragments, each one
containing both some graphical elements and the logic to handle

them. Both activities and fragments have their own lifecycle [9, 13].

Specific sequences of system events may have a direct impact

on the lifecycle of activities and fragments.

Definition 2.1. A stop-start event is a sequence of system events

that may cause a running activity (or fragment) to be destroyed

and then recreated
1
.

Stop-start events are generated when the execution of an activity

must be temporarily suspended. There are many common situations

that produce stop-start events. For instance, answering a phone

call requires suspending the execution of the app, and thus also

of the current activity, until the call ends. Moving an app to the

background may cause its activities to be destroyed. When the

app is moved again to the foreground, the status of the foreground

activity has to be recreated. The rotation of the screen finally causes

the destruction of the current activity that must be redrawn with a

new layout.

Note that all these situations are neutral from the user’s per-

spective, that is, they are not expected to change the status of the

app: users expect to find the status of an app unchanged after they

have answered a phone call, after the app has been moved to the

background and then to the foreground, and after the screen has

1
In the rest of the paper we refer only to activities for simplicity, but all the concepts

apply to both activities and fragments.

https://bit.ly/30XLygW
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(a) Application crash in Easy xkcd v6.0.4 (b) Disappearance of a Dialog in Diary v1.26

(c) Appearance of a Dialog in CycleStreets v3.5 (d) Change of EditText values in BeeCount v2.7.4

(e) Loss of the internal state in Taskbar v3.0.3

Figure 1: Examples of data loss failures after a stop-start event.

been rotated. However, this behavior is not provided for free by

Android, but it must be guaranteed by developers who have to

implement the logic to save and retrieve the status of the activities.

If this piece of logic is not implemented correctly, stop-start events

are no longer neutral and state information might be lost, causing

a data loss problem.

Definition 2.2. A data loss problem occurs when data is acciden-

tally deleted or state variables are accidentally assigned with default

or initial values.

Data loss faults can be the source of diverse failures [18]. Indeed,

the initialization of some program variables with wrong values (e.g.,

to the default value) can be the cause of unpredictable behaviors.

Based on our evaluation, we isolated five main failure patterns

which are exemplified in Figure 1:

• crashes: the app may simply crash. This is exemplified in Figure 1

(a) where the Easy xkcd app crashes after a rotation of the screen.

• destroyed GUI elements: some graphical elements may disappear

forcing the user to repeat operations. This is exemplified in Fig-

ure 1 (b) where the calendar dialog in the Diary app disappears

after a rotation of the screen.
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• phantom GUI elements: some graphical elements may erroneously

appear, forcing the user to perform unwanted and unclear inter-

actions. This is exemplified in Figure 1 (c) where a dialog appears

in the CycleStreets app after a rotation of the screen.

• modified values: some elements may unexpectedly change their

values, resulting in misbehaviors of the app. This is exemplified

in Figure 1 (d) where multiple text fields change to 0 in the

BeeCount app after a rotation of the screen.

• compromised internal state: the internal state of the app might

be compromised causing visible misbehaviors in the interactions

that follow the activation of the data loss. This is exemplified

in Figure 1 (e). The initial rotations of the screen compromise

the status of the Taskbar app without producing any visibile

misbehavior, until the last rotation causes a crash.

3 DATA LOSS DETECTOR

Data Loss Detector addresses data loss faults combining three key

ingredients: (i) a biased model-based exploration strategy, which

increases the likelihood to explore states that may expose data loss

faults; (ii) data-loss-revealing actions, which interact with the app

under test stimulating behaviors that are prone to data loss, and

(iii) data loss oracles, which analyze the behavior of the app under

test to detect data loss failures.

3.1 Biased Model-Based Exploration

The test case generation strategy implemented in DLD consists

in visiting as many states as possible and incrementally testing

the newly discovered states to detect data loss faults. To this end,

the strategy builds a GUI model that represents the visited states

and the executed actions. The model serves two main purposes:

to distinguish the already visited (and tested) states from the new

ones, and to bias the exploration towards the execution of actions

that may potentially lead to states never visited before.

Definition 3.1. A GUI model is a non-deterministic finite state

automaton (𝑄 , Σ, 𝑞0, 𝛿), where 𝑄 is a finite set of abstract states; Σ
is the finite set of events that can be triggered from such abstract

states, such as clicks, swipes, or stop-start events; 𝑞0 ∈ 𝑄 is the

initial abstract state; 𝛿 : 𝑄 × Σ → ℘(𝑄) is the transition function,
which, given 𝑞 ∈ 𝑄 and 𝑒 ∈ Σ, returns the set of abstract states
reachable from 𝑞 by executing 𝑒 .

To effectively test an app, it is important to represent states at an

appropriate abstraction level. A too abstract representation would

collapse many concrete states into a single abstract state causing

several relevant states not being tested for data loss. A too concrete

representation would cause an enormous waste of time, testing for

data loss states with irrelevant differences. The abstraction level

used by DLD derives from the following two observations.

• Concrete values do not matter : a GUI state representation might

include all the widgets with their properties and values. As a

consequence, two concrete states that differ for a single value

assigned to a label or to an input field would produce different

abstract states that would be tested for data loss. This is a waste

of resources, because as long as some values are assigned to the

various GUI elements, the data loss is likely to show up regardless

of the concrete values assigned to these elements.

• Totally ignoring the content of screens is too inaccurate: a GUI state
representation might be so abstract to only consider the name

of the current Android activity as identifier of the abstract state,

that is, the number of abstract states matches with the number of

Android activities implemented in the tested app. This strategy

totally ignores the content of the screens and is likely to miss

all those data loss faults that can be exercised only in a specific

state of an activity.

Based on these two observations, DLD uses an abstraction that

ignores the concrete values, but still discriminates the relevant

distinct states associated with a same Android activity. To this

end, it uses the enabledeness abstraction, which has already been

used in other contexts to distinguish the states of software appli-

cations [7, 8], and preliminary experienced in Quantum to reveal

GUI interaction faults [33]. In this case, the idea is to distinguish

states not based on the content of the screen, but based on the

set of actions (i.e., events) that are allowed. Intuitively, it is worth

distinguishing states that enable a different set of behaviors for

the software. For instance, two different values in an input field

produce two different abstract states only if one of the two values

enables operations that are otherwise disabled.

Definition 3.2. An abstract state 𝑞 ∈ 𝑄 associated with a concrete

state 𝑠 is a pair (𝑎, 𝐸), where 𝑎 is the name of the current activity

in 𝑠 and 𝐸 ⊆ Σ is the set of events enabled in 𝑠 .

The test case generation strategy is biased towards the execution

of new actions that may lead to new (abstract) states potentially

affected by data loss. In particular, every time an action is executed,

DLD has a probability 𝜖 to choose an event at random, and a proba-

bility 1 − 𝜖 to choose an event that has never been executed in the

current abstract state based on the available GUI model.

DLD can generate five types of actions during the exploration

(four actions inherited from DroidBot plus a scroll action added to

reach every view in awindow), in addition to the data-loss-revealing

actions described in next section:

• TouchEvent, which executes a tap on an clickable view;

• LongTouchEvent, which executes a long tap on a clickable view;

• SetTextEvent, which writes text inside an editable view;

• KeyEvent, which presses a navigation button (e.g. “Home”).

• ScrollEvent, which executes a swipe on a scrollable view;

DLD incrementally updates the GUI model after the execution

of every event. The testing activity stops after a budget that can be

expressed as a number of actions to be performed or as an amount

of time to be allocated for testing.

3.2 Data-Loss-Revealing Actions

The exploration activity described in Section 3.1 is combined with

the execution of data-loss-revealing actions that have the objective

to reveal data loss problems, if present.

DLD includes two data-loss-revealing actions: one is executed

systematically every time a new abstract state is reached (systematic
data-loss-revealing action), while the other is executed probabilisti-
cally at every abstract state (probabilistic data-loss-revealing action).
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The systematic data-loss-revealing action is composed of the

following sequence of steps:

(1) fill-in: DLD interacts with all the input views (e.g., text field,

combo box, check box) entering non-empty values different

from the default values,

(2) save state: the current GUI state is saved to later check if any

data loss occurred. The way the state is saved depends on the

oracle strategy adopted (see Section 3.3),

(3) double screen rotation: the screen rotation is a stop-start event.

It is executed twice to reach a state that should be exactly the

same that was saved, if no data loss occurred,

(4) check state: the current GUI state is compared to the saved state

to determine if any data loss occurred. The way the comparison

is performed depends on the oracle strategy (see Section 3.3),

(5) scroll down: someAndroid activitiesmay include visual elements

that span over the size of the screen. To make sure the reached

abstract state is fully tested for data loss, including the elements

that might be outside the screen, if the check state step has not

revealed a data loss, DLD executes a scroll down action that

may make new elements appear. If this happens, a new abstract

state might be reached, which would be again systematically

tested for data loss.

The systematic data-loss-revealing action already guarantees an

accurate validation of the state space, as defined by our abstrac-

tion strategy. However, there might be certain data loss faults that

depend on internal state information that does not produce any

difference in the GUI state of the app. For instance, the window

for setting a timer in the AntennaPod app generates a data loss

only if a podcast has been loaded before from another window. The

fact that a podcast was loaded does not result in any visible differ-

ence in the timer window, and thus the abstraction strategy cannot

capture the difference between the state that exposes the data loss

fault and the one that does not. To address these cases, when an

already visited state is encountered, DLD enables the probabilistic

data-loss-revealing action that has the same probability of the other

actions to be selected. The probabilistic data-loss-revealing action

performs the sequence of events from step 2 to 4 of the systematic

data-loss-revealing action.

In a nutshell, the exploration works as follows. When a new

abstract state is encountered, DLD executes the systematic data-

loss-revealing action. Otherwise, DLD identifies the set of actions

𝐴 that can be executed on the current GUI state based on the five

types of supported actions (see Section 3.1). Namely a subset of

them,𝐴+
, has already been executed based on the GUI model, while

the others, 𝐴−
, have not been executed yet. DLD executes with

probability 𝜖 a random action, that is, an action in the set 𝐴 ∪
{probabilistic data-loss-revealing action}, and with probability 1−𝜖

an action that has not been executed yet, that is, an action in 𝐴− ∪
{probabilistic data-loss-revealing action}.

3.3 Data Loss Oracles

Data loss problems do not always cause crashes. On the contrary,

apps can present a range of misbehaviors as discussed in Section 2.

DLD uses oracles based on the fact that the operations that exercise

the data loss faults are expected to be neutral, thus leaving the

status of the app unchanged. As anticipated in Section 3.2, the basic

DLD strategy is to collect the GUI state of the app before and after

the execution of actions that may have triggered a data loss failure

and compare the states to detect it.

DLD defines two oracle strategies, which can be used either in-

dependently or jointly: the snapshot-based oracle and the property-

based oracle. The snapshot-based oracle takes a screenshot of the
app before and after a data loss might have occurred and compares

the images to detect failures. The property-based oracle analyzes
the GUI state and collects all the views and all their properties, and

compares these two sets of properties to detect failures. Figure 2

shows the state information captured by the snapshot-based and

the property-based oracles for a same GUI state of the OpenVPN

app. The former oracle stores a screenshot of the app, as shown

in Figure 2 (a), while the latter oracle stores the properties of the

views in Python dictionary format, as shown in Figure 2 (b).

(a) Snapshot-based oracle

[
...,

{
'content_description ': None,
'resource_id ': None,
'text ': 'Editing "test123"',
'visible ': True,
'checkable ': False,
'children ': [],
'size ': '720*81',
'checked ': False,
'temp_id ': 4,
'selected ': False,
'child_count ': 0,
...

},
...

]

(b) Property-based oracle

Figure 2: The information saved by the two types of oracles

for a same state of OpenVPN.

More rigorously, the two oracle strategies collect and compare

state information as follows.

Snapshot-based oracle

State Information: DLD first takes a screenshot of the device. The

recorded image is then converted into a grayscale image, which is

faster to compare than a colourful image. Finally, DLD crops the

header and the footer of the image because it contains information

that changes over time regardless of data loss, such as the current

time and the battery level. The resulting image is the retrieved

representation of the current state.

State Comparison: DLD compares the two states by comparing the

two corresponding images pixel by pixel. Since a blinking cursor

might cause a small level of noise in the representation of the images,

the comparison fails only if more than 15 pixels every 10,000 pixels

are different.

Property-based oracle

State Information: DLD retrieves all the views, including their prop-

erties and their hierarchical organization. The retrieved values are

represented in a Python dictionary format.
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State Comparison: DLD compares the two states by comparing their

Python-based representation. The comparison fails if one of the

attribute values is different or the hierarchical structure of the views

is not preserved.

Note that although the two strategies may seem redundant, they

are not, as confirmed by our experiments. In particular, there are

a number of data loss problems that can only be detected by one

strategy. For instance, Figure 3 shows the case of a data loss failure

that has been detected by the property-based oracle only. In fact, the

two snapshots of the MALP app are visually identical, but actually

the content descriptor has changed its value. On the other hand,

Figure 4 shows the case of a data loss failure that has only been

detected by the snapshot-based oracle. The set of properties, not

shown in the figure, are exactly the same for the two states, but the

app has lost the zoom, as clearly visible from the snapshots.

Interestingly, the two oracles can be combined, so that a failure

is reported if just one of the two oracle strategies reports a failure.

[
...,
{

'content_description ': 'Close
navigation drawer ',

...
},
...,

]

(a) Before double rotation

[
...,
{

'content_description ': 'Open
navigation drawer ',

...
},
...,

]

(b) After double rotation

Figure 3: A data loss failure detected by the property-based

oracle only in MALP 3d31062.

4 EVALUATION

This section presents the empirical results obtained by experiment-

ing DLD with a benchmark of 110 data loss faults, in comparison

to the ALARic [24] and Quantum [33] test case generation tech-

niques. We first describe our implementation of DLD, we then

introduce the research questions and the subject applications. We

finally present the results obtained for each research question in

details, and discuss threats to validity.

4.1 Implementation

We implemented DLD as an extension of DroidBot [19], which
is a state-of-the-art test case generator for Android that does not

(a) Before double rotation (b) After double rotation

Figure 4: A data loss failure detected by the snapshot-based

oracle only in Vespucci Osm Editor v10.2.

implement features for the detection of data loss faults. DLD inherits

from DroidBot the capability to perform a specific sequence of

actions before testing a target app. This feature can be used to setup

the initial state of the app under test. In our evaluation, we used this

capability to: authenticate into the apps that require a log in, setup

an initial project in MGit, and grant permissions inQuickLyric.

As outcome of the testing process, DLD generates both a report

with the revealed data loss faults and reproducible test cases. Each

data loss is described in terms of the screenshots and the set of GUI

properties collected before and after the data loss is observed. DLD

is available at https://bit.ly/30XLygW.

4.2 Research Questions

We evaluate DLD by studying the following five research questions.

• RQ0 - What is the 𝜖 that provides the best exploration? This re-

search question studies the impact of the 𝜖 parameter on the effec-

tiveness of the exploration. The result of this research question

is used to configure DLD to address the other research questions.

• RQ1 - How effective is DLD with data loss problems? This research
question investigates the effectiveness of DLD considering two

perspectives captured by the following sub-RQs.

– RQ1.1 - What is the data loss discovery capability of DLD?
– RQ1.2 - What is the rate of the spurious oracle violations reported
by DLD?

• RQ2 - Is DLD more effective than state-of-the-art techniques? This
research question is decomposed into the following sub-RQs.

– RQ2.1 - What is the relative effectiveness of DLD, ALARic, and
Quantum? This sub-RQ compares DLD to ALARic and Quan-

tum.

– RQ2.2 -What are themain factors that determine the effectiveness
of DLD? This sub-RQ investigates the factors that allow DLD

to reveal more data loss faults than competing techniques.

• RQ3 - What is the tradeoff between the snapshot- and property-
based oracles? This research question investigates the tradeoff

between the two oracle strategies, measuring the data loss faults

revealed by the snapshot-based oracle only, by the property-based

oracle only, and by both.

https://bit.ly/30XLygW
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• RQ4 - Are data loss faults relevant to developers? This research

question studies how app developers react to the presence of data

loss problems in their apps.

4.3 Subject Applications

In our empirical evaluation we used the benchmark by Riganelli et
al. [26], which includes 110 data loss problems affecting a total of 48

Android apps and 54 app releases. Each data loss fault is equipped

with an Appium test case [14] that can be executed to reproduce

the problem. All the experiments have been conducted with the

Genymotion v3.0.2 Android emulator using an emulated Google

Nexus 5 device equipped with Android 6.0 API 23 and 2 GB of RAM.

In the evaluation, we followed the practice of other studies [32]

performing three runs of 3 hours each per tested app for both DLD

and ALARic, for a total of 42 days of uninterrupted computation.

4.4 RQ0 - What is the 𝜖 that provides the best

exploration?

This research question investigates the impact of the 𝜖 parameter on

the effectiveness of the approach. To perform this initial study we

selected 3 apps from the benchmark. To cover the range of situations

that might be faced with the full benchmark, we selected the apps

with the smallest, medium, and highest number of activities, which

are Eqate (2 activities), Calendar Notification (13 activities),

and Twidere (52 activities), respectively.

To assess the capability to explore the app and potentially re-

veal data loss problems we measured activity coverage, which is

the percentage of activities covered in a test session. We started

with 𝜖 = 0, which consists of a strategy that always privileges the

execution of actions that have not been executed before, based on

the incrementally constructed GUI model. We then increased the 𝜖

parameter by 0.1 to study its impact on the results. We stopped with

𝜖 = 0.2, which produced a significant decrease on the effectiveness

of the exploration. Results are summarized in Table 1. We finally

selected 𝜖 = 0.1 to address the other research questions.

Table 1: Impact of the 𝜖 parameter on activity coverage.

𝜖 Activity Coverage

𝜖 = 0 (always new actions) 52%

𝜖 = 0.1 (random actions with probability 0.1) 60%

𝜖 = 0.2 (random actions with probability 0.2) 44%

4.5 RQ1 - How effective is DLD with data loss

problems?

This research question investigates the capability of DLD to reveal

the data loss problems in the benchmark. To answer this research

question, we manually analyzed every report produced by DLD

to distinguish the actual data loss problems from the irrelevant

spurious violations. In particular, we classified a reported data loss

as spurious if one of the two following conditions holds: (i) the state

of the app after the double screen rotation is taken too early, while

the activity is still recreating, making the oracle to fail its check

or (ii) the difference reported by the oracle cannot be considered a

data loss (e.g., because the tested app shows the current time which

obviously changes after the screen has been rotated twice). In the

vast majority of the cases the reports were enough to classify data

loss problems. We reproduced the problem in the unclear cases. For

this research question, we detected data loss problems using both

the snapshot-based and the property-based oracles. We analyze

their relative fault detection ability with RQ3.

We checked each data loss problem revealed by DLD, distin-

guishing if it is a benchmark data loss, that is, a problem that is part

of the benchmark we used; an online data loss, that is, a problem
already reported online that is not part of the benchmark (for all

the apps in the benchmark we searched online for additional data

loss faults, and we used the snapshots, the activity name and the

fields reported to lose their values to determine if a discovered data

loss matches with the online data loss), or a new data loss, that is,
an unknown data loss problem (to the best of our ability to search

for reported problems). We refer to the union of the benchmark

and online data loss faults as the known data loss faults.
We report the number of activities affected by a data loss problem

found by DLD. They intuitively correspond to different faults and

different fixes to be implemented in different activities. The only

exception is with the known data loss faults. Since some of the data

loss faults in the benchmark affect the same activity, we actually

report the precise number of faults in the benchmark that have

been revealed. Finally, when only spurious violations are detected

for an activity, we report it as a spurious data loss.
Table 2 column DLD (left part of the table) shows the results that

DLD obtained for all the app releases considered in the study. Since

every row represents the outcome of three runs, when applicable,

we report both average values and total values. Column # Activi-
ties indicates the total number of activities in each app. Column

Activity Coverage avg (total) reports the activity coverage achieved

in average and in total in the three executions. Column Activities
with Data Loss indicates the number of activities affected by at least

a data loss revealed by DLD. Column Benchmark Data Loss avg
(total)/existing indicates the average and total number of data loss

faults that have been revealed by DLD out of the ones present in the

benchmark. For example in the BookCatalogue app, DLD revealed

5 data loss faults of the benchmark on average, achieved a total of

6 data loss faults revealed across the three runs, out of a total of 7

data loss faults present in the benchmark. Similarly, column Online
Data Loss avg (total)/existing indicates the average and total number

of data loss faults reported online revealed by DLD. Column New
Data Loss avg (total) indicates the average and total number of pre-

viously unknown data loss faults revealed. Column Spurious Data
Loss avg (total) indicates the average and total number of activities

that originated spurious violations only. Column Crashes reports
the total number of activities that crashed due to data loss faults.

The top part of the table lists the apps where no initial setup has

been necessary, while the bottom part of the table lists the apps

that have been addressed as discussed in Section 4.1.

4.5.1 RQ1.1 - What is the data loss discovery capability of DLD?. In
terms of exploration, DLD managed to visit 66% of the activities,

revealing 298 activities affected by data loss faults (41% of the total

number of activities). It detected 83 of the 110 faults in the bench-

mark (75%), 35 out of the 58 (60%) additional data loss faults that we

found online, and revealed 232 new data loss faults (an average of
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Table 2: Results for DLD, and comparison to ALARic.

DLD ALARic

App name Release # Activities

Activity Coverage

avg (total)

Activities with

Data Loss

Benchmark

Data Loss

avg (total)/existing

Online

Data Loss

avg (total)/existing

New

Data Loss

avg (total)

Spurious

Data Loss

avg (total)

Crashes

Activities with

Data Loss

Benchmark

Data Loss

avg (total)/existing

Online

Data Loss

avg (total)/existing

New

Data Loss

avg (total)

Spurious

Data Loss

avg (total)

Amaze File Manager v3.1.0-beta.1 4 100% (100%) 3 3 (3)/5 2 (2)/2 1(1) 0 (0) 1 1 1 (1)/5 0 (0)/2 0 (0) 0 (0)

AntennaPod v1.5.2.0 16 33% (44%) 5 5 (5)/7 2 (2)/11 3 (3) 1 (1) 1 1 0 (0)/7 1 (1)/11 0 (0) 0 (0)

BeeCount v2.4.7 8 96% (100%) 7 1 (1)/3 1 (1)/5 5 (5) 1 (1) 0 5 0 (0)/3 0 (0)/5 5 (5) 1 (1)

BookCatalogue v5.2.0-RC3a 35 66% (71%) 21 5 (6)/7 - 12 (15) 0 (0) 1 7 2 (2)/7 - 4 (5) 6 (7)

Calendar Notification v3.14.159 13 67% (69%) 8 3 (3)/3 1 (1)/1 4 (5) 0 (0) 1 2 1 (1)/3 0 (0)/1 1 (1) 0 (0)

CycleStreets v3.5 11 55% (55%) 6 1 (1)/1 - 5 (5) 0 (0) 0 1 1 (1)/1 - 0 (0) 0 (0)

Diary v1.26 3 100% (100%) 3 1 (2)/2 - 2 (2) 0 (0) 0 2 1 (1)/2 - 1 (1) 0 (0)

DNS66 v0.3.3 5 100% (100%) 3 1 (1)/1 - 2 (2) 0 (0) 0 1 0 (0)/1 - 1 (1) 2 (2)

Document Viewer v2.7.9 9 48% (56%) 2 1 (1)/1 - 2 (2) 1 (1) 0 1 1 (1)/1 - 0 (0) 4 (4)

Easy xkcd v6.0.4 9 74% (78%) 4 1 (1)/1 - 3 (3) 0 (0) 3 1 0 (0)/1 - 1 (1) 1 (1)

Equate v1.6 2 100% (100%) 2 2 (2)/2 1 (1)/1 1 (1) 0 (0) 1 1 2 (2)/2 1 (1)/1 0 (0) 0 (0)

Etar Calendar v1.0.10 12 42% (42%) 3 4 (4)/5 2 (3)/5 1 (1) 0 (0) 0 0 0 (0)/5 0 (0)/5 0 (0) 0 (0)

Firefox Focus v4.0 6 44% (50%) 3 0 (0)/1 - 3 (3) 0 (0) 0 2 0 (0)/1 - 2 (2) 0 (0)

Flym v1.3.4 6 83% (83%) 4 0 (0)/1 - 4 (4) 0 (0) 0 3 0 (0)/1 - 3 (3) 0 (0)

Gadgetbridge v0.25.1 20 28% (30%) 4 1 (1)/1 - 2 (3) 2 (2) 2 0 0 (0)/1 - 0 (0) 0 (0)

KISS Launcher v2.25.0 2 100% (100%) 1 1 (1)/1 - 0 (0) 1 (1) 0 1 0 (0)/1 - 1 (1) 0 (0)

Loop Habit Tracker v1.6.2 7 71% (71%) 4 2 (2)/6 - 1 (2) 1 (1) 0 2 0 (0)/6 - 2 (2) 2 (2)

MALP 3d31062 2 100% (100%) 1 1 (1)/1 - 0 (0) 0 (0) 1 0 0 (0)/1 - 0 (0) 0 (0)

MALP v1.1.0 4 33% (50%) 2 2 (3)/4 - 1 (1) 0 (0) 1 1 0 (0)/4 - 1 (1) 0 (0)

MTG Familiar v3.5.5 2 50% (50%) 1 1 (1)/1 - 0 (0) 0 (0) 0 1 0 (0)/1 - 1 (1) 0 (0)

Notepad v2.3 3 67% (67%) 2 1 (1)/1 - 1 (1) 0 (0) 0 1 1 (1)/1 - 0 (0) 0 (0)

Omni Notes v5.4.3 17 29% (35%) 4 0 (0)/1 - 4 (4) 0 (0) 0 1 0 (0)/1 - 1 (1) 1 (1)

OpenTasks v1.1.13 9 78% (78%) 7 1 (1)/1 - 6 (6) 0 (0) 0 3 0 (0)/1 - 3 (3) 1 (1)

OpenVPN for Android v0.7.5 13 46% (46%) 5 1 (1)/1 - 4 (4) 0 (0) 1 4 0 (0)/1 - 3 (4) 1 (1)

PassAndroid v3.3.3 14 36% (36%) 4 2 (3)/3 8 (8)/8 1 (1) 0 (0) 1 3 1 (1)/3 4 (4)/8 1 (1) 1 (1)

Periodic Table v1.1.1 3 100% (100%) 3 2 (2)/2 - 1 (1) 0 (0) 0 0 0 (0)/2 - 0 (0) 2 (2)

Port Knocker v1.0.8 6 50% (50%) 2 2 (2)/3 0 (0)/1 0 (0) 0 (0) 0 2 0 (0)/3 0 (0)/1 2 (2) 1 (1)

Prayer Times v3.6.6 22 32% (36%) 8 3 (6)/7 1 (1)/2 4 (5) 0 (0) 1 5 1 (1)/7 0 (0)/2 3 (4) 0 (0)

QuasselDroid v0.11.5 5 40% (40%) 2 1 (1)/1 - 1 (1) 0 (0) 1 0 0 (0)/1 - 0 (0) 1 (1)

Simple Draw v3.1.5 7 86% (86%) 3 0 (0)/1 - 3 (3) 0 (0) 0 0 0 (0)/1 - 0 (0) 1 (1)

Simple File Manager v2.6.0 8 88% (88%) 5 1 (1)/1 - 3 (4) 0 (0) 2 1 1 (1)/1 - 0 (0) 1 (1)

Simple File Manager v3.2.0 8 75% (75%) 5 1 (1)/1 - 3 (4) 0 (0) 1 1 1 (1)/1 - 0 (0) 0 (0)

Simple Gallery v1.50 11 48% (55%) 5 1 (2)/4 1 (1)/7 3 (3) 0 (0) 0 1 1 (1)/4 0 (0)/7 0 (0) 1 (1)

Simple Solitaire v2.0.1 7 93% (100%) 2 1 (1)/1 - 1 (1) 0 (0) 1 1 0 (0)/1 - 1 (1) 2 (2)

Simpletask v10.0.7 11 67% (73%) 7 1 (1)/1 - 6 (6) 0 (0) 1 4 1 (1)/1 - 3 (3) 0 (0)

Syncthing v0.9.5 9 93% (100%) 8 3 (4)/5 2 (2)/2 4 (5) 1 (1) 2 2 1 (1)/5 1 (1)/2 0 (0) 0 (0)

Taskbar v3.0.3 21 26% (29%) 3 2 (2)/2 12 (13)/13 2 (2) 1 (1) 1 1 1 (1)/2 1 (1)/13 0 (0) 0 (0)

Tasks Astrid To-Do List Clone v6.0.6 45 19% (27%) 10 0 (0)/1 - 7 (10) 1 (1) 2 1 0 (0)/1 - 1 (1) 0 (0)

Vespucci Osm Editor v10.2 19 42% (47%) 7 1 (1)/1 - 5 (6) 1 (1) 0 5 1 (1)/1 - 4 (4) 0 (0)

Vlille Checker v4.4.0 6 67% (67%) 3 1 (1)/1 - 2 (2) 0 (0) 0 1 0 (0)/1 - 1 (1) 0 (0)

WiFiAnalyzer 1.9.2 4 75% (75%) 3 3 (3)/3 - 1 (1) 0 (0) 0 0 0 (0)/3 - 0 (0) 0 (0)

World Clock & Weather v1.8.6 4 100% (100%) 4 0 (0)/1 - 4 (4) 0 (0) 0 1 0 (0)/1 - 1 (1) 1 (1)

TOTAL 428 65% (68%) 189 73/97 35/58 132 0.26 (11) 26 71 19/97 8/58 50 0.74 (31)

Apps tested after initial setup actions

Conversations v1.14.0 21 41% (57%) 6 0 (0)/1 - 5 (6) 0 (0) 1

Conversations v1.23.8 23 40% (57%) 10 1 (1)/1 - 6 (9) 0 (0) 0

K-9 Mail v5.010 28 41% (46%) 8 0 (0)/1 - 6 (8) 0 (0) 1

K-9 Mail v5.207 27 51% (63%) 7 1 (1)/1 - 5 (7) 0 (0) 1

K-9 Mail v5.401 29 54% (59%) 8 1 (1)/1 - 6 (7) 0 (0) 1

Mgit v1.5.0 10 97% (100%) 9 1 (1)/1 - 7 (8) 1 (1) 2

OctoDroid v4.0.3 44 56% (66%) 21 2 (2)/2 - 16 (19) 0 (0) 3

OctoDroid v4.2.0 46 44% (57%) 22 1 (1)/1 - 17 (21) 1 (2) 0

QuickLyric v2.1 4 75% (75%) 3 1 (1)/1 - 2 (2) 0 (0) 0

SMS Backup Plus v1.5.11-Beta18 7 14% (14%) 1 1 (1)/1 - 0 (0) 0 (0) 0

Tusky for Mastodon v1.0.3 12 78% (83%) 8 1 (1)/1 - 7 (7) 0 (0) 3

Twidere v3.7.3 52 14% (17%) 6 0 (0)/1 - 6 (6) 0 (0) 0

TOTAL (all apps) 731 62% (66%) 298 83/110 35/58 232 0.26 (14) 38

4.3 new data loss faults revealed per app). In total, DLD revealed 350

data loss problems in 54 app releases, demonstrating a significant

capability to detect data loss problems. Note that we started the

empirical investigation knowing that less than 110 activities were

affected by data loss problems and we ended up discovering 298

activities affected by data loss problems. Interestingly, the proba-

bilistic data-loss-revealing action contributed revealing data loss in

158 activities already reported by the systematic action and in 17

activities not reported by the systematic data-loss-revealing action.

We manually investigated the 50 cases of known data loss faults

that have not been revealed by DLD (27 cases in the benchmark

and 23 cases retrieved online). We isolated three main reasons why

data loss problems have been missed.

• Low probability sequences: revealing these data loss failures re-

quires the generation of an event sequence that has a low proba-

bility to be generated, due to the length of the sequence and/or

the large number of actions that can be generated at every step

of the testing process.

• Environment setup: the detection of these data loss problems

requires a specific set up of the environment. For instance, a data

loss affecting the Document Viewer app requires the presence

of a document to be revealed. These faults could be potentially

revealed with additional effort in the setup of the app under test.
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Figure 5: Percentage of spurious oracle violations returned

per app.

• Unsupported actions: these data loss failures are impossible to

reveal with DLD because they require the execution of operations

that are outside the scope of DLD. For instance, detecting one of

the data loss faults in the Tasks Astrid To-Do List Clone app

requires to temporarily exit from the app and take a picture with

the device camera, which cannot be done with DLD.

Overall, we found 41 data loss problems that simply have low

probability to be revealed, 4 data loss problems that require a proper

environment setup, and 5 data loss problems that require a more

extensive exploration ability to be revealed. Interestingly, several

faults might be potentially revealed by just executing DLD for a

longer time, or by refining the DLD exploration strategy, so that

specific combinations of actions are generated. However, generating

complex and long combinations of actions can be challenging.

Finally, only 38 out of 298 activities affected by data loss faults

produced crashes, which confirms the need of specific oracles to

deal with these problems.

4.5.2 RQ1.2 - What is the rate of the spurious oracle violations
reported by DLD?. DLD performed well in terms of spurious oracle

violations: it reported only 1 activity with spurious data loss only

every 4 tested apps, which indicates that DLD is precise and seldom

annoys testers with false alarms.

Figure 5 shows the percentage of spurious oracle violations re-

turned per app. The percentage ranges between a min of 0% and a

max of 24%, with a mean value of 10.4% and a median value of 2.7%.

Indeed, DLD produces a limited percentage of spurious violations

(less than 11% for 75% of the apps) that can be feasibly inspected by

engineers when analyzing the output produced by the technique.

The 5 outliers reported in Figure 5 correspond to apps with ele-

ments difficult to handle, such as timers and progress bars, that can

be the source of an abnormal number of spurious violations due

to spontaneous changes happening concurrently with the double

rotations. We discuss the source of these spurious violations in RQ3.

4.6 RQ2 - Is DLD more effective than

state-of-the-art techniques?

This research question compares DLD to both ALARic [24] and

Quantum [33]. ALARic represents the case of an alternative auto-
mated approach to reveal data loss faults, while Quantum represents

the case of an approach that can benefit from a manually generated
model to generate data loss-revealing test cases.

4.6.1 RQ2.1 - What is the relative effectiveness of DLD, ALARic,
andQuantum? The comparison to ALARic studies the effectiveness

of the test generation strategy defined in DLD, as described in

Section 3, to ALARic, which uses a random (non-biased) exploration

and a concrete states representation.

We executed ALARic three times for 3 hours each time, as done

for DLD, and reported the results in Table 2 (column ALARic). Note

that we excluded from the comparison the apps that have been

tested with DLD exploiting an ad-hoc setup, since it would lead to

an unfair comparison to ALARic, which does not implement this

feature. Table 2 shows with grey background the cases where a

technique outperforms the other.

DLD significantly outperformed ALARic in terms of data loss

discovery capability. In fact, ALARic revealed 71 activities affected

by data loss faults, while DLD revealed 189 faulty activities, releas-

ing a 2.7X factor of improvement. ALARic found 19 data loss faults

of the benchmark, 8 online data loss faults, and 50 new data loss

faults. While DLD revealed 73 of the data loss faults in the bench-

mark (3.8X improvement factor), 35 online data loss faults (4.4X

improvement factor), and 132 new data loss (2.6X improvement

factor). Overall, DLD revealed significantly more data loss faults
than ALARic.

DLD performed better than ALARic also in terms of spurious

data loss. In fact, DLD produced spurious data loss only for 11

activities, while ALARic produced spurious data loss for 31 of the

activities.

In summary, DLD has been significantly more effective than

ALARic with the studied apps.

Since Quantum is not publicly available, we could not compare

Quantum to DLD on our set of apps. We thus executed DLD for 3

hours on the same apps used in the evaluation of Quantum [33]

and compared the results. We limited the experiment to 4 of the 6

apps used to evaluate Quantum since for 2 apps it was impossible

to retrieve the same version used in the original study.

Since we do not know the manual effort that was necessary to

manually define the models used by Quantum, it is hard to setup a

fair comparison among the two approaches. However, the obtained

results can still offer useful insights about the relative effectiveness

of the two approaches.

Table 3: Comparison between Quantum and DLD.

Quantum DLD

App (Version) (with manual model) (automatic)

data spurious data spurious

loss violation loss violation

OpenSudoku (1.1.5) 3 2 5 1

Nexes Manager (2.1.8) 7 2 11 1

VuDroid (1.4) 2 0 2 0

K9Mail (4.317) 4 1 15 2

Table 3 shows the distinct data loss and spurious violations

reported by Quantum and DLD. Although DLD cannot benefit from

a manual model, its activity has been more effective in revealing

a number of data loss faults compared to Quantum. Of course, we
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do not know if the data loss faults revealed by DLD include all the

data loss faults revealed by Quantum. It might be the case that DLD

cannot reach some areas of the app under test that can be reached

with the manual model. However, the results suggest that DLD

is quite effective even compared to techniques exploiting manual

models.

4.6.2 RQ2.2-What are the main factors that determine the effective-
ness of DLD?. To investigate the reason of the difference in the

performance between DLD and ALARic, we studied the reason

why ALARic failed to reveal faults revealed by DLD. In particular,

we counted the number of faulty activities not reached by ALARic

and the number of faulty activities reached by ALARic without

revealing the data loss fault. This produced the following results:

• ALARic does not reach 52% of the faulty activities revealed by

DLD only, that is, approximatively half of the additional data loss

faults revealed by DLD are due to a better exploration strategy,

• ALARic reaches the faulty activity without revealing the data loss

for 48% of the faulty activities revealed by DLD only. In a nutshell,

the systematic fine-grained testing of the states implemented in

DLD is more effective than Alaric’s strategy,

• 12 of the faulty activities missed by Alaric require a snapshot-

based oracle to be revealed, but only 4 of them are reached by

ALARic.

4.7 RQ3 - What is the tradeoff between the

snapshot- and property-based oracles?

This research question investigates the complementarity between

the snapshot-based and the property-based oracles. We already

discussed in Section 3.3 the qualitative differences between these

two types of oracles, and reported examples of data loss faults that

could be detected by one type of oracle only. Here, we assess quan-

titatively the impact of each class of oracles, on both the revealed

data loss faults and the spurious oracle violations.

Figure 6 shows the percentage of data loss faults detected and

the number of spurious oracle violations produced by one-strategy

only, either snapshot-based or property-based, or both of them. In

the case of the spurious violations we have an additional category

that is the violations caused by slow activity recreation after screen

rotation, as anticipated in the Section discussing RQ1.

None of the two approaches have been able to reveal every data

loss problem. A large proportion of the failures (73.1%) have been

detected by both oracles, which implies that most of the data loss

faults cause both properties that lose their values and visible issues

on the app. However, there are yet 26.9% of the faults that require

a specific type of oracle to be revealed.

In terms of absolute failure discovery ability, both oracles have

been effective, with the property-based and snapshot-based oracles

revealing 90.9% and 82.3% of the failures, respectively.

A small number of the spurious oracle violations (5.3%) is caused

by a slow activity recreation, which causes the oracles to retrieve

incorrect state information. This percentage can be reduced or

eliminated by carefully tuning the timing of the oracles.

Interestingly, the property-based oracle is also more effective

in terms of spurious violations reported. In fact, only 0.1% of the

spurious violations are produced uniquely by the property-based

oracle, while 21.1% of the spurious violations are produced uniquely

by the snapshot-based oracle. The largest proportion of the spurious

violations (73.6%) are produced by both the strategies.

Although the snapshot-based oracle produces more spurious

violations than the property-based oracle, these violations seldom

cause correct activities to be reported to the tester (1 activity every 4

apps), thus it is relatively detrimental to use it in the testing process.

On the contrary, including it in the analysis increases the number

of revealed data loss faults by 9.2%, which is a non-trivial increase

of the failure discovery ability of DLD.

Data loss detected Spurious oracle violations
snapshot-based oracle9,2 snapshot-based oracle21,1 349
property-based oracle17,8 property-based oracle 0,1 1
both 73,1 both 73,6 1218

incomplete rotation 5,3 88
1656

9,2%

17,8%

73,1%

Data loss detected

21,1%
0,1%

73,6%

5,3%
Spurious oracles violations

snapshot-based oracle property-based oracle

both incomplete rotation

Figure 6: Percentage of detected data loss failures and spuri-

ous violations per oracle strategy.

4.8 RQ4 - Are data loss faults relevant to

developers?

Finally, we investigated if data loss faults are relevant to app devel-

opers. To this end, for each app in the benchmark, we identified and

downloaded the latest version of the same app. We executed again

DLD for 9 hours (three 3-hours runs) on each app and revealed

195 data loss faults that still affect these apps nowadays. We finally

submitted a bug report online for each revealed data loss.

Up to the time of the conference deadline, we received feedback

for 98 of the reports submitted online. Developers confirmed the

bugs for 88 reports (90% of the reports with a feedback). Only in 10

cases developers rejected the report advocating that the fault was a

framework fault, claiming the fault was not reproducible, or giving

no explanation. We can thus conclude that the revealed data loss

faults are significant to the developers.

In 33 of 88 cases developers claimed that the cost of fixing these

bugsmight be too high compared to their impact on the app. This de-

cision of course depends on the specific consequence of the data loss

and the complexity of the activity that is affected by the fault. This

also suggests that the definition of an automatic repair strategy [15]

that can address data loss faults could be extremely beneficial to

improve the cost-effectiveness of the bug fixing process.

4.9 Threats to Validity

The main internal threats to validity about our study is the manual

work done to identify the spurious violations among the data loss

faults reported in the evaluation. Distinguishing a genuine data
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loss from a spurious one is however quite simple, as also confirmed

by the bug reports submitted online to developers that have been

almost all accepted, with rejections due to faults that were consid-

ered outside the boundary of the tested app or behaviors that could

be considered acceptable although not ideal.

The main external threats to validity concerns with the gener-

alization of the results. The significant number of faults and apps

considered mitigates this threat. The fact that we repeated the eval-

uation with the most recent versions of the apps revealing again

many data loss faults is a further mitigation factor.

Concerning the comparison between DLD and ALARic, the con-

sistency of the results across every app that has been tested is a

strong factor in favour of the generality of the results. The results of

the comparison between DLD and Quantum cannot be generalized

due to the limited size and the setup of the experiment, however

they still provide useful insights about the effectiveness of DLD.

5 RELATEDWORK

Several techniques covering a wide range of approaches are avail-

able to generate test cases for Android apps. For instance, Monkey

generates test inputs fully randomly without interpreting the GUI

of the app under test [12]. A
3
E systematically generates test inputs

following a depth-first strategy [3]. DroidBot [19] and Stoat [31]

build a state-based model of the system under test and generate

test cases exploiting information about the events already tested in

the visited states. Sapienz uses evolutionary algorithms to generate

test cases [20]. While these approaches revealed several interesting

faults in both open source [6] and industrial applications [32], they

are ineffective against data loss problems (and also against most

non-crashing failures [33]). In fact, they neither include operations

that cause stop-start events nor they are equipped with oracles that

can detect non-crashing data loss failures, which account for the

majority of the failures as reported in our evaluation.

Thor [1] can augment existing test suites with neutral sequences

of operations to reveal additional failures. The injected sequences

concern with the audio service, the connectivity, and the lifecycle

of the activities, which may reveal data loss faults. Similarly, when

a user-generated model of the app under test is available, Quan-

tum [33] can generate tests that may reveal data loss, as reported in

a small-scale evaluation. Differently from these approaches, DLD

directly generates the test cases and requires neither an initial test

suite nor a model of the app under test, retaining a high effective-

ness as demonstrated in the comparison to ALARic and Quantum.

CrashScope [22] and AppDoctor [17] can generate tests that

may reveal data loss problems, but their effectiveness is limited to

crashing faults, which represent the minority of the cases.

ALARic [2] is a mostly random test case generation technique

that similarly to DLD exploits double screen rotations to reveal data

loss faults. However, the biased exploration strategy, the enablede-

ness state abstraction, and the ad-hoc data-loss-revealing actions

used by DLD outperformed ALARic in our evaluation.

When the source code of the app is available, a static analysis

technique such as KREfinder [28] can be used to reveal data loss

problems. However, as most static analysis techniques, KREfinder

suffers scalability issues and is likely to report many spurious vio-

lations. On the contrary, the effectiveness of DLD does not depend

on the complexity and size of the source code and seldom reports

spurious data loss.

The oracle strategies presented in this paper relate to the work

on metamorphic testing [27]. Metamorphic testing exploits meta-

morphic relations, which are relations on multiple executions of the

software, to check the correctness of the observed behavior. The

neutral sequences of operations that DLD uses to reveal data loss

problems can be seen as a specific class of metamorphic relations

that relate executions with and without these sequences.

Relations between executions, like the ones used in this paper to

reveal data loss problems, have been also used to heal executions, for

instance to produce automatic workarounds [5]. Although neutral

sequences of events can be potentially used to obtain workarounds,

the ones used in this paper can be hardly used to heal executions

since they are often the cause of faults, as reported in the evaluation.

Finally, faults in Android apps, including data loss faults, could

be addressed with healing techniques. However, not many heal-

ing approaches can work in the Android environment. Azim et al.
defined a technique that can disable functionalities that are not

working properly [4]. While this approach might be exploited to

prevent data loss failures, it also reduces the set of functionalities

available to users. DataLossHealer is a healing solution designed to

mitigate the impact of data loss faults in the field [25]. Although it

might prevent some data loss faults, it has various drawbacks. For

instance, it introduces overhead to save and restore data in presence

of data loss faults, it can address only some data loss, and it requires

rooting the device. DLD delivers a more effective solution revealing

data loss faults upfront before the app is released.

6 CONCLUSIONS

Android apps must be designed to deal with stop-start events, which

are external events that may interrupt the execution of the running

activity. When one of these events is generated, the foreground

Android activity might be destroyed and later recreated. To avoid

losing useful data during this process, apps must explicitly im-

plement the logic necessary to save the data, when the activity is

destroyed, and restore the saved data, when the activity is recreated.

Unfortunately, this logic is often faulty [1, 2, 24, 26].

This paper presents Data Loss Detector (DLD), an automatic

test case generation technique designed to reveal data loss faults.

DLD exploits an exploration strategy biased towards the discovery

of new app states, data-loss-revealing actions, and two dedicated

oracle-based strategies to automatically reveal data loss problems.

In our evaluation with 110 data loss faults affecting 54 app re-

leases, DLD outperformed ALARic [24] and performed well in com-

parison to Quantum when instructed with a manual model of the

app under test. Overall, DLD revealed 298 activities affected by

data loss faults, which is a clear indicator of the effectiveness of the

approach and pervasiveness of the problem.

We are now working on the definition of automatic program

repair solutions for data loss faults.
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