
How Effective are Smart Contract Analysis
Tools? Evaluating Smart Contract Static

Analysis Tools Using Bug Injection
Asem Ghaleb

aghaleb@alumni.ubc.ca

University of British Columbia

Vancouver, Canada

Karthik Pattabiraman

karthikp@ece.ubc.ca

University of British Columbia

Vancouver, Canada

ABSTRACT
Security attacks targeting smart contracts have been on the rise,

which have led to financial loss and erosion of trust. Therefore,

it is important to enable developers to discover security vulnera-

bilities in smart contracts before deployment. A number of static

analysis tools have been developed for finding security bugs in

smart contracts. However, despite the numerous bug-finding tools,

there is no systematic approach to evaluate the proposed tools

and gauge their effectiveness. This paper proposes SolidiFI, an au-

tomated and systematic approach for evaluating smart contracts’

static analysis tools. SolidiFI is based on injecting bugs (i.e., code

defects) into all potential locations in a smart contract to introduce

targeted security vulnerabilities. SolidiFI then checks the generated

buggy contract using the static analysis tools, and identifies the

bugs that the tools are unable to detect (false-negatives) along with

identifying the bugs reported as false-positives. SolidiFI is used to

evaluate six widely-used static analysis tools, namely, Oyente, Secu-

rify, Mythril, SmartCheck, Manticore and Slither, using a set of 50

contracts injected by 9369 distinct bugs. It finds several instances

of bugs that are not detected by the evaluated tools despite their

claims of being able to detect such bugs, and all the tools report

many false positives.

CCS CONCEPTS
• Security and privacy→ Software and application security;

KEYWORDS
Ethereum, Ethereum security, solidity code analysis, smart con-

tracts, smart contracts security, smart contracts analysis, smart

contracts dataset, static analysis tools evaluation, bug injection,

fault injection

ACM Reference Format:
Asem Ghaleb and Karthik Pattabiraman. 2020. How Effective are Smart

Contract Analysis Tools? Evaluating Smart Contract Static Analysis Tools

Using Bug Injection. In Proceedings of the 29th ACM SIGSOFT International
Symposium on Software Testing and Analysis (ISSTA ’20), July 18–22, 2020,

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than ACM

must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,

to post on servers or to redistribute to lists, requires prior specific permission and/or a

fee. Request permissions from permissions@acm.org.

ISSTA ’20, July 18–22, 2020, Los Angeles/Virtual, CA, USA
© 2020 Association for Computing Machinery.

ACM ISBN 978-1-4503-8008-9/20/07. . . $15.00

https://doi.org/10.1145/3395363.3397385

Los Angeles/Virtual, CA, USA. ACM, New York, NY, USA, 13 pages. https:

//doi.org/10.1145/3395363.3397385

1 INTRODUCTION
The past few years have witnessed a dramatic rise in the popularity

of smart contracts [Clack et al. 2016]. Smart contracts are small

programs written into blocks running on top of a blockchain that

can receive and execute transactions autonomously without trusted

third parties [Grishchenko et al. 2018]. Ethereum [Buterin 2014] is

the most popular framework for executing smart contracts.

Like all software, smart contracts may contain bugs. Unfortu-

nately, bugs in smart contracts can be exploited by malicious attack-

ers for financial gains. In addition, transactions on Ethereum are

immutable and cannot be reverted, so losses cannot be recovered.

Further, it is difficult to update a smart contract after its deployment.

Consequently, there have been many bugs in smart contracts that

have been maliciously exploited in the recent past [dao 2016; par

2017; Mathieu and Mathee 2017]. Therefore, there is a compelling

need to analyze smart contracts to detect and fix security bugs.

Several approaches and tools have been developed that statically

find security bugs in smart contracts [Feist et al. 2019; Luu et al. 2016;

Mueller 2018; Tikhomirov et al. 2018; Tsankov et al. 2018]. However,

despite the prevalence of these static analysis tools, security bugs

abound in smart contracts [Perez and Livshits 2019]. This calls into

question the efficacy of these tools and their associated techniques.

Unfortunately, many of the static analysis tools have been evaluated

either only by their developers on custom data-sets and inputs, often

in an ad-hoc manner, or on data-sets of contracts with a limited

number of bugs (112 bugs [Durieux et al. 2019] and 10 bugs [Parizi

et al. 2018]). To the best of our knowledge, there is no systematic
method to evaluate static analysis tools for smart contracts regarding
their effectiveness in finding security bugs.

Typically, static analysis tools can have both false-positives and

false-negatives. While false positives are important, false negatives

in smart contracts can lead to critical consequences, as exploiting

bugs in contracts usually leads to loss of ether (money). Also, em-

pirical studies of software defects in the field have found that many

of the defects can be detected by static analysis tools in theory, but

are not detected due to limitations of the tools [Thung et al. 2012].

In our work, we focus mostly on the undetected bugs (i.e., false

negatives), though we also study false-positives of the tools.

We perform bug injection to evaluate the false-negatives of smart

contract static analysis tools. Bug injection as a testing approach

has been extensively explored in the domain of traditional programs

[Bonett et al. 2018; Dolan-Gavitt et al. 2016; Pewny and Holz 2016];

ar
X

iv
:2

00
5.

11
61

3v
1

 [
cs

.S
E

]
 2

3
M

ay
 2

02
0

https://www.acm.org/publications/policies/artifact-review-badging
https://doi.org/10.1145/3395363.3397385
https://doi.org/10.1145/3395363.3397385
https://doi.org/10.1145/3395363.3397385

ISSTA ’20, July 18–22, 2020, Los Angeles/Virtual, CA, USA Asem Ghaleb and Karthik Pattabiraman

however, there have been few papers on bug injection in the context

of smart contracts. This problem is challenging for two reasons.

First, smart contracts on Ethereum are written using the Solidity

language, which differs from conventional programming languages

typically targeted by mutation testing tools [Dannen 2017]. Second,

because our goal is to inject security bugs, the bugs injected should

lead to exploitable vulnerabilities.

This paper proposes SolidiFI1, a methodology for systematic eval-

uation of smart contracts’ static analysis tools to discover potential

flaws in the tools that lead to undetected security bugs. SolidiFI
injects bugs formulated as code snippets into all possible locations
into a smart contract’s source code written in Solidity. The code

snippets are vulnerable to specific security vulnerabilities that can

be exploited by an attacker. The resulting buggy smart contracts

are then analyzed using the static analysis tools being evaluated,

and the results are inspected for those injected bugs that are not

detected by each tool - these are the false-negatives of the tool.

Because our methodology is agnostic of the tool being evaluated, it

can be applied to any static analysis tool that works on Solidity.

We make the following contributions in this paper.

• Design a systematic approach for evaluating false-negatives

and false-positives of smart contracts’ static analysis tools.

• Implement our approach as an automated tool, SolidiFI, to
inject security bugs into smart contracts written in Solidity.

• Use SolidiFI to evaluate six static analysis tools of Ethereum

smart contracts for false-negatives and false-positives.

• Provide an analysis of the undetected security bugs and

false-positives for the 6 tools, and the reasons behind them.

The results of using SolidiFI on 50 contracts show that all of

the evaluated tools had significant false-negatives ranging from

129 to 4137 undetected bugs across 7 different bug types despite

their claims of being able to detect such bugs, as well as many

false positives. Further, many of the undetected bugs were found

to be exploitable when the contract is executed on the blockchain.

Finally, we find that SolidiFI takes less than 1 minute to inject bugs

into a smart contract (on average). Our results can be used by

tool developers to enhance the evaluated tools, and by researchers

proposing new bug-finding tools for smart contracts.

2 BACKGROUND
2.1 Smart Contracts
As mentioned earlier, smart contracts are written in a high-level

language such as Solidity. They are compiled to Ethereum Vir-

tual Machine (EVM) bytecode that is deployed and stored in the

blockchain accounts. Smart contract transactions are executed by

miners, which are a network of mutually untrusted nodes, and

governed by the consensus protocol of the blockchain. Miners re-

ceive execution fees, called gas, for running the transactions which

are paid by the users who submit the execution requests. We illus-

trate smart contracts through a running example shown in Figure 1

(adapted from prior work [Atzei et al. 2017]).

This contract implements a public game that enables users to

play a game and submit their guesses or solutions for the game

along with some amount of money. The money will be transferred

1SolidiFI stands for Solidity Fault Injector, pronounced as Solidify.

1 pragma solidity >=0.4.21 <0.6.0;

2 contract EGame{

3 address payable private winner;

4 uint startTime;

5

6 constructor () public{
7 winner = msg.sender;
8 startTime = block.timestamp ;}
9

10 function play(bytes32 guess) public {

11 if(keccak256(abi.encode(guess)) == keccak256(abi.
encode('solution '))){

12 if (startTime + (5 * 1 days) == block.timestamp
){

13 winner = msg.sender ;}}}
14

15 function getReward () payable public{
16 winner.transfer(msg.value);}
17 }

Figure 1: Simple contract written in Solidity.

to the account of the last winner if the guess is wrong; otherwise the

user will be set as the current winner and will receive the money

from users who play later. The constructor() at line 6 runs only

once when the contract is created, and it sets the initial winner to

the owner of the contract defined by the user who submitted the

create transaction of the contract (msg.sender). It also initializes

the startTime variable to the current timestamp during the contract

creation. The function play at line 10 is called by the user who

wants to submit his/her guess, and it compares the received guess

with the true guess value. If the comparison is successful, it sets the

winner to the address of the user account who called this function,

provided the guess was submitted within 5 days of creating the

contract. Finally, the function getReward sends the amount of ether
specified in the call to getReward (msg.value), to the last winner.

2.2 Static Analysis Tools
We consider six static analysis tools for finding bugs in smart con-

tracts in this paper, Oyente, Securify, Mythril, Smartcheck, Man-

ticore, and Slither. They all operate on smart contracts written in

Solidity, and are freely available. Further, they are all automated

and require no annotations from the programmer. We selected

Oyente [Luu et al. 2016], Securify [Tsankov et al. 2018], Mythril

[Mueller 2018], and Manticore [Mossberg et al. 2019] as they were

used in many smart contract analysis studies [Brent et al. 2018;

Parizi et al. 2018; Perez and Livshits 2019; Tsankov et al. 2018]. We

included Smartcheck [Tikhomirov et al. 2018] as it uses a pattern

matching approach rather than symbolic execution employed by

the previous four tools. Similarly Slither [Feist et al. 2019] is another

non-symbolic-execution based tool, but unlike SmartCheck, it uses

Static Single Assignment (SSA) for analysis.

3 MOTIVATION AND CHALLENGES
This section first presents motivating examples of undetected secu-

rity bugs by static analysis tools, followed by an overview of the

challenges in the evaluation of the tools.

How Effective are Smart Contract Analysis Tools? Evaluating Smart Contract Static Analysis Tools Using Bug InjectionISSTA ’20, July 18–22, 2020, Los Angeles/Virtual, CA, USA

11 uint _vtime = block.timestamp;
12 if (startTime + (5 * 1 days) == _vtime){

Figure 2: Modification made to the contract in Figure 1

3.1 Motivating examples
The contract example in Figure 1 has at least 2 vulnerabilities,

(1) two instances of timestamp dependency bug at lines 8 and 12,

and (2) one instance of transaction ordering dependence (TOD)

represented by the transactions at lines 13 and 16. The timestamp

dependency bug is that the block’s timestamp should not be used

in the transaction, while the TOD bug is that the state of the smart

contract should not be relied upon by the developer (Section 7).

We have used four of the static analysis tools in Section 2 (sup-

posed to detect these bugs) to check this contract for bugs, Oyente,

Securify, Mythril, and SmartCheck. According to the tools’ re-

search papers [Luu et al. 2016; Mueller 2018; Tikhomirov et al.

2018; Tsankov et al. 2018], Oyente, Mythril and SmartCheck should

detect the timestamp dependency bug. However, we found that

while Oyente and Mythrill were not able to detect both instances of

timestamp dependency bug in lines 8 and 12, Smartcheck detected

only the instance in line 12. For the second instance, Smartcheck

gave a hint that block.timestamp should be “used only in equalities”.

To further test SmartCheck’s ability to detect the bug, we made a

small modification to the syntax of the smart contract while keep-

ing its semantics the same (Figure 2). SmartCheck subsequently

failed to detect the bug altogether.

Regarding the TOD bug, both Oyente and Securify are supposed

to detect this class of bugs. However, we found that only Securify

detected this bug successfully while Oyente was not able to detect it.

We extracted the code snippet representing TOD from this contract

(lines 10 to 16), injected it in another larger contract free of bugs,

and obtained similar results.

These examples motivated us to prepare multiple code snippets

for the different bugs (within the scope of the tools) and to manually

inject them into the code of 5 smart contracts (the first 5 contracts

in the set of contracts in Section 7). We then used the tools to check

the buggy contracts, and found several instances of undetected bugs

even though the tools were supposed to detect them. However, it

was tedious and error-prone to manually inject these bugs and

inspect the results, and so we decided to automate this process.

3.2 Automated bug injection challenges
The simplest way to inject bugs into smart contracts is to inject

them at random locations - this is how traditional fault injection

(i.e., mutation testing) works. However, random injection is not a

cost-effective approach as we have to follow specific guidelines for

the injected bug to be exploitable. We identify two main challenges.

3.2.1 Bug injection locations. As the underlying techniques used
by some tools (e.g., symbolic execution) depends on the control and

data flow in the analyzed contracts, injecting an instance of each

bug at a single location would not be sufficient. Therefore, bugs

should be injected into all potential locations in the contract code.

On the other hand, the process of identifying the potential locations

depends on the code of the original contract, and also on the type

and nature of each bug. Injecting bugs at the wrong locations would

result in compilation errors. In addition, it might yield instances of

dead code in the contract. For example, injecting a bug formulated

as a stand-alone function inside the body of another function would

result in a compilation error, as Solidity does not support nested

functions. Moreover, a bug injected into an ’if’ statement condition

that would make the condition always fail, would make the ’then’

clause unreachable.

3.2.2 Semantics dependency. For the injected bug to be an active

bug that can be exploited by an attacker, it has to be aligned with

the semantics of the original contract. For example, assume that we

want to inject a Denial of Service (DoS) bug by calling an external

contract. We can use an if-statement with a condition containing

a call to another contract function. However, for this bug to be

executed, we also need to define the appropriate external contract.

SolidiFI addresses the first challenge by parsing the Solidity lan-

guage into an Abstract Syntax Tree (AST) and injecting bugs into

all syntactically valid locations. It addresses the second challenge

by formulating exploitable code snippets for each bug type.

4 SOLIDIFI APPROACH ANDWORKFLOW
Themain goal of SolidiFI is to perform systematic evaluation of static
analysis tools used to check smart contracts for known security

bugs. Figure 3 shows the workflow of SolidiFI. The code snippets
representing a specific security bug are injected in each smart

contract’s source code at all possible locations (step 1). The selection
of the injection locations is a function of the bug to be injected.

SolidiFI injects bugs into the source code to imitate the introduction
of bugs by developers. However, its use is not restricted to tools that
perform analysis at the source code level. For example, tools that work
on the EVM bytecode would compile the buggy contracts to produce
the EVM code for analysis. Then, the injected code is scanned using

the static analysis tools (step 2). Finally, the results of each tool are

checked, and false negatives and false positives are measured (step

3).

Figure 3: SolidiFI Workflow.

4.1 Bug Model
In our work, a security bug is expressed as a code snippet, which

leads to a vulnerability that the security tool being analyzed aims to

detect. SolidiFI reads code snippets to be injected from a pre-defined

bug pool prepared by us (the bug pool can be easily extended by

users to add new bugs). For each tool, we only inject the bugs

that the tool claims to detect. based on the tool’s research paper.

However, because the tools are continuously evolving, the research

ISSTA ’20, July 18–22, 2020, Los Angeles/Virtual, CA, USA Asem Ghaleb and Karthik Pattabiraman

paper may not have the up-to-date list of bugs detected by the tool,

and hence we use the tool’s online documentation to augment it.

4.2 Bug Injection
In this work, the security bugs are injected in the source code in

three ways as follows.

4.2.1 Full code snippet. In this approach, we prepare several code

snippets for each bug under study. Each code snippet is a piece of

code that introduces the security bug. To illustrate the process, we

discuss the bugs and example code snippets.

Timestamp dependency. The current timestamp of the block

can be used by contracts to trigger some time-dependent events.

Given the decentralized nature of Ethereum, miners can change

the timestamp (to some extent). Malicious miners can use this

capability and change the timestamp to favor themselves. This

bug was exploited in the GoverMental Ponzi scheme attack [Eth

[n.d.]]. Therefore, developers should not rely on the precision of the

block’s timestamp. Figure 4 shows an example of a code snippet that

represents the bug (block.timestamp returns the block’s timestamp).

1 function bug_tmstmp () public returns(bool)
2 { return block.timestamp >= 1546300;}

Figure 4: Timestamp dependency examples.

Unhandled exceptions. In Ethereum, contracts can call each

other, and send ether to each other (e.g., send instruction, call in-
struction, etc.). If an exception is thrown by the callee contact (e.g.,

limited gas for execution), the contract is terminated, its state is

reverted, and false is returned to the caller contract. Therefore,

unchecked returned values within the caller contract could be used

to attack the contract, leading to undesired behavior. A serious

version of this bug occurred in the “King of the Ether" [Eth [n.d.]].

Figure 5 shows an example (the send() instruction requires its return
value to be checked for exceptions to make it secure).

1 function unhandledsend () public {

2 callee.send(5 ether);}

Figure 5: Unhandled exceptions examples.

Integer overflow/underflow. In Solidity, storing a value in

an integer variable bigger or smaller than its limits lead to integer

overflow or underflow. This can be used by attackers to fraudulently

siphon off funds. For example, Figure 6 shows an example code

snippet in which an attacker can reset the lockTime for a user by
calling the function incrLockTime and passing 256 as an argument -

this would cause an overflow, and end up setting the lockTime to 0.

Batch Transfer Overflow is a real-world example [PoW [n.d.]].

Use of tx.origin. In a chain of calls, when contracts call func-

tions of each other, the use of tx.origin (that returns the first caller

that originally sent the call) for authentication instead ofmsg.sender
(that returns the immediate caller) can lead to phishing-like attacks

[sol [n.d.]]. Figure 7 shows an example snippet in which tx.origin is

used to withdraw money.

1 function incrLockTime(uint _sec) public{
2 lockTime[msg.sender] += _sec;}

Figure 6: Integer overflow/underflow example.

1 function bug_txorigin(address _recipient) public {

2 require(tx.origin == owner);

3 _recipient.transfer(this.balance);}

Figure 7: tx.origin authentication example.

Re-entrancy. Contracts expose external calls in their interface.

These external calls can be hijacked by attackers to call a func-

tion within the contract itself several times, thereby performing

unexpected operations within the contract itself. For example, the

external call in Line 3 of the snippet code shown in Figure 8 can be

used by an attacker to call the bug_reEntrancy() function repeatedly,

potentially leading to withdrawal of ether more than the balance

of the user. The DAO attack [dao 2016] is a well-known example

exploiting this bug.

1 function bug_reEntrancy(uint256 _Amt) public {

2 require(balances[msg.sender] >= _Amt);

3 require(msg.sender.call.value(_Amt));
4 balances[msg.sender] -= _Amt;}

Figure 8: Re-entrancy example.

Unchecked send. Unauthorized Ether transfer, such as non

zero sends, can be called by external users if they are visible to

public, even if they do not have the correct credentials. This means

unauthorized users can call such functions and transfer ether from

the vulnerable contract [sol [n.d.]]. An example code snippet is

shown in Figure 9.

1 function bug_unchkSend () payable public{
2 msg.sender.transfer (1 ether);}

Figure 9: Unchecked send example.

Transaction Ordering Dependancy (TOD). Changing the or-
der of the transactions in a single block that has multiple calls to

the contract, results in changing the final output [Atzei et al. 2017].

Malicious miners can benefit from this. An example code snippet

vulnerable to this bug is shown in Figure 10. In this example, the

attackers can send a puzzle solving reward to themselves instead of

the winner of the game by executing bug_tod2() before bug_tod1().

4.2.2 Code transformation. This approach aims to transform a

piece of code without changing its functionality, but make it vul-

nerable to a specific bug. We leverage known patterns of vulnerable

code to inject this bug. We use this approach to inject two bug

classes that are compatible with this approach, namely (1) integer

overflow/underflow and (2) use of tx.origin.

Table 1 shows examples of the code patterns that are replaced to

introduce the bugs, and the vulnerable patterns for each bug type.

How Effective are Smart Contract Analysis Tools? Evaluating Smart Contract Static Analysis Tools Using Bug InjectionISSTA ’20, July 18–22, 2020, Los Angeles/Virtual, CA, USA

1 address payable winner_tod;

2 function setWinner_tod () public {

3 winner_tod = msg.sender ;}
4 function getReward_tod () payable public{
5 winner_tod.transfer(msg.value);}

Figure 10: TOD example.

Table 1: Code transformation patterns.

Bug Type Original Code Patterns New Code Patterns
tx.origin msg.sender==owner tx.origin==owner

Overflow bytes32 bytes8

Overflow uint256 uint8

Figure 11 shows an example before and after bug injection us-

ing this approach. In this example, transfer instruction is used to

perform a transfer of the specified ether amount to the receiver’s

account after verifying the direct caller of sendto() to be the owner.

To inject the tx.origin bug, the authorization condition msg.sender
== owner should be replaced with the tx.origin == owner, in which

the owner is not the direct caller of sendto(). However, the autho-
rization check is passed successfully, which enables attackers to

authorize themselves, and send ether from the contract, even if they

are not the owner.

1 /*(Before)*/

2 function sendto(address receiver , uint amount) public
{

3 require (msg.sender == owner);

4 receiver.transfer(amount);}
5 /*(After injection)*/

6 function sendto(address receiver , uint amount) public {

7 require (tx.origin == owner);

8 receiver.transfer(amount);}

Figure 11: Code transformation example.

4.2.3 Weakening securitymechanisms. In this approach, weweaken
the security protection mechanisms in the smart contract code,

which protect external calls. Note that our goal is to evaluate the

static analysis tool, and not the smart contract itself. We use this

approach to inject Unhandled exception bugs. Figure 12 shows

an example, in which the Unhandled exceptions bug is injected by

removing the revert() statement that reverts the state of the con-

tract if the transfer transaction failed - this causes the balance to

incorrectly become 0 even if the transaction failed.

5 SOLIDIFI ALGORITHM
The process for injecting bugs takes as input the Abstract Syntax

Tree (AST) of the smart contract, and has the following steps.

(1) Identify the potential locations for injecting bugs and gener-

ate an annotated AST marking all identified locations.

(2) Inject bugs into all marked locations to generate the buggy

contract.

1 /*(Before)*/

2 function withdrawBal () public{
3 Balances[msg.sender] = 0;

4 if(!msg.sender.send(Balances[msg.sender]))
5 { revert (); }}

6 /*(After injection)*/

7 function withdrawBal () public{
8 Balances[msg.sender] = 0;

9 if(!msg.sender.send(Balances[msg.sender]))
10 { // revert ();

11 }}

Figure 12: Weakening security example.

(3) Check the buggy contract using the evaluated tools and

inspect the results for undetected bugs and false alarms.

We discuss the steps in detail below.

Bug locations identification: The AST is passed to Bug Loca-
tions Identifier, that drives a bug injection profile (BIP) of all possible
injection locations in the target contract for a given security bug.

The BIP is derived using AST-based analysis for identifying po-

tential injection locations in smart contract code by Algorithm 1.

Algorithm 1 takes as input the AST and the bug type to be injected,

and outputs the BIP.

Algorithm 1 Identifying Injection Locations Algorithm

1: procedure FindAllPotentialLocations(AST, bugType)
2: for Each form of code snippets in bugType do
3: if snippetForm == simple statement then
4: BIP ←WalkAST (simpleStatement)
5: else if snippetForm == non-function block then
6: BIP ←WalkAST (nonFunctionBlock)
7: else if snippetForm == functionDefinition then
8: BIP ←WalkAST (f unctionDef init ion)
9: end if
10: end for
11: BIP ← F indRelatedSecur ityMechanisms
12: BIP ← F indCodeThatCanBeT ransf ormed
13: return BIP
14: end procedure

To address the first challenge of identifying bug injection lo-

cations as mentioned in Section 3.2, we define rules that specify

the relation between the bug to be injected and the target contract

structure. In general, bugs take two forms: an individual statement,

and a block of statements. A block of statements can be defined

either as a stand-alone function, or a non-function block such as

an ’if’ statement. Therefore, we use a rule for each form of the bug

that defines the specifications of the locations for injecting it.

To identify such locations, for each distinct form of the code

snippets defining the bug type to be injected, we walk the AST

based on the code snippet form and the related rule (lines 2-10 in

Algorithm 1).WalkAST (simpleStatement), for example, will visit

(parse) the AST and find all the locations where a simple statement

can be injected without invalidating the compilation state of the

contract, and the same for the other forms of the code snippets

of the bug type. After identifying the locations for injecting code

snippets of bugs, we also look for existing security mechanisms to

ISSTA ’20, July 18–22, 2020, Los Angeles/Virtual, CA, USA Asem Ghaleb and Karthik Pattabiraman

be weakened to introduce the related bug, and the code patterns to

be transformed for introducing the bug (lines 11 and 12).

Bug injection and code transformation: SolidiFI uses a sys-
tematic approach to inject bugs into the potential locations in the

target contract. The Bug Injector model seeds a bug for each loca-

tion specified in the BIP. It uses text-based code transformation to

modify the code where the information derived from the AST is

used to modify the code to inject bugs. Three different approaches

are used to inject bugs as discussed in Section 4.2. In addition to

injecting bugs in the target contract, Bug Injector generates a Bu-
gLog that specifies a unique identifier for each injected bug, and

the corresponding location(s) in the target contract where it has

been injected.

Buggy code check and results inspection:The resulting buggy
contract is passed to the Tool Evaluator that checks the buggy code

using the tools under evaluation. It then scans the results generated

by the tools looking for the bugs that were injected but undetected,

with the help of BugLog generated by the Bug Injector. SolidiFI only
considers the injected bugs that are undetected. So if an evalu-

ated tool reported bugs in locations other than where bugs have

been injected, SolidiFI does not consider them in its output of false

negatives. This is to avoid potential vulnerabilities in the original

contract from being reported by SolidiFI, which would skew the

results. Moreover, SolidiFI inspects results generated by the tools

looking for other reported bugs and checks if they are true bugs or

false alarms (more details in Section 7).

6 IMPLEMENTATION
SolidiFI approach is fully-automated (except for the pre-prepared

buggy snippets). This involves compiling the code, injecting and

generating buggy contracts, running the evaluated tools on the

buggy contracts, and inspecting reports of the evaluated tools for

false-negatives, mis-identified cases, and false-positives (except

for the manual validation of the filtered false-positives). To make

SolidiFI reusable, we did not hard-code the patterns that are replaced
to introduce bugs, but rather made them configurable from an

external file. We have made SolidiFI code publicly available2.
SolidiFI uses the Solidity compiler solc (supports compiler ver-

sions up to 0.5.12) to compile the source code of the smart contract

to make sure it is free from compilation errors before bugs are

injected. In addition, SolidiFI uses solc to generate the AST of the

original code in JavaScript Object Notation (JSON) format. We have

implemented the other components of SolidiFI in Python in about

1500 lines of code. These components are responsible for identifying

the potential locations for injection, injecting bugs using a suitable

approach, generating the buggy contract, and inspecting the results

of the evaluated tools and then reporting the undetected bugs and

false alarms. Finally, we developed a Python client to interact with

contracts deployed on Ethereum network - this client is used for

assessing the exploitability of the injected bugs in the generated

buggy contracts.

7 EVALUATION
The aim of our evaluation is to measure the efficacy of SolidiFI in
evaluating smart contract static analysis tools, and finding cases of

2
https://github.com/DependableSystemsLab/SolidiFI

undetected bugs (i.e., false negatives) and false positives. We also

measure the performance of SolidiFI itself, as well as the ability to

exploit the undetected bugs. We made all the experimental artifacts

used in this study and our results publicly available
3
. Our evaluation

experiments are thus derived to answer the following research

questions:

• RQ1.What are the false negatives of the tools being evaluated?
• RQ2.What are the false positives of the tools being evaluated?
• RQ3. Can the injected bugs in the contracts be activated (i.e.,
exploited) at runtime by an external attacker?
• RQ4.What is the performance of SolidiFI?

As mentioned earlier, we have selected six static analysis tools

for evaluation, Oyente [Luu et al. 2016], Securify [Tsankov et al.

2018], SmartCheck [Tikhomirov et al. 2018], Mythril [Mueller 2018],

Manticore [Mossberg et al. 2019], and Slither [Feist et al. 2019]. We

downloaded these tools from their respective online repositories,

which are mentioned in the corresponding papers (Oyente 0.2.7,

Securify v1.0 as downloaded and installed in Dec 2019, Mythril

0.21.20, Smartcheck 2.0, Manticore 0.3.2.1, and Slither 0.6.9).

To perform our experiments, we used a data set of fifty smart

contracts, chosen from the list of verified smart contracts available

on Etherscan [Etherscan [n.d.]], a public repository of smart con-

tracts written in Solidity for Ethereum. We selected these contracts

based on three factors namely (1) code size (we selected contracts

with different sizes that were representative of Etherscan contracts

ranging from small contracts with tens of lines of code to large

contracts with hundreds of lines of code), (2) compatibility with

Solidity version 0.5.12 (at the time of writing, 312 out of 500 verified
smart contracts in EtherScan supported Solidity 0.5x and higher),

and (3) contracts with a wide range of functionality (e.g., tokens,

wallets, games). Table 2 shows the number of lines of code (includ-

ing comments), and number of functions and function modifiers
4

for each contract. The contracts range from 39 to 741 lines of code

(loc), with an average of 242 loc.

We limited ourselves to 50 contracts due to the time and effort

needed to analyze the contracts by the evaluated tools and inspect

the analysis results of the tools to verify false-positives.With that
said, even with this dataset, SolidiFI found significant numbers of
undetected bugs in the tools (e.g., false negatives), as will be discussed
in the following sections.

As explained in Section 4, in our experiments, we injected bugs

belonging to seven different bug types within the detection scope

of the selected tools. Table 3 shows the bug types, and the tools

that are designed to detect each bug type. We chose these bug

types based on the bug types detected by the individual tools, and

because these bugs are common in smart contracts, and lead to

vulnerabilities that have been exploited in practice [Eth [n.d.]; dao

2016; bat 2018]. However, SolidiFI is not confined to these bug types.
In our experiments, we set the time-out value for each tool to

15 minutes per smart contract and bug type. If a tool’s execution

exceeds this timeout value, we terminate it and consider the bugs

found as its output. While 15 minutes may seem high, our goal is

to give each tool as much leeway as possible. Only 2 of the tools

exceeded this time limit in some cases (i.e., Mythril and Manticore).

3
https://github.com/DependableSystemsLab/SolidiFI-benchmark

4
Function modifier checks a condition before the execution of the function.

https://github.com/DependableSystemsLab/SolidiFI
https://github.com/DependableSystemsLab/SolidiFI-benchmark

How Effective are Smart Contract Analysis Tools? Evaluating Smart Contract Static Analysis Tools Using Bug InjectionISSTA ’20, July 18–22, 2020, Los Angeles/Virtual, CA, USA

For these two tools, we experimented with larger timeout values,

but they did not significantly increase their detection coverage.

Note that the total time taken to run the experiments was already

quite high with this timeout value - for example, it took us about

4 days to analyze the contracts using Mythril (50-contract*6 bug-

types*15-minute = 75 hours).

Table 2: Contracts benchmark. F represents Functions, and
M represents Function Modifiers

Id Li
ne

s

F+
M

Id Li
ne

s

F+
M

Id Li
ne

s

F+
M

1 103 6 18 406 29 35 317 29

2 128 9 19 218 32 36 383 20

3 132 10 20 308 27 37 368 24

4 117 6 21 353 18 38 195 24

5 250 17 22 383 19 39 52 4

6 161 22 23 308 20 40 465 22

7 165 22 24 741 27 41 160 8

8 251 17 25 196 12 42 128 16

9 249 19 26 143 20 43 285 22

10 39 5 27 336 33 44 298 24

11 193 19 28 195 24 45 156 14

12 281 27 29 312 13 46 125 6

13 161 8 30 711 57 47 223 18

14 185 20 31 216 12 48 232 19

15 160 8 32 143 14 49 52 4

16 248 27 33 129 16 50 171 18

17 128 17 34 445 29

Average values 242 18

Table 3: Bug types used in our evaluation experiments: ’*’
means that the tool can detect the bug type.

Bug Type O
ye

nt
e

Se
cu

ri
fy

M
yt
hr

il

Sm
ar
tC

he
ck

M
an

ti
co

re

Sl
it
he

r

Re-entrancy * * * * * *

Timestamp dependency * * * *

Unchecked send * *

Unhandled exceptions * * * * *

TOD * *

Integer overflow/underflow * * * *

Use of tx.origin * * *

7.1 RQ1:What are the false negatives of the
tools being evaluated?

The core part of our evaluation is to use SolidiFI to inject bugs, and

evaluate the effectiveness of the tools in detecting the injected bugs.

We performed the following steps in our experiments. First, SolidiFI

is used to inject bugs of each bug type in the code of the 50 smart

contracts, one bug type at a time. The resulting buggy contracts are

then checked using the static analysis tools. Finally, the number of

the injected bugs that were not detected by each tool were recorded.

To get meaningful results, we inject bugs that are as distinct

as possible by preparing diverse set of distinct code snippets with

different data inputs and function calls- this resulted in 9369 distinct

bugs. We consider two injected bugs as distinct if the static analysis

tool under study would reason about them differently based on the

underlying methodology, where either the data and control flow

leading to the injected bug is different, or the design patterns of

the bug snippets are different. To ensure a fair evaluation, we inject
only the bugs that are supposed to be detected by each tool.

We consider an injected bug as being correctly detected by a tool

if and only if it identified both the line of code in which the bug

was injected, as well as the bug type (e.g., Re-entrancy). In many

cases, we observed that the tool would correctly identify the line

of code in which the bug occurred, but would misidentify the bug

type. Therefore, we also report the former separately.

The results of injecting bugs of each bug type, and testing them

using the six tools are summarized in Table 4. In the table, “Injected

bugs” column specifies the total number of injected bug for each

bug type, “✓” means we did not find any undetected bug of that

bug type (row), while “NA” means the bug type is out of scope of

the tool, i.e., it is not designed to detect the bug type. The numbers

for each column specify the total number of bugs that were either

incorrectly detected or not detected by the tool corresponding to

the bug type specified in that row. The number within parentheses

specifies the number of cases that were not reported by the tool -

this does not consider the incorrect reporting of the bug type.

From the table, we can see that a significant number of false

negatives occur for all the evaluated tools, and that none of the tools
was able to detect all the injected bugs correctly even if we accepted
a incorrect bug type with the correct line number as a detected bug.
In fact, the only tool that had 100% coverage for individual bug

types was Slither, for Reentrancy and tx.origin bugs. Of all tools,

Slither had the lowest false-negatives, followed by Securify across

bug types.

Our results thus show that all static analysis tools have many

corner cases of bugs that they are not able to detect. Note that it
is surprising that our technique found as many undetected bugs by
the tools as it did, given that our goal was not specifically to exercise
corner cases of the tools in question. We will discuss the reasons for

the missed detections and the implications later (Section 8).

7.2 RQ2: What are the false positives of the
tools being evaluated?

A false-positive occurs when a tool reports a bug, but there was

no bug in reality. Unlike false negatives, where we know exactly

where the bugs have been injected, and hence have ground truth,

measuring false positives is challenging due to the lack of ground

truth. This is because we cannot assume that the smart contracts

used are free of bugs (though they are chosen from the verified

contracts on Etherscan). Further, manually inspecting each bug

report and related contract involves a tremendous amount of effort

due to the large number of bug reports, and is hence not practical.

ISSTA ’20, July 18–22, 2020, Los Angeles/Virtual, CA, USA Asem Ghaleb and Karthik Pattabiraman

Table 4: False negatives for each tool. Numberswithin paran-
theses are bugs with incorrect line numbers or unreported.

Security bug In
je
ct
ed

bu
gs

O
ye

nt
e

Se
cu

ri
fy

M
yt
hr

il

Sm
ar
tC

he
ck

M
an

ti
co

re

Sl
it
he

r

Re-entrancy 1343

1008

(844)

232

(232)

1085

(805)

1343

(106)

1250

(1108) ✓

Timestamp dep 1381

1381

(886) NA

810

(810)

902

(341) NA

537

(1)

Unchecked-send 1266 NA

499

(449)

389

(389) NA NA NA

Unhandled exp 1374

1052

(918)

673

(571)

756

(756)

1325

(1170) NA

457

(128)

TOD 1336

1199

(1199)

263

(263) NA NA NA NA

Integer overflow 1333

898

(898) NA

1069

(932)

1072

(1072)

1196

(1127) NA

tx.origin 1336 NA NA

445

(445)

1239

(1120) NA ✓

To keep the problem of determining false-positives tractable, we

came up with the following approach. The main idea is to manually

examine only those bugs that are not reported by the majority of

the other tools for each smart contract. In other words, we conser-

vatively assume that a bug that is reported by a majority of the

tools cannot be a false positive. However, at worst, we will under-

estimate the number of false positives in this approach, subject

to the vagaries of the manual inspection process. We also verified

that many of the bugs that are excluded by the majority are indeed

false-positives by manually examining a random sample of them.

Even after this filtering, we had to manually inspect a significant

number of bugs to determine if they were false positives. There-

fore, for each tool, we randomly selected 20 bugs of each bug type

category that were not excluded by the majority approach, and

inspected them manually. For those cases where the number of

bugs is less than or equal to 20, we inspected them all. Based on the

results of our manual inspection, we estimated the false positives

as the percentage of bugs inspected that were indeed false positives,

multiplied by the number of bugs filtered (i.e., not excluded).

For example, assume that the total number of bugs reported by a

tool is 100. Of these 100 bugs, let us assume that 60 are also reported

by the majority of the other tools for the smart contract, and hence

we exclude them. Of the remaining 40 filtered bugs, we manually

examine 20 bugs chosen at random. Assume that 16 of these are

indeed false-positives. We assume that 80% of the filtered bugs are

false-positives, and estimate the number of false-positives to be 32.

The results of false positives reported by each tool are summa-

rized in Table 5. In the table, the “Threshold” column refers to the

majority threshold, which is the number of tools that must detect

the bug in order for it to be excluded from consideration - this num-

ber depends on how many tools are able to detect the bug type. For

each tool, the sub-column “Reported” shows the number of bugs re-

ported by the tool, the sub column “FIL” shows the number of bugs

that have been filtered (not excluded) by the majority approach,

while the sub column “FP” shows the false positives of the tool

based on the manual inspection as explained above. Empty cells in

the table represent cases where a tool was not designed to detect a

bug type. Note that some of the tools detected bugs outside the 7

categories that we considered - we called these as miscellaneous.
From the table, we can see that all the evaluated tools have

reported a number of false positives, ranging from 2 to 801 for

most of the bug types. Interestingly, the results show that the tools

with low numbers of false negatives reported high false positives,

i.e., Slither and Securify. For example, although Slither was the

only tool that successfully detected all the injected Re-entrancy

bugs, it reported significant false positives. This raises the question

of whether the high detection rate was simply a result of over-

zealously reporting bugs by the tool (this is also borne out by the

high number of bugs reported under the miscellaneous category by

this tool). This highlights the need for security analysis tools that are
able to detect bugs while maintaining low false positive rates.

We provide some examples of the false-positive cases below.

For example, most unhandled exception bugs were reported even

though the code checks the return values of the send functions for

exceptions using require(). As another example, many false positives

were re-entrancy bugs where the code contains the required checks

of the contract balance, and updates the contract states before the

Ether transfer. Oyente reported several cases as integer over/un-

derflow even though they are no integer related calculations (e.g.,

string public symbol = "CRE";). On the other side, we tried to be

consistent with the assumptions considered by the tools during

our manual inspection. For example, some of the cases that we

considered as true bugs were re-entrancy bugs that use the transfer
function. This function protects against re-entrancy issues as it has

limited gas; however, we considered them as true bugs as the attack

can happen if the gas price changes - this is detected by some of

the tools (e.g., Slither).

7.3 RQ3: Can the injected bugs be activated by
an external attacker?

The goal of this RQ is to assess whether the undetected bugs in

RQ1 can be activated in the contract at runtime. This is to deter-

mine whether the reason behind the bug not being detected by the

evaluated tool was because the bug cannot be activated (and hence

cannot be exploited by an attacker). We deploy the set of buggy

contracts with the undetected bugs (found in RQ1) on the Ethereum

blockchain, and execute transactions that attempt to activate them.

To conduct these experiments, we use MetaMask [Met [n.d.]], a

browser extension that allows us to connect to an Ethereum node

called INFURA [INF [n.d.]], and run our buggy contracts on this

node. We have created Ethereum accounts on Ethereum Kovan

Testnet (test network) using MetaMask, and deposited sufficient

amount of Ether to these accounts to enable us to execute transac-

tions (pay the required gas for transactions). We use Remix [rem

2017] (Solidity editor) to deploy contracts on Ethereum Kovan Test-

net. Remix enables us to connect withMetaMask to deploy contracts

on INFURA Ethereum node.

We illustrate the process with an example. As mentioned in RQ1,

Manticore did not report instances of injected integer overflow/un-

derflow bugs - an example is shown in Figure 13. Our goal is to

attempt to activate this bug in the deployed buggy contract by call-

ing the function bug_intou3(). The returned result was 246 - this is

not the expected value (-10) due to the use of unsigned integer type

How Effective are Smart Contract Analysis Tools? Evaluating Smart Contract Static Analysis Tools Using Bug InjectionISSTA ’20, July 18–22, 2020, Los Angeles/Virtual, CA, USA

Table 5: False positives reported by each tool. Empty cells mean that the tool was not designed for that particular bug type.

Bug Type T
hr

es
ho

ld

O
ye

nt
e

Se
cu

ri
fy

M
yt
hr

il

Sm
ar
tC

he
ck

M
an

ti
co

re

Sl
it
he

r

= Reported FIL FP Reported FIL FP Reported FIL FP Reported FIL FP Reported FIL FP Reported FIL FP

Re-entrancy 4 0 0 - 12 12 12 54 54 43 0 0 - 6 6 6 79 79 71

Timestamp dep 3 0 0 - 12 12 0 0 0 - 12 12 0

Unchecked send 2 7 4 4 14 3 3

Unhandled exp 3 10 10 10 0 0 - 0 0 - 6 6 6 0 0 -

TOD 2 32 24 24 121 97 97

Over/under flow 3 947 943 801 17 3 3 3 2 2 9 9 9

Use of tx.origin 2 0 0 - 3 1 0 4 2 0

Miscellaneous 0 318 144 1520 169 1807

(i.e., uint8) instead of a signed integer type, which resulted in an

integer underflow. Thus, the bug can be activated by an attacker.

We had to manually craft inputs for each bug in order to test

its activation, which takes significant effort. Because of the large

number of undetected bugs, we selected 5 undetected bugs for each

bug type randomly from different contracts to test their activation.

Table 6 shows the results of our activation experiments. In the

table “–” means we were not able to perform experiments on this

bug type, as it requires the attacker to behave as a miner, which

would consume a significant amount of computational resources.

The results show that one can exploit (activate) all the selected

bugs in their related buggy contracts. Therefore, the infeasibility of

activation of the bug was not the reason that the evaluated tools

failed to detect the injected bugs.

1 function bug_intou3 () public{
2 uint8 vundflw =0;

3 vundflw = vundflw -10; // underflow

4 return vundflw ;}

Figure 13: Undetected integer underflow bug

Table 6: Activity of Selected Undetected Bugs.

Bug type Selected bugs Activated bugs
Re-entrancy 5 5

Timestamp dependency 5 5

Unchecked send 5 5

Unhandled exceptions 5 5

TOD – –

Integer overflow/underflow 5 5

Use of tx.origin 5 5

7.4 RQ4: What is the performance of SolidiFI?
Finally, wemeasured the performance of SolidiFI in terms of the time

it takes to inject bugs and generate buggy contracts. We excluded

the time of running the tools being evaluated to check the buggy

contracts, as this is tool-specific and independent of SolidiFI. We

preformed injection of each bug type in each contract five times

and calculated the average of the five runs, and then calculated

the average of injecting the seven bug types in each contract. The

average time of injecting all instances of bug types in a contract is

25 seconds, and the worst case time was 46 seconds (for contract

24, which was the largest contract in our set). Thus, SolidiFI takes
less than 1 minute on average per contract and bug type.

8 DISCUSSION
In this section, we examine the reasons for the false negatives of

the tools observed in RQ1. We then examine the implications of

the results, and our methodology, on both tool developers and end

users. Finally, we examine some of the limitations of SolidiFI and
threats to validity of our experiments.

8.1 Reasons for False-Negatives
To establish a practical understanding of the presented results and

why some bugs were not detected, we will highlight the code snip-

pets for some of the bugs that were not detected, and then discuss

the reasons behind them. We organize this discussion by tool.

Oyente was not able to detect many instances of injected re-

entrnacy, timestamp dependency, unhandled exceptions, integer

overflow/underflow, and TOD bugs as mentioned earlier
5
. Accord-

ing to the paper [Luu et al. 2016], Oyente works on detecting only

re-entrancy bugs that are based on the use of call.value. Some of the

recent tools, such as Slither, consider the detection of re-entrancy

bugs with limited gas that are based on send and transfer. Those
papers claim that send and transfer do not protect from re-entrancy

bugs in case of gas price change. Furthermore, Oyente failed to

detect instances of re-entrancy bugs that are based on the use of

call.value. One of the TOD code snippets we used in our experi-

ments is mentioned in the running example at Figure 1 on lines 9-16,

which emulates a simple game and its winner. The malicious behav-

ior occurs when the two transactions are executed in one block and

the attacker tries to change the order of the received transactions.

To understand why this bug is not detected by Oyente, in Oyente

the EVM bytecode is represented as a control flow graph (CFG).

The execution jumps are used as edges that connect the nodes of

the graph representing the basic execution blocks in the code. The

symbolic execution engine of Oyente uses the CFG to produce a

5
Because the released version of Oyente did not work with the latest version of the

Solidity compiler (0.5.12), we made few changes to the injected contracts to get it to

work with Oyente - these did not impact the tool’s coverage.

ISSTA ’20, July 18–22, 2020, Los Angeles/Virtual, CA, USA Asem Ghaleb and Karthik Pattabiraman

set of symbolic traces (execution paths), each associated with a

path constraint and auxiliary data, to verify pre-defined properties

(security bugs being detected). Basically, Oyente detects TOD by

comparing the different execution paths and the corresponding

data flow (Ether flow) for each path. Oyente reports those different

execution paths that have different Ether flows.

For Oyente to be able to detect all TOD bugs successfully, the

symbolic execution engine should generate all possible execution

paths for the contract to find the erroneous path - this is challenging

due to the incompleteness of symbolic execution. It also uses some

bounds that limit the symbolic execution.

Smartcheck failed to detect most of the injected bugs across

all the categories. Smartcheck checks for bugs by constructing an

Intermediate Representation (IR) from the source code, and then

using XPath patterns to search for bugs in the IR. This approach

lacks accuracy as some bugs cannot be expressed as XPath expres-

sions. For example, the re-entracy bug is difficult to express as an

XPath pattern, and is hence not detected.

Further, because Smartcheck uses XPath patterns that detect

specific syntax of some bugs, even a slight variation in the syntax

of the bug snippets would not match the XPath patterns. For in-

stance, SmartCheck did not report some occurrences of unhandled

exceptions. By checking the code snippet for one of the undetected

unhandled exception bug depicted in Figure 14, we found that

Smartcheck was not able to detect it as unchecked send because

Smartcheck only looks for send functions without an if-statement

(that checks the return value). However, in this snippet, the send

is within an if-statement even though the revert() exists in the else

clause of the if-statement, which will be triggered on the successes

of send. The same happens when other functions are used for send-

ing ether (e.g., call, etc.) instead of send. This is an inherent problem

with syntactic, rule-based tools such as Smartcheck.

1 if (!addr.send (42 ether))
2 {receivers +=1;}

3 else
4 {revert ();}}

Figure 14: Unhandled exception code snippet 1.

Mythril was the tool with the largest set of undetected bugs in

our experiments. It failed to detect many instances of re-entrancy,

timestamp dependency, unchecked send, unhandled exceptions,

integer overflow/underflow and use of tx.origin. For example, the

buggy code in Figure 15 was not detected by Mythril. The condition

of the if-statement that checks the return value of the send will

always be evaluated as true because of the added condition “| |
1==1”. Hence, the execution of the contract would be reverted in

all cases by the function revert(), regardless of whether the send
succeeds. This is incorrect as the execution should only be reverted
on the fails of send. However, Mythril does not detect this as it only

evaluates the send() part in the condition of the if-statement rather

than evaluating the whole condition with the OR part (| | 1==1).
Mythril is also very slow in term of the time it takes to analyze

contracts. Although we set the time-out for analyzing each contract

to 15 minutes, as mentioned earlier, we also tried setting the timeout

to 30 minutes and did not observe any increase in the number of

bugs demonstrating that increasing the time-out has diminishing

returns. We also found the number of undetected bugs increase in

the large contracts, as Mythril enumerates symbolic traces and this

does not scale well in large contracts.

1 if (!addr.send (10 ether) || 1==1)

2 {revert ();}

Figure 15: Unhandled exception code snippet 2.

Like the other tools, Mythril also misreported the types of many

of the injected bugs. Figure 16 shows part of a buggy contract

injected using SolidiFI. The injected contract allows users to man-

age their tokens and send tokens to each other. We injected a re-

entrancy bug using SolidiFI in the contract at lines 185-188. However,
Mythril reported the re-entrancy bug as "Unchecked Call Return

Value" (i.e., Unhandled exception) at line 186. By inspecting this

line of code, we can see that the return value of the send function is

checked and the balance is reset to zero on the success of send, so
there is no unhandled exception as reported. This calls into question

Mythril’s soundness in detecting this type of bugs as well as its

completeness in detecting Re-entrancy bugs.

177 function transfer(address _to , uint256 _value) public
returns (bool success) {

178 require(balances[msg.sender] >= _value);

179 balances[msg.sender] -= _value;

180 balances[_to] += _value;

181 emit Transfer(msg.sender , _to , _value);

182 return true;
183 }

184

185 function withdraw_balances_re_ent36 () public {

186 if (msg.sender.send(balances[msg.sender]))

187 balances[msg.sender] = 0;

188 }

Figure 16: Part of a buggy contract injected by reentrancy
bug.

Manticore was not able to detect instances of re-entrancy and

integer overflow/underflow. Unlike other evaluated tools employing

symbolic executions, we noticed that Manticore takes a long time to

analyze smart contracts, and in some cases it times-out. It consumes

significant memory space as well on our system. Moreover, Manti-

core crashed and failed to analyze most of the contracts and threw

exception errors. The 50 main contracts used in our experiments

consist of 123 analyzable contracts (each contract file may contain

more than one contract). Out of them, Manticore crashed for 83

contracts injected by re-entrancy bugs and 73 contracts injected

by integer overflow bugs. We reached out to the tool developers

to get fixes or explanation for these issues; however, there was no

response (as of the time of submission).

Securify was not able to detect several cases of injected bugs

belonging to re-entrancy, unchecked send, unhandled exceptions,

and TOD. In addition, we found many cases where Securify failed

to analyze the injected contracts and threw an error. Out of the 200

contracts injected by the four bug types (50 contracts for each bug

How Effective are Smart Contract Analysis Tools? Evaluating Smart Contract Static Analysis Tools Using Bug InjectionISSTA ’20, July 18–22, 2020, Los Angeles/Virtual, CA, USA

type), Securify failed to analyze 5 contracts injected by unhandled

exceptions, 4 injected by re-entrancy, 4 injected by unchecked send,

and 4 injected by TOD bugs. If we excluded the injected bugs in

those contracts, the number of undetected bugs by Securify will be

as following: (re-entrancy: 105, unchecked send: 332, unhandled

exceptions: 402, and TOD: 136). Securify also reported a high num-

ber of TOD false positives compared with Oyente. A recent study

[Feng et al. 2019] found that the reported false alarms by Securify

are due to over-approximation of the execution.

Slither Although Slither has almost 100% accuracy in detecting

re-entrancy, timestamp, and tx.origin bugs, it was not able to detect

many instances of unhandled exceptions. Moreover, it had high

number of re-entrancy false positives as mentioned earlier.

8.2 Implications
Tool Developers There are two implications for tool developers.

The first implication is that using pattern matching for detecting

bugs, especially by employing simple approaches such as XPaths

matching, is not an effective way for detecting smart contract bugs

for the reasons mentioned earlier in this section. The second point

is that bug detection approaches that are based on enumerating

symbolic traces are impeded by path explosion and scalability is-

sues. Therefore, there is a need for sophisticated analysis tools

that also consider the semantics of the analyzed code instead of

depending only on analyzing the syntax and symbolic traces. For

example, static analysis might work better if combined with for-

mal methods that consider the semantic specifications of Solidity

and EVM. Recent papers [Amani et al. 2018; Bhargavan et al. 2016;

Grishchenko et al. 2018; Hildenbrandt et al. 2017; Hirai 2017] have

proposed semi-automated formal verification for performing anal-

ysis of smart contracts.

End Users of Tools: For smart contract developers, who are the

end users of the static analysis tools, there are three implications.

First, they can use SolidiFI to assess the efficacy of static analysis

tools to choose the most reliable tools with no or low false negatives

for their use cases. Second, developers should not rely exclusively

on static analysis tools, and should test the developed contracts

extensively. SolidiFI can help them build test suites by introducing

mutations and checking if the test cases can catch them. Finally,

the generated bugs by SolidiFI and their relative locations in the

code can be used for educating developers on writing secure code.

8.3 Limitations of SolidiFI
There are two limitations of SolidiFI. First, the current version of So-
lidiFI works only on Solidity static analysis tools. Although Solidity

is the most common language for writing Ethereum smart contracts

and most of the proposed tools target analysis of Solidity contracts,

SolidiFI functionality can be easily extended to other languages.

Secondly, the bug injection approach employed by SolidiFI requires
pre-prepared code snippets (for each bug type), which requires

some manual effort. However, this is a one-time cost for each bug

type (we have provided these as part of the tool).

8.4 Threats to Validity
An external threat to the validity is the limited number of smart

contracts considered, namely 50. We have mitigated this threat by

considering a wide-range of smart contracts with varying function-

ality and code sizes. We emphasize that SolidiFI covers all syntactic

elements of Solidity up to version 0.5.12 and, our data-set contains

a wide variety of contracts with different features (e.g., loops). Also,

we selected contracts with different sizes that were representative

of EtherScan contracts ranging from 39 to 741 locs, with an average

of 242 loc (Table 2).

There are two internal threats to validity. First, the number of

tools considered is limited to 6. However, as mentioned, these rep-

resent the common tools used in other studies on smart contract

static analysis. Further, they are widely used in both academia

and industry. All the tools available are open-source and are being

actively maintained (with the exception of Oyente). Further, the

implemented prototype of SolidiFI is reusable and can be easily

extended to evaluate other tools. The second internal threat to va-

lidity is that we only injected 7 bug types. However, these bug types

have been (1) considered by most of the tools evaluated, and (2)

exploited in the past by real attacks. Therefore, we believe they are

representative of security bugs in smart contracts.

Finally, a construct threat to validity is our measurement of false-

negatives and false-positives. For false-negatives, it is possible that

the bugs cannot be exploited in practice.We have partially mitigated

this threat by sampling the set of false-negatives and attempting

to exploit them (RQ3). For false-positives, it is possible that the

reported bugs are true positives. Again, we have partially mitigated

this threat by conservatively considering the bugs reported by the

majority of the tools for each bug category as true positives.

9 RELATEDWORK
Bug-finding Tools Evaluation The approach of injecting bugs

for evaluating the effectiveness of bug finders has been applied in

other contexts than smart contracts. Bonett et al. proposed µSE
[Bonett et al. 2018], a mutation-based framework for the evalua-

tion of Android static analysis tools that works as follows. First, a

fixed set of security operators are created describing the unwanted

behavior that the tools being evaluated aim to detect (e.g., data

leakage). Then, µSE inserts the security operators into mobile apps

based on mutation schemes, that consider Android abstractions,

tools reachability and security goals of the tools, thereby creating

multiple mutants that represent unwanted behavior within the

apps. The mutated apps are analyzed using the static tools to be

evaluated. However, unlike our work, the undetected mutants are

analyzed manually. Further, their framework focuses only on data

leak detection tools, unlike our work, which is more general.

Pewny et al. [Pewny and Holz 2016] automatically find potential

vulnerable locations in C code, and modify the source code to make

it vulnerable. Program analysis techniques are used to find sinks

in the programs matching specific bug patterns, and find connec-

tions to user-controlled sources through data-flow. The program

is modified accordingly to make it exploitable. In contrast to our

approach, the vulnerable code locations to be injected are randomly

chosen, and the implemented prototype targets the injection of

spatial memory errors through the modification of security checks.

Dolan-Gavitt et al. [Dolan-Gavitt et al. 2016] proposed LAVA for

generating and injecting bugs into the source code of programs

using dynamic taint analysis. A guard is inserted for every injected

ISSTA ’20, July 18–22, 2020, Los Angeles/Virtual, CA, USA Asem Ghaleb and Karthik Pattabiraman

bug for triggering the vulnerability if a specific value occurs in

the input. Specifically, LAVA identifies an execution trace location

where an unmodified and dead input data byte (DUA) is available.

Then code is added at this location to make the DUA byte available,

and use it execute the vulnerability. Unlike our work, the injection

is based on dynamic taint analysis, and the injected bugs are accom-

panied by triggering inputs. In contrast, our goal is to transform

invulnerable code to systematically introduce vulnerabilities in it.

In recent work, Akca et al. [Akca et al. 2019] proposed a tool that

the authors used to compare the effectiveness of their introduced

smart contracts static analyzer with some other tools. by injecting a

single bug into the contract code. Unlike our approach that injects

exploitable bugs into all potential locations in the contract code,

the tool uses Fault Seeder [Peng et al. 2019] to generate contract

mutants by injecting only a single bug snippet (hard-coded in the

source code) into a specific location in the smart contract. In addi-

tion, the authors conducted manual inspection of the tool reports to

determine false negatives. Injecting a single bug does not provide a

comprehensive coverage evaluation of static analysis tools. Also, it

is not clear how to evaluate the efficacy of static analysis tools on

detecting deep vulnerabilities and corner cases by injecting only

a single bug. As presented before, each bug can be introduced in

the code in several ways, in this case, injecting a single-bug will

not test the efficacy of the static analysis tools to detect various

variants of each bug.

Durieux et al. [Durieux et al. 2019] compared a number of smart

contract static analysis tools. Unlike our work, the evaluation is

based on using 69 manually annotated smart contracts with 112

bugs in total. The vulnerable contracts are collected from online

repositories that are not agnostic of the evaluated tools, hence, re-

sults might be biased (e.g., collecting 50% of the contracts from SWC

Registry referenced by Mythril and maintained by the team behind

it). In contrast, our goal is to perform systematic and comprehen-

sive coverage evaluation of static analysis tools by transforming

invulnerable code to systematically introduce vulnerabilities into

all valid locations. We evaluated 6 tools on detecting about 9369

distinct bugs. To provide a fair evaluation of the tools, we evalu-

ate each tool only on the bugs that it is designed to detect. Our

proposed approach can be easily used to evaluate smart contract

static analysis tools for detecting other bug types. Further, it enables

end-users to choose any dataset of smart contracts for evaluating

the tools.

Smart Contract Testing and Exploitation: There have been
many recent papers on testing smart contracts, and automatically

generating security exploits on them. Wu et al. [Wu et al. 2019]

produce test cases by mutating specific patterns in smart contracts.

Chan et al. [Chan and Jiang 2018] develop a fuzz testing service

(Fuse) to support the fuzz testing of smart contracts. This is a work

in progress report, and only presents the architecture of the fuzz

service being developed. Wang et al. [Wang et al. 2019] target the

generation of test suites for smart contracts. This work guides

automatic generation of test cases for Ethereum smart contracts.

Eth-mutants [eth [n.d.]] is another mutation testing tool for smart

contracts. However, it is limited to replacing < to ≤, and > to ≥
(and vice versa). Unlike our focus on evaluating smart contracts’

static analysis tools, these papers target the generation of test cases

for the smart contracts.

Other papers focus on automatic exploitation of smart contracts

to generate exploits or malicious inputs to exploit found code vul-

nerabilities [Feng et al. 2019; Jiang et al. 2018; Krupp and Rossow

2018]. teEther [Krupp and Rossow 2018] generates exploits for vul-

nerable contracts using symbolic execution with the Z3 constraint

solver [DeMoura and Bjørner 2008] to solve path constraints for the

critical paths in the control flow graph. Contractfuzzer [Jiang et al.

2018] uses the Application Binary Interface (ABI) specifications of

vulnerable smart contracts to generate exploits (fuzzing inputs) for

two vulnerabilities. SMARTSCOPY [Feng et al. 2019] also synthe-

sizes adversarial contracts for exploiting vulnerabilities in contracts

based on ABI specifications of the contracts covering larger set of

vulnerabilities than Contractfuzzer. Echidna [Crytic [n.d.]] has been

proposed for fuzzing smart contracts. It supports grammar-based

fuzzing to generate transactions to test smart contracts. The goal

of these techniques is testing the smart contracts themselves for

security vulnerabilities rather than testing bug-finding tools.

10 CONCLUSION
This paper proposed SolidiFI, a technique for performing system-

atic evaluation of Ethereum smart contract’s static analysis tools

based on bug injection. SolidiFI analyzes the AST (Abstract Syntax

Tree) of smart-contracts and injects pre-defined bug patterns at

all possible locations in the AST. SolidiFI was used to evaluate 6

smart contract static analysis tools, and the evaluation results show

several cases of bugs that were not detected by the evaluated tools

even though those undetected bugs are within the detection scope

of tools. SolidiFI thus identifies important gaps in current static

analysis tools for smart contracts, and provides a reproducible set

of tests for developers of future static analysis tools. It also allows

smart contract developers to understand the limitations of existing

static analysis tools with respect to detecting security bugs.

Future work will consist of expanding SolidiFI to other smart

contract languages than Solidity, and automating the bug definition

processes for injecting new bug types.

11 ACKNOWLEDGMENTS
This work was partially supported by the Natural Sciences and

Engineering Research Council of Canada (NSERC), and a research

gift from Intel. We thank Julia Rubin, Sathish Gopalakrishnan, Kon-

stantin Beznosov, and the anonymous reviewers of ISSTA’20 for

their helpful comments about this work.

REFERENCES
[n.d.]. CVE-2018-10299 Detail. https://nvd.nist.gov/vuln/detail/CVE-2018-10299

[n.d.]. eth-mutants. https://github.com/federicobond/eth-mutants

[n.d.]. History of Ethereum Security Vulnerabilities, Hacks, and Their

Fixes. https://applicature.com/blog/blockchain-technology/history-of-ethereum-

security-vulnerabilities-hacks-and-their-fixes

[n.d.]. INFURA. https://infura.io

[n.d.]. MetaMask. https://metamask.io

[n.d.]. solidity-security-blog. https://github.com/sigp/solidity-security-blog

2016. Analysis of the DAO exploit. https://hackingdistributed.com/2016/06/18/

analysis-of-the-dao-exploit

2017. The parity wallet breach. https://bitcoinexchangeguide.com/parity-wallet-

breach

2017. Remix - Solidity IDE. http://remix.ethereum.org

2018. New batchOverflow Bug in Multiple ERC20 Smart Contracts (CVE-

2018âĂŞ10299). https://medium.com/@peckshield/alert-new-batchoverflow-

bug-in-multiple-erc20-smart-contracts-cve-2018-10299-511067db6536

https://nvd.nist.gov/vuln/detail/CVE-2018-10299
https://github.com/federicobond/eth-mutants
https://applicature.com/blog/blockchain-technology/history-of-ethereum-security-vulnerabilities-hacks-and-their-fixes
https://applicature.com/blog/blockchain-technology/history-of-ethereum-security-vulnerabilities-hacks-and-their-fixes
https://infura.io
https://metamask.io
https://github.com/sigp/solidity-security-blog
https://hackingdistributed.com/2016/06/18/analysis-of-the-dao-exploit
https://hackingdistributed.com/2016/06/18/analysis-of-the-dao-exploit
https://bitcoinexchangeguide.com/parity-wallet-breach
https://bitcoinexchangeguide.com/parity-wallet-breach
http://remix.ethereum.org
https://medium.com/@peckshield/alert-new-batchoverflow-bug-in-multiple-erc20-smart-contracts-cve-2018-10299-511067db6536
https://medium.com/@peckshield/alert-new-batchoverflow-bug-in-multiple-erc20-smart-contracts-cve-2018-10299-511067db6536

How Effective are Smart Contract Analysis Tools? Evaluating Smart Contract Static Analysis Tools Using Bug InjectionISSTA ’20, July 18–22, 2020, Los Angeles/Virtual, CA, USA

Sefa Akca, Ajitha Rajan, and Chao Peng. 2019. SolAnalyser: A Framework for Analysing

and Testing Smart Contracts. In 2019 26th Asia-Pacific Software Engineering Confer-
ence (APSEC). IEEE, 482–489.

Sidney Amani, Myriam Bégel, Maksym Bortin, and Mark Staples. 2018. Towards

verifying ethereum smart contract bytecode in Isabelle/HOL. In Proceedings of the
7th ACM SIGPLAN International Conference on Certified Programs and Proofs. ACM,

66–77.

Nicola Atzei, Massimo Bartoletti, and Tiziana Cimoli. 2017. A survey of attacks on

ethereum smart contracts (sok). In Principles of Security and Trust. Springer, 164–
186.

Karthikeyan Bhargavan, Antoine Delignat-Lavaud, Cédric Fournet, Anitha Gollamudi,

Georges Gonthier, Nadim Kobeissi, Natalia Kulatova, Aseem Rastogi, Thomas Sibut-

Pinote, Nikhil Swamy, et al. 2016. Formal verification of smart contracts: Short

paper. In Proceedings of the 2016 ACM Workshop on Programming Languages and
Analysis for Security. ACM, 91–96.

Richard Bonett, Kaushal Kafle, Kevin Moran, Adwait Nadkarni, and Denys Poshyvanyk.

2018. Discovering flaws in security-focused static analysis tools for Android using

systematic mutation. In 27th {USENIX} Security Symposium ({USENIX} Security
18). 1263–1280.

Lexi Brent, Anton Jurisevic, Michael Kong, Eric Liu, Francois Gauthier, Vincent Gramoli,

Ralph Holz, and Bernhard Scholz. 2018. Vandal: A Scalable Security Analysis

Framework for Smart Contracts. arXiv preprint arXiv:1809.03981 (2018).
Vitalik Buterin. 2014. Ethereum: A next-generation smart contract and decentralized

application platform. URL https://github. com/ethereum/wiki/wiki/% 5BEnglish%
5D-White-Paper 7 (2014).

WK Chan and Bo Jiang. 2018. Fuse: An Architecture for Smart Contract Fuzz Testing

Service. In 2018 25th Asia-Pacific Software Engineering Conference (APSEC). IEEE,
707–708.

Christopher D Clack, Vikram A Bakshi, and Lee Braine. 2016. Smart contract tem-

plates: foundations, design landscape and research directions. arXiv preprint
arXiv:1608.00771 (2016).

Crytic. [n.d.]. Echdina. https://github.com/crytic/echidna

Chris Dannen. 2017. Introducing Ethereum and Solidity: Foundations of Cryptocurrency
and Blockchain Programming for Beginners. Springer.

Leonardo De Moura and Nikolaj Bjørner. 2008. Z3: An Efficient SMT Solver. In Proceed-
ings of the Theory and Practice of Software, 14th International Conference on Tools
and Algorithms for the Construction and Analysis of Systems (TACAS’08/ETAPS’08).
337–340.

Brendan Dolan-Gavitt, Patrick Hulin, Engin Kirda, Tim Leek, Andrea Mambretti, Wil

Robertson, Frederick Ulrich, and Ryan Whelan. 2016. Lava: Large-scale automated

vulnerability addition. In 2016 IEEE Symposium on Security and Privacy (SP). IEEE,
110–121.

Thomas Durieux, João F Ferreira, Rui Abreu, and Pedro Cruz. 2019. Empirical Review

of Automated Analysis Tools on 47,587 Ethereum Smart Contracts. arXiv preprint
arXiv:1910.10601 (2019).

Etherscan. [n.d.]. Etherscan. https://etherscan.io

Josselin Feist, Gustavo Grieco, andAlex Groce. 2019. Slither: a static analysis framework

for smart contracts. In 2019 IEEE/ACM 2nd International Workshop on Emerging
Trends in Software Engineering for Blockchain (WETSEB). IEEE, 8–15.

Yu Feng, Emina Torlak, and Rastislav Bodík. 2019. Precise Attack Synthesis for Smart

Contracts. CoRR abs/1902.06067 (2019). arXiv:1902.06067 http://arxiv.org/abs/1902.

06067

Ilya Grishchenko, Matteo Maffei, and Clara Schneidewind. 2018. A Semantic Frame-

work for the Security Analysis of Ethereum smart contracts. In International Con-
ference on Principles of Security and Trust. Springer, 243–269.

Everett Hildenbrandt, Manasvi Saxena, Xiaoran Zhu, Nishant Rodrigues, Philip Daian,

Dwight Guth, and Grigore Rosu. 2017. Kevm: A complete semantics of the ethereum
virtual machine. Technical Report.

Yoichi Hirai. 2017. Defining the ethereum virtual machine for interactive theorem

provers. In International Conference on Financial Cryptography and Data Security.
Springer, 520–535.

Bo Jiang, Ye Liu, and WK Chan. 2018. Contractfuzzer: Fuzzing smart contracts for

vulnerability detection. In Proceedings of the 33rd ACM/IEEE International Conference
on Automated Software Engineering. ACM, 259–269.

Johannes Krupp and Christian Rossow. 2018. teether: Gnawing at ethereum to automat-

ically exploit smart contracts. In 27th {USENIX} Security Symposium ({USENIX}
Security 18). {USENIX Association}, 1317–1333.

Loi Luu, Duc-Hiep Chu, Hrishi Olickel, Prateek Saxena, and Aquinas Hobor. 2016.

Making smart contracts smarter. In Proceedings of the 2016 ACM SIGSAC Conference
on Computer and Communications Security. ACM, 254–269.

Florian Mathieu and Ryno Mathee. 2017. Blocktix: decentralized event hosting

and ticket distribution network. https://www.cryptoground.com/storage/files/

1527588859-blocktix-wp-draft.pdf

MarkMossberg, FelipeManzano, Eric Hennenfent, Alex Groce, GustavoGrieco, Josselin

Feist, Trent Brunson, and Artem Dinaburg. 2019. Manticore: A user-friendly sym-

bolic execution framework for binaries and smart contracts. In 2019 34th IEEE/ACM
International Conference on Automated Software Engineering (ASE). IEEE, 1186–1189.

Bernhard Mueller. 2018. Smashing ethereum smart contracts for fun and real profit.

HITB SECCONF Amsterdam (2018).

Reza M Parizi, Ali Dehghantanha, Kim-Kwang Raymond Choo, and Amritraj Singh.

2018. Empirical vulnerability analysis of automated smart contracts security test-

ing on blockchains. In Proceedings of the 28th Annual International Conference on
Computer Science and Software Engineering. IBM Corp., 103–113.

Chao Peng, Sefa Akca, and Ajitha Rajan. 2019. SIF: A Framework for Solidity Con-

tract Instrumentation and Analysis. In 2019 26th Asia-Pacific Software Engineering
Conference (APSEC). IEEE, 466–473.

Daniel Perez and Benjamin Livshits. 2019. Smart Contract Vulnerabilities: Does Anyone

Care? arXiv preprint arXiv:1902.06710 (2019).
Jannik Pewny and Thorsten Holz. 2016. EvilCoder: automated bug insertion. In

Proceedings of the 32nd Annual Conference on Computer Security Applications. ACM,

214–225.

Ferdian Thung, David Lo, Lingxiao Jiang, Foyzur Rahman, Premkumar T Devanbu,

et al. 2012. To what extent could we detect field defects? an empirical study of

false negatives in static bug finding tools. In Proceedings of the 27th IEEE/ACM
International Conference on Automated Software Engineering. ACM, 50–59.

Sergei Tikhomirov, Ekaterina Voskresenskaya, Ivan Ivanitskiy, Ramil Takhaviev,

Evgeny Marchenko, and Yaroslav Alexandrov. 2018. SmartCheck: Static Anal-

ysis of Ethereum Smart Contracts. (2018).

Petar Tsankov, Andrei Dan, Dana Drachsler-Cohen, Arthur Gervais, Florian Buenzli,

and Martin Vechev. 2018. Securify: Practical security analysis of smart contracts. In

Proceedings of the 2018 ACM SIGSAC Conference on Computer and Communications
Security. 67–82.

Xingya Wang, Haoran Wu, Weisong Sun, and Yuan Zhao. 2019. Towards Generating

Cost-Effective Test-Suite for Ethereum Smart Contract. In 2019 IEEE 26th Interna-
tional Conference on Software Analysis, Evolution and Reengineering (SANER). IEEE,
549–553.

HaoranWu, Xingya Wang, Jiehui Xu, Weiqin Zou, Lingming Zhang, and Zhenyu Chen.

2019. Mutation testing for ethereum smart contract. arXiv preprint arXiv:1908.03707
(2019).

https://github.com/crytic/echidna
https://etherscan.io
http://arxiv.org/abs/1902.06067
http://arxiv.org/abs/1902.06067
http://arxiv.org/abs/1902.06067
https://www.cryptoground.com/storage/files/1527588859-blocktix-wp-draft.pdf
https://www.cryptoground.com/storage/files/1527588859-blocktix-wp-draft.pdf

	Abstract
	1 Introduction
	2 Background
	2.1 Smart Contracts
	2.2 Static Analysis Tools

	3 Motivation and Challenges
	3.1 Motivating examples
	3.2 Automated bug injection challenges

	4 SolidiFI Approach and Workflow
	4.1 Bug Model
	4.2 Bug Injection

	5 SolidiFI Algorithm
	6 Implementation
	7 Evaluation
	7.1 RQ1:What are the false negatives of the tools being evaluated?
	7.2 RQ2: What are the false positives of the tools being evaluated?
	7.3 RQ3: Can the injected bugs be activated by an external attacker?
	7.4 RQ4: What is the performance of SolidiFI?

	8 Discussion
	8.1 Reasons for False-Negatives
	8.2 Implications
	8.3 Limitations of SolidiFI
	8.4 Threats to Validity

	9 Related Work
	10 Conclusion
	11 Acknowledgments
	References

